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Abstract 
We present a genome assembly from an individual female Gobio gobio 
(the gudgeon; Chordata; Actinopteri; Cypriniformes; Gobionidae). The 
genome sequence spans 1,460.70 megabases. Most of the assembly is 
scaffolded into 25 chromosomal pseudomolecules. The mitochondrial 
genome has also been assembled and is 16.61 kilobases in length.
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Species taxonomy
Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria;  
Deuterostomia; Chordata; Craniata; Vertebrata; Gnathostomata; 
Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neop-
terygii; Teleostei; Osteoglossocephalai; Clupeocephala; Oto-
morpha; Ostariophysi; Otophysi; Cypriniphysae; Cypriniformes; 
Cyprinoidei; Gobionidae; Gobioninae; Gobio; Gobio gobio  
(Linnaeus, 1758) (NCBI:txid27704).

Background
Gudgeon Gobio gobio (L.) occur across much of central  
Europe and Russia to the west of the Ural Mountains  
(Kottelat & Freyhof, 2007). The species is a freshwater resident, 
has a single barbel on either side of the mouth and a maximum 
body length of ~20 cm (Maitland, 2004). Life span and age- and  
size-at-maturity are typically 5–8 years, 7–10 cm at 2–3 years 
respectively, but are strongly influenced by environmental  
conditions (Lobon-Cervia et al., 1991; Maitland, 2004). The 
taxonomy of the genus is complex (Mendel et al., 2008;  
Takács et al., 2014) and the species’ geographical distribution 
incompletely understood, with several taxa probably included  
under a single name in some locations (Kottelat & Freyhof,  
2007).

Gudgeon invariably inhabit glides in the middle and lower  
reaches of rivers (Mann, 1980; Prenda et al., 1997), but can 
also occur in connected still waters (Nunn et al., 2007a). Most 
individuals are comparatively sedentary, although small-scale  
movements and shifts to deeper, faster-flowing water with  
increasing fish size have been documented (Nunn et al., 2010;  
Stott, 1967; Watkins et al., 1997). The species is usually  
iteroparous (but see Lobón-Cerviá et al., 1991), with batches of 
eggs deposited on sand, or sometimes gravel or aquatic vegeta-
tion, in flowing water over the spring and summer (Mann, 1980;  
Nunn et al., 2007c). Gudgeon consume mainly small  
crustaceans, insect larvae, molluscs and algae, irrespective of  
season and developmental period (Hartley, 1948; Nunn et al., 
2007b).

According to the International Union for the Conservation of  
Nature (IUCN) Red List of Threatened Species, gudgeon is 
classified as “Least Concern” in terms of extinction risk and  
no major threats have been documented (Freyhof, 2011;  
Freyhof & Brooks, 2011; Nunn et al., 2023). Nonetheless, some 
populations are undoubtedly exposed to and compromised 
by a range of common and widespread pressures, including  
pollution and habitat degradation and fragmentation (Bervoets  
& Blust, 2003; Blanchet et al., 2010; Faller et al., 2003;  
Knaepkens et al., 2007).

The genome of the gudgeon, Gobio gobio, was sequenced as 
part of the Darwin Tree of Life Project, a collaborative effort to  
sequence all named eukaryotic species in the Atlantic  
Archipelago of Britain and Ireland. Here we present a  
chromosomally complete genome sequence for Gobio gobio,  
based on one female specimen from the River Wharfe, UK.

Genome sequence report
The genome of an adult Gobio gobio (Figure 1) was  
sequenced using Pacific Biosciences single-molecule HiFi 
long reads, generating a total of 31.40 Gb (gigabases) from  

2.22 million reads, providing approximately 34-fold coverage. 
Primary assembly contigs were scaffolded with chromosome  
conformation Hi-C data, which produced 161.52 Gbp from  
1,069.67 million reads, yielding an approximate coverage  
of 111-fold. Specimen and sequencing information is summarised 
in Table 1.

Manual assembly curation corrected 72 missing joins or  
mis-joins and 39 haplotypic duplications, reducing the assem-
bly length by 1.88% and the scaffold number by 21.69%,  
and increasing the scaffold N50 by 6.39%. The final assembly 
has a total length of 1,460.70 Mb in 230 sequence scaffolds with 
a scaffold N50 of 58.1 Mb (Table 2). The snail plot in Figure 2  
provides a summary of the assembly statistics, while Figure 3  
shows the distribution of assembly scaffolds based on base cov-
erage across chromosomes. The cumulative assembly plot  
in Figure 4 shows curves for subsets of scaffolds assigned to 
different phyla. Most (98.82%) of the assembly sequence was 
assigned to 25 chromosomal-level scaffolds. Chromosome-scale  
scaffolds confirmed by the Hi-C data are named in order of 
size (Figure 5; Table 3). While not fully phased, the assembly  
deposited is of one haplotype. Contigs corresponding to the sec-
ond haplotype have also been deposited. The mitochondrial  
genome was also assembled and can be found as a contig within  
the multifasta file of the genome submission.

The estimated Quality Value (QV) of the final assembly is 57.3 
with k-mer completeness of 99.99%, and the assembly has a  
BUSCO v5.3.2 completeness of 96.9% (single = 95.2%,  
duplicated = 1.7%), using the actinopterygii_odb10 reference  
set (n = 3,640).

Metadata for specimens, BOLD barcode results, spectra  
estimates, sequencing runs, contaminants and pre-curation  
assembly statistics are given at https://tolqc.cog.sanger.ac.uk/dar-
win/fish/Gobio_gobio/.

Methods
Sample acquisition and nucleic acid extraction
A female adult specimen of G. gobio (specimen ID  
SAN0000704, ToLID fGobGob1) was collected from the River 
Wharfe, UK (latitude 53.91, longitude –1.61) on 2020-09-09.  

Figure 1. Photograph of the Gobio gobio (fGobGob1) specimen 
used for genome sequencing.
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Table 1. Specimen and sequencing data for Gobio gobio.

Project information

Study title Gobio gobio (gudgeon)

Umbrella BioProject PRJEB59786

Species Gobio gobio

BioSample SAMEA11296538

NCBI taxonomy ID 27704

Specimen information

Technology ToLID BioSample accession Organism part

PacBio long read sequencing fGobGob1 SAMEA11296590 spleen

Hi-C sequencing fGobGob1 SAMEA11296597 gill

RNA sequencing fGobGob1 SAMEA11296588 heart

Sequencing information

Platform Run accession Read count Base count (Gb)

Hi-C Illumina NovaSeq 6000 ERR10890732 1.07e+09 161.52

PacBio Sequel IIe ERR10879931 1.76e+06 19.79

PacBio Sequel IIe ERR10879930 2.22e+06 31.4

RNA Illumina NovaSeq 6000 ERR10890733 6.96e+07 10.51

Table 2. Genome assembly data for Gobio gobio, fGobGob1.1.

Genome assembly

Assembly name fGobGob1.1 

Assembly accession GCA_949357685.1

Accession of alternate 
haplotype

GCA_949357705.1

Span (Mb) 1,460.70

Number of contigs 1,277

Contig N50 length (Mb) 2.6

Number of scaffolds 230

Scaffold N50 length (Mb) 58.1

Longest scaffold (Mb) 87.33

Assembly metrics* Benchmark

Consensus quality (QV) 57.3 ≥ 50

k-mer completeness 99.99% ≥ 95%

BUSCO** C:96.9%[S:95.2%,D:1.7%],  
F:1.2%,M:1.9%,n:3,640

C ≥ 95%
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Figure 2. Genome assembly of Gobio gobio, fGobGob1.1: metrics. The BlobToolKit snail plot shows N50 metrics and BUSCO gene 
completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 
1,460,679,231 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest scaffold 
present in the assembly (87,331,821 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths (58,069,932 and 
45,801,292 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines showing successive 
orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the 
same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the actinopterygii_odb10 set is 
shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/Gobio%20gobio/dataset/
CASHTD01.1/snail.

Assembly metrics* Benchmark

Percentage of assembly 
mapped to chromosomes

98.82% ≥ 95%

Sex chromosomes Not identified localised 
homologous pairs

Organelles Mitochondrial genome: 16.61 kb complete single 
alleles

* Assembly metric benchmarks are adapted from column VGP-2020 of “Table 1: Proposed 
standards and metrics for defining genome assembly quality” from Rhie et al. (2021).
** BUSCO scores based on the actinopterygii_odb10 BUSCO set using version 5.3.2 C = complete 
[S = single copy, D = duplicated], F = fragmented, M = missing, n = number of orthologues in 
comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/
Gobio%20gobio/dataset/CASHTD01.1/busco.
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Figure 3. Genome assembly of Gobio gobio, fGobGob1.1: Distribution plot of base coverage in ERR10879930 against position for 
sequences in assembly CASHTD01.1. Windows of 100kb are coloured by phylum. The assembly has been filtered to exclude sequences 
with length < 2,550,000. An interactive version of this figure is available here.

The specimen was collected by Andy Nunn and Paolo  
Moccetti using electro-fishing, and identified by Andy Nunn 
and Bernd Hänfling. The specimen was transported alive to  
the University of Hull and left to recover fully in an aquar-
ium before any sampling commenced. The specimen was  
euthanized in a lethal dose of MS-222 and tissue dissection was 
carried out by Bernd Hänfling within 30 minutes of euthana-
sia, and the tissues were immediately shock-frozen in liquid  
nitrogen.

The workflow for high molecular weight (HMW) DNA  
extraction at the Wellcome Sanger Institute (WSI) Tree of 

Life Core Laboratory includes a sequence of core procedures:  
sample preparation; sample homogenisation, DNA extraction,  
fragmentation, and clean-up. In sample preparation, the  
fGobGob1 sample was weighed and dissected on dry ice (Jay 
et al., 2023). Tissue from the spleen was homogenised using 
a PowerMasher II tissue disruptor (Denton et al., 2023a).  
HMW DNA was extracted using the Automated MagAttract 
v1 protocol (Sheerin et al., 2023). DNA was sheared into an 
average fragment size of 12–20 kb in a Megaruptor 3 system  
with speed setting 30 (Todorovic et al., 2023). Sheared 
DNA was purified by solid-phase reversible immobilisation  
(Strickland et al., 2023): in brief, the method employs a 1.8X 
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Figure 4. Genome assembly of Gobio gobio fGobGob1.1: BlobToolKit cumulative sequence plot. The grey line shows cumulative 
length for all sequences. Coloured lines show cumulative lengths of sequences assigned to each phylum using the buscogenes taxrule. An 
interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/Gobio%20gobio/dataset/CASHTD01.1/cumulative.

ratio of AMPure PB beads to sample to eliminate shorter  
fragments and concentrate the DNA. The concentration of  
the sheared and purified DNA was assessed using a Nanodrop  
spectrophotometer and Qubit Fluorometer using the Qubit  
dsDNA High Sensitivity Assay kit. Fragment size distribution  
was evaluated by running the sample on the FemtoPulse system.

RNA was extracted from heart tissue of fGobGob1 in the 
Tree of Life Laboratory at the WSI using the RNA Extraction:  
Automated MagMax™ mirVana protocol (do Amaral et al., 
2023). The RNA concentration was assessed using a Nanodrop  

spectrophotometer and a Qubit Fluorometer using the Qubit 
RNA Broad-Range Assay kit. Analysis of the integrity of the  
RNA was done using the Agilent RNA 6000 Pico Kit and  
Eukaryotic Total RNA assay.

Protocols developed by the WSI Tree of Life laboratory are  
publicly available on protocols.io (Denton et al., 2023b).

Sequencing
Pacific Biosciences HiFi circular consensus DNA sequencing  
libraries were constructed according to the manufacturers’ 
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Table 3. Chromosomal 
pseudomolecules in the genome 
assembly of Gobio gobio, fGobGob1.

INSDC 
accession

Name Length 
(Mb)

GC%

OX442374.1 1 87.33 40.0

OX442375.1 2 80.6 40.0

OX442376.1 3 71.07 39.5

OX442377.1 4 69.34 39.5

OX442378.1 5 65.97 40.0

OX442379.1 6 63.19 40.0

OX442380.1 7 59.21 39.5

OX442381.1 8 59.06 40.0

OX442382.1 9 59.04 40.0

OX442383.1 10 58.33 39.5

OX442384.1 11 58.07 39.5

OX442385.1 12 57.3 39.5

INSDC 
accession

Name Length 
(Mb)

GC%

OX442386.1 13 54.98 39.5

OX442387.1 14 54.58 40.0

OX442388.1 15 54.08 39.5

OX442389.1 16 54.03 39.5

OX442390.1 17 53.27 39.5

OX442391.1 18 51.76 39.0

OX442392.1 19 50.72 40.0

OX442393.1 20 50.67 39.5

OX442394.1 21 49.65 40.0

OX442395.1 22 49.16 40.0

OX442396.1 23 45.8 39.5

OX442397.1 24 43.23 40.0

OX442398.1 25 43.01 40.0

OX442399.1 MT 0.02 44.0

Figure 5. Genome assembly of Gobio gobio fGobGob1.1: Hi-C contact map of the fGobGob1.1 assembly, visualised using HiGlass. 
Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this figure may be viewed at https://
genome-note-higlass.tol.sanger.ac.uk/l/?d=YsWLoMZ1TAiTKAKnA0qYxw.
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instructions. Poly(A) RNA-Seq libraries were constructed using  
the NEB Ultra II RNA Library Prep kit. DNA and RNA  
sequencing was performed by the Scientific Operations core at 
the WSI on Pacific Biosciences Sequel IIe (HiFi) and Illumina  
NovaSeq 6000 (RNA-Seq) instruments. Hi-C data were  
also generated from gill tissue of fGobGob1 using the  
Arima-HiC v2 kit. The Hi-C sequencing was performed using  
paired-end sequencing with a read length of 150 bp on the  
Illumina NovaSeq 6000 instrument.

Genome assembly, curation and evaluation
Assembly. Original assembly of HiFi reads is performed 
using Hifiasm (Cheng et al., 2021) with the --primary option.  
Haplotypic duplications were identified and removed with 
purge_dups (Guan et al., 2020). Hi-C reads are further mapped  
with bwa-mem2 (Vasimuddin et al., 2019) to the primary  
contigs, which are further scaffolded using the provided Hi-C  
data (Rao et al., 2014) in YaHS (Zhou et al., 2023) using  
the --break option. Scaffolded assemblies are evaluated using  
Gfastats (Formenti et al., 2022), BUSCO (Manni et al., 2021)  
and MERQURY.FK (Rhie et al., 2020).

The mitochondrial genome was assembled using MitoHiFi  
(Uliano-Silva et al., 2023), which runs MitoFinder (Allio 
et al., 2020) and uses these annotations to select the final  
mitochondrial contig and to ensure the general quality of the 
sequence.

Assembly curation. The assembly was decontaminated using  
the Assembly Screen for Cobionts and Contaminants (ASCC)  
pipeline (article in preparation). Manual curation was prima-
rily conducted using PretextView (Harry, 2022), with additional 
insights provided by JBrowse2 (Diesh et al., 2023) and HiGlass  
(Kerpedjiev et al., 2018). Scaffolds were visually inspected and 
corrected as described by Howe et al. (2021). Any identified  
contamination, missed joins, and mis-joins were corrected, and 

duplicate sequences were tagged and removed. The entire proc-
ess is documented at https://gitlab.com/wtsi-grit/rapid-curation  
(article in preparation).

Evaluation of the final assembly. A Hi-C map for the final  
assembly was produced using bwa-mem2 (Vasimuddin et al., 
2019) in the Cooler file format (Abdennur & Mirny, 2020). To 
assess the assembly metrics, the k-mer completeness and QV 
consensus quality values were calculated in Merqury (Rhie  
et al., 2020). This work was done using Nextflow (Di Tommaso  
et al., 2017) DSL2 pipelines “sanger-tol/readmapping” 
(Surana et al., 2023a) and “sanger-tol/genomenote” (Surana  
et al., 2023b). The genome was analysed within the  
BlobToolKit environment (Challis et al., 2020) and BUSCO  
scores (Manni et al., 2021; Simão et al., 2015) were calculated.

The readmapping pipelines were developed using the nf-core  
tooling (Ewels et al., 2020), use MultiQC (Ewels et al., 2016), 
and make extensive use of the Conda package manager, the  
Bioconda initiative (Grüning et al., 2018), the Biocontainers 
infrastructure (da Veiga Leprevost et al., 2017), and the Docker  
(Merkel, 2014) and Singularity (Kurtzer et al., 2017)  
containerisation solutions.

Table 4 contains a list of relevant software tool versions  
and sources.

Wellcome Sanger Institute – Legal and Governance. The  
materials that have contributed to this genome note have been 
supplied by a Darwin Tree of Life Partner. The submission of 
materials by a Darwin Tree of Life Partner is subject to the  
‘Darwin Tree of Life Project Sampling Code of  
Practice’, which can be found in full on the Darwin Tree of 
Life website here. By agreeing with and signing up to the  
Sampling Code of Practice, the Darwin Tree of Life Partner  
agrees they will meet the legal and ethical requirements 

Table 4. Software tools: versions and sources.

Software tool Version Source

BlobToolKit 4.1.7 https://github.com/blobtoolkit/blobtoolkit

BUSCO 5.3.2 https://gitlab.com/ezlab/busco

Hifiasm 0.16.1-r375 https://github.com/chhylp123/hifiasm

HiGlass 1.11.6 https://github.com/higlass/higlass

Merqury MerquryFK https://github.com/thegenemyers/MERQURY.FK

MitoHiFi 2 https://github.com/marcelauliano/MitoHiFi

PretextView 0.2 https://github.com/wtsi-hpag/PretextView

purge_dups 1.2.3 https://github.com/dfguan/purge_dups

sanger-tol/genomenote v1.0 https://github.com/sanger-tol/genomenote

sanger-tol/readmapping 1.1.0 https://github.com/sanger-tol/readmapping/tree/1.1.0

YaHS 1.2a https://github.com/c-zhou/yahs
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and standards set out within this document in respect of all  
samples acquired for, and supplied to, the Darwin Tree of Life  
Project.

Further, the Wellcome Sanger Institute employs a process  
whereby due diligence is carried out proportionate to the  
nature of the materials themselves, and the circumstances under 
which they have been/are to be collected and provided for  
use. The purpose of this is to address and mitigate any poten-
tial legal and/or ethical implications of receipt and use of 
the materials as part of the research project, and to ensure 
that in doing so we align with best practice wherever  
possible. The overarching areas of consideration are: 

•      Ethical review of provenance and sourcing of the material

•      Legality of collection, transfer and use (national and  
international)

Each transfer of samples is further undertaken according to 
a Research Collaboration Agreement or Material Transfer  
Agreement entered into by the Darwin Tree of Life Partner, 
Genome Research Limited (operating as the Wellcome Sanger  
Institute), and in some circumstances other Darwin Tree of  
Life collaborators.

Data availability
European Nucleotide Archive: Gobio gobio (gudgeon).  
Accession number PRJEB59786; https://identifiers.org/ena.
embl/PRJEB59786 (Wellcome Sanger Institute, 2023). The 

genome sequence is released openly for reuse. The Gobio gobio  
genome sequencing initiative is part of the Darwin Tree of 
Life (DToL) project. All raw sequence data and the assembly  
have been deposited in INSDC databases. The genome will be 
annotated using available RNA-Seq data and presented through 
the Ensembl pipeline at the European Bioinformatics Institute.  
Raw data and assembly accession identifiers are reported  
in Table 1 and Table 2.
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