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Simpson AJ, Romer LM, Kippelen P. Exercise-induced dehy-
dration alters pulmonary function but does not modify airway
responsiveness to dry air in athletes with mild asthma. J Appl
Physiol 122: 1329-1335, 2017. First published March 9, 2017;
doi:10.1152/japplphysiol.01114.2016.—Local airway water loss is
the main physiological trigger for exercise-induced bronchoconstric-
tion (EIB). Our aim was to investigate the effects of whole body water
loss on airway responsiveness and pulmonary function in athletes with
mild asthma and/or EIB. Ten recreational athletes with a medical
diagnosis of mild asthma and/or EIB completed a randomized, cross-
over study. Pulmonary function tests, including spirometry, whole
body plethysmography, and diffusing capacity of the lung for carbon
monoxide (DLco), were conducted before and after three conditions:
1) 2 h of exercise in the heat with no fluid intake (dehydration), 2) 2 h
of exercise with ad libitum fluid intake (control), and 3) a time-
matched rest period (rest). Airway responsiveness was assessed 2 h
postexercise/rest via eucapnic voluntary hyperpnea (EVH) to dry air.
Exercise in the heat with no fluid intake induced a state of mild
dehydration, with a body mass loss of 2.3 = 0.8% (SD). After EVH,
airway narrowing was not different between conditions: median
(interquartile range) maximum fall in forced expiratory volume in 1 s
was 13 (7-15)%, 11 (9-24)%, and 12 (7-20)% in dehydration,
control, and rest conditions, respectively. Dehydration caused a sig-
nificant reduction in forced vital capacity (300 = 190 ml, P = 0.001)
and concomitant increases in residual volume (260 = 180 ml, P =
0.001) and functional residual capacity (260 = 250 ml, P = 0.011),
with no change in DLco. Mild exercise-induced dehydration does not
exaggerate airway responsiveness to dry air in athletes with mild
asthma/EIB but may affect small airway function.

NEW & NOTEWORTHY This study is the first to investigate the
effect of whole body dehydration on airway responsiveness. Our data
suggest that the airway response to dry air hyperpnea in athletes with
mild asthma and/or exercise-induced bronchoconstriction is not exac-
erbated in a state of mild dehydration. On the basis of alterations in
lung volumes, however, exercise-induced dehydration appears to
compromise small airway function.

airway hyperresponsiveness; eucapnic voluntary hyperpnea; exercise-
induced bronchoconstriction; exercise-induced asthma; whole body
dehydration

WHOLE BODY DEHYDRATION commonly occurs in athletes engag-
ing in endurance events (32), with loss of body mass frequently
averaging 2-3% (31, 37). Whole body dehydration is thought
to limit exercise performance due to strain on multiple organ
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systems, including the circulatory, (central) nervous, muscular,
integumentary, and urinary systems (8, 33). Lung fluid balance
and water transport at pulmonary surfaces play an important
physiological role in the maintenance of airway hydration and
in proper airway clearance (16). Relatively little is known
about the impact of whole body dehydration on the respiratory
system.

Only two studies have specifically investigated the effect of
whole body dehydration on pulmonary function (13, 15). A
reduction in forced expiratory volume in 1 s (FEV) was noted
in mildly dehydrated individuals following fluid deprivation
(13). However, after diuretic (chlortalidone) drug administra-
tion, resulting in moderate dehydration, an increase in expira-
tory flow rates (including FEV,) was noted (15). Therefore,
uncertainty remains as to the impact of whole body dehydra-
tion on the healthy human lung.

Equally uncertain is whether whole body dehydration con-
stitutes a significant risk factor for bronchopulmonary disor-
ders (16). A large body of evidence points to acute dehydration
of the airway surface liquid as a key determinant of exercise-
induced bronchoconstriction (EIB) (2). EIB is characterized by
a transient narrowing of the airways (with associated reduction
in expiratory airflow) in response to vigorous exercise. Indi-
viduals most at risk for EIB are endurance athletes and patients
with asthma (11, 17). During exercise-induced hyperpnea,
water and heat are lost from the airway surface in response to
humidification of large volumes of inspired (unconditioned) air
over a short period of time (10). The evaporative water loss is
proposed to increase the osmolarity of the airway surface
liquid, particularly at the level of the small airways (9). This
would then stimulate the release of bronchoactive mediators
and cause, in susceptible individuals, the airway smooth mus-
cle to contract (2).

The primary provider of fluid to the airways is the bronchial
circulation. Since exercise-induced dehydration causes hypo-
volemia and increases blood plasma osmolarity (8), alterations
in the volume and composition of bronchial blood flow are to
be expected in a state of dehydration. Whole body dehydration
may therefore diminish airway surface hydration, resulting in
an amplified bronchoconstrictive response to exercise in indi-
viduals with EIB.

The primary aim of this study was to establish the impact of
whole body dehydration, induced by prolonged exercise in the
heat, on airway responsiveness in athletes with a prior medical
diagnosis of mild asthma and/or EIB. Our hypothesis was that
the fall in FEV, after dry air hyperpnea would be exacerbated
in a state of mild dehydration. Since the effect of whole body
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dehydration on resting pulmonary function remains uncertain,
we also assessed pulmonary function, via spirometry, whole
body plethysmography, and diffusing capacity of the lung for
carbon monoxide (DLco), before and after induced dehydra-
tion.

METHODS
Participants

Ten recreational athletes (4 women) completed the study. Mean
age, height, and body mass were 21 =2 yr, 170 = 12 cm, and
63 = 10 kg, respectively. Participants were involved in summer sports
and trained for 6 = 4 h/wk in aerobic activities. All participants had
a prior medical diagnosis of mild asthma and/or EIB and reported
respiratory symptoms (chest tightness, wheeze, mucus hypersecretion,
and cough) during and/or after exercise. Five participants had child-
hood asthma, and eight were using short-acting [3>-agonist medica-
tion. Participants taking any asthma medication other than inhaled
short-acting (3»>-agonists or antihistamines were excluded. Those on
medication(s) were required to withhold inhaled short-acting [3»-
agonists for =8 h and antihistamines for 72 h before each visit (4). All
participants had baseline FEV and forced vital capacity (FVC) above
the lower limit of normal (30). Participants were nonsmokers, were
free from respiratory infection for 4 wk before the study, and had no
known chronic medical condition other than asthma or EIB. All
participants provided written informed consent. The institutional re-
search ethics committee approved the study (reference no. RE52-12).

Protocol

The study used a randomized crossover design with three experi-
mental visits. The order of the experimental visits was randomized
using the random number generator function in Microsoft Excel
(2011), and visits were separated by >48 h. Pulmonary function was
assessed using spirometry, whole body plethysmography, and diffus-
ing capacity before and up to 2 h after each of the following
conditions: /) exercise in the heat with no fluid intake (dehydration),
2) exercise with ad libitum fluid intake (control), and 3) a time-
matched rest period (rest). To avoid influence of airway refractoriness
(21), exercise intensity was set low (see Exercise) and airway respon-
siveness was assessed 2 h after exercise. The “rest” condition was
included to further ensure that a refractory response was not present at
the time of the bronchial challenge with dry air. To determine whether
any changes caused by dehydration could be quickly reversed, a
rehydration phase was included in the dehydration condition. In that
condition, participants were allowed to drink water ad libitum be-
tween 20 and 60 min after the eucapnic voluntary hyperpnea (EVH)

Time (min) 10 60 120

Dehydration, Pulmonary Function, and Airway Responsiveness « Simpson AJ et al.

challenge, after which final spirometry testing was performed. A
schematic of the experimental protocol is presented in Fig. 1.

All visits commenced in the morning so as to standardize for
diurnal variation in pulmonary function (34). Participants were asked
to abstain from alcohol, caffeine, and exercise on the day of testing.

Hydration status. Participants were asked to arrive at each exper-
imental visit in a euhydrated state. Upon arrival, urine osmolality was
measured using a portable refractive index osmometer (Osmocheck,
Vitech Scientific, Horsham, UK). Adequate hydration was defined as
<700 mosmol/kgH>O (32). Nude body mass was recorded before and
60 min after exercise or time-matched rest using a calibrated scale
(model 798, Seca, Hamburg, Germany), with the change in body mass
used as the index of dehydration.

Exercise. In the control and dehydration conditions, participants
completed 2 h of low-intensity exercise. The exercise involved four
20-min bouts of cycling, with each bout followed by 10 min of
stepping. Cycling was performed at 25% of estimated peak power
(14). Stepping was conducted on a 20-cm step at a rate of 45
steps/min. Midway through each bout of exercise, heart rate was
measured using telemetry (Polar H7, Polar Electro, Warwick, UK)
and minute ventilation was determined by offline gas analysis (Doug-
las bags and Harvard dry gas meter). To induce dehydration, exercise
was performed in an environmental chamber (Procema, Twickenham,
UK) set at 37°C and 50% relative humidity, and fluid intake was
prohibited. In the control condition, environmental temperature was
set at 20°C (ambient humidity), and subjects were allowed to consume
fluid ad libitum. In the rest condition, participants remained seated in
ambient conditions and were allowed to consume fluid ad libitum.

Pulmonary Function

Pulmonary function was assessed using a commercially available
system (Masterscreen, CareFusion, Hochberg, Germany). Spirometry
was conducted at baseline and at 10 and 120 min after exercise (or
rest). Forced expiratory maneuvers were performed in accordance
with American Thoracic Society/European Respiratory Society (ATS/
ERS) guidelines (25). Measurements were performed in triplicate, and
the largest FEV, and FVC from reproducible maneuvers (i.e., be-
tween-maneuver differences <150 ml for FEV, and FVC) were kept
for analysis. After the EVH challenge, expiratory maneuvers were
performed in duplicate (1). The Global Lungs Initiatives GLI 2012
equations (30) were used for calculation of predicted values and lower
limits of normal.

Whole body plethysmography was used to determine static lung
volumes and capacities according to ATS/ERS guidelines (35). Mea-
surements were performed at baseline and 60 min after exercise (or
rest). The mean of three reproducible trials [i.e., the 3 functional
residual capacity (FRC) values agreeing within 5%] was used for

Post-exercise/rest Post-EVH

25101520 60

2 h exercise or rest EVH Rehydration

Fig. 1. Schematic of protocol to assess changes
in airway responsiveness and pulmonary func-

tion in a dehydration condition (2 h of exercise Spirometry ~1
in the heat with fluid restriction), a control

condition (2 h of exercise in ambient conditions ~ Plethysmography -1
with voluntary fluid consumption), and a time-

matched rest condition (2 h of rest with volun- DLCO Ao

tary fluid consumption). EVH, eucapnic volun-
tary hyperpnea; DLco, diffusing capacity of the
lung for carbon monoxide; Vg, ventilation; HR,
heart rate.

VE and HR

Urine osmolality ~ -J--

Nude body mass -4-
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analysis. Residual volume (RV) was derived from the mean FRC
minus mean expiratory reserve volume (ERV), and total lung
capacity (TLC) was calculated as the sum of maximum vital
capacity (VC) and RV.

DLco was assessed using the single-breath technique according to
ATS/ERS guidelines (23). The measurements were performed at
baseline and 90 min after exercise (or rest). The maneuver was
repeated at least twice to ensure repeatability (i.e., <10% variation in
DLco). The mean Drco, transfer coefficient (Kco), and alveolar
volume (VA) were calculated from two reproducible maneuvers and
used for analysis. Diffusing capacity data for one participant were lost
due to technical error.

Airway Responsiveness

Airway responsiveness to dry air was assessed via EVH (1).
Briefly, participants were asked to breathe for 6 min at a target
ventilation of 85% predicted maximum voluntary ventilation (esti-
mated as 30 X baseline FEV). A dry gas mixture of 21% O>-5%
CO»-balance N, was delivered by a commercially available system
(Eucapsys, SMTEC, Nyon, Switzerland). Ventilation was measured
throughout the test, with participants receiving real-time visual feed-
back. The ventilation achieved during the first visit was set as the
target ventilation for subsequent visits. Before and at regular time
points after EVH (2, 5, 10, 15, 20, and 60 min), forced expiratory
maneuvers were performed, with the maximum percent change in
FEV, from “baseline” (i.e., the value recorded immediately pre-EVH)
used as the index for airway responsiveness. A sustained =10% fall
in FEV, (over 2 consecutive time points) was consistent with a
diagnosis of EIB (4).

Statistics

Sample size was based on previous studies that have investigated
the effect of dehydration on pulmonary function (15) and EVH on
airway caliber in recreationally active individuals (7, 18). Data were
analyzed using statistical software (SPSS 20, SPSS, Chicago, IL).
Statistical significance was set at P < 0.05 unless otherwise stated.
Data were tested for normality using the Shapiro-Wilk test. Data for
the maximum fall in FEV, post-EVH were not normally distributed;
therefore, differences between conditions were tested using Fried-
man’s two-way ANOVA by ranks test, and data are displayed as
median and interquartile range (Q1-Q3). Resting spirometry, whole
body plethysmography, and diffusing capacity data were normally
distributed. Differences in resting pulmonary function between con-
ditions and across times were analyzed using repeated-measures
ANOVA with Bonferroni’s post hoc analysis, as needed, and data are
presented as means * SD. Heart rate and ventilation were averaged
over the entire period of exercise and compared between dehydration
and control conditions using paired z-test. Relationships between
absolute changes in body mass and pulmonary function in the dehy-
dration condition were assessed using Pearson’s correlation coeffi-
cient.

RESULTS
Hydration Status

Baseline body mass was not different across conditions (P =
0.74). The dehydration intervention caused a significant reduc-
tion in body mass (63.3 = 10.4 kg at baseline vs. 61.8 = 10.1
kg postexercise, P < 0.001), which equated to a loss of
2.3 = 0.8%. There was no change in body mass following
exercise in the control condition (63.3 = 10.5 kg at baseline vs.
63.1 = 10.5 kg postexercise, P = 0.085) or over the rest period
(63.2 = 10.8 kg at baseline vs. 63.0 = 10.7 kg postrest, P =
0.12). Over the rehydration period in the dehydration condi-

tion, participants drank 830 = 190 ml of water (61 = 19% of
the loss in body mass).

Exercise

As expected, heart rate was significantly higher during
exercise in the dehydration than control condition (148 = 16
and 118 = 20 beats/min, respectively, P < 0.001). Ventilation
did not differ significantly between conditions (42 = 15 and.
34 £ 6 I/min in dehydration and control conditions, respec-
tively, P = 0.084).

Airway Responsiveness

Participants achieved a mean ventilation of 104 * 29 /min
during the EVH challenge over the three experimental visits,
which corresponded to 70 = 9% of predicted maximum vol-
untary ventilation. No difference in ventilation was noted
across conditions (P = 0.64). Seven participants (70%) had an
EVH response consistent with a diagnosis of EIB in at least one
condition. One additional participant had a transient fall in
FEV, during one visit. The median and interquartile range for
maximum reduction in FEV, post-EVH was 13 (7-15)%, 11
(9-24)%, and 12 (7-20)% in the dehydration, control, and rest
conditions, respectively (Fig. 2). These values were not differ-
ent between conditions (P = 0.20).

Dynamic Lung Function

At the start of the experimental visits, pulmonary function
was not different between conditions (Table 1). However, an
interaction effect was noted over time between conditions (P <
0.001), with significant reductions in FVC only in the dehy-
dration and control conditions (P < 0.001 and P = 0.014,
respectively). In the dehydration condition, there was a sus-
tained fall in FVC from baseline to 10 min (P = 0.001) and
120 min (P = 0.024) of recovery, while in the control condi-
tion the reduction in FVC was only transient (i.e., noted only at
10 min of recovery) (Table 1). Furthermore, the magnitude of
change in FVC was greater in the dehydration condition than in
the control and rest conditions (Fig. 3). In a state of dehydra-
tion, eight participants (80%) presented a clinically meaningful

Measurement time (min)
02 5 10 15 20 60

-¥- Dehydration
-&- Control
-©- Rest

-30-

Fig. 2. Change in forced expiratory volume in 1 s (FEV,) after exercise in a
dehydrated state (dehydration), exercise in a euhydrated state (control), and a
time-matched rest period (rest). Values are medians and interquartile ranges for
10 recreational athletes with mild asthma and/or exercise-induced bronchoc-
onstriction.
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Table 1. Dynamic lung indexes at baseline and after
exercise in a dehydrated state, exercise in a euhydrated
state, and a time-matched rest period
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Table 2. Static lung volumes and capacities at baseline and
after exercise in a dehydrated state, exercise in a euhydrated
state, and a time-matched rest period

Dehydration Control Rest Dehydration Control Rest
FEV,, liters TLC, liters
Baseline 4.21 = 0.89 4.17 £0.87 4.18 £0.85 Baseline 6.70 = 1.58 6.72 = 1.55 6.72 = 1.66
10 min post 4.24 = 0.90 421 =0.96 4.28 = 0.90 60 min post 6.74 = 1.61 6.66 = 1.62 6.71 = 1.59
120 min post 4.23 = 0.89 424 =093 431 £0.92 FRC, liters
Rehydrated (60 min Baseline 3.40 = 0.99 3.46 = 1.02 3.49 = 0.97
post-EVH) 4.19 £0.94 4.10 £ 0.90 4.10 £0.81 60 min post 3.65 = 0.90%¢ 3.35 = 0.95% 3.55 = 1.02
FVC, liters RV, liters
Baseline 5.09 = 1.22 5.09 = 1.23 5.12 £ 1.19 Baseline 1.73 = 0.46 1.76 = 0.45 1.77 £ 0.55
10 min post 479 £ 1.10*R 500 = 1.21*R 5,10 = 1.17 60 min post 1.99 = 0.57%C 1.74 = 0.51 1.81 = 0.59
120 min post 4.89 * 1.10%“R 5,06 = 1.20 5.17 £ 1.25  ERV, liters
Rehydrated (60 min Baseline 1.67 £ 0.64 1.71 £ 0.67 1.72 = 0.61
post-EVH) 5.00 = 1.20%* 5.03 +1.25 5.06 £ 1.21 60 min post 1.67 = 0.48 1.61 = 0.56 1.74 £ 0.66
PEF, Vs RV/TLC, %
Baseline 9.13 £2.25 9.13 £2.13 9.20 £ 2.10 Baseline 259+29 26.1 =25 262 3.1
10 min post 9.16 = 2.01 947 =247 9.64 = 2.44 60 min post 29.3 +2.9%C 26.1 =3.0 26.8 = 4.5
120 min post 9.12 £ 2.16 9.36 + 2.31 9.62 £ 2.32 — -
Rehydrated (60 min Values are means * SD for 10 participants. TLC, total lung capacity; FRC,
post-EVH) 890 = 2.17 9.10 = 2.40 8.89 + 1.94 functional residual capacity; RV, residual volume; ERV, expiratory reserve

Values are means = SD for 10 participants. FEV, forced expiratory volume
in 1 s; FVC, forced vital capacity; PEF, peak expiratory flow; EVH, eucapnic
voluntary hyperpnea. *P < 0.05 vs. baseline; “P < 0.05 vs. control at
corresponding time point; RP < 0.05 vs. rest at corresponding time point.

reduction in FVC (>200 ml), whereas only one participant in
the control condition and no participants in the resting condi-
tion demonstrated a >200 ml fall in FVC. After rehydration,
FVC remained slightly, but significantly, lower than baseline
(=90 = 100 ml, P = 0.022). No significant differences were
noted between times and/or conditions for FEV, and peak
expiratory flow (Table 1).

Static Lung Function

Static lung volumes and capacities at baseline were not
different between conditions (Table 2). Significant interaction
effects were noted over the experimental conditions for FRC
(P =0.004) and RV (P = 0.001). In the dehydration condition,
a significant increase in FRC was noted pre- to postexercise

Baseline 10 min post- 120 min post-
exercise/rest exercise/rest
200 1 1 1
oo T /’%
E
s
L -200
<
- . *
-4004 = gehyd:atlon
ontro
** ©- Rest

Fig. 3. Change in forced vital capacity (FVC) after exercise in a dehydrated
state (dehydration), exercise in a euhydrated state (control), and a time-
matched rest period (rest). Values are means * 95% confidence interval for 10
recreational athletes with mild asthma and/or exercise-induced bronchocon-
striction. *P = 0.05; **P = 0.01 vs. control and rest. Reduction in FVC >200
ml (dashed lines) is considered clinically meaningful (28).

volume. *P < 0.05 vs. baseline; P < 0.05 vs. control at corresponding time
point; RP < 0.05 vs. rest at corresponding time point.

(260 = 250 ml, P = 0.011); no difference was observed in the
control or resting condition (Table 2). A concurrent increase in
RV of 260 = 182 ml was observed in the dehydration condi-
tion (P = 0.001; Table 2). The magnitude of change in FRC
and RV from pre- to postexercise was greater in the dehydra-
tion than control condition (P = 0.015 and P = 0.060,
respectively). Furthermore, the change in RV was greater in the
dehydration than rest condition (P = 0.005; Fig. 4). No
significant changes were noted between times and/or condi-
tions for ERV or TLC (Table 2). Consequently, RV/TLC was
increased under dehydration (P < 0.001; Table 2).

Diffusing Capacity

There were no differences in baseline DLco, Kco, or Va
between conditions. Furthermore, these variables were not
modified by any of the conditions (Table 3).

Correlation Analysis

There was a significant correlation (7% = 0.494, P = 0.023)
between the change in body mass and the change in RV at 60
min postexercise in the dehydration condition (Fig. 5). No
other significant relationships were noted between study vari-
ables.

DISCUSSION

The aim of this study was to investigate the effects of
exercise-induced dehydration on airway responsiveness and
pulmonary function in athletes with a medical diagnosis of
mild asthma and/or EIB. We showed that mild dehydration
does not increase airway responsiveness to dry air hyperpnea
but is associated with alterations in lung volumes (i.e., reduced
FVC and increased FRC and RV). Mild whole body dehydra-
tion is therefore unlikely to put athletes at increased risk for
EIB. However, perturbations at the level of the small airways
are likely to occur when athletes with preexisting lung condi-
tions become dehydrated.
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Fig. 4. Change in functional residual capacity (FRC) and residual volume (RV)
after exercise in a dehydrated state (dehydration), exercise in a euhydrated state
(control), and a time-matched rest period (rest). Values are means * 95%
confidence intervals for 10 recreational athletes with mild asthma and/or
exercise-induced bronchoconstriction.

This study is the first to assess the effect of whole body
dehydration on airway responsiveness. Given that athletes
regularly experience exercise-induced dehydration (37) and
that EIB is the most common chronic condition in elite athletes
(11), these findings are highly relevant. We reasoned that

Table 3. Indexes of diffusing capacity at baseline and after
exercise in a dehydrated state, exercise in a euhydrated
state, and a time-matched rest period

Dehydration Control Rest

DLco, mmol-min~!'-kPa~!

Baseline 10.14 =281 992269 10.16 = 2.87

90 min post 10.07 =285 9.72 £2.53 9.71 £2.61
Kco, mmol-min~—!kPa—'1"!

Baseline 1.65 022 1.65*+0.25 1.63 £0.27

90 min post 1.63 £0.20 1.60 £ 0.22 1.57 £0.25
Va, liters

Baseline 6.16 £ 1.55 6.05 £ 1.45 6.13 £ 1.51

90 min post 6.18 = 1.58 6.13 = 1.50 6.21 £1.53

Values are means * SD for 9 participants. DLco, diffusing capacity of the
lung for carbon monoxide; Kco, transfer coefficient; VA, alveolar volume.

0.8

r2=0.494
P=0.023

0.6

0.44

ARV (l)

0.21

0.0 %

-0.2 T T T T T 1
-0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5

A Mass (kg)

Fig. 5. Relationship between change in body mass and change in residual
volume (RV) after 2 h of exercise with fluid restriction.

whole body dehydration may have the potential to affect the
volume and/or composition of airway surface liquid and, con-
sequently, could enhance the osmotic stimulus responsible for
EIB (2). However, because no difference in the severity of
bronchoconstriction was noted following EVH between the
dehydration and control conditions, our data do not support this
hypothesis.

To maintain ecological validity, we aimed to induce a state
of mild dehydration using exercise. We were successful, in that
the average body mass loss was 2.3%. However, this mild
degree of dehydration may have been insufficient to interfere
with the pathophysiology of EIB. The volume of airway
surface liquid is very small, with <0.5 ml of liquid covering
the first seven generations of airways (5). Relative to the small
volume of water available at the airway surface, airway water
loss during hyperpnea of dry air is very high. On the basis of
mathematical modeling, the net water loss within the airways
during ventilation at 60 1/min in temperate conditions can
exceed 0.4 ml/min (10). It is therefore possible that the large
volume of respiratory water loss during EVH negated any
changes in airway surface liquid induced by our dehydration
protocol.

An alternative explanation for why airway responsiveness
was unaffected by whole body dehydration is that EVH pro-
voked a maximal airway response. A maximum response
plateau has been shown to occur following bronchial provoca-
tion with exercise in children with asthma, with no further
increase in the severity of EIB beyond 6 min of exercise (12).
This raises the possibility that the use of EVH as bronchial
stimulus may have masked the effects of whole body dehydra-
tion on airway responsiveness. To address this issue, future
work should be conducted using a dose-response bronchial
challenge, such as the mannitol test (22). Furthermore, since a
maximal response plateau occurs less frequently in individuals
with a greater degree of airway responsiveness (36), our
findings should not be generalized to individuals with moder-
ate-to-severe asthma/EIB.

A concurrent aim of our study was to investigate the effect
of exercise-induced dehydration on basal pulmonary function.
In contrast to previous research (13, 15), our results suggest
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that dehydration causes a reduction in FVC (with no associated
change in FEV,). Previously, induced dehydration, by fluid
deprivation (13) or diuretic drug administration (15), had no
effect on FVC. However, both interventions caused a decrease
(11) or an increase (13) in FEV,, with the latter finding
attributed to a decrease in airway resistance secondary to a
reduction in water content in the airway mucosa and broncho-
vascular sheath or a decrease in pulmonary vascular volume
(13). The discrepancy in results may be due to the various
protocols employed. Fluid deprivation for 16 h resulted in
smaller decreases in body mass than noted in the current study
[range 0.0-2.5% (13) vs. 1.5-4.4% in our study]. While a
more pronounced state of dehydration was induced by diuretics
(~4.5% loss of body mass) (15), the different types of water
loss (hypertonic vs. isosmotic) may have influenced the results.
Exercise-induced dehydration is well known to increase
plasma osmolarity, whereas dehydration induced via diuretic
administration generally results in isosmotic hypovolemia (33).
In the present study the increase in plasma osmolarity might
have caused a redistribution of fluid away from the airways,
which, in turn, may have affected lung volumes. The finding of
an inverse relationship between serum osmolarity and FVC in
a large (>10,000) adult population (29) supports the idea that
hypertonic dehydration may adversely affect pulmonary func-
tion.

In our study the reduction in FVC was associated with a
concomitant increase in RV, FRC, and RV/TLC, the latter a
marker of air trapping (19). Furthermore, a positive association
was found between the degree of dehydration (as inferred by
the reduction in body mass) and the increase in RV. Together,
these results suggest that exercise-induced dehydration primar-
ily affects the small airways. We propose that the main under-
lying mechanism for these changes is reduced peripheral air-
way stability caused by a change in the properties and/or
volume of airway surface liquid in a dehydrated state. Airway
surface liquid has low surface tension, which inhibits small
airway closure at low lung volumes (24). If exercise-induced
dehydration increases airway surface tension, it would explain
the reduction in FVC and the increase in RV.

Our data show that mild exercise-induced dehydration re-
sults in sustained, clinically significant reductions in FVC
[>200 ml (28)] in the majority of athletes with mild asthma/
EIB. Because of controversy over a potential impairment of
airway secretions in individuals with asthma (20, 26, 27), our
findings may not be applicable to all athletes. Nonetheless,
considering the widespread prevalence of asthma/EIB in elite
athletes (11), the functional relevance of these findings de-
serves further attention. Because end-expiratory lung volume
decreases with exercise and dehydration may affect peripheral
airway stability at low lung volumes, it is tempting to speculate
that exercise-induced dehydration may increase the risk of
cyclic opening and closure of peripheral airways during exer-
cise. In vitro, the reopening of closed airways can cause
epithelial injury (6). As repeated epithelial injury is regarded as
a key mechanism in the pathogenesis of EIB in athletes (3),
these findings could be highly relevant in the context of EIB.

In conclusion, whole body dehydration does not exacerbate
airway responsiveness to dry air hyperpnea in recreational
athletes with mild asthma/EIB. However, lung volumes (in-
cluding FVC, RV, FRC, and RV/TLC) could be compromised
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in a state of mild dehydration. The functional and clinical
relevance of these novel findings is yet to be established.
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