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Abstract

An inverted pendulum is a challenging underactuated system characterized by nonlinear

behavior. Defining an effective control strategy for such a system is challenging. This paper

presents an overview of the IP control system augmented by a comparative analysis of mul-

tiple control strategies. Linear techniques such as linear quadratic regulators (LQR) and pro-

gressing to nonlinear methods such as Sliding Mode Control (SMC) and back-stepping

(BS), as well as artificial intelligence (AI) methods such as Fuzzy Logic Controllers (FLC)

and SMC based Neural Networks (SMCNN). These strategies are studied and analyzed

based on multiple parameters. Nonlinear techniques and AI-based approaches play key

roles in mitigating IP nonlinearity and stabilizing its unbalanced form. The aforementioned

algorithms are simulated and compared by conducting a comprehensive literature study.

The results demonstrate that the SMCNN controller outperforms the LQR, SMC, FLC, and

BS in terms of settling time, overshoot, and steady-state error. Furthermore, SMCNN exhibit

superior performance for IP systems, albeit with a complexity trade-off compared to other

techniques. This comparative analysis sheds light on the complexity involved in controlling

the IP while also providing insights into the optimal performance achieved by the SMCNN

controller and the potential of neural network for inverted pendulum stabilization.

1 Introduction

The design of a control system for an inverted pendulum (IP) is a classical problem employed

in nonlinear control systems. IP has many practical applications in various fields, such as

humanoid robots and Segways. IP is a highly unstable and nonlinear system with a very com-

plex nature. As an under-actuated system, the control design of an IP is considered a challeng-

ing task.

Several types of inverted pendulums, such as rotational IP and pendulum on the cart, have

been previously tested, and researchers have proposed various methods to control these IP
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systems. The authors of [1–3] proposed a backstepping (BS)-based control technique for IP

control. They proposed that the BS controls a two-step approach where swing up, while

upward balancing is attained by a linear integral regulator. Lee et al. (2015) proposed an output

feedback-based technique in the existence of uncertainties to stabilize IP on a cart [4]. A high-

gain observer is used to estimate the states that are not measured in order to combat their

uncertain nature. Lee and Takangi (1993) proposed an optimized genetic algorithm through a

fuzzy controller to control the IP [5]. The genetic algorithm methodologies in control system

engineering have been applied to several problems. Cuevas et al. (2015) proposed a fuzzy

logic-based optimal controller for IP, in which the results for both the phase plan and linguistic

trajectories are presented, and they demonstrated stable characteristics [6]. Optimal PID con-

trol for the linear model of IP is combined with pole placement algorithms to obtain the per-

formance specifications, which leads to firefly optimization control [7]. Similarly, Eltohamy

and Kuo (1998) designed a nonlinear controller for a single IP, based on an unstable upright

position. An extended state observer is designed to observe the disturbances and uncertainties

that have a rejection ability [8]. The researcher in [9] experimented with a traditional fuzzy

controller to stabilize a single IP and improve the dynamics of the system accordingly.

Linear Quadratic Regulator (LQR) is a classical linear control system that can control those

systems where disturbances and uncertainties are absent. This technique allows one to find the

closed-loop gain location for the system by guaranteeing system stability in the presence of all

states of the system [10, 11]. Sliding Mode Control (SMC) is a robust control technique that

deals with the parametric uncertainties of matched and unmatched disturbances [12–14].

More consistency is required between the mathematical and actual models of the system. To

overcome these discrepancies, robust control techniques such as SMC are more effective [15].

Fuzzy Logic Controller (FLC) is an artificial intelligence (AI) control technique that is used to

develop a model for a complex system. This simplifies the model under certain assumptions

and reduces the complexity of the system. It maintains the system’s energy in a steady state (up

down position) [16, 17]. Similarly, a Neural Network (NN) is a practical algorithm for model-

ing nonlinear statistical scenarios by providing a method for logistic regression. It estimates

the function, which has multiple inputs initially considered as unknown, and interconnects

the system that exchanges information with each other [18]. NN connections have a numerical

weight matrix, and based on previous information, NNs adapt to the input to achieve better

learning capabilities [19–21].

This research study explores linear, nonlinear, and AI control strategies, such as LQR,

SMC, BS, FLC, and SMCNN, and a comparative analysis is augmented with simulations of the

selected algorithms. An IP without a controller is inherently unstable. Hence, to check and

maintain its stability, we must manipulate it to check the response of the system vertically and

horizontally. The FLC technique provides a benchmark for testing IP response without a

mathematical approach. It stabilizes the system and maintains the cart in the desired position.

The SMC is designed and implemented to check the response of the nonlinear and underactu-

ated systems. It has a single input and two outputs for the cart position and pendulum angle.

Therefore, this technique stabilizes the uncertain SIMO and MIMO systems. The LQR con-

troller, which is an optimal control technique for the desired trajectories, is also simulated.

The BS and SMCNN are explored in terms of IP stability to observe the behavior of the system.

The FLC, SMC, and LQR simulation results are compared to analyze the behavior of the linear

and nonlinear families on the control strategies.

The remainder of this paper is organized as follows. Section 1 describes the details of IP

modeling, including linear and nonlinear models, while Section 2 presents different control

approaches to stabilize the IP. Section 3 presents the results of the implemented control tech-

niques, and Section 4 concludes the overall analysis of our research.
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2 Modeling of inverted pendulum

The physical system of an IP is depicted in Fig 1, and comprises an IP mounted on a cart mov-

ing on a rail. The translational movement of the cart is enabled by DC motors that swing freely

in a vertical position. A motor shaft is connected to the cart using thin steel wire. The IP system

model is divided into two parts. The first is the mechanical structure of the cart and pendulum

angle and the second is the DC motor transmission model.

The mathematical model of the IP is formulated using a Newtonian approach. The move-

ment of the cart is due to horizontally applied forces, as it is not affected by vertical forces, and

it receives the input through an actuator (DC motor) [22]. A nonlinear mathematical model of

an IP is formulated using a Newtonian approach. The following equations describe the nonlin-

ear mathematical model of an inverted pendulum.

ðM þmÞ€x þmL€y cos y � mly2 sin yþ B _x ¼ T ð1Þ

ðI þml2Þ€y þmgl sin y ¼ � ml€x cos y ð2Þ

Where M represents the cart mass, m is the mass of the Pendulum, L represents the cart

length, l is the length of the pendulum, B is the coefficient of friction of the cart, I is the

Fig 1. Physical model of an inverted pendulum.

https://doi.org/10.1371/journal.pone.0298093.g001
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moment of inertia, T is the torque in the form of external input force which moves cart in the

horizontal plane, x is the cart position while €x is the cart acceleration, θ is the angular position

of the pendulum and €y is representing the angular acceleration. Eqs (1) and (2) are nonlinear

and have been linearized to implement a linear controller. As θ is very small, it leads to the fact

that the square of the derivative of θ is assumed to be zero. Hence, θ2 = 0, and the linearized

mathematical model of the system can be expressed as follows:

ðM þmÞ€x þ B _x � mL€y ¼ Fa ð3Þ

ðI þmL2Þ€y � mgLy ¼ mL€x ð4Þ

3 Control techniques

This section describes the implemented control techniques for IP. There are three categories of

control techniques for IP, that is, linear, nonlinear, and AI control approaches, and some

selected algorithms of each type are shown in Fig 2. LQR is briefly described as a linear control

plan for IP, whereas SMC and BS are presented in the domain of nonlinear algorithms. Finally,

AI control techniques such as FLC and SMCNN are explored.

3.1 Linear quadratic regulator

The LQR is an optimal linear control technique that can be effectively used to improve the

overall performance of a linear system. In general, it is appropriate for linear systems where

Fig 2. Control strategies for an IP.

https://doi.org/10.1371/journal.pone.0298093.g002
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disturbances and uncertainties are not present [23]. The main objective of using the LQR is to

estimate the gain that minimizes the cost function [24]. A quadratic function-based cost func-

tion is used, which is usually defined as:

J ¼
Z 1

0

½xTðtÞQðtÞxðtÞ þ uTðtÞRðtÞuðtÞ�dt ð5Þ

where u and x are the inputs and states of the system, respectively. Similarly, R and Q are the

positive definite matrices, where Q(t) 2 Rn×n is a positive definite or positive semi-definite

Hermitian matrix and R(t) 2 Rr×r is a positive definite Hermitian matrix (or real constant

number). The gain of the LQR is calculated using the following equation:

K ¼ R� 1BTP ð6Þ

The following equation gives the Riccati equation for finding the gain of the system

ATP þ PA � PBR� 1BTP þ Q ¼ 0 ð7Þ

Similarly, the generalized illustration of a linear control system is given by

_xðtÞ ¼ AxðtÞ þ BuðtÞ ð8Þ

Whereas the control law for such a linear system is defined as

uðtÞ ¼ � KxðtÞ ð9Þ

To compute the gains of the system, the system’s open loop response is incorporated and given

by

_xðtÞ ¼ AxðtÞ � BKxðtÞ ¼ ðA � BKÞxðtÞ ð10Þ

3.2 Sliding mode control

SMC is a robust control technique capable of handling systems with multiple inputs and out-

puts (MIMO). However, there is always a need for more consistency between the actual model

and the mathematical model of the plant when designing the controller [25]. Matched and

unmatched uncertainties, external disturbances, and parametric uncertainties are the main

inconsistencies between the actual and mathematical models of the plant. A robust controller

is required to reduce these fundamental factors. SMC ensures global stability and effectively

handles the fast dynamic response of a system [26]. A block diagram of the overall design is

shown in Fig 3.

Fig 3. Block diagram of overall controller part of SMC.

https://doi.org/10.1371/journal.pone.0298093.g003
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SMC consists of two phases: sliding and reaching. In the reaching phase, the system moves

from its initial stage to the final desired trajectories, whereas in the sliding phase, the system

remains there at all times. We have two parts of the SMC controller: an equivalent controller

and a discontinuous controller. An equivalent controller is designed for the reaching phase,

whereas a discontinuous controller is suitable for the sliding surface. The addition of these two

controllers resulted in an overall controller for the system. The reaching and sliding phases are

illustrated in Fig 4.

3.2.1 Control design with SMC. The control design of the SMC involves the following

steps. First, the sliding surface is defined by the following equation

Sðx; tÞ ¼ ðd=dt þ lÞ3e ð11Þ

Where, e is the error signal and λ is the positive constant

e ¼ e1 � ed ð12Þ

s ¼ e3 þ l
3eþ 3l

2
_e þ 3l€e ð13Þ

Fig 4. Block phases of SMC.

https://doi.org/10.1371/journal.pone.0298093.g004

PLOS ONE Control strategies for inverted pendulum

PLOS ONE | https://doi.org/10.1371/journal.pone.0298093 March 7, 2024 6 / 19

https://doi.org/10.1371/journal.pone.0298093.g004
https://doi.org/10.1371/journal.pone.0298093


Then, by differentiating the sliding surface with respect to time and forcing the time derivative

at ðsÞ ¼ _0, we get the equivalent controller part of SMC as

ueq ¼ ðð f ðxÞ þ ð3le4Þ þ ð3l
2e3Þ þ ðl

3e2ÞÞ=gðxÞÞ þ ðð e⃛d þ ð3l
2
€edÞ þ ð3l e⃛ dÞ þ ðl

3
_edÞÞ=gðxÞ ð14Þ

While the discontinuous controller is designed by using a pre-defined sign function given by

udis ¼ � ksignðsÞ ð15Þ

The overall controller is obtained through the addition of equivalent and discontinuous parts

given as

u ¼ ueq þ udis ð16Þ

Owing to these huge benefits, the first-order SMC suffers from the chattering phenomenon

due to oscillation from the frequency turbulence. Higher-order Sliding Mode Control

(HOSMC) is proposed to reduce the chattering effect [27]. The Lyapunov stability theorem is

used to ensure the stability of the IP system. It is defined as follows,

V ¼ 1=2S2 ð17Þ

_V ¼ S _S ð18Þ

By substituting the time derivative of Eq (17) into the above equation, the derivative of the Lya-

punov function _V is obtained:

_V ¼ Sð� ksignðsÞÞ ð19Þ

_V � � kjsj ð20Þ

_V becomes negative definite and the system dynamics converge to its origin in finite time.

3.3 Back-stepping control

The BS is a robust control technique that is highly nonlinear and based on the Lyapunov stabil-

ity theorem. Stability is achieved through the recursive process, as Lyapunov is a scalar func-

tion that ensures the stability of the system [28]. This technique can only be implemented by

using strict feedback systems. Because the IP is an underactuated system, rather than a pure

feedback system, we cannot apply back-stepping directly to the IP. After transformation into

the feedback linearizable form, we can apply the BS to the IP control problem. The IP swung

initially and stabilized the upright position. The swung-up is obtained through a nonlinear

controller, whereas the linear control stabilizes its dynamics. Linearized control techniques sta-

bilize the angle and cart position using transformed regulated variables [29].

3.3.1 Control design with BS. The control design of the BS method has a Lyapunov Func-

tion (LF), and a virtual signal is constructed to stabilize the subsystem until the signal enters

system dynamics. Let the first tracking error for the cart position and pendulum’s angular

position (θ = x3) be given as

e1 ¼ x1d � x1 ð21Þ

e3 ¼ x3d � x3 ð22Þ

where x1d is the desired trajectory of the cart position and x3d is the desired trajectory of the

PLOS ONE Control strategies for inverted pendulum

PLOS ONE | https://doi.org/10.1371/journal.pone.0298093 March 7, 2024 7 / 19

https://doi.org/10.1371/journal.pone.0298093


pendulum’s angular position. The stabilizing functions (α1, α2) are defined as follows.

a1ðx; eÞ ¼ _x1d þ k1e1 ð23Þ

a2ðx; eÞ ¼ _x3d þ k3e3 ð24Þ

Lyapunov candidate functions are defined in terms of the four regulatory variables e1, e2, e3

and e2 as follows

V1ðe1; e2Þ ¼ 1=2ðe2
1
þ e2

2
Þ ð25Þ

V2ðe3; e4Þ ¼ 1=2ðe2
3
þ e2

4
Þ ð26Þ

Considering the transformed regular form of the cart-pendulum system [30], virtual control

input tan(x3) and system control input u are chosen to stabilize x1 and x3, respectively.

x3 ¼ tan� 1ð1=½ g=cðð4=3 � cos2 x3Þ þ 4=3MÞ þ 4=3ðlx2
4
Þ= cos x3�ðe1 þ €x1d � k1ðe2 þ k1e1Þk2e2ÞÞ ð27Þ

u ¼ � 1= cos x3ð1=clðe3k4e4 þ €x3d � k3ðe4 þ k3e3ÞÞ � ðM þmÞg sin x3Þ � mlx2
4
sin x3 ð28Þ

The virtual control input tanx3 and system control input u satisfy _V 1ðe1; e2Þ < 0 and

_V 2ðe3; e4Þ < 0, respectively. Where k1, k2, k3, k4 > 0.

_V 1ðe1; e2Þ ¼ � k1e2
1
� k2e2

2
ð29Þ

_V 2ðe3; e4Þ ¼ � k3e2
3
� k4e2

4
ð30Þ

3.4 Fuzzy-logic controller

FLC is a model-less control technique that is suitable for systems with nonlinearities and dis-

turbances [31]. This is an AI control technique that stabilizes the behavior of nonlinear sys-

tems. FLC is a challenging task, especially when using the IF-Then rule. This will work like

human intelligence, and the accuracy of the control action will also increase [32]. FLC is an

effective technique that systematically controls an uncertain system such as IP [33].

Fig 5 shows an FLC block diagram in which the fuzzy interference process defines the logic

to control the DC motor of the IP system through a DAC and amplifier. The microcontroller

performs control actions. It samples the input data from the sensors and then controls the

speed of the DC motor. The DC motor moves the cart position and balances IP [34]. A control

design using a fuzzy logic technique is required to obtain the accuracy and stability of the sys-

tem. The fuzzy interference rules for IP are mainly derived through Mamdani [35] and Sugeno

techniques [36]. The basic steps of a fuzzy logic control design are the following:

1. Define fuzzy interface process

2. Define the input, output, and membership function

3. Use the IF-Then rule

There are four inputs and two outputs of the fuzzy controller for the IP. Two membership

functions are assigned to each input variable. The Sugeno systems contain 16 output variables.

We have 16 Sugeno IF-Then rules for IP. A few important rules are given below:
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1. (Position is PL) and (Velocity is VL) and (angle is AL) and (angular velocity is AVL) then

(Force is FLM),

2. (Position is PL) and (Velocity is VL) and (angle is AL) and (angular velocity is AVL) then

(Force is FL),

3. (Position is PL) and (Velocity is VL) and (angle is AL) and (angular velocity is AVL) then

(Force is zero),

4. (Position is PH) and (Velocity is VL) and (angle is AL) and (angular velocity is AVH) then

(Force is zero),

5. (Position is PH) and (Velocity is VL) and (angle is AL) and (angular velocity is AVH) then

(Force is TR),

6. (Position is PH) and, (Velocity is VL) and, (angle is AL), and (angular velocity is AVH),

then (Force is TRM).

3.5 SMC-based neural network

The SMCNN is a nonlinear control technique. Owing to its lack of stability and nonlinearity, it

provides a path for testing the prototype controller. Therefore, different researchers have

designed NN-based controllers to test IP [37, 38]. A supervised NN reduces errors more effi-

ciently and keeps the system stable [39, 40]. The RBF does not require mathematical modeling

and can identify nonlinear and complex systems. A SMCNN can successfully track both IP

axes more accurately and effectively [20, 41]. The Gyroscopic Inverted Pendulum (GIP),

Fig 5. Diagram for the fuzzy control of the inverted pendulum [27].

https://doi.org/10.1371/journal.pone.0298093.g005
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which is both nonlinear and unstable in an open loop, is evaluated on a single-layered NN

with a nonlinear autoregressive moving average property [21].

3.5.1 Control design. Fig 6 shows the overall closed-loop control system structure com-

prising an RBF NN, which estimates F(x) and the controller realized by an optimizer. To

approximate the uncertain F, RBF networks are used adaptively. The algorithm of RBF net-

works is given by

pj ¼ gðkx � cijk
2
=ðb2

j ÞÞ ð31Þ

F ¼ QTpðxÞ þ r ð32Þ

where x represents the network’s input state, i counts the input number of the network, j is the

number of hidden layer nodes in the network, while p = [p1 p2 p3 . . . pn]T is the yield of Gauss-

ian function, Q is a vector of weights of the specified NN, r is approximation error of NN, and

r� rN. RBF network approximation f is used. The network input is chosen as x ¼ ½e _e�T , and

the output of RBF neural network is

F̂ ¼ Q̂TpðxÞ ð33Þ

where p(x) is the NN’s Gaussian function in general and the Gaussian function parameters

and neural network weights are difficult to choose. For this purpose, an error signal is defined

as

e1 ¼ x3d � x3 ð34Þ

A sliding manifold is given by

s ¼ _e1 þ le1 ð35Þ

Fig 6. Neural network controller [40].

https://doi.org/10.1371/journal.pone.0298093.g006
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Differentiating (35),

_s ¼ €e1 þ l _e1 ¼ €x3d � FðxÞ � GðxÞu � DðtÞ þ l _e1 ð36Þ

The control input is as follows

u ¼
1

g
ð� F̂ðxÞ þ €x3d þ l _e1 þ k sgnðsÞÞ ð37Þ

Substituting Eqs (37) in (36), we have

_s ¼ � FðxÞ þ F̂ðxÞ � k sgnðsÞ � DðtÞ ¼ � ~FðxÞ � k sgnðsÞ � DðtÞ ð38Þ

where,

~FðxÞ ¼ FðxÞ � F̂ðxÞ ð39Þ

~FðxÞ ¼ QTpðxÞ þ r � Q̂TpðxÞ ð40Þ

~FðxÞ ¼ ~QTpðxÞ þ r ð41Þ

where,

~Q ¼ Q � Q̂ ð42Þ

Defining the Lyapunov function as

Vðs;QÞ ¼
1

2
s2 þ

1

2
g~QT ~Q ð43Þ

where γ is the positive coefficient of the above equation. By taking the derivative of V, we get

_V ðs;QÞ ¼ s_s þ g~QT _~Q ð44Þ

Substituting the right-hand side of _s and
_~Q,

_V ðs;QÞ ¼ sð� ~FðxÞ � k sgnðsÞ � DðtÞÞ � g~QT _̂Q ð45Þ

_V ðs;QÞ ¼ � sðr þ k sgnðsÞ þ DðtÞÞ � ~QQTðg
_̂Q þ s pðxÞÞ ð46Þ

The adaptive control law is designed as follows

_̂Q ¼
1

g
s pðxÞ ð47Þ

_V ðs;QÞ ¼ � sðr þ k sgnðsÞ þ DðtÞÞ ¼ � sðr þ DðtÞÞ � kjsj ð48Þ

We obtain approximately _V ðs;QÞ � 0 because the approximation error r is sufficiently small

in design k� rN + D. We obtain approximately _V ðs;QÞ � 0 because the approximation error

r is sufficiently small in design k� rN + D. Table 1 presents a review of different properties of

the studied algorithms for IP. Linear techniques such as LQR are simple to implement with

less computational complexity than nonlinear techniques such as Artificial and non-artificial

based control design. However nonlinear techniques show better transient and steady state

performance.

PLOS ONE Control strategies for inverted pendulum

PLOS ONE | https://doi.org/10.1371/journal.pone.0298093 March 7, 2024 11 / 19

https://doi.org/10.1371/journal.pone.0298093


4 Results and discussion

In this section, we delve into the assessment and comparison of control algorithms, focusing

on selecting a representative algorithm from each of the three categories. These selections are

made based on the criteria of low complexity and reasonable accuracy when compared to

other strategies within their respective classes. Our analysis encompasses key performance

parameters such as settling time, rise time, steady-state percentage error, and percentage over-

shoot. The results for each parameter are presented in a step-wise manner below.

First, Figs 7 and 8 scrutinize the outcomes obtained from all controllers concerning the

cart’s position and the pendulum’s angle. The findings indicate that the system achieves stabil-

ity in both the cart’s position and pendulum’s angle after the settling time. Notably, given the

inverted pendulum’s non-minimum phase nature, the cart initially moved in the opposite

direction before successfully tracking the desired position. To provide a comprehensive view

of performance, Table 2 details the efficacy of simulated control techniques across all algo-

rithms. Turning our attention to Figs 7 and 8, we examine the response of the cart position

and pendulum angle to a step input. Remarkably, all control algorithms effectively restored

equilibrium in the cart position and pendulum, achieving upright stability after specific set-

tling times. For instance, the SMCNN control technique emerges as particularly efficient, sta-

bilizing the cart position in a mere 1.5 seconds, outperforming the other strategies in this

regard. Similarly, the pendulum angle swiftly converges to its desired trajectory when the

SMCNN control technique is applied. Figs 9 and 10 provide further insights into the control

Table 1. Limitations and advantages of different control stratifies, a comparison.

No. Technique/ Algorithm Dependencies Limitations Performance

1 Linear Quadratic Regulator Linearization Only for linear systems Robust

2 Sliding Mode Control Feedback linearization Chattering problem Robust

3 Back Stepping Feedback linearization Robustness Non-linear/ Adaptive

4 Fuzzy Logic Control Linguist variables IF-Then rules Difficult to implement Robust

5 SMC based Neural Network Dataset, Network Architecture Large dataset required to train the system Adaptive

https://doi.org/10.1371/journal.pone.0298093.t001

Fig 7. Comparative results of step response of cart-position.

https://doi.org/10.1371/journal.pone.0298093.g007

PLOS ONE Control strategies for inverted pendulum

PLOS ONE | https://doi.org/10.1371/journal.pone.0298093 March 7, 2024 12 / 19

https://doi.org/10.1371/journal.pone.0298093.t001
https://doi.org/10.1371/journal.pone.0298093.g007
https://doi.org/10.1371/journal.pone.0298093


inputs and tracking errors for the LQR, SMC, FLC, BS, and SMCNN strategies. In Fig 9, we

observe a distinct chattering effect in the case of SMC, which is notably mitigated by the

remaining techniques. Meanwhile, Fig 10 illustrates that the tracking error approaches near-

zero values, showcasing the robustness of the simulated control strategies against both

matched and unmatched uncertainties.

Simulated results for the cart position and pendulum angle under sinusoidal input condi-

tions are depicted in Figs 11 and 12. These results provide valuable insights into the perfor-

mance of all the controllers. Notably, stability is achieved in both the cart position and

pendulum angle, with distinct settling times observed for each control algorithm: 6.2, 3, 5, 1.5,

and 4 s for LQR, SMC, FLC, BS, and SMCNN, respectively. The pendulum exhibits an oscil-

latory motion in line with the desired trajectory of 2π. Fig 11 illustrates the cart’s movement

towards the desired trajectory and its stabilization for all the control techniques. Figs 13 and 14

present the simulation results for the control input and error signals across all the simulated

methods. Notably, the tracking error approached zero, demonstrating the effectiveness and

robustness of the control strategies against both matched and unmatched uncertainties. Addi-

tionally, the chattering effect, particularly visible in the SMC case, is notably reduced when

employing the BS and SMCNN techniques. A comprehensive overview of the controller per-

formance can be found in Table 2.

In summary, the results obtained from these simulations indicate that all selected control

algorithms exhibit stability and promising performance in achieving the desired system design

goals.

Fig 8. Comparative results of step response of pendulum.

https://doi.org/10.1371/journal.pone.0298093.g008

Table 2. Comparison of implemented control techniques for cart’s position and pendulum’s angle.

Specifications LQR SMC FLC BS SMCNN

Settling time (sec) 6.2 3 5 1.5 4

Rise time (sec) 3.2 0.9 2.5 2 1.4

Steady-state error 0.02 0.0012 1 0 0

Overshoot 0.01 0.001 0.001 0 0

https://doi.org/10.1371/journal.pone.0298093.t002
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5 Conclusions

In this research, we have demonstrated the implementation of a diverse range of control tech-

niques, encompassing linear, nonlinear, and artificial intelligence-based approaches, to tackle

real-time challenges. Our primary focus is on the inverted pendulum, which serves as a repre-

sentative example of a nonlinear, underactuated mechanical system. The versatility of the IP

concept extends to various cutting-edge applications, including space satellite control, aircraft

landing systems, humanoid robot stability, seismometer control, and the balancing of ships

against tides. Throughout this study, we have effectively harnessed robust control techniques

to ensure stability and precise response in nonlinear systems, particularly emphasizing the

Fig 9. Comparative results of cart’s position error signals.

https://doi.org/10.1371/journal.pone.0298093.g009

Fig 10. Comparative results of control inputs.

https://doi.org/10.1371/journal.pone.0298093.g010
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challenging domain of IP control. Our research has brought forth a selection of control strate-

gies tailored for IP control, namely FLC, SMCNN, SMC, and BS. Upon conducting a thorough

comparative analysis, it becomes evident that the SMCNN controller emerges as the standout

performer in critical aspects such as settling time, overshoot, and steady-state error. In this

Fig 11. Simulated results of the sinusoidal response of cart-position.

https://doi.org/10.1371/journal.pone.0298093.g011

Fig 12. Simulated results of sinusoidal response of pendulum.

https://doi.org/10.1371/journal.pone.0298093.g012
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context, our findings showcase the superior capabilities of AI-based control approaches, exem-

plified by NNs, in addressing real-time control challenges, including the intricacies of the

inverted pendulum.

Recognizing the importance of more extensive statistical analysis for a comprehensive eval-

uation of control strategies, future endeavors will involve the incorporation of more in-depth

Fig 13. Simulated results of cart’s position error signals.

https://doi.org/10.1371/journal.pone.0298093.g013

Fig 14. Simulated results of control inputs.

https://doi.org/10.1371/journal.pone.0298093.g014
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statistical analysis to further augment the findings and address this aspect in greater detail.

This future work will contribute to a broader understanding of control systems in complex

and dynamic environments.
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