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[11 To predict the Quality of Service at a node in heterogeneous networks of line-of-sight,
terrestrial, microwave links requires knowledge of the spatial and temporal statistics of
rain over scales of a few meters to tens or hundreds of kilometers, and over temporal
periods as short as 1 s. Meteorological radar databases provide rain rate maps over areas
with a spatial resolution as fine as a few hundred meters and a sampling period of 2 to

15 min. Such two-dimensional, rain rate map time series would have wide application
in the simulation of rain scatter and attenuation of arbitrary millimeter-wave radio
networks, if the sampling period were considerably shorter, i.e., of the order of 10 s or less,
and the integration volumes smaller. This paper investigates a stochastic-numerical
method to interpolate and downscale rain rate field time series to shorter sampling periods
and smaller spatial integration areas, while conserving the measured and expected
statistics. A series of radar derived rain maps, with a 10 min sample period, are
interpolated to 10 s. The statistics of the interpolated-downscaled data are compared to
fine-scale rain data, i.e., 10 s rain gauge data and radar data with a 300-m resolution. The
interpolated rain map time series is used to predict the fade duration statistics of a
microwave link, and these are compared to a published and ITU-R model.

Citation: Paulson, K. S., and X. Zhang (2009), Simulation of rain fade on arbitrary microwave link networks by the
downscaling and interpolation of rain radar data, Radio Sci., 44, RS2013, doi:10.1029/2008RS003935.

1. Introduction

[2] Terrestrial, line-of-sight, microwave telecommuni-
cations links experience attenuation due to rain. At
frequencies above 10 GHz this is the dominant fade
mechanism and (with mechanical failure) is almost
exclusively the cause of outage. Outage has a complex
definition stemming from ITU-R recommendations
G.826 (1999) and G.828 (2000) and the F recommenda-
tions that are derived from them (e.g., F.1491). Modern
digital radio systems broadcast a bit stream divided into
blocks, e.g., a typical SDH STM-1 system might have
801 bits per block and transmit 192,000 blocks per
second. If any bit within a block is transmitted incor-
rectly, then the block is termed “errored”. A Severely
Errored Second (SES) occurs in any second where 30%
or more of the blocks were errored. An outage is defined
as the period between the first of ten consecutive SES
until the first of ten consecutive non-SES. Traditionally,
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links are specified to have an outage period caused by
rain fading not exceeding some small percentage of an
average year, usually 0.01% or 0.1% of time, and the rain
fade margin is built into the link budget by estimating the
rain attenuation exceeded for this time. Many models
exist to calculate the fade margin [e.g., COST 210
Management Committee, 1991; COST 235 Management
Committee, 1996; ITU-R, 2007a, 2007b]. However, these
models are based on available statistics of rain rate
measured with a 1-min integration time. These models
are adequate for fade-margin calculations for individual
long links but probably under estimate the incidence of
outage on links shorter than 1 km. They provide only
limited guidance on the performance of networks; e.g.,
ITU-R [2007a] provides some guidance for more com-
plex links such as multihop links and links utilizing route
diversity. ITU-R [2003b] also provides some guidance
for point-to-multipoint cellular systems.

[3] The Quality of Service (QoS) experienced by a
node in a heterogeneous network of microwave links, at
a minimum defined by the average annual outage, is
currently impossible to predict as it depends upon joint
time series of rain fade with a 1-s integration time.
Rudimentary models of fade duration exist for individual
links, but not for more complicated networks. The
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engineering of fade mitigation techniques such as route
diversity or adaptive modulation, similarly require the
knowledge of typical time series of rain fade on hetero-
geneous networks of links [see COST 280 Management
Committee, 2005].

[4] It has been demonstrated that joint rain fade on
arbitrary networks of microwave links can be calculated
from radar derived rain rate fields [e.g., Goddard and
Thurai, 1996, 1997; Tan and Pedersen, 2000; Paulson,
2003; Usman, 2005]. These studies and others have
derived 10-s integrated rain fade on microwave links
from radar measured rain rate maps with 300-m resolu-
tion. When meteorological radars are used to scan across
near-horizontal planes (PPI scans), they provide near-
instantaneous measurements of radar reflectivity over
large areas. Each reflectivity value is a weighted average
across a voxel defined by the radar antenna pattern, the
angular scan of the radar and the range gates. Measured
single- and dual-polarization radar reflectivities may be
used to estimate rain rate, either using empirical relation-
ships or theoretical relationships based on parameterized
drop size distributions and assumptions about drop shape
and terminal velocity [Goddard and Cherry, 1984]. These
radar-derived rain rates are averaged over the same voxel
as the reflectivity measurement. Large radars, such as
CAMRa the Chilbolton Advanced Meteorological Radar,
can produce near-instantaneous rain rates averaged over
voxels with linear dimensions of a few hundred meters
within a range up to 100 km [Goddard et al., 1994].

[5] Instantaneous joint rain fade is calculated by super-
imposing the measured rain field over a network of links.
The rain fade experienced by each link is calculated by
numerical integration of the specific attenuation along
the link path. The specific attenuation is derived from the
rain rate using a power law - - R relationship [i.e., ITU-R,
2003a]. Specific attenuations derived from rain rates are
known to include relative errors of 50% or more depend-
ing upon variation in the drop size distribution (DSD).
Unlike rain rate, Rayleigh scattering predicts that radar
reflectivity and microwave scattering both depend upon
the sixth power of drop diameter. Radar-derived specific
attenuations are effectively a frequency scaling and are
likely to be more accurate than the intermediate rain
rates.

[6] The process described above yields instantaneous
measurements of joint rain fade. Time series of radar
derived rain rate fields can be used to generate joint-fade
time series. However, the method is limited by the long
temporal sampling period. Radars need to be physically
rotated to scan across the area being mapped. The period
between consecutive radar images is usually several
minutes and can be as long as 15 min. This low temporal
sampling rate severely limits the application of the
derived rain fade time series.
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[7] It has been proposed that joint rain fade and rain
scatter interference on heterogeneous link networks of
arbitrary geometry and radio parameters could be calcu-
lated from simulated rain fields, derived from stochastic
models of rainfall [Callaghan, 2004, 2007; Callaghan
and Vilar, 2007]. This is currently being considered for
adoption into a recommendation by the ITU-R. The
evolution of stochastic rain models spanning the wide
range of scales necessary for radio system simulation is
still in its infancy. At larger scales, stochastic, spatial-
temporal rainfall models for hydrological modeling have
existed for decades [Wheater et al., 2000]. At the fine
scales necessary for radio system simulation, multiscal-
ing and multiplicative cascade models exist. However,
the model parameters are based on statistics averaged
over a large number of event types and so do not
reproduce the rich diversity of rain events, particularly
anisotropic events such as squall lines and fronts. Fur-
thermore, the lack of very fine scale rain data, e.g., from
integration periods less than 10 s, means these models
have not been verified down to the smallest scales.

[8] An alternative method is proposed in this paper,
where long time series of spatial rain fields, derived from
meteorological radar, are numerically interpolated and
downscaled to yield the range of scales necessary for
network simulation. The effect is to numerically generate
the fine-scale rain fields that may have been measured at
times between radar scans. After interpolation and down-
scaling, the rain field time series considered in this paper
has a sampling period of 10 s or less and can be used as
the input to a microwave network simulator. The pro-
posed method has the advantage over purely numerical
rain field generation of matching measured rain fields at
the radar sample times. The more anisotropic large scale
rain variation is conserved from the radar data and other
parameters, such as advection, are also retained.

[9] Section 2 describes the database of radar measure-
ments used to develop and verify the proposed method.
Section 3 develops the numerical interpolation and
downscaling, while section 4 presents evidence verify-
ing the interpolated rain fields and derived rain fade
statistics.

2. Chilbolton Radar Interference
Experiment

[10] The Chilbolton Radar Interference Experiment
(CRIE) was a 2-year rain measurement campaign between
1987 and 1989, designed primarily for development and
testing of rain scatter interference models as part of the
COST 210 project [COST210, 1991]. It aimed to record
an unbiased sample of the rain events occurring near
Chilbolton, in the south of England, latitude 51°9'N,
longitude 1°26'W. Rain fields were scanned using the
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Chilbolton Advanced Meteorological Radar, CAMRa, a
25 m steerable antenna equipped with a 3 GHz, Doppler-
Polarization radar. The climate in the region is temperate
maritime with an average annual rain rate exceeded
0.01% of the time of approximately 30 mm/h. For the
2-year period the radar was operated on a 28-day duty
cycle. A set of near-horizontal (PPI) and vertical (RHI)
radar scan were recorded in a 10-min cycle for 9 out of
the 28 days. The PPI scans were acquired with an
elevation of 1.5° and covered an area approximately
50° in azimuth, in 0.25° steps, centered southwest of
the radar. As the scan rate of the radar is 1 degree/s, it
took less than 1 min to complete a PPI scan. Hence, the
scan duration is well within the 20—30 min duration for
the lifetime of a rain event [Zawadzki, 1973], and each
scan represents a good snapshot of the rain field before
any significant structural change has taken place.

[11] The resulting database contains 3199 scan sets,
and 30590 records of no rain. The radar data were
converted into rain rate fields as part of a earlier project
[see Usman, 2005], and a summary of the process is now
given. Data were collected between the ranges of 4.8 km
and 158 km from the radar and averaged over 300 m
range intervals. For this paper, only the data between 20 km
and 70 km are used. This is to avoid sample volumes
being within the freezing level and to limit differences in
volume averaging due to beam spreading. Each PPI scan
has been range corrected, calibrated, and correction made
for absorption by atmospheric gasses. Reflectivities below
the noise floor of 10 dBZ were assigned the minimum
measurable rain rates of 0.05 mm/h. In subsequent pro-
cessing this rain rate was used as a flag to indicate a rain
rate at or below this level. Scans with no measurements
above the noise floor were discarded and recorded as no
rain. Comparison of dual polar reflectivities and the rain-
hail algorithm of Leitao and Watson [1984] has been used
to eliminate data points where nonliquid hydrometeors may
have influenced reflectivities. Finally, dual polarization
reflectivity data were transformed into rain rate fields.

3. Interpolation and Downscaling of Radar
Data

[12] Interpolation is the process of introducing new
rain rate samples, with the same averaging volume as
existing measurements, at new times or locations. The
new samples should come from the same underlying
distribution as existing samples. In contrast, downscaling
(also known as dissagregation) transforms a rain rate
field with one averaging volume to one with new
samples averaged over a smaller volume. The new
samples come from a different underlying distribution,
typically with greater variance. Both processes rely upon
statistical models to constrain statistics that did not exist
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in the original rain rate fields such as covariance at lags
shorter than the finest original sampling interval.

[13] A fundamental statistic of a random field is the
moment scaling structure function. Let S, be the gth
moment of R, the rain rate measured over spatial-
temporal volumes of scale A ie., S,(\) = E([R\]Y). If
Sy(A) o< M@, where &(g) does not depend upon \, over
some range of scales, then the rain rate is said to exhibit
scaling. For simple scaling £(q) is linear; otherwise, it is
known as anomalous or multiscaling. The function &(q)
yields the multifractal exponents.

[14] Paulson and Zhang [2007] have reported the
variation of the moments of rain rate averaged over
spatial squares of side 300 m to 10 km. They also report
the moment scaling statistics of point rain rate averaged
over temporal periods from 10 s to 6 h. Spatially averaged
rain rate was shown to be scaling from 300 m to approx-
imately 2 km and temporal averages over a corresponding
interval from 10 s to 200 s. The lower limits of these
scaling ranges correspond to the finest scales present in the
measured data rather than a scale break, and it is very
likely that these ranges continue to smaller scales. Lovejoy
and Schertzer [2006] suggest multiscaling ranges down to
dissipation scales around 50 cm.

[15] A range of multiplicative, random-cascade models
exist for the generation and downscaling of stochastic
fields with specific variation of multifractal exponents
[e.g., She and Waymire, 1995; Monin and Yaglom, 1971,
1975; Deidda, 1999]. Interpolation is less well studied.
Paulson [2004] demonstrated that rain rate time series
derived from rain gauge measurements can be interpo-
lated from 10-s rain rate averages with a 10-min sam-
pling period to a 10-s sampling period, while conserving
a range of statistics. The underlying statistical model
is that spatial-temporal log rain rate, where raining, is
well modeled as a homogenious, isotropic, fractional
Brownian field (FBf) with Hurst coefficient H = 1/3
[Paulson, 2002; Callaghan, 2004]. FBfs are a simple
scaling, n-dimensional extension of Fractional Brownian
noise (FBn) [see Mandelbrot and Van Ness, 1968], and
have power law spectral density functions, S(w) = w7,
with the power exponent being v = n + 2H. A FBf L(x)
has Gaussian updates which satisfy the scaling equation:

L(x) — L(x + Ax)
I Ax |7

€ N(0,0%) (1)

The same model has been applied to microwave
networks in a route-diversity model [Paulson, 2003].
Rain field simulations of this model have been used in
other microwave network applications in several studies
commissioned by the UK spectrum regulator Ofcom as
part of the Spectrum Efficiency Scheme, i.e., SES-2004-7
and SES-2005-4 (http://www.ofcom.org.uk/). Callaghan
[2004] has demonstrated that the FBf log rain rate model
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is consistent with published multiscaling exponents of
rain rate fields.

[16] In the following sections we examine algorithms
for the downscaling and interpolation of rain fields
generated from meteorological radar. In particular we
will concentrate on the CRIE data set generated by
CAMRa. Rain fields measured by radar are typically
near-instantaneous measurements of volume averaged
rain rate. The rain rates are spatially aggregated but
temporally sampled. To produce fine-scale fields for
radio network simulation it is necessary to produce rain
fields with a much shorter temporal sampling interval,
and possibly smaller averaging volumes. Therefore, a
combination of interpolation and downscaling is required.

3.1. Downscaling

[17] Downscaling introduces new rain rate samples
from a different underlying distribution, typically with
moments for ¢ > 1 that increase as the aggregation
volume decreases. The variation of these moments as a
function of averaging volume needs to be controlled in
the downscaling process. A canonical constraint is that
the first moment of rain rate is independent of averaging
scale. This can be applied to each rain rate sample to
yield a microcanonical constraint where downscaling
exactly conserves the mean rain rate.

[18] We assume the independence of variation at scales
below the radar spatial sampling scale, A, = 300, on
consecutive scans measured A, = 10 min apart. This will
be true as long as A,/D, < A/D,, where D, and D, are
the spatial and temporal decorrelation distances. For the
CRIE data this is true as the spatial resolution is
relatively much finer than the interscan period. Even
after advection removal, the spatial sampling is an order-
of-magnitude finer than the temporal sampling. This
allows each measured radar scan to be downscaled
independently.

[19] In the current work, downscaling is achieved
using the multiplicative cascade algorithm of Deidda
[1999, 2000]. Although downscaling could be achieved
using a FBf model, e.g., the Local Average Subdivision
algorithm of Fenton and Vanmarcke [1990], an explicit
multifractal framework exists and is computationally less
complex. Also, the multifractal exponents are known for
this climate [Paulson and Zhang, 2007]. The Deidda
method replaces each rain rate R averaged over a region
of diameter A, with four rain rates Rrp = WiRA, [ =
1,2,3,4; averaged over a region of diameter A/2. The
weights w; are independent and identically distributed
(i.i.d) samples from a log-Poisson distribution: w; = ¢ %,
where y is an i.i.d sample from a Poisson distribution of
mean c¢. The parameters 3 and ¢ are determined by fitting
the scaling exponents of the cascade to measured values.
The normalizing constant @ = ¢ (1 - [3) is determined by
the canonical first order constraint, i.e., £ (w;) = 1. Use of

PAULSON AND ZHANG: SIMULATION OF RAIN FADE

RS2013

the exponents reported by Paulson and Zhang [2007]
yields the parameters ¢ = 10 and 3 = 1.115 for region
diameters below 2 km. Almost identical variation of the
cascade scaling exponents can be produced by suitable
choice of (3 while varying the parameter ¢ over five
orders of magnitude. As very similar scaling exponents
can be produced by a wide range of ¢ and 3 combinations,
comparison with other published sources is unhelpful.

3.2. Interpolation

[20] Interpolation introduces new rain rate measure-
ments, with the same spatial averaging, at equi-spaced
times between two consecutive measured fields. These
rain fields should have the same spatial moment scaling
statistics as the measured fields and temporal variation
consistent with the rain gauge data reported by Paulson
and Zhang [2007]. Interpolation will be based on the FBf
log rain rate model of Callaghan [2004] and Paulson
[2002]. For each pair of scans, a discrete, 3-D, FBf will
be calculated that is consistent with the measured scans.

[21] The horizontal advection of rain fields by the
ambient wind field is not described by the FBf model.
Before interpolation, advection between consecutive
scans is removed. Advection is assumed to be a linear
translation between radar scans. This assumption would
not be valid for large areas or long interscan times but is
reasonable for the CRIE data. The advection of the rain
field R(x, t1) to R(X, t; + A,)) between the two measurement
times is estimated by identifying the two-dimensional
spatial lag y that maximizes the cross correlation, i.e.,

Y4 =max E(R(x +y, 0)R(x,2)) 2)
Each pair of log rain rate fields, L; = In (R(X + yg4, #1))
and L, = In (R(x, t; + 4))), is assumed to be from a
censored Gaussian fractional Brownian process. The
marginal mean y; and variance o7 are estimated using
a Maximum Likelihood algorithm for censored data:
L > L, where L, is the smallest measurable log rain
rate. Let 4 = {4; € (x, y)} be the set of spatial sampling
points and T = {t; < T; < t; + A} be the equi-spaced
interpolation times. The discrete interpolation volume is
V={(x,1):x € A,t € T}. Interpolated log rain rate values
are calculated using a hierarchical algorithm that intro-
duces new samples separated by distances that decrease
exponentially with iteration. The Random Midpoint
Displacement algorithm (RMD) of Voss [1985] has been
used to refine isotropic FBfs and is applicable to
interpolation as existing samples are conserved at each
iteration. The RMD algorithm has been applied to the
generation of synthetic rain fields by Callaghan [2004,
2007] and Callaghan and Vilar [2007]. The paragraphs
below develop an algorithm for asymmetrically sampled
FBfs, i.e., fields sampled at different intervals along
orthogonal axis directions.
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[22] The RMD takes a FBf evenly sampled at scale A
in each dimension and introduces new samples to yield a
FBf sampled at scale A/2. Let La={L;;i=1,--- Na} be
the log rain rate samples in a region of scale A around
the interpolate Ly at position ¥. The interpolated value is
chosen to be:

Ly = S(LA) + oacy (3)

where S(Ln) and 0% are estimates of the mean and
variance of the Ly distribution, while ey is an i.i.d.
standard normal sample. For the asymmetric algorlthm a

linear estimator will be used, i.e., S(La) = agpy + ZaL

=1
where the coefficients a; depend upon the shape and
distribution of samples in the scale region and are chosen
to satisfy:

E(Ly) = p, (4a)
E(L},Lj) = BFBf (6)0) and (4b)
E(Ly) = Brsy (0). (4c)

Here Bpp/(0) is the expected value of the product of two
log rain rates separated by distance 6, given the FBf
assumption. It may be calculated from the marginal
distribution and (1), i.e., Bpgr(d) = E(L?) - &7 o2/2.
Substituting (3) into the expected values in (4a)—(4c),
and given that the L; are independent of ey, yields:

Na Na
E(Ly) = aopy + Y @E(L) =Y ayy,  (5a)
i=1 =0
Na
E(Lij) = ao,ui + Z a,'BFBf ((5,/) and (Sb)
i=1
E( ) = aoML + 2”‘0/& Z ai
Na_ Na
+ Z Z aiajBFBf ((5”) -+ O'ZA. (SC)

Equations (4a) and (5a) imply that Z a;=1. Furthermore,

(4b) and (5b) yield a further Na equatlons linear in a;.
The coefficients {a;} are found by solving these Na + 1
linear equations. Once the coefficients {a;} have been
found, (4c) and (5¢) yield an expression for 0.

[23] For interpolation at the midpoint of regularly
spaced samples and with LA taken to be the Ny = 2"
nearest neighbors, Voss’s RMD algorithm generated
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FBfs using a; = Nx' and noise variance exponentially
decreasing with scale. In this case, the interpolation
coefficients are calculated once per iteration and the
computational cost is negligible. However, the CRIE rain
data is more finely sampled in space than in time, where
units are decorrelation intervals. Define the second-order
moment of measured data as:

Bi(y,7) = E(L(x,t)L(X +y,t +T)) (6)

An initial, interpolation scale of N = 2" sample units is
determined: B; (N + 1) A,e, 0) = B, (0, A, wherc e is a
unit vector. To yield samples symmetrically sampled in
space and time, N-1, equi-spaced, new log rain fields
need to be interpolated. This can be achieved in m
iterations of an asymmetric RMD (ARMD) using
equations (3), (4a)—(4c), and (5a)—(5c). Interpolation
regions of diameter Ay = 2N in sample units are used in
the first iteration and the diameter is halved at each
subsequent iteration. The interpolation coefficients {a;}
for the known L; within the interpolation volume, and
oA, need to be determined for each scale,. Interpolation
regions on the boundary of L, require coefficients
consistent with the asymmetry of L, i.e., the existence
of finely scaled measured data on L and L, or the lack of
samples outside L. However, all regions away from the
boundary use the same coefficients.

[24] Further interpolation to any temporal sampling
period is possible using the method above. At finer
temporal sampling, the log rain rate samples become
more strongly correlated in time than in space. Temporal
interpolation in the fine-scale limit can be performed by
1-D RMD independently at each spatial point.

[25] The ARMD algorithm has been extensively tested
on numerically generated FBfs. It efficiently interpolates
Gaussian FBfs and reproduces the expected statistics
(i.e., the marginal distribution and covariance structure).

3.3. Downscaling and Interpolation of CRIE Data

[26] Radar derived rain rate fields have characteristics,
such as intermittence and advection, and systematic
errors that need to be addressed before interpolation
and downscaling. Raw CRIE-derived rain rates are
greater than a minimum R.;, = 0.05 mm/h, in all
measurement voxels, due to random noise in the radar
reflectivity measurements. Many applications treat
measurements around the minimum to be zero rain
rates. However, the FBf log rain model is only applicable
to areas where the rain rate is greater than zero, and the
assumption of homogeneity cannot hold near the edges
of rain fields. The marginal rain rate distribution is
therefore assumed to have an atom at zero and otherwise
to be lognormally distributed. The parameters of this
hybrid distribution are estimated using Maximum Like-
lihood for each scan. The Maximum Likelihood algo-
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Rain Rate Exceedance Distribution
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Figure 1. Comparison of rain rate exceedance distribution for original radar derived rain rate

fields (light gray), downscaled data (black), interpolated-downscaled data (dark gray), and 9 gauge
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years of rapid response rain gauge data (dotted).

rithm allowed for the censorship imposed by radar
measurement when determining the likelihood of each
observation. The method was tested and verified using
synthetic data with mean log rain rates corresponding to
I mm/h. The interpolation mixes log rain rate data across
event boundaries and so each measurement voxel must be
assigned a nonzero rain rate. To achieve this, minimum
curvature surfaces are fitted to measured log rain rate
fields, i.e., surfaces are calculated that minimize the sum
of the squares of the second partial derivatives and which
pass through In(R) where R > R,,;, and are constrained to
be less than In(R,,;,) at all other points. This smoothly
extrapolates log rain rates into areas of very low and zero
rain rate and allows the multiscale downscaling algo-
rithms to operate across rain event boundaries. Errors
introduced by this approach will only affect the very low
rain rates at the edges of events.

[27] The calculation of the downscaled and interpolated
rain fields between two consecutive measured rain
fields can be summarized by the following steps:

(1) Downscale by using Deidda’s algorithm (section 3.1).
(2) Estimate and remove the advection between the two
measured rain rate fields, equation (2). (3) Calculate
log rain rate over the analysis regions (section 3.3).
(4) Calculate the relative spatial and temporal scales,
i.e., maximize equation (6). (5) Interpolate scans using
ARMD algorithm. (6) Reintroduce advection.

[28] In the following section, results are presented for
downscaled and interpolated rain fields. Rain fields have
been downscaled in three iterations of cascade by a factor of
8 to a spatial averaging over squares of side A, = 37.5 m.
Six iterations of the ARMD algorithm has then reduced
the radar sampling time to A, = 9.4 s.

4. Verification

[29] Figure 1 shows the rain rate exceedance distribu-
tions of the original radar-derived rain fields, downscaled
rain fields and the downscaled-interpolated fields. Down-
scaling does not conserve the distribution, and Figure 1
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Rain Rate Spatial Moment Scaling Function
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Figure 2. Spatial moment scaling function for the original radar derived rain rate fields (dotted)
and the interpolated rain data (solid), for moments of order ¢ = 0.5 to ¢ = 4.

shows the increase in heavy rain rates introduced by
downscaling. These three distributions are compared to
the distribution of 9 gauge years of 10 s, Chilbolton,
rapid response rain gauge data [see Paulson, 2004],
collected over the period 2000 to 2002. The differences at
low percentages of time are due to year-to-year variability.

[30] Interpolation aims to conserve the distribution
after downscaling but this process has also increased
the proportion of heavy rain rates. This is due to scans
with multimodal log rain rate distributions. The mean
and variance are poor summarizing statistics for these
scans and, although these are conserved, interpolation
has changed the distribution. This is a failing of the
method, and the assumption of spatial homogeneity will
be relaxed in future developments. This is particularly
important if larger areas are interpolated as the scans are
more likely to contain a mixture of stratiform and
convective events. The current implementation reproduces
the rain rate distribution up to the important 0.01% outage
threshold.

[31] Figure 2 compares the spatial moment scaling
function S () for the original radar derived rain fields
and for the interpolated fields. Results for averaging
regions with diameters below 300 m have been introduced
by downscaling. Downscaling has extrapolated these
statistics in a plausible way. The strong agreement
between these two results is evidence that the interpola-
tion method has preserved the spatial statistics of rain
rate variation.

[32] Each spatial point yields a time series from which
the temporal moment scaling function can be calculated.
Figure 3 illustrates the temporal moment scaling function
for the interpolated and downscaled rain rate data com-
pared with 9 gauge years of rain rate measurements.
Despite the radar and rain gauge data being acquired
over different years, there is remarkable agreement
between the two results. For an integration period of
10 s, the moments for 1 < g < 2.5 are indistinguishable
on this plot implying that interpolated rain rates match
measured statistics up to second order at least. It is
difficult to quantify the year-to-year variability in
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Figure 3. Temporal moment scaling function for 9 gauge years of RAL rapid response rain gauge
data (solid) and downscaled-interpolated radar data (dotted).

summarizing statistics of rain rate and so it is similarly
difficult to tell if the differences between higher-order
moments are significant.

[33] The objective of the research has been to generate
rain field time series as an input into a general micro-
wave link rain fade simulation tool. To test the ability of
the system to predict temporal variation, we have simu-
lated rain fade time series of a single 38 GHz, 9 km link
and compared the derived fade duration model to the
RAL model [Paulson and Gibbins, 2000; ITU-R, 2007a]
(see Figure 4). The RAL model was derived from a
2-year fade time series measured on a 9 km 38 GHz link
at Chilbolton. It fitted lognormal curves to measured
duration-frequency data for durations longer than 30 s.
The RAL model provides no information on the expected
variation in the number of events that would be expected
in a measured year. However, a reasonable assumption is
that the variance is close to the mean number of events.
Given this, the variation between simulated and model

predictions is largely within the expected range, over the
duration range that the RAL model is applicable. The
effects of year-to-year variability could lead to the larger
variation observed at low fade levels where rain events
can produce different numbers of fade events depending
on temporal variation of fade around the threshold level.

5. Conclusions

[34] A method has been developed to interpolate and
downscale time series of rain fields measured by rain
radar with interscan periods as long as 10 min to yield
time series with sample periods as short as 10 s. The
method has been demonstrated using a database of radar
derived rain fields from CAMRa, at Chilbolton in the
UK. Interpolation has been shown to preserve the rain
rate distribution and moment scaling of spatially aver-
aged rain rate data. Furthermore, the interpolated and
downscaled data have reproduced the moment scaling of
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Fade Duration Statistics for 38GHz 9km Link

Number of Event per Year

Duration of Fade (s)

Figure 4. The RAL fade duration model predictions for a 38 GHz, 9 km link (solid) compared to
the fade durations of a simulated link using downscaled and interpolated radar data (dotted). The
curves indicate number of events in an average year for attenuations of 8, 12, 16, 20, 24, and 28 dB,

from top to bottom.

temporally averaged rain rate data measured using rain
gauges. The method has been applied to simulate time
series of rain fade on a 38 GHz link, and it has
reproduced measured fade duration statistics. These rain
rate field time series can be used to calculate joint rain
fade time series for arbitrary networks of microwave
links with an integration period as short as 10 s. Further
downscaling to 1 s will be justified when the data and
statistical models are available.

Notation

B; (x, T) Spatial-temporal second moment of log rain

rate.

A,, A, Spatial averaging diameter and temporal
sampling interval.

L(x, ) Log rain rate over specified integration
volume.

R(x, £) Rain rate over specified integration
volume.

Ryin  Minimum rain rate defined by radar noise.

E(e) Expected value.
H Hurst coefficient.
N(u, 0*) A normal distribution with mean z and
variance o°.
S, (M) gqth order moment of rain rate averaged over

volume of diameter \.
€ An ii.d sample from a standard normal
distribution, e.g., e¢eN (0, 1).
&(g) gth order scaling exponent.
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