
Linear sections of GL(4, 2)

Neil A. Gordon Guglielmo Lunardon Ron Shaw

Abstract

For V = V (n, q), a linear section of GL(V ) = GL(n, q) is a vector subspace
S of the n2-dimensional vector space End(V ) which is contained in GL(V ) ∪
{0}. We pose the problem, for given (n, q), of classifying the different kinds
of maximal linear sections of GL(n, q). If S is any linear section of GL(n, q)
then dimS ≤ n.

The case of GL(4, 2) is examined fully. Up to a suitable notion of equiv-
alence there are just two classes of 3-dimensional maximal normalized linear
sections M3,M′3, and three classes M4,M′4,M′′4 of 4-dimensional sections.
The subgroups of GL(4, 2) generated by representatives of these five classes are
respectively G3

∼= A7, G ′3 = GL(4, 2), G4
∼= Z15, G ′4 ∼= Z3×A5, G ′′4 = GL(4, 2).

On various occasions use is made of an isomorphism T : A8 → GL(4, 2). In
particular a representative of the class M3 is the image under T of a subset
{ξ1, ... , ξ7} of A7 with the property that ξ−1

i ξj is of order 6 for all i 6= j.

The classes M3,M′3 give rise to two classes of maximal partial spreads
of order 9 in PG(7, 2), and the classes M′4,M′′4 yield the two isomorphism
classes of proper semifield planes of order 16.

1 Introduction and plan

For V = V (n,K), a linear section of GL(V ) = GL(n,K) is defined to be a vector
subspace S of the n2-dimensional space End(V ) which is contained in GL(V )∪{0}.

Theorem 1.1 For any linear section S of GL(n,K), dimS ≤ n.
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Proof. Let H ⊂ V (n,K) be a subspace of V dimension n − 1. Then WH = {A ∈
End(V ) : ImA ⊆ H} is a subspace of End(V ) isomorphic to L(V,H), and hence
of dimension n(n − 1). The rank of every element of WH is at most n − 1, and so
WH ∩ S = {0}. It follows that dimS is at most dim(End(V ))− n(n − 1) = n. �

In the case K = R of the real field, the maximal dimension m of a linear section
of GL(n,R) is known for all values of n, see e.g. [13, after theorem 13.68]. Only for
n = 1, 2, 4, 8 does m = n. In fact, in this case of the real field, the ratio m/n tends
to 0 with increasing n, see e.g. [15]. In the present paper we will confine ourselves
to the case of a vector space V = V (n, q) of dimension n(> 1) over the finite field
GF(q). In contrast to the case of the real field we then find, see theorem 2.2 below,
that m is always equal to n.

So we will be seeking subspaces S ⊂ End(V ) = End(n, q) with the property that
every nonzero element of S lies in the group G = GL(n, q). Now G is a G × G
space, with (A,B) ∈ G × G acting on X ∈ G by X 7→ AXB−1, and if a set S
of linear maps is a linear section of G, then so is the left- and right-translated set
ASB−1(= {AXB−1 : X ∈ S}) for any A,B ∈ G. Consequently it seems natural to
seek a classification of linear sections up to equivalence, where two linear sections
S,S ′ are defined to be equivalent if and only if they lie on the same (G×G)-orbit:

S ′ = ASB−1, for some A,B ∈ GL(V ). (1)

A r-dimensional normalized linear section of GL(n, q), abbreviated NLSr(n, q),
is a linear section S which contains the identity I ∈ G = GL(n, q). Since any G×G
orbit of linear sections (other than {0}) contains at least one normalized section,
from now on we usually restrict our attention just to these. If S is a NLSr(n, q),
then so are X−1S and SX−1, for each nonzero element X of S, and we refer to such
sections X−1S and SX−1, X ∈ S, as, respectively, left and right mutants of S. Note
that a left mutant of a left mutant of S is a left mutant of S, and similarly, mutatis
mutandis, for right mutants. If two normalized linear sections S,S ′ satisfy (1) then
AIB−1 ∈ S ′, and so A = X ′B for some X ′ ∈ S ′. Consequently two normalized
linear sections S,S ′ of GL(n, q) are equivalent whenever S is conjugate to some
left mutant of S ′, that is whenever

BSB−1 = (X ′)−1S ′ for some X ′ ∈ S ′ r {0} and some B ∈ GL(n, q). (2)

(We could replace “left mutant” by “right mutant” in this last statement, since
SX−1 = X(X−1S)X−1 is conjugate to X−1S.) Naturally we will be particularly
concerned with the classification of those NLSr(n, q)’s which are maximal, that is
those linear sections which are not proper subspaces of a higher-dimensional section.

It is worth noting that if S is a NLSr(n, q), then so is its Galois conjugate
Sσ = {Xσ : X ∈ S} for any automorphism σ of the field GF(q), where, in matrix
terms, (Xσ)ij = (Xij)

σ. So, in the case of nonprime q, a broader notion of equivalence
of two linear sections S and S ′could be appropriate, say semilinear equivalence, with
S ′ being equivalent in the previous sense to some Galois conjugate Sσ of S. However
in the present paper we will be chiefly concerned with cases where q = p is a prime.

The plan of the present paper is as follows. In section 2 we treat certain matters
valid for general GF(q). Thereafter, in sections 3 - 8, we deal solely with the case
of linear sections of GL(n, 2), n ≤ 4. In the case of GL(4, 2) we obtain a complete
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classification of all maximal linear sections: see section 5 for a summary. Finally, in
the Appendix, we treat the connection of the present work with certain well known
material concerning spreads, spread sets and those translation planes which are
coordinatized by semifields. However we wish to stress that the motivation for the
present work did not arise from this connection with spreads and translation planes:
realizing how rare it is for (the nonzero vectors of) a linear subspace to lie inside a
linear group, we believe that when this rare event occurs interesting mathematics
is likely to ensue. See section 6 for at least one case that supports this belief, the
linear group being a subgroup of GL(4, 2) isomorphic to A7.

2 Linear sections of GL(n, q)

2.1 General considerations

An element A ∈ GL(V ) = GL(n, q) induces a collineation, say A, of the projective
space PV = PG(n− 1, q) associated with V = V (n, q). By an easy proof we obtain
the following elementary, but useful, lemma in respect of 2-dimensional sections.
(We use ≺ X1, X2, ... � to denote the linear span of elements X1, X2, ... over the
agreed field, in this case GF(q).)

Lemma 2.1 For A ∈ GL(n, q) the subspace ≺ I, A � is a NLS2(n, q) if and only if
A is fixed-point-free on PG(n− 1, q). �

Theorem 2.2 For any prime power q, the group GL(n, q), n > 1, possesses a nor-
malized linear section S of dimension n of the form

S =≺ I, A,A2, ... , An−1 �, (3)

where A is an element of GL(n, q) of order qn − 1.

Proof. Take V (n, q) to be the field GF(qn) viewed as a vector space of dimension n
over the subfield GF(q), and define A by Ax = αx, x ∈ GF(qn), where α is a primitive
element of GF(qn). By the field properties, A generates a subgroup 〈A〉 ∼= Zqn−1 of
GL(n, q) (called a Singer cyclic subgroup) and S = 〈A〉 ∪ {0} is a NLSn(n, q). �

Sections of the kind (3), and also their translates, will be referred to as Singer
sections. A subspace of a Singer section will be said to be a sub-Singer section,
or a section of Singer type. The next theorem demonstrates that, in general, by
no means all sections are sub-Singer sections. (Also, see later, there may well exist
maximal linear sections of GL(n, q) of dimension < n.)

Theorem 2.3 For n = mk, where m > 1, k > 1, consider the tensor product space
V (n, q) = V (m, q)⊗ V (k, q). Set A = B ⊗ C ∈ GL(n, q), where 〈B〉 ∼= Zqm−1 is a
cyclic Singer subgroup of GL(m, q) and C ∈ GL(k, q). Put v = |PG(m − 1, q)| =
(qm− 1)/(q− 1). Suppose that the order r of C is such that (i) v6 | r (ii) r6 | (qn− 1).
Then ≺ I, A � is a NLS2(n, q) which is not of Singer type.
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Proof. Since v6 | r, observe that Br has no eigenvalues over GF(q), see e.g.[5], section
11.3. The same is therefore true of Ar = Br ⊗ I (being the direct sum of k copies
of Br), and hence of A; so ≺ I, A � is a NLS2(n, q). Since r divides the order of A,
and since r6 | (qn− 1), the order of A does not divide the order of a Singer subgroup
∼= Zqn−1 of GL(n, q). �

Example 2.4 (i) It is always possible to choose a suitable C ∈ GL(k, q) for the
theorem to apply. For if q = ph, with p prime, take C = I+N where N 6= 0 satisfies
Np = 0. Then r = p and so conditions (i) and (ii) in the theorem are both satisfied.

(ii) If q = 2 we may choose C ∈ GL(k, 2) to be any element of even order. If
q = 2 and m = 2, k = 4, we may choose C ∈ GL(4, 2) to be of order 7.

Lemma 2.5 For q = ph, where p is prime, suppose that S is a NLS2(n, q). Then so
is (S)p, where (S)p = {Xp : X ∈ S}.

Proof. If S =≺ I, A � is a NLS2(n, q), then X = λI + µA lies in GL(n, q) ∪ {0}
for all λ, µ ∈ GF(q). Since Xp = λpI + µpAp, and λ 7→ λp is a field automorphism,
it follows that the 2-dimensional subspace (S)p =≺ I, Ap � of End(n, q) is also a
NLS2(n, q). �

The corresponding result for a non-normalized 2-dimensional section S =≺
A,B � holds if and only if A commutes with B. More generally, consider an arbi-
trary r-dimensional linear section S of GL(n, ph) which is abelian: X1X2 = X2X1

for all X1, X2 ∈ S; then (S)p will also be a linear (abelian) section of GL(n, ph).
At times we will say that a particular normalized linear section S has order

pattern (n1)k1(n2)
k2(n3)k3 ... . By this we will mean that, discounting the elements

0, I ∈ S, ki elements have order ni, i = 1, 2, ... .

Example 2.6 The group GL(4, 2) has two classes of elements of order 15, the 1344
elements of one class C15 having characteristic polynomial t4 + t + 1, and the 1344
elements of the other class C′15 having characteristic polynomial t4 + t3 + 1, the
characteristic polynomials in each case coinciding with the minimal polynomials.
If A ∈ C′15, and so satisfies A4 = I + A3, then A2, A4, A8 also lie in C′15, while
A7, A14, A13, A11 lie in C15. The following are the seven NLS2(4, 2)’s which lie in the
4-dimensional Singer section S4 =≺ I, A,A2, A3 �:

(i) {0, I, A3, A4}, {0, I, A6, A8}, {0, I, A12, A}, {0, I, A9, A2};
(ii) {0, I, A7, A13}, {0, I, A14, A11}; (iii) {0, I, A5, A10} . (4)

The four sections (i) are obtained one from another by successive squaring, as are
the two sections (ii), while the section (iii) is its own square. Up to conjugacy we see
that there are three Singer types of NLS2(4, 2)’s, as exemplified by representatives
drawn from (i), (ii), (iii), the three conjugacy types being distinct, since a section S2

is of type (i), (ii) or (iii) according as its order pattern is 5(15), (15)2 or 32. However
the six sections of (i) and (ii) are all equivalent: for example, {0, I, A14, A11} is a
mutant of {0, I, A3, A4}, since A−4{0, I, A3, A4} = {0, A11, A14, I}. On the other
hand the section (iii) (associated with the subfield GF(4) of GF(16)) mutates only
into itself. Consequently there are up to equivalence just two types of 2-dimensional
sub-Singer sections of GL(4, 2).
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Similarly one finds that the seven NLS3(4, 2)’s which lie in S4 form three con-
jugacy types, with order patterns 3252(15)2, 32(15)4 and 52(15)4, respectively. How-
ever, these three conjugacy types coalesce into just one equivalence type of Singer
NLS3(4, 2). Also any two Singer NLS4(4, 2)’s are conjugate, not merely equivalent.

Theorem 2.7 The only 2-dimensional linear sections of GL(2, q) are the Singer
sections.

Proof. If ≺ I, A � is a NLS2(2, q) then A has no eigenvalues over GF(q) (i.e. is
of elliptic type) and so, over the quadratic extension field GF(q2), A is similar to
the diagonal matrix M = diag(w,wq) with w ∈ GF(q2) r GF(q). So λI + µA is
similar to diag(λ + µw, (λ + µw)q). But, varying λ, µ over GF(q), λ + µw yields
every element of GF(q2). Thus the nonzero elements of ≺ I, A � form a subgroup
of GL(2, q) isomorphic to the multiplicative group Zq2−1 of GF(q2). �

2.2 Subgroups of GL(n, q) associated with NLSr(n, q)’s

If S is a NLSr(n, q) we denote by G(S) the subgroup of GL(n, q) generated by the
nonzero elements of S, and note that S is a normalized linear section of the linear
group G(S). Note that any mutant of a normalized linear section S generates the
same subgroup as S : G(X−1S) = G(S) = G(SX−1), for any X ∈ S. (Indeed
the same is true of any left mutant of any right mutant of any left mutant ... of
S.) So subgroups G(S),G(S′) generated by equivalent normalized sections S,S ′ are
necessarily conjugates of each other within GL(n, q).

Denote by F = F(S) the family of left mutants of S, and note that F(X−1S) =
F(S) for each X ∈ S. We associate with such a family the subgroup H(F) of
GL(n, q) defined by

H(F) = {H ∈ GL(n, q) : HSH−1 ∈ F for each S ∈ F}. (5)

It is easy to see that an element H of GL(n, q) belongs to H(F) provided merely
that HSH−1 ∈ F for one (any) choice of S ∈ F . So we also write H(F) as H(S).
Let H0(S) denote the set-stabilizer of S under the action by conjugacy of GL(n, q):

H0(S) = {H ∈ GL(n, q) : HSH−1 = S}. (6)

Then each of the groups H0(S),S ∈ F , is a subgroup of H(F). Define further

G0(S) = {G ∈ S | GS = S}, G ′0(S) = {G ∈ S | SG = S}. (7)

Clearly G0,G ′0 are both subgroups of G. But more is the case, for since S is closed
under the formation of linear combinations over GF(q), we have the result:

Lemma 2.8 If F0 = G0 ∪ {0} and F ′0 = G ′0 ∪ {0}, then each of F0 and F ′0 is a field
which contain GF(q) as a subfield. �

Note also that G ∈ G0(S) if and only if X−1GX ∈ G0(X−1S). So the subgroups
G0(S),S ∈ F , are conjugates of each other; similarly for the G ′0(S),S ∈ F .
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3 Linear sections of GL(3, 2)

From now on we restrict our attention to the case of the field GF(2). Before dealing
with dimension n = 3 it may be worth mentioning the baby case n = 2. Observe
that the group GL(2, 2) ∼= S3

∼= Z3oZ2 has a unique NLS2(2, 2), namely the Singer
section {0}∪Z3. If we view End(2, 2)r{0} as the projective space PG(3, 2), then the
left action X 7→ AX,A ∈ Z3, of Z3 on PG(3, 2) has for its orbits a spread of 5 lines;
similarly for the right action X 7→ XA−1, the two spreads sharing two lines, namely
the two cosets of Z3 in GL(2, 2). Of course the remaining 9 points of PG(3, 2), that
is the elements of End(2, 2) having rank 1, comprise a hyperbolic quadric H3 with
equation detX = 0, and the orbits for the left and right actions of Z3 on H3 are the
two systems of generators of H3, a regulus and the opposite regulus.

Theorem 3.1 All linear sections of GL(3, 2) are of Singer type.

Proof. Let us call an element A ∈ GL(n, 2) fixed-point-free if it induces a fixed-
point-free collineation of PG(n − 1, 2). Since the order of an element A belonging
to GL(3, 2) is 1, 2, 3, 4 or 7, and since |PG(2, 2)| = 7, a fixed-point-free element
A ∈ GL(3, 2) necessarily has order 7. Consequently, by lemma 2.1, any 2-dimensional
linear section S2 =≺ I, A � is of Singer type, since it lies inside the 3-dimensional
Singer section ≺ I, A,A2 � of the form (3). Let S3 =≺ I, A,B � be any extension
of S2 to a NLS3(3, 2) of non-Singer type, that is with BA 6= AB. It follows that both
B and A−1B are fixed-point free. So, for given A, we seek solutions B ∈ GL(3, 2) of

A7 = B7 = (A−1B)7 = I, AB 6= BA . (8)

For fixed nonzero v ∈ V (3, 2), let the 7 elements {v, Av, A2v, ... , A6v} of the Fano
7-point plane PG(2, 2) = V (3, 2) r {0} be labelled {0, 1, 2, ... , 6}. In the case when
A3 = I+A the 7 lines of the Fano plane are thus {013, 124, 235, 346, 450, 561, 601}.
A particular solution of (8) is given, in terms of the permutation representation of
GL(3, 2) on PG(2, 2), by

A = (0123456), B0 = (0631524), A−1B0 = (0514623). (9)

Moreover, cf. [17, lemma 4.2], any other solutionB of the conditions (8) is of the form
Br = ArB0A

−r, for some r = 0, 1, ... , 6. But note that the element C0 = I +A+B0

sends A4v to (A4 +A5 +I)v = 0; similarly CrA
4+rv = 0. So I+A+B does not lie in

GL(3, 2) for any solution B of (8), and so S3 is not a NLS3(3, 2). Of course a similar
proof of the impossibility of constructing a 3-dimensional section S3 =≺ I, A,B �
of GL(3, 2) of non-Singer type goes through in the case when A, lying in the other
conjugacy class of elements of order 7, satisfies A3 = I + A2. �

Remark 3.2 A pair of elements A,B ∈ GL(3, 2) satisfying (8) gives rise to a
maximal partial spread of size 5 in the space V (6, 2) = X ⊕ Y, where X, Y are two
copies of V (3, 2). In terms of (x, y) ∈ X ⊕ Y the 5 components of the partial spread
have equations x = 0, y = 0, y = x, y = Ax, y = Bx. In projective terms these are
the equations of 5 mutually skew planes in PG(5, 2). While far from obvious from
the point of view of these equations, it turns out that the underlying 35-set of these 5
planes supports an “opposite” maximal partial spread, giving rise to the double-five
configuration of planes in PG(5, 2) considered in [17], [16], [14].
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The 511 elements of PG(8, 2) = End(3, 2) r {0} comprise 168 of rank 3, 294 of
rank 2 and 49 of rank 1. A given choice of Singer group 〈A〉 ∼= Z7 gives rise to two
partitions of each of these subsets into families of mutually skew 7-point planes. For
the first we use the orbits under the left action X 7→ AX,A ∈ Z7, of the Singer
group, and for the second we use the right action. In the case of the 49 elements
of rank 1, the two partitions into 7 skew planes form “double-seven” configurations,
cf. [14]; in fact we have a Segre variety S2,2, cf. [7].

Concerning the intersections of the two families of 24 mutually skew planes for
the 168 elements of GL(3, 2), these are best considered in terms of corresponding
properties of the left and right cosets of the normalizer F21

∼= Z7 o Z3 of Z7, each
coset of F21 consisting of three mutually skew planes. One finds that the 7 left
cosets {L1, ... , L7} of F21, other than F21, intersect the 7 right cosets {R1, ... , R7}
of F21, other than F21, uniformly in the manner |Li ∩ Rj | = 3, i, j ∈ {1, 2, ... , 7}.
Moreover, for any particular F21 subgroup, there exists a natural bijection Li ↔
Ri, i = 1, 2, ... , 7, which arises as follows. The group F21 possesses seven subgroups
Za

3
∼= Z3, where Za

3 keeps fixed the point a ∈ PG(2, 2). The normalizer of Za
3 in

GL(3, 2) is a subgroup Sa3
∼= S3

∼= Z3oZ2. Now Sa3rZa
3 consists of three involutions,

say Ja, J
′
a, J

′′
a , and the product of any two of these involutions lies in Za

3 , and hence
in F21. So Ja, J

′
a, J

′′
a lie in the same left coset of F21, say La, and also in the same right

coset, say Ra. So our bijection is La ↔ Ra, with the seven “diagonal” intersections
La ∩ Ra accounting for the entire class of 21 involutions in GL(3, 2). Moreover one
find that all 42 off-diagonal intersections La ∩ Rb, a 6= b, uniformly have the same
order pattern 3, 4, 7.

4 Linear sections of GL(4, 2) : preliminaries

4.1 The 2-dimensional sections of GL(4, 2)

By lemma 2.1 we need only those classes of GL(4, 2) which are fixed-point-free (f.p.f.)
on PG(3, 2). So of relevance are the five classes listed in table 1:

Table 1. The f.p.f. classes of GL(4, 2)
Class Length Minimal polynomial cycle type
C3 112 t2 + t + 1 35

C5 1344 t4 + t3 + t2 + t+ 1 53

C6 1680 t4 + t2 + 1 623
C15 1344 t4 + t + 1 15
C′15 1344 t4 + t3 + 1 15

The Singer elements, of order 15, see classes C15, C′15, were noted in example 2.6, each
A ∈ C15 ∪ C′15 permuting the 15 points of PG(3, 2) in a single cycle. So A3, of order
5, permutes the 15 points in three cycles of length 5, and A5, of order 3, permutes
the 15 points in five cycles of length 3: see classes C5, C3. Finally there is a class C6

of length 1680 consisting of those elements of order 6 which permute the 15 points
in two cycles of length 6 and one of length 3.
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Lemma 4.1 Up to equivalence there are just three types of NLS2(4, 2)’s, with a
section S2 belonging to type (i), (ii) or (iii) according as its group G(S2) is isomorphic
to

(i) Z15 (ii) Z3 (iii) (Z2)2 × Z3.

Type (i) splits into two conjugacy classes, with order patterns 5(15) and (15)2, while
each of the types (ii) and (iii) consists of a single conjugacy class, of order pattern
(ii) 32 and (iii) 62, respectively.

If S2 is a section of type (iii), with group G ∼= (Z2)2 ×Z3, then G ∪ {0} contains
three NLS2(4, 2)’s of type (iii) and also a NLS2(4, 2) of type (ii). Moreover the
linear span ≺ G � has dimension 4, the 15 points of the associated projective space
PG(3, 2) =≺ G � r{0} being the 12 elements of G along with a line of 3 singular
elements {I + Ji : i = 1, 2, 3}, where {I, J1, J2, J3} is the (Z2)2 subgroup of G.

Proof. If A lies in C15 ∪ C′15 ∪ C5 ∪ C3 then S2 =≺ I, A � is a NLS2(4, 2) of
sub-Singer kind, as considered in example 2.6, thus giving rise to the equivalence
types (i) and (ii) of the lemma. By the preamble to the lemma, the only other
possibility is for A to lie in C6. It then must be the case that B = I + A lies
in C6, since there are no further classes consisting of fixed-point-free elements. In
fact a direct proof that B satisfies B4 = B2 + I and is of order 6 is easily given:
B4 = (I + A)4 = I + A4 = A2 = (I + B)2 = I + B2, and so B6 = B2 + B4 = I.
On setting J1 = B3, J2 = A3 and W = B2 = A4, the abelian group G = 〈A,B〉,
generated by the commuting elements A,B of order 6, is seen to have the structure

G = 〈J1〉 × 〈J2〉 × 〈W 〉 ∼= Z2 × Z2 × Z3. (10)

Consider now the second half of the lemma, which spells out how close the
subspace ≺ G �⊂ End(4, 2) spanned by G is to being a NLS4(4, 2). On setting
J3 = J1J2, we have an abelian group G = {I, J1, J2, J3} × 〈W 〉 where the Ji are
involutions, where W, of order 3, satisfies W 2 + W + I = 0 and so ≺ I,W � is a
NLS2(4, 2) of type (ii), and where J2W + J1W

2 = I. The last relation (a re-write
of A + B = I) gives two further relations after mutation, so that we have three
NLS2(4, 2)’s of type (iii), given by the three relations

J3W + J2W
2 = I, J1W + J3W

2 = I, J2W + J1W
2 = I. (11)

Moreover we also have the relation I + J1 + J2 + J3 = 0. For from J2W + J1W
2 = I

and W 2 = W + I we obtain I + J1 = (J1 + J2)W = (I + J3)J1W. But (I + J3)
2 =

I + (J3)2 = I + I = 0, and so (I + J3)(I + J1) = 0, that is I + J1 + J2 + J3 = 0.
Fortified by these relations we quickly check that the projective space ≺ G � r{0}
is a PG(3, 2), since it comprises just 15 points, namely the 12 elements of G and the
3 elements I + Ji, i = 1, 2, 3, which form a projective line. (Note the rather subtle
fact that the foregoing relations are symmetric only under an even permutation of
J1, J2, J3.) �



Linear sections of GL(4, 2) 295

4.2 Aspects of the isomorphism T : A8 → GL(4, 2)

As is very well-known, GL(4, 2) is isomorphic to the alternating group A8, consisting
of the even permutations of the symbols {1, 2, ... , 8}. Table 2 lists the five classes of
A8 which correspond to the GL(4, 2) classes of table 1.

Table 2. Relevant classes of A8

Class Length Representative
C3 112 (123)
C5 1344 (12345)
C6 1680 (123)(45)(67)
C15 1344 (123)(45678)
C′15 1344 (132)(45678)

Any isomorphism T : A8 → GL(4, 2) necessarily maps C5 onto C5, C3 onto C3 and
C6 onto C6. In the following we choose to deal with an isomorphism with effect

T : C15 7→ C15, C
′
15 7→ C′15 (12)

on the elements of order 15. Of course if θ is the outer automorphism of A8 defined
by σ 7→ ρσρ−1 where ρ ∈ S8 r A8 is any odd permutation of 12345678, then T ′ =
T ◦ θ : A8 → GL(4, 2) will be an isomorphism with the opposite effect

T ′ : C15 7→ C′15, C
′
15 7→ C15. (13)

Lemma 4.2 Let T : A8 → GL(4, 2) be as in (12), let ijklmnrs denote an arbi-
trary even permutation of 12345678 and put ω = (ijk) and φ = (lmnrs). Then the
following three relations hold in End(4, 2):

Tωφ + Tωφ−1 = I, Tω2φ + Tφ2 = I, Tω + Tω−1 = I. (14)

The first two relations yield the two mutant versions of a NLS2(4, 2) of equivalence
type (i), see lemma 4.1, either version generating the group 〈Tωφ〉 ∼= Z15, and the
third relation yields a NLS2(4, 2) of type (ii), generating the group 〈Tω〉 ∼= Z3.

The following relations also hold:

T(ijk)(lm)(nr) + T(ikj)(nl)(mr) = I

T(ijk)(mn)(lr) + T(ikj)(lm)(nr) = I

T(ijk)(nl)(mr) + T(ikj)(mn)(lr) = I. (15)

They yield three mutant versions of a NLS2(4, 2) of type (iii), see lemma 4.1 and
Equation (11), with each version generating the same group

〈Tω〉 × {I, T(mn)(lr), T(nl)(mr), T(lm)(nr)} ∼= Z3 × (Z2)2.

Proof. By (12), Tωφ has minimal polynomial t4 + t+ 1, and so we have the first of
the relations (14). Multiplying this by Tω2φ yields the second relation. The third of
the relations (14) holds, since Tω lies in C3 and so has minimal polynomial t2 + t+ 1.
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Now the second relation in (14) reads T(ikj)(lmnrs) +T(lnsmr) = I, and on multiplying
this from the left by T(snl) we obtain the first of the following two relations

T(ikj)(lm)(nr) + T(smr) = T(snl), T(ijk)(mn)(lr) + T(srm) = T(snl), (16)

with the second following from the first upon conjugating with T(jk)(mr). Addition of
the last two relations yields the second of the relations (15), and the other two follow
upon conjugating twice with T(lmn). The tie-in with lemma 4.1, and in particular of
Equation (15) with Equation (11), is clear: set W = Tω and let J1, J2, J3 be any
even permutation of Tκ1, Tκ2 , Tκ3, where

κ1 = (mn)(lr), κ2 = (nl)(mr), κ3 = (lm)(nr). � (17)

5 Linear sections of GL(4, 2): summary of results

The following theorem summarizes our main results.

Theorem 5.1 There are just two equivalence classes of 3-dimensional maximal nor-
malized linear sections of GL(4, 2), sayM3 andM′

3, and three equivalence classes of
4-dimensional sections, say M4,M′

4 and M′′
4. Information concerning these equiv-

alence classes is displayed in Table 3 below. In the table the second column indi-
cates the structure of the group G(S) generated by a(ny) representative S of a class,
and the third column indicates, for F 3 S, the structure of the group H(F), see
equation (5). The fourth column lists the associated order patterns, one for each
conjugacy type of section, and the final column indicates the structure of the group
H0(S), see equation (6), for these conjugacy types. In the case of S ∈ M′

4 each of
the groups G0(S),G ′0(S), see equation (7), is isomorphic to Z3; in all other cases the
groups G0,G ′0 are trivial.

Proof. Concerning existence, in succeeding sections we give explicit constructions
of linear sections belonging to the four non-Singer classesM3,M′

3,M′
4,M′′

4. We also
provide information there concerning the G, H and H0 groups. See equation (30)
for the G0,G ′0 groups in the case of S ∈ M′

4. However we made repeated use of
the computer algebra system MAGMA, see [1], in order to check maximality in
respect of the classes M3,M′

3, and especially to prove that our list of five classes
was complete. (We also found MAGMA helpful as a back-up to check the accuracy
of our statements concerning the H and H0 groups.) �

Table 3. Equivalence classes of maximal NLSr(4, 2)’s
Class G H Order patterns H0

M3 A7 GL(3, 2) 66 S4

M′
3 GL(4, 2) Z7 52(15)4 {I}

M4 Z15 Z15 o Z4 3254(15)8 Z15 o Z4

M′
4 GL(2, 4) S3 × S3 345462(15)4 S3 × Z2

3266(15)6 Z3 × S3

M′′
4 GL(4, 2) (Z3)2 o Z2 3266(15)6 S3

5466(15)4 Z2

68(15)6 S3
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Corollary 5.2 (i) There are (at least) two inequivalent classes of maximal partial
spreads of order 9 in PG(7, 2).

(ii) There are precisely two non-isotopic proper semifields of order 16.

Proof. (i) As explained in section A.1 of the Appendix, if S is a NLS3(4, 2) it gives
rise to a partial spread Σ in PG(7, 2) of order 9. If S ∈ M3, or if S ∈ M′

3, then Σ
is a maximal partial spread, for any extension of S qua a spread set would imply
(a result peculiar to GF(2)!) a linear extension, contradicting the maximality of S
as a linear section.

(ii) This is a known result: see [9], and the independent computer check in [10].
However, see section A.3, it also follows from our present results, since, leaving aside
the class M4 associated with the field of order 16, we have shown that there exist
precisely two other equivalence classes of NLS4(4, 2)’s. (See also examples A.7 and
A.8 for more details linking our results with those in [10].) �

Knowing representatives for the conjugacy classes of 4-dimensional linear sections
it is a relatively straightforward matter to look at their 3-dimensional subspaces. It
turns out that there are five equivalence classesN3,N ′3,N ′′3 ,N ′′′3 ,N iv

3 of non-maximal
NLS3(4, 2)’s. Information concerning these is given in table 4; in particular each
equivalence class contains three conjugacy classes with order patterns as listed in
column 4. (In the N ′′3 entry, we use the ATLAS [2] abbreviation (22 × 3):2 for the
structure ((Z2)2 × Z3)o Z2.)

Table 4. Equivalence classes of non-maximal NLS3(4, 2)’s
Class G H Order patterns H0

N3 Z15 Z15 o Z4 3252(15)2 Z15 o Z2

32(15)4 Z15 o Z4

52(15)4 Z15

N ′3 GL(2, 4) Z3 × S3 3262(15)2 Z3 × Z2

5262(15)2 Z3 × Z2

66 Z3 × S3

N ′′3 GL(2, 4) (22 × 3):2 3252(15)2 S3

3462 (22 × 3):2
62(15)4 Z3 × (Z2)2

N ′′′3 GL(4, 2) Z4 5262(15)2 {I}
66 Z4

62(15)4 Z2

N iv
3 GL(4, 2) S3 5262(15)2 Z2

66 S3

64(15)2 Z2

Remark 5.3 Within an equivalence class it turns out that, for GL(4, 2), the order
pattern suffices to distinguish the conjugacy classes. However linear sections with
the same order pattern may be non-conjugate. For example tables 3 and 4 show that
there are four distinct conjugacy classes of NLS3(4, 2)’s which share the same order
pattern 66.

See [4] for more information concerning NLS(n, 2)’s for n = 4, and for a prelim-
inary look at the n = 5 case.
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6 Linear sections generating an A7 subgroup of GL(4, 2)

Concerning linear sections S of GL(4, 2) belonging to the classM3, a recipe for their
construction can be given based upon the existence in the alternating group A7 of
7-clusters. We now outline this recipe, but refer to [15] for further details.

Definition 6.1 A 7-cluster is a subset Π = {ξ1, ξ2, ... , ξ7} of A7 which satisfies

(ξi)
−1ξj is of order 6 for all i 6= j ∈ {1, 2, ... , 7}. (18)

We will restrict our attention to normalized 7-clusters Π, for which ξi = Id for
some i, the other six elements of Π therefore having order 6. Note that elements of
A7 of order 6 form a single class (of length 210) with representative (123)(45)(67).
Since we will not deal in this note with any other kind of cluster, we will refer to a
normalized 7-cluster simply as a cluster.

If Π is a cluster then so are all its left and right mutants ξ−1Π and Πξ−1, ξ ∈ Π.
Each cluster Π determines a family Φ(Π) = {ξ−1Π : ξ ∈ Π} of left mutants, and also
a family Φ′(Π) = {Πξ−1 : ξ ∈ Π} of right mutants, of Π. These families are in fact
democracies since, for any ξ ∈ Π, we have Φ(ξ−1Π) = Φ(Π), and Φ′(Πξ−1) = Φ′(Π).

We use some well-known facts concerning 2-(7,3,1) designs (PG(2, 2)’s, STS(7)’s)
based on the point-set {1, 2, 3, 4, 5, 6, 7}. Under the action of S7 such designs form a
single orbit of length 7!/168 = 30, which splits into two A7-orbits of length 15, say
Ω, represented by the design D0 whose triples are 124, 235, 346, 457, 561, 672, 713,
and Ω′, represented by τD0 for any τ ∈ S7 r A7. Two designs lying on the same
A7-orbit share precisely one triple, while if on different A7-orbits either they share
three triples, or they are disjoint.

To each D ∈ Ω ∪ Ω′ we associate the 42 (distinct) elements ξij(D), i 6= j ∈
{1, 2, 3, 4, 5, 6, 7}, of A7 of order 6 defined by

ξij(D) = (ijk)(ln)(mr), (i 6= j), (19)

where k is such that ijk is a triple of the design D, and where kln and kmr are the
other two triples of D which contain k. Observe that ξij(D)−1 = ξji(D). Acting by
conjugation, the group AutD ∼= GL(3, 2) is transitive on the 42 elements (19), with
point-stabilizer ∼= (Z2)2. We define also ξii(D) = Id, for each i, and so associate with
each D ∈ Ω ∪ Ω′ a 7× 7 array

Ξ(D) = (ξij(D))i,j∈{1,2,3,4,5,6,7}, (20)

whose diagonal elements are all equal to Id and whose off-diagonal elements are the
42 permutations of equation (19), each of order 6.

Theorem 6.2 ([15]) (i) For all i, j, k ∈ {1, 2, ... , 7}, ξij(D)ξjk(D) = ξik(D).
(ii) Each row Πi(D) = {ξij(D) : j ∈ {1, 2, 3, 4, 5, 6, 7}} of Ξ(D) is a cluster,

the 7 rows forming a family Φ(D) of 7 (distinct) left mutants. Also each column
Π′i(D) = {ξji(D) : j ∈ {1, 2, 3, 4, 5, 6, 7}} of Ξ(D) is a cluster, the 7 columns forming
a family Φ′(D) of 7 (distinct) right mutants.

(iii) Under the action of A7 by conjugation, the clusters in A7 form two orbits
O, O′, each of length 105. Every cluster Π ∈ O is of the form Πi(D) for some D ∈ Ω
and some i, and also of the form Π′i(D′) for some D′ ∈ Ω′ and some i. Every cluster
Π′ ∈ O′ is of the form Πi(D′) for some D′ ∈ Ω′ and some i, and also of the form
Π′i(D) for some D′ ∈ Ω′ and some i. �



Linear sections of GL(4, 2) 299

The duplication in part (iii) of the theorem arises from the fact that Π′i(D) =
Πi(Di) where Di is that design which shares with D precisely those three triples of
D which contain i.

Let A7 be that (maximal) subgroup of A8 which fixes the symbol 8 and denote
by A7 its image in GL(4, 2) under T of (12). For D ∈ Ω ∪ Ω′ we set

Xij(D) = Tξij(D), i, j ∈ {1, 2, 3, 4, 5, 6, 7}. (21)

So each Xij(D) lies in A7, and Xii(D) = I for each i. We associate with each
D ∈ Ω ∪ Ω′ the 7× 7 array

X(D) = (Xij(D))i,j∈{1,2,3,4,5,6,7}, (22)

the image under T of the array (20), whose 42 off-diagonal elements lie in A7 ∩ C6.
From the i th row, and the i th column, of this array, we form the 7-subsets of
End(4, 2)

Pi(D) = {Xij(D) : j ∈ {1, 2, 3, 4, 5, 6, 7}}, (23)

P ′i (D) = {Xji(D) : j ∈ {1, 2, 3, 4, 5, 6, 7}}, (24)

which are the images under T of the clusters Πi(D), Π′i(D).

Theorem 6.3 ([15]) (i) Given D ∈ Ω let ijk be any of its triples and let l ∈
{1, 2, 3, 4, 5, 6, 7} r {i, j, k}. Then (with T in (21) having effect (12)) the following
linear relations hold in End(4, 2):

Xki(D) +Xkj(D) + I = 0, (25)

Xli(D) +Xlj(D) +Xlk(D) = 0. (26)

(ii) Put Si(D) = Pi(D) ∪ {0} and S ′i(D) = P ′i (D) ∪ {0}. Then, for D ∈ Ω, each
Si(D) is a NLS3(4, 2). Moreover H(S i(D)) ∼= GL(3, 2) and H0(Si(D)) ∼= S4. (Also,
for D′ ∈ Ω′, each S ′i(D′) is a NLS3(4, 2).)

Proof. Equation (15ii) yields (25), and on left-multiplying (25) byXlk(D) we obtain
the relation (26). It follows that each Pi(D) is a PG(2, 2), and so each Si(D) is a
NLS3(4, 2). The group H ⊂ GL(4, 2) which, acting by conjugation, preserves the
family {Si(D); i = 1, ... , 7} of left mutants is isomorphic to AutD ∼= GL(3, 2), and
the subgroup H0 which preserves the ith member Si(D) is isomorphic to AutD ∩
Stab(i) ∼= S4. �

Remark 6.4 If D ∈ Ω it is should be stressed that S ′i(D) = P ′i (D) ∪ {0} is not
a NLS3(4, 2); indeed the 7 elements of P ′i (D), D ∈ Ω, are linearly independent.
(Moreover the only 3-term linear dependencies amongst the 43 distinct elements of
the array (22) are those of the kind (25), (26), involving 3 elements of a single row
of the array X.) However if we had chosen to use an isomorphism T ′ with effect
(13), rather than (12), then, for D ∈ Ω, the S ′i(D), and not the Si(D), would have
been the NLS3(4, 2)’s.
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Under the action by conjugacy of A7 ⊂ GL(4, 2) the 105 normalized linear
sections Si(D), D ∈ Ω, i = 1, ... , 7, form a single conjugacy class, which is also an
equivalence class. Let A7(s) be the subgroup of A8 which fixes the symbol s, and let
A7(s) ⊂GL(4, 2) denote its image under T. Our foregoing considerations dealt with
the case s = 8, but apply equally to any s = 1, ... , 8. The 2-(7,3,1) designs based
on seven out of the eight points {1, 2, ... , 8} form two A8 orbits, say ∆, ∆′, each of
length 8× 15 = 120, with ∆ = ∪8

s=1Ω(s) and ∆′ = ∪8
s=1Ω′(s), where Ω(8) = Ω and

Ω′(8) = Ω′, and where Ω(s), Ω′(s) are the two A7(s) orbits of 2-(7,3,1) designs based
on {1, 2, ... , 8}r{s}. Under the isomorphism T, each of the 120 designs D ∈ ∆ gives
rise to seven NLS3(4, 2)’s Si(D), i = 1, ... , 7.

Theorem 6.5 ([15]) The 840 elements of M3 = {Si(D) : D ∈ ∆, i = 1, ... , 7}
form a single conjugacy class, and equivalence class, of maximal NLS3(4, 2)’s, with
each of the 8 subgroups of GL(4, 2) isomorphic to A7 contributing 105 NLS3(4, 2)’s.
For any S ∈ M3 the following group isomorphisms hold.

G(S) ∼= A7, H(S) ∼= GL(3, 2), H0(S) ∼= S4. �

7 Linear sections generating a GL(2, 4) subgroup of GL(4, 2)

7.1 Use of 2× 2 matrices ∈ GL(2, 4)

In this section we will be dealing with 2 × 2 matrices X ∈ GL(2, 4) ∪ {0}. Since
elements of GF(4) = {0, 1, w, w2} may be viewed as 2× 2 matrices over GF(2), for

example by interpreting w as the matrix

(
0 1
1 1

)
, we may view X as a 4×4 matrix

∈ GL(4, 2) ∪ {0}. The following readily proven lemma is of help in determining the
orders of the various matrices X encountered below.

Lemma 7.1 (i) If X ∈ GL(2, 4) then X satisfies the equation

X2 = τX + δI, where τ = trX and δ = detX, (27)

this being its minimal equation except when X ∈ {I, wI, w2I}.
(ii) If X ∈ GL(2, 4) r {I, wI, w2I} then

X has order



2
3
5
6
15

⇐⇒ (τ, δ) =



(0, 1)
(1, 1), (w,w2) or (w2, w)
(w, 1) or (w2, 1)
(0, w) or (0, w2)
(1, w), (1, w2), (w,w) or (w2, w2)

(28)

(iii) If X ∈ GL(2, 4) then I + X ∈ GL(2, 4) if and only if one of the following
holds: (a) X has order 3 and either X ∈ {wI, w2I} or (τ, δ) = (1, 1) (b) X has
order 5, 6 or 15. �
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Consider the three sets S = {Xu | u = (a, b) ∈ GF(4)2} of 2 × 2 matrices over
GF(4) defined by

(i) X i
a,b =

(
a wb
b a+ b

)
, (ii) X ii

a,b =

(
a b2

b a2 + b2

)
, (iii) X iii

a,b =

(
a wb2

b a2

)
.

(29)
Each set consists of 16 matrices, and for each set detXu is nonzero for u 6= (0, 0).
Moreover Xu + Xv = Xu+v , and X1,0 = I. Viewing elements of GF(4) as 2 × 2
matrices over GF(2), it follows that each set is a NLS4(4, 2).

In the case of the first set S i, the 15 nonzero elements form an abelian group
∼= Z15, with generator X i

0,1. So S i is a Singer section. The other two sections are
non-abelian, and generate the whole of GL(2, 4). Using lemma 7.1, we see that S ii

has order type 345462(15)4 and S iii has order type 3266(15)6. In fact S ii is a left
mutant of S iii, since

(X iii
1,w2)−1X iii

a,b = X ii
wa+b,a+wb.

Each of the sections S ii,S iii has groups G0,G ′0, see (7), of order 3:

G0(S ii) =
〈
X ii

0,1

〉
, G ′0(S ii) =

〈
X ii
w,0

〉
, G0(S iii) =

〈
X iii
w,0

〉
= G ′0(S iii). (30)

Indeed note that X ii
0,1X

ii
a,b = X ii

b,a+b, X
ii
a,bX

ii
w,0 = X ii

wa,wb, X
iii
w,0X

iii
a,b = X iii

wa,w2b and

X iii
a,bX

iii
w,0 = X iii

wa,wb. Now if A−1S is a left mutant of S then so is (GA)−1S for each
G ∈ G0(S). So the family F of left mutants of S ii (or of S iii) has 15/3 = 5 distinct
members. It is easy to see that F = {S ii,S iii,S ′,S ′′,S ′′′}, where S ′ and S ′′ are
conjugates of S ii which consist of matrices of the form (29ii) except that the entry
a2 + b2 is replaced by a2 + wb2 and a2 + w2b2, respectively, and where S ′′′ is a
conjugate of S iii which consists of matrices of the form (29iii) except that the entry
wb2 is replaced by w2b2.

We now provide details of the H(S) and H0(S) groups for S = S ii and S = S iii.

Let J =

(
0 1
1 0

)
(= (X iii

0,w2)3), and let K ∈ GL(4, 2) be defined by (a, b) 7→ (a2, b2).

Set Z2 = 〈K〉 , Z ′2 = 〈J〉 , Z3 = 〈wI〉 , Z ′3 =
〈
X ii
w,0

〉
=
〈
X iii
w,0

〉
, S3 = Z3 o Z2 and

S ′3 = Z ′3 o Z ′2. Of course Z3 centralizes both S ii and S iii. Then

H0(S ii
) = S3 × Z ′2, H0(S iii

) = Z3 × S ′3,
H(S ii) = S3 × S ′3 = H(S iii). (31)

Noting that conjugation by K fixes S ii (mapping X ii
a,b to X ii

a2,b2) and effects the

interchanges S ′ ↔ S ′′ and S iii ↔ S ′′′, it is easy to check that theH0 andH groups are
at least as big as indicated. That they are no larger was confirmed using MAGMA.

The order patterns of subspaces of S ii and S iii are easily listed. In the case of
S ii, 3-dimensional subspaces of order patterns (a) 3252(15)2 (b) 3462 (c) 5262(15)2

are obtained by the restrictions (a) a ∈ GF(2) (b) b ∈ GF(2) (equivalently Xt = X)
(c) wa + b ∈ {0, w}, respectively. In the case of S iii, 3-dimensional subspaces of
order patterns (d) 66 (e) 3262(15)2 (f) 62(15)4 are obtained by the restrictions (d)
a ∈ GF(2) (equivalently trX = 0) (e) b ∈ {0, w2} (equivalently Xt = X) (f)
a + b ∈ GF(2), respectively. Every 3-dimensional subspace of S ii and S iii has one
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of the indicated order patterns. These six order patterns correspond to six conju-
gacy classes of NLS3(4, 2)’s, and sort themselves out into two equivalence classes as
indicated in table 4.

Concerning the H0 groups of these six conjugacy classes of NLS3(4, 2)’s, we
content ourselves with providing details of the structure ((Z2)2 × Z3) o Z2 of the
largest one, namely H0(S3) where S3 is as in case (b) above: S3 = {X ∈ S ii |
Xt = X}. This section S3 has order type 3462, with the two elements of order 6
being A = X ii

w2,1 and B = X ii
w,1. Let G12 denote the group 〈A,B〉 generated by A

and B. Since A + B = X ii
1,0 = I, it follows, as in the proof of lemma 4.1, that

G12 = {I, A3, B3, AB} × Z3
∼= (Z2)2 × Z3, where Z3 = 〈B2〉 = 〈A4〉 = 〈wI〉 is as

in equation (31), and where AB = J. Now Z3 centralizes S3, and one checks that,
acting by conjugation, the four-group {I, A3, B3, AB} is regular on the four elements
of S3 of order 3, and of course fixes A and B. So G12 ⊂ H0(S3). But the condition
Xt = X is preserved under conjugation by K, and so 〈K〉 ⊂ H0(S3). Thus we arrive
at the result that H0(S3) = G12 o 〈K〉 , after using MAGMA to check that H0(S3)
is no larger. (Note incidentally that H0(S3) has centre 〈AB〉 = 〈J〉 .)

7.2 Use of permutations ∈ Z3 × A5

Since SL(2, 4) is isomorphic to A5, and since Aut(GF(4)) ∼= Z2, note that GL(2, 4) ∼=
Z3 × A5, and ΓL(2, 4) ∼= (Z3 × A5) o Z2. We now give a Z3 × A5 version of the
preceding linear section S iii of order pattern 3266(15)6. Thus in A8 terms we will

be dealing with one of the
(

8
3

)
= 56 subgroups which respect a particular 3 + 5

partition of the 8 symbols, and moreover, as far as GL(2, 4), rather than ΓL(2, 4),
is concerned, one that permutes the 3 symbols cyclically.

As in lemma 4.2 let ijklmnrs denote an arbitrary even permutation of 12345678.
Starting out from the relation I+T(lmn)+T(lnm) = 0, we obtain, on left multiplication
by T(mn)(rs), a relation L1 + L2 + L3 = 0, where

L1 = T(mn)(rs), L2 = T(nl)(rs), L3 = T(lm)(rs) . (32)

Observe that the La, a = 1, 2, 3, satisfy relations L2L3 = L3L1 = L1L2 = M, and
L3L2 = L1L3 = L2L1 = M2, where M = T(lmn). Setting Aa = T(ijk)La, a = 1, 2, 3,
then

∑
aAa = 0, with each Aa ∈ C6. Moreover the Aa satisfy relations

A2A
−1
3 = A3A

−1
1 = A1A

−1
2 = M, A3A

−1
2 = A1A

−1
3 = A2A

−1
1 = M2. (33)

Upon joining to I we obtain a NLS3(4, 2)

S3 = {0, I, A1, B1, A2, B2, A3, B3} (34)

where Ba = I + Aa, a = 1, 2, 3; explicitly, after using Equations (15),

A1 = T(ijk)(mn)(rs), A2 = T(ijk)(nl)(rs), A3 = T(ijk)(lm)(rs),

B1 = T(ikj)(rm)(ns), B2 = T(ikj)(rn)(ls), B3 = T(ikj)(rl)(ms). (35)

Thus S3 has order pattern 66 and lies inside the image, under T, of the subgroup
〈(ijk)〉 × A5 of A8. We now find that S3 extends to a S4 ⊂ T (〈(ijk)〉 × A5) by
adjoining the elements

S4 r S3 = {M,M2,MB1,MB2,MB3,M
2B1,M

2B2,M
2B3}. (36)
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The six elements MBa, M
2Ba are explicitly

MB1 = T(ikj)(lmrns), MB2 = T(ikj)(lsmnr), MB3 = T(ikj)(lrmsn),

M2B1 = T(ikj)(lnsmr), M
2B2 = T(ikj)(lsnrm), M

2B3 = T(ikj)(lrnms); (37)

they all have order 15, and so S4 has order pattern 3266(15)6. Observe that G0(S4) =
〈M〉 = G ′0(S4), in agreement with equation(30).

8 Maximal linear sections which generate GL(4, 2)

We now give constructions, in A8 terms, of maximal linear sections belonging to
the classes M′

3 and M′′
4. By using the relations in lemma 4.2 we may search for a

NLS3(4, 2) as the span of two suitable NLS2(4, 2)’s. One example, which yields a
linear section S ′3 ∈M′

3, arises from the permutations

σ1 = (45678), σ2 = (14325), σ3 = (168)(25743),

σ4 = (123)(47586), σ5 = (678)(12453), σ6 = (168)(23475). (38)

By Equation (14ii) we have Tσ1 + Tσ4 = I = Tσ2 + Tσ5. (Also, by Equation (14i) we
have Tσ3 + Tσ6 = I.) But we also have Tσ1 = Tσ2 + Tσ3 , since I = Tσ−1

1 σ2
+ Tσ−1

1 σ3
is

seen to hold as another instance of Equation (14ii). Hence

S ′3 = {0, I, Tσ1, ... , Tσ6} (39)

is a NLS3(4, 2) of order pattern 52(15)4. Each mutant of S ′3 also has order pattern
52(15)4 and is conjugate to S ′3. By use of MAGMA we checked that S ′3 has no
extensions to a 4-dimensional section, and that any other non-abelian NLS3(4, 2) of
order pattern 52(15)4 is conjugate to S ′3. (Abelian sections of order pattern 52(15)4

exist, see example 2.6.) Moreover the permutations (38) generate A8 (indeed σ1 and
σ2 generate A8), and so G(S′3) = GL(4, 2). Concerning theH0(S ′3) andH(S ′3) groups,
note that if the set of six permutations (38) is stable under conjugation by ρ ∈ A8,
then so is the subset {σ1, σ2} of permutations of order 5. But only the identity
simultaneously centralizes both σ1 and σ2; it is also easy to check that ρ = Id is
the only element of A8 which satisfies ρσ1 = σ2ρ and ρσ2 = σ1ρ. So H0(S ′3) = {I}.
Since the 7 left mutants of S ′3 are distinct, and are conjugate to S ′3, it follows that
H(S ′3) ∼= Z7.

Finally we show that there exist NLS4(4, 2)’s which generate the full group
GL(4, 2). To this end consider the six permutations

α1 = (123)(56)(78), α2 = (123)(64)(78), α3 = (123)(45)(78),

β1 = (132)(75)(68), β2 = (132)(76)(48), β3 = (132)(74)(58), (40)

whose images under T, see equation (35), are the elements 6= 0, I of a NLS3(4, 2),
say S3, of order pattern 66 and group G(S3) ∼= Z3 × A5. To obtain a NLS4(4, 2),
consider the extension of S3 by the images of the eight permutations

σ = (27)(38)(465), ρ = (28)(37)(456),

σ1 = (18657)(243), ρ1 = (17568)(243),

σ2 = (18467)(253), ρ2 = (17648)(253),

σ3 = (18547)(263), ρ3 = (17458)(263) . (41)
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Observe that conjugation by (456) fixes σ and ρ, and effects γ1 7→ γ2 7→ γ3 7→ γ1 for
γ = α, β, σ, ρ.

Theorem 8.1 There exists an equivalence class M′′
4 of NLS4(4, 2)’s consisting of

three conjugacy classes K1,K2 and K3, with respective order patterns 3266(15)6,
5466(15)4 and 68(15)6. Moreover, for any S4 ∈M′′

4,

G(S4) = GL(4, 2), H(S4)
∼= (Z3 × Z3)o Z2 . (42)

Also H0(S4) is isomorphic to S3, Z2 or S3, according as S4 ∈ K1,K2 or K3.

Proof. By lemma 4.2, and recalling the preceding observation concerning conju-
gation by (456), we have Tσ + Tρ = I, and Tσa + Tρa = I, a = 1, 2, 3; we also have
Tσ + Tαa = Tσa, a = 1, 2, 3, as can be checked upon multiplication on the left by
(Tσ)−1. These relations (more than) suffice to show that the considered extension
of S3 by the images of the eight permutations (41) is indeed a 4-dimensional sec-
tion S4. Note that this S4 has order pattern 68(15)6, and so belonging to K3. One
finds that the family F = F(S4) of left mutants of S4 comprises 15 distinct sections,
with the order patterns 3266(15)6, 5466(15)4 and 68(15)6 occurring 3, 9 and 3 times,
respectively, and that members of F having the same order pattern are conjugate.
The index in H(S4) = H(F) of the three H0 subgroups corresponding to the three
classes K1,K2 and K3 is thus 3, 9, 3, respectively. In the case of the preceding section
S4 ∈ K3 it is easy to check that T(456) and T(45)(78) belong to H0(S4), and generate
a subgroup ∼= S3 which in fact is the whole of H0(S4). Moreover T(278) is seen to
belong to H(S4), since T(278)S4T

−1
(278) = T−1

σ S4. Consequently

H(S4) = (〈T(456)〉 × 〈T(278)〉)o 〈T(45)(78)〉 ∼= (Z3 × Z3)o Z2 , (43)

and the three H0 subgroups are as stated in the last assertion in the theorem. �

We conclude by giving an example in matrix form of an S4 ∈ K3. Consider the
4× 4 matrices Xλ and Yλ, λ = (α, β, γ, δ) ∈ GF(2)4, defined by

Xλ =


α β δ γ
β α+ β γ γ + δ
γ δ α+ β β
δ γ + δ β α

 , Yλ =


α β β + δ γ
β α+ β β + γ γ + δ
γ β + δ α + β β
δ γ + δ β α

 . (44)

The set {Xλ} of 16 matrices is as in equation (29iii): X(α,β,γ,δ) = X iii
λ1+βw,γ+δw, and

so is a S ′4 ∈M′
4 with order pattern 3266(15)6. Consider the 3-dimensional subspace

S3 = {Xλ | β = 0} of S ′4, of order pattern 66, and let us seek extensions of S3 to a
NLS4(4, 2). We find that there is a unique extension of S3 to a NLS4(4, 2) ∈ M′

4,
namely to S ′4 = {Xλ}, and that there are precisely three other extensions, each
being a S4 ∈ M′′

4 of order pattern 68(15)6, one of these being the set {Yλ} of 16
matrices. As a check that the set {Yλ} is indeed a linear section we may take
advantage of the fact, peculiar to GF(2), that there is a unique function I1(λ) such
that I1(0) = 0, and I1(λ) 6= 0 for λ 6= 0, namely I1(λ) = 1 + Πi(1 + λi), where
now λ = (λ1, λ2, λ3, λ4). A simple computation shows that detYλ = I1(λ), and so
indeed Yλ ∈ GL(4, 2) for λ 6= 0.
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A Appendix: Spreads, linear sections and semifield planes

In this appendix we assume a familiarity with certain well known results concerning
spreads, spread sets and translation planes, as can be found in the books [3], [12]
and in the Handbook chapter [8]; references may be found in these works to original
sources, such as the papers of J. André and of R.H. Bruck & R.C. Bose.

A.1 Spreads, spread sets and reguli

For a vector space Vd = V (d, q), we define a (normalized) partial spread set to be a
subset S of End(Vd) = End(d, q) such that

i) 0 ∈ S, I ∈ S (normalization condition)
ii) for all X, Y ∈ S, X 6= Y, the linear mappings X − Y are nonsingular.

If S satisfies the further condition
iii) |S| = qd,

then S is a (normalized) spread set. Because of the normalization condition i), note
that S − {0} ⊂ GL(Vd) = GL(d, q).

Consider the vector space V2d = Vd ⊕ Vd, of dimension 2d over GF(q). Each
partial spread set S ⊂ End(Vd) gives rise to a corresponding partial spread Σ for
V2d as follows. The d-dimensional subspaces of V2d which comprise the components
of Σ are the subspaces UX , X ∈ S, and U∞, where

UX = {(v,Xv) | v ∈ Vd}, X ∈ S,
U∞ = {(0, v) | v ∈ Vd}. (45)

If S is of order N, note that the associated partial spread Σ is of order N + 1; in
particular, if S is a spread set then Σ has qd + 1 components, and so is a spread for
V2d (each nonzero vector of V2d lying in precisely one of the components (45)). In
the other direction, the components of any (partial) spread Σ for V2d can without
loss of generality be assumed to be as in (45) for some (partial) spread set S.

If S is a NLSr(d, q) then it is a partial spread set of order qr, and the correspond-
ing partial spread Σ, of order qr + 1, is a spread if r = d. Note that a NLSr(d, q) is a
partial spread set S of a special kind, namely one that is closed under the formation
of arbitrary linear combinations:

λ, µ ∈ GF(q) and X, Y ∈ S =⇒ λX + µY ∈ S.

One consequence of this is best described in projective terms. So let us view a partial
spread Σ of d-dimensional subspaces of V (2d, q) also as a partial spread of (d− 1)-
dimensional projective subspaces of the associated projective space PG(2d − 1, q).
Recall that a regulus of PG(2d − 1, q) is a partial spread R of order q + 1 with the
following property: if a line l meets three distinct components of R, then l intersects
all components of R. Such a line l is called a transversal of R. If A, B and C are
three mutually disjoint (d − 1)−dimensional subspaces of PG(2d − 1, q) there is a
unique regulus R = R(A,B,C) containing A, B and C (see [3, Sec. 5.1]). We
say that a spread Σ of PG(2d − 1, q) is A − regular for an element A of Σ if the
regulus R(A,B,C) is contained in Σ for all B and C in Σ \ {A}. If Σ is A−regular
for all A in Σ, we say that Σ is regular. (The case q = 2 is exceptional: if q = 2
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then R(A,B,C) has just the three components A,B,C, and so every spread of
PG(2d − 1, 2) is regular.)

The A−regular spreads have been studied in [11] and in [6]. If Σ is the partial
spread of PG(2d− 1, q) arising from a partial spread set S ⊂ End(d, q), with q > 2,
then the regulus R(U∞, UX, UY ) belongs to Σ if and only if (1− λ)X + λY belongs
to S for all λ ∈ GF(q), see for example [11, proof of Teorema 5]. Consequently:

Theorem A.1 If S is a normalized linear section of GL(d, q), and Σ is the associ-
ated partial spread for PG(2d − 1, q), then the regulus R(U∞, UX, UY ) is contained
in Σ for all X and Y in S.

If dimS = d, the spread Σ is U∞-regular. �

A.2 Linear sections and semifield planes

A spread Σ for V2d gives rise to an associated translation plane T whose points
are the vectors of V2d and whose lines are the components of Σ together with their
translates in V2d. Moreover, [3, p. 221], if q > 2 the plane T is desarguesian if and
only if the spread Σ is regular. For the spread Σ with components given as in (45)
by a spread set S ⊂ End(Vd) = End(d, q), the affine plane T is coordinatized by a
quasifield D defined, relative to a choice of nonzero vector e ∈ Vd, as follows. The
additive group of D is that of Vd and the product xy is defined by

x(Y e) = Y x, Y ∈ S, (46)

(every y ∈ Vd being of the form Y e for a unique Y ∈ S). The quasifield D has the
chosen nonzero vector e as identity, and its kernel

K(D) = {k ∈ D | k(x+ y) = x+ y, k(xy) = (kx)y, for all x, y ∈ D} (47)

contains GF(q) as a subfield. In the other direction, a finite quasifield D, of di-
mension d′ over its kernel K ∼= GF(q′), yields a spread set R = {Ry | y ∈ D} ⊂
End(d′, q′) consisting of the right multiplication operators Ry : x 7→ xy.

Recall that a semifield is a distributive quasifield. So for a semifield D the right
multiplication operators satisfy

Rx+y = Rx +Ry, for all x, y ∈ D. (48)

In the other direction, if a spread set S is closed under addition it is easy to see that
it yields, via (46), a quasifield D which satisfies (48), and hence is a semifield. Thus
([3, p. 220]): a quasifield D described by a spread set S is a semifield if and only if
S is closed under addition. The next lemma is an immediate consequence.

Lemma A.2 Each NLSd(d, q) gives rise to a translation plane coordinatized by a
semifield of order qd. �

If D is a finite semifield of characteristic p and order pn its additive group is a
vector space Vn of dimension n over GF(p) (and D is a division algebra over GF(p)).
For y ∈ D, as well as the right multiplication operator Ry, we will, when discussing
isotopy, make use also of the left multiplication operator Ly : D → D : x 7→ yx.
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Lemma A.3 (i) For a semifield D of order pn each of Ly, Ry, y 6= 0, lies in GL(Vn)
and each of the mappings Vn → End(Vn) defined by y 7→ Ly, y 7→ Ry is a linear
injection.

(ii) Each of the images L = ImL and R = ImR is a NLSn(n, p).

Proof. (i) Straightforward: the main point is that linear combinations over the
prime field GF(p) are merely sums of vectors. Thus the additive property (48)
implies that R is linear over GF(p) :

Rλx+µy = λRx + µRy, for all x, y ∈ D and all λ, µ ∈ GF(p), (49)

with a corresponding result stemming from the additive property Lx + Ly = Lx+y

of the left multiplications. Part (ii) follows from (i). �

It is true that for q nonprime a spread set S ⊂ End(d, q) arising from a semifield
may not be a NLSd(d, q), since S may not be closed under multiplication v 7→ λv by
scalars λ ∈ GF(q). Nevertheless, in consequence of the preceding lemmas, note that
all finite semifield planes can be constructed from NLSn(n, p)’s, with p prime.

A.3 Isotopy, equivalence, subgroups

Let Vn = V (n, p), with p prime, and let R,R◦ ⊂ End(n, p) be two normalized
spread sets which are closed under addition (and so they are NLSn(n, p)’s). Let
Σ,Σ◦ be the associated, see (45), spreads for V2n = Vn ⊕ Vn. Note that the two
spreads Σ,Σ◦ share the three components U∞, U0, UI . Let T , T ◦ be the associated
translation planes coordinatized by semifields D,D◦ whose identities are e, e0 ∈ Vn
and whose multiplications, see (46), are written xy, x ◦ y, where x ◦ (Y0e0) = Y0x,
with Y0 ∈ R◦. The spread sets R,R◦ can be viewed as the sets {Ry}, {R◦y} of right
multiplication operators in the two semifields.

Theorem A.4 The following statements are equivalent:
(i) The normalized linear sections R,R◦ of GL(n, p) are equivalent.
(ii) There exists D ∈ GL(2n, p) which maps Σ onto Σ◦ and which fixes both U∞

and U0.
(iii) There is an isotopy (P,Q, S) of D onto D◦ : that is

S(xy) = Px ◦Qy, for all x, y ∈ Vn , (50)

holds for the triple (P,Q, S) of elements of GL(n, p).
(iv) The semifield planes T , T ◦ are isomorphic.

Proof. For P, S ∈ GL(n, p) define DP,S ∈ GL(2n, p) by DP,S(x, y) = (Px, Sy) and
note that DP,S fixes U∞ and U0 and maps UY onto UY0 , where Y0 = SY P−1. Now
if R,R◦are equivalent then

there exist P, S ∈ GL(n, p) such that Y ∈ R ⇒ Y0 ≡ SY P−1 ∈ R◦. (51)

So DP,S maps UY ∈ Σ onto UY0 ∈ Σ◦ and fixes U∞. Hence (i) implies (ii). In the
other direction, if D ∈ GL(2n, p) fixes both U∞ and U0, i.e. respects the direct sum
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decomposition V2n = U∞ ⊕ U0, then D = DP,S for some P, S ∈ GL(n, p), and the
reverse implication (ii) ⇒ (i) is seen to follow.

Note that in (51) Y0 depends linearly upon Y. So, for Y = Ry, y = Y e and
Y0 = R◦y0

, y0 = Y0e0, we have y0 = Qy for some Q ∈ GL(n, p). Thus the equivalence
of R,R◦ as in (51) entails the existence of a triple (P,Q, S) of elements of GL(n, p)
which satisfy

SRy = R◦QyP, for all y ∈ Vn . (52)

Hence P,Q, S satisfy (50). In the other direction, given (50), and hence (52), we
obtain (51). Hence (i) is equivalent to (iii).

The equivalence of (iii) and (iv) is well-known: ([3, p. 135], [8, p. 153]). �

Remark A.5 If instead we dealt with spread sets R,R◦ ⊂ End(d, q), closed under
addition, then in part (i) we would need to allow semilinear equivalence, and in part
(ii) have D ∈ ΓL(2d, q).

The isotopies of the semifield D onto itself form a group A(D), the autotopy
group of D. An automorphism of D is an autotopy with P = Q = S, and all such
P, satisfying therefore

P (xy) = (Px)(Py), for all x, y ∈ Vn, (53)

form the automorphism group A0(D) of D. The left, middle and right nuclei Nl, Nm,
Nr of D are fields, [3, p. 134], say GF(ql),GF(qm),GF(qr), which contain GF(p), and
their nonzero elements N×l , N

×
m, N

×
r are thus, under multiplication, cyclic groups of

orders ql − 1, qm − 1, qr − 1. Let us relate these groups to ones defined in terms of
the NLSn(n, p) given by the right multiplicationsR = {Ry | y ∈ D} of the semifield.

In section 2.2, we noted that a NLS(n, p) gave rise to various subgroups G, G0, G ′0,
H, H0 of GL(n, p). Recall, lemma 2.8, that both F0 = G0∪{0} and F ′0 = G ′0∪{0} are
fields (even for a NLSr(n, q) with r < n). Define also the subgroup C(R) ⊆ H0(R)
to be the centralizer of R r {0} in GL(n, p). Because R acts irreducibly it follows
(via Schur’s lemma and Wedderburn’s theorem) that C(R)∪{0}(the commutant [R]
of R) is also a field.

Theorem A.6 (i) C(R) ∼= N×l ; G0(R) ∼= N×r , G ′0(R) ∼= N×m.
(ii) The mapping (P,Q, S) 7→ P is a homomorphism of A(D) onto H(R) whose

kernel is isomorphic to G0(R). In particular |A(D)| = (qr − 1) |H(R)|.
(iii) The automorphism group A0(D) is that subgroup Fix e of H0(R) which fixes

the identity e of the semifield D.

Proof. (i) For C ∈ GL(n, p) it is easy to see that
(a) C ∈ C(R) if and only if C = Lc for c ∈ N×l ;
(b) C ∈ G0(R) if and only if C = Rc for c ∈ N×r ;
(c) C ∈ G ′0(R) if and only if C = Rc for c ∈ N×m.

For example, C ∈ G ′0(R) if and only if for each y ∈ Vn there exists y′ ∈ Vn such that
RyC = Ry′ , i.e. such that (Cx)y = xy′. But from (Cx)y = xy′ it follows on setting
x = e that y′ = cy, where c = Ce 6= 0, and on setting y = e (and so y′ = c) that
C = Rc. So (Cx)y = xy′ reads (xc)y = x(cy), which last is the condition for c( 6= 0)
to belong to N×m.
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(ii) If (P,Q, S) ∈ A(D) then, see (52),

PRyP
−1 = X−1RQy, (54)

where X = SP−1. So P ∈ H(R). Conversely, if P ∈ H(R) then (54) holds for
some Q ∈ GL(n, p) (and with X = Rq, where q = Qe). So (P,Q, S) ∈ A(D), where
S = RqP. Hence φ : (P,Q, S) 7→ P is an epimorphism A(D) →H(R). Taking x = e
in (50) observe that (RqP =)S = LPeQ, and so (P,Q, S) = (P, L−1

PeRqP, RqP ). In
order to determine the kernel of φ, set P = I and observe that if (I, Q, S) is an
autotopy then Q = S and, from (50), SRy = RSy, whence S ∈ G0(R).

(iii) Equation (53) asserts that PRyP
−1 = RPy , and hence that P ∈ H0(R).

Also (P, L−1
PeRqP,RqP ) = (P, P, P ) if and only if Rq = I and Pe = e. �

Example A.7 For S = S ii, or S = S iii, and so S ∈ M′
4, we found, see Equation

(31), that H(S) ∼= S3 × S3 is of order 36. Also, Equation (30), G0(S) ∼= Z3. Hence,
by theorem A.6(ii), the number |A(D)| of autotopies is 3×36 = 108 — in agreement
with the number given by Knuth for the semifield W in [10, p. 209].

For S = S ii we find from Equation (31) that |Fix e| = 4, for 3 choices of e, and
= 2 for 12 choices, while for S = S iii, |Fix e| = 3, for 6 choices of e, and = 2 for 9
choices. So, by theorem A.6(iii), the semifields arising from class M′

4 have at most
four automorphisms.

Example A.8 For S ∈ M′′
4 we have |H(S)| = 18, |G0(S)| = 1, see theorems 8.1,

5.1. Hence the number |A(D)| of autotopies is 18 — in agreement with the num-
ber given by Knuth for the semifield V in [10, p. 209]. Let S be the left mutant
(Tα1)

−1S4, where S4 is the section arising from the permutations (40), (41). Then
S has order pattern 3266(15)6 and its group H0(S) is a subgroup ∼= S3 of the group
(43). In fact we find that H0(S) = T (K0) where K0 = 〈(456)(287)〉 o 〈(45)(28)〉.
Now it is easy to see that there exist two 3-(8,4,1) designs D and D′ each of which is
preserved by K0; moreover the designs lie on different A8-orbits, since D

′
= (13)D.

Consequently, cf. [2, p. 22], H0(S) stabilizes both a point e ∈ PG(3, 2) and a plane
π ⊂ PG(3, 2). (In fact e ∈ π, since D and D′ share the three blocks 1324, 1385, 1376,
together with the complements of these blocks.) So |Fix e| = 6, and the semifield
using e as identity has six automorphisms, again in agreement with [10, p. 209].
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