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Abstract 
In recent years, self-assembly has emerged as a powerful tool for fabricating functional materials. 
Since self-assembly is fundamentally determined by the particle interactions in the system, if we 
can gain full control over these interactions, it would open the door for creating functional materials 
by design. In this paper, we exploit capillary interactions between colloidal particles at liquid 
interfaces to create two-dimensional (2D) materials where particle interactions and self-assembly 
can be fully programmed using particle shape alone. Specifically, we consider colloidal particles 
which are polygonal plates with homogeneous surface chemistry and undulating edges as this 
novel particle geometry gives us precise and independent control over both short-range hard-core 
repulsions and longer-range capillary interactions. To illustrate the immense potential provided by 
our system for programming self-assembly, we use minimum energy calculations and Monte Carlo 
simulations to show that polygonal plates with different in-plane shapes (hexagons, truncated 
triangles, triangles, squares) and edge undulations of different multipolar order (hexapolar, 
octapolar, dodecapolar) can be used to create a rich variety of 2D structures, including hexagonal 
close packed, honeycomb, Kagome and quasicrystal lattices. Since the required particle shapes 
can be readily fabricated experimentally, we can use our colloidal system to control the entire 
process chain for materials design, from initial design and fabrication of the building blocks, to final 
assembly of the emergent 2D material.  

 
Significance Statement 
The tremendous power of capillary forces for organizing anisotropic particles at liquid interfaces 
into complex 2D structures has been known for over two decades, but a major roadblock in creating 
fully programmable 2D materials is the fact that the capillary interactions in current systems are 
determined indirectly by particle anisotropy. In this study, we consider a novel particle geometry 
where particle interactions and self-assembly at the liquid interface can be directly controlled and 
hence fully programmed using particle shape alone. Since the required particle shapes can be 
readily fabricated experimentally, our novel colloidal system could revolutionise colloidal self-
assembly in two dimensions, in the same way that DNA linker technology has revolutionised 
colloidal self-assembly in three dimensions. 

 

Introduction 

Self-assembly is the remarkable process where small building blocks spontaneously organize 
themselves into larger complex structures due to the combined action of Brownian motion (which 
allows the system to explore phase space) and particle interactions (which drive ordering). It is 
central to understanding fundamental processes in condensed matter physics such as 
crystallization (1-3) and it is also emerging as a powerful tool for fabricating functional materials 
such as plasmonic nanostructures (4), nanoscale electronic devices (5) and photonic bandgap 
materials (6). Since self-assembly is fundamentally determined by the interaction between the 
building blocks, if we can gain full control over these interactions, it would open the door for creating 
functional materials by design. In this context, colloids have long been used as model systems for 
studying and harnessing self-assembly because, unlike atoms and molecules where interactions 
are predefined and cannot be easily modified, colloids possess a rich variety of interactions that 
are highly tuneable, providing powerful handles with which to program self-assembly (7-9). In the 
case of colloidal particles adsorbed at a liquid interface, the variety of interactions that are present 
is even richer than in the bulk (10): not only are electrostatic, van der Waals and steric forces 
qualitatively different at an interface compared to in the bulk (10-13), but the fluid interface also 
gives rise to interactions which have no analogue in the bulk, for example capillary interactions 
(14,15). Furthermore, by coupling these interactions to dynamic external fields, we open up the 
exciting prospect of creating reconfigurable devices which can transition between different self-
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assembled structures on demand, or which can change their own configuration as they explore 
their environment (16,17).  

The aim of this paper is to use capillary interactions to create fully programmable two-dimensional 
(2D) materials. Capillary interactions arise when the fluid interface is deformed by the presence of 
the particle because of gravity or particle anisotropy (either in shape or surface chemistry) (14,15). 
When distortions from neighboring particles overlap, depending on whether the distortions have 
the same or opposite sign (relative to the unperturbed interface), the capillary interaction between 
particles will be attractive or repulsive respectively. A familiar example of how capillary forces can 
drive self-assembly is the ‘Cheerios effect’, the phenomenon where breakfast cereals floating in a 
bowl of milk aggregate together due to capillary forces induced by gravity (18). However, a more 
powerful method for creating ordered, 2D structures is to use capillary forces induced by particle 
anisotropy instead. This was first demonstrated by Whitesides and co-workers using millimetre-
scale flat polygonal plates at an air-water interface, with the particles density-matched with the 
water subphase to minimize the effect of gravity (19,20). By patterning the edge of the polygonal 
plates with hydrophilic or hydrophobic surface chemistries, they created positive or negative 
deformations of the liquid interface around the particle, and by using different combinations of 
hydrophilic and hydrophobic edges, they could assemble the polygonal plates into complex 
clusters, linear and non-linear chains, hexagonal close-packed and honeycomb lattices. Later 
studies extended the seminal work of Whitesides et al. to colloids with homogeneous surface 
chemistry but anisotropic shapes, e.g., ellipsoids (21,22), cylinders (23) and cubes (24-26). When 
adsorbed at a fluid interface, the constant contact angle condition at the three-phase contact line 
around such particles can only be satisfied when the interface is deformed, leading to quadrupolar 
or higher order multipole contact line undulations, depending on the shape and orientation of the 
adsorbed particles (14,27,28). The resultant anisotropic capillary interactions between particles 
drives the self-assembly of the particles into a rich variety of chain-like and extended lattice 
structures (14,21-26). 

While the studies above demonstrate the tremendous possibilities for controlling capillary assembly 
by tuning particle anisotropy, an important limitation in these systems is the fact that the position of 
the three-phase contact line is not fixed a priori but is determined indirectly by the constant contact 
angle condition. The indirect link between particle anisotropy and contact line position makes it 
difficult to gain full control over the capillary interactions in these systems. Furthermore, the 
complex patchy particle morphology used by Whitesides and co-workers is very challenging to 
scale down below the millimeter scale, limiting the system sizes that can be produced (29).  

In order to overcome these important challenges, in this paper, we consider a novel particle 
geometry where our colloidal building blocks are polygonal plates with homogeneous surface 
chemistry and undulating edges. In terms of the aims of our study, this particle geometry possesses 
a number of game-changing advantages. Firstly, as we show later, provided the plates are thin 
enough and the amplitude of the undulations is small enough, the three-phase contact line is 
effectively pinned to the particle edge, giving us direct control over the position of contact line 
undulations and hence capillary interactions in the system. This control allows us to introduce 
selective interactions between polygon sides, favouring specific polymorphs over others and thus 
create 2D structures with much longer-ranged order than was possible with previous systems.  

Secondly, since we control capillary interactions through particle shape rather than surface 
chemistry, this considerably simplifies the fabrication of the colloidal building blocks, allowing us to 
increase throughput and reduce particle size. For example, relatively low throughput production of 
the required particle shapes (e.g., ~10s of particles) can be achieved using 3D printing (16,17), 
with sub-micron resolution achievable using two-photon polymerization techniques (30,31). Much 
higher throughput production (>100 particles) can be achieved by stamping defined surface 
textures onto a flat sheet and morphing the resultant flat objects into the required 3D shapes, for 
example through asynchronous swelling (32). 
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Thirdly, our novel particle geometry above gives us independent control over both short-ranged 
and long-ranged interactions using particle shape alone. Specifically, short-ranged hard-core 
repulsions can be controlled by changing the shape of the polygonal plates in the interfacial plane, 
while longer-ranged capillary interactions can be controlled by changing edge undulations normal 
to the interface. For colloidal polyhedra interacting only through hard-core repulsions, Glotzer and 
co-workers found that changing particle shape allowed them to access an incredibly rich variety of 
self-assembled structures, including crystals, liquid crystals, plastic crystals and quasicrystals (33). 
For our system, where we can use shape to fully control the interplay between short-ranged hard-
core repulsions (which determine local packing) and longer-ranged capillary interactions (which 
determine directional aggregation), the possibilities for self-assembly are even richer.  

To illustrate the immense potential provided by our system for programing self-assembly, in this 
paper we use both minimum energy calculations and Monte Carlo simulations to show how we can 
engineer the shape of the colloidal building blocks to create a variety of 2D structures, including 
hexagonal, honeycomb, open Kagome and quasi-crystalline lattices. Note that the complex 
structures we create arise from higher order multipole capillary interactions. These multipolar 
interactions would be overwhelmed if gravity-induced capillary interactions are present, as the latter 
are monopolar in nature and therefore have a much longer range (14,15). In our calculations, we 
assume that gravitational forces are negligible. Our calculations therefore apply to polygonal plates 
on the micron-scale, which are small enough for gravity to be negligible (34) and Brownian motion 
to be significant, but large enough for the energy scale for capillary interactions to much greater 
than thermal energy 𝑘𝑘𝐵𝐵𝑇𝑇, so that we are in the low temperature regime where minimum energy 
calculations are valid (24,25). However, our calculations are also applicable to larger particles (say 
on the millimeter-scale) if we ‘switch-off’ gravity by density-matching the adsorbed particles with 
the liquid subphase and introduce random motion by using external mechanical vibration (19,20).  

 

Results & Discussions 

Theoretical Model 

We consider a system of polygonal plate-like particles adsorbed at a flat fluid-fluid interface. We 
define the lab frame coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) such that the 𝑧𝑧 axis is perpendicular to the fluid interface 
when no particles are adsorbed and the fluid interface is in the 𝑧𝑧 = 0 plane. It is also convenient to 
define particle frame coordinates (𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′), where the 𝑧𝑧′ axis is perpendicular to the average plane 
of the polygonal plate and, depending on the orientation of the particle, they are related to the lab 
frame coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) via appropriate rotational coordinate transformations (35), see Figure 
S1 and accompanying text in Supplementary Information.  

To describe the geometry of the polygonal plate particles with undulating edges, we use the 
generalized super-ellipsoid equation 

�
𝑥𝑥′ cos𝜓𝜓1 + 𝑦𝑦′ sin𝜓𝜓1 − Δ

𝑎𝑎
�
𝜁𝜁1

+ �
𝑥𝑥′ cos𝜓𝜓2 + 𝑦𝑦′ sin𝜓𝜓2 − Δ
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𝜁𝜁1

+ �
𝑥𝑥′ cos𝜓𝜓3 + 𝑦𝑦′ sin𝜓𝜓3 − Δ
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𝑧𝑧′ − 𝑧𝑧0(𝑟𝑟, 𝜃𝜃)
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�
𝜁𝜁2

= 1          (1) 

where the undulation of the plate edge is given by the function 

𝑧𝑧0(𝑟𝑟, 𝜃𝜃) = 𝐴𝐴𝑟𝑟 cos[𝑚𝑚(𝜃𝜃 − 𝜃𝜃0)].          (2) 

Equation (1) essentially controls the in-plane shape of the polygonal plate and allows us to describe 
a wide range of polygon shapes (see Figure S2 and accompanying discussion). Specifically, the 
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angles 𝜓𝜓1,𝜓𝜓2,𝜓𝜓3 control the orientation of pairs of parallel sides making up the polygon in the 
(𝑥𝑥′,𝑦𝑦′) plane. Note that Equation (1) as written assumes a polygon made of three pairs of parallel 
sides, i.e., a six-sided polygon, but the number of sides can be varied by adding or removing terms 
on the left-hand-side of the equation as necessary. The parameters 𝜁𝜁1, 𝜁𝜁2 are even integers that 
determine the sharpness of the corners for the polygon and plate cross section respectively, with 
higher values leading to sharper corners. In our study, we use 𝜁𝜁1 = 20 and 𝜁𝜁2 = 2, i.e., relatively 
sharp polygon corners and rounded plate cross sections (see Figure 1). The parameters 𝑎𝑎, 𝑏𝑏 are 
the average radius and half thickness of the plate respectively while Δ allows us to control the 
distortion of the polygon away from a regular polygon. In our study, we consider thin plates where 
𝑎𝑎 𝑏𝑏⁄ ≫ 1. On the other hand, Equation (2) essentially controls the out-of-plane shape of the 
polygonal plate. Specifically, (𝑟𝑟,𝜃𝜃) are circular polar coordinates in the (𝑥𝑥′,𝑦𝑦′) plane, 𝐴𝐴 is a 
parameter that determines the amplitude of the edge undulations, 𝑚𝑚 is the multipole order of the 
edge undulations (with 𝑚𝑚 = 2, 3, …, corresponding to quadrupolar, hexapolar etc.) and 𝜃𝜃0 controls 
the phase shift between the edge undulations and polygon shape. A full explanation of Equations 
(1), (2) and their control parameters can be found in Supplementary Information.  

As discussed in the Introduction, the focus of our study is on adsorbed particle systems where 
gravity is negligible, e.g., micron-scale particles or larger particles which are density-matched with 
the fluid subphase. In this case, the energy of the system is primarily due to interfacial energy and 
is given by (24,25) 

𝐸𝐸 = 𝛾𝛾(𝑆𝑆 − 𝑆𝑆0 + 𝑊𝑊 cos 𝜃𝜃𝑤𝑤)          (3) 

where 𝑆𝑆, 𝑆𝑆0 are the total area of the fluid-fluid interface with and without adsorbed particles 
respectively (so that 𝑆𝑆 − 𝑆𝑆0 is essentially the area of the fluid-fluid interface excluded by the 
presence of the adsorbed particles), 𝑊𝑊 is the area of the particle in contact with the fluid above the 
interface, 𝜃𝜃𝑤𝑤 is the contact angle and 𝛾𝛾 is the interfacial tension of the fluid-fluid interface. To 
highlight the role played by particle shape in controlling self-assembly, in our paper, we assume 
𝜃𝜃𝑤𝑤 = 90°, i.e., the adsorbed particles are neutrally wetting. In fact, the specific value of 𝜃𝜃𝑤𝑤 is not 
crucial since the fluid interface is pinned to the particle edge for the thin plate geometry we consider 
in this paper (see later). For a given configuration of adsorbed particles, the energy of the system, 
given by Equation (3), is calculated using the finite element software Surface Evolver (36), see 
Methods for further details. 

 

Hexagonal Plates 

The first particle shape we consider is that of a thin hexagonal plate with hexapolar edge 
undulations. The shape parameters we use in Equations (1) and (2) for this shape are 𝜓𝜓1 = 𝜋𝜋 2⁄ , 
𝜓𝜓2 = 7𝜋𝜋 6⁄ , 𝜓𝜓3 = 11𝜋𝜋 6⁄ , Δ = 0, 𝑎𝑎 𝑏𝑏⁄ = 10, 𝑚𝑚 = 3 and we work with length units where the side 
length of the hexagon 𝐿𝐿 = 1 so that 𝑎𝑎 = √3 2⁄ , see Supplementary Information. We consider two 
types of hexagonal plates, H0 where the maximum displacement of the undulations coincides with 
the corners of the hexagon (i.e., 𝜃𝜃0 = 0 in Equation (2), see Figure 1a,c), and H30 where the 
maximum displacement coincides with the middle of the hexagonal side (i.e., 𝜃𝜃0 = 𝜋𝜋 6⁄  in Equation 
(2), see Figure 1b,d). As we shall see later, the subtle change in the phase angle between edge 
undulations and the hexagonal shape for these two types of particles leads to dramatic changes in 
their self-assembly behavior.  

We first consider the properties of isolated adsorbed particles. In general, we require six variables 
to fully specify the position and orientation of a non-axisymmetric plate (24,25), namely the centre 
of mass coordinates  𝑥𝑥𝑝𝑝, 𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝 of the plate in the lab frame, the azimuthal angle 𝜑𝜑 of the plate about 
the interface normal (i.e., 𝑧𝑧 axis), the polar angle 𝛼𝛼 between the plate normal and the interface 
normal and the rotation angle 𝛽𝛽 of the plate about its normal (i.e., 𝑧𝑧′  axis), see Figure S1 in 
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Supplementary Information. However, for an isolated adsorbed particle, the energy depends only 
on 𝑧𝑧𝑝𝑝, 𝛼𝛼 and 𝛽𝛽. In Figure S3 in Supplementary Information, we plot the energy of a H0 particle as 
a function of 𝛼𝛼 and 𝛽𝛽, with the energy minimized with respect to 𝑧𝑧𝑝𝑝 for each particle orientation. We 
see that the equilibrium orientation of the hexagonal plate is 𝛼𝛼 = 0° (where 𝛽𝛽 becomes irrelevant). 
This result is in good agreement with our previous results for adsorbed cylindrical particles, where 
in the limit of thin cylindrical plates, the plate normal is perpendicular to the interface (37). The result 
is also in good agreement with the results of Whitesides and coworkers for patchy hexagonal plates 
(20), where plates with centrosymmetric arrangements for their patchy edges have plate normals 
that are perpendicular to the liquid interface. Since all the polygonal particles we consider in this 
study are thin and have centrosymmetric edge undulations, in what follows we set 𝛼𝛼 = 𝛽𝛽 = 0° in 
our calculations. 

Next, we consider the degree to which the edge undulations of the particles control the deformation 
of the liquid meniscus around the particle. In Fig 1a,b we plot the top view of the particle and the 
height of the liquid meniscus around H0 and H30 respectively for edge undulations with amplitude 
parameter 𝐴𝐴 = 0.1𝐿𝐿 in Equation (2); we use positive and negative signs to denote the positive and 
negative antinodes of the undulations in each case. We see that the liquid meniscus follows closely 
the deformation of the particle edge. Indeed, in Supplementary Information, we demonstrate 
quantitatively that for the small values of 𝐴𝐴 considered in this paper, the three-phase contact line is 
effectively pinned to the plate edge (see Figure S4 and accompanying discussion). In the rest of 
the paper, we therefore simplify our Surface Evolver calculations by eliminating the particle surface 
and set the 𝑧𝑧′ coordinate of the contact line to satisfy Equation (2), and the (𝑥𝑥′,𝑦𝑦′) coordinates of 
the contact line to satisfy Equation (1) but without the term containing 𝑧𝑧′ on the left-hand side. 

(Figure 1) 
Figure 1: (a,b) Top view of particle geometry and contour plot of the liquid interface height 
(normalized to the hexagon side length 𝐿𝐿) around (a) H0 and (b) H30 hexagonal plates adsorbed 
at a liquid interface. The positive and negative signs denote the position of the positive and negative 
antinodes of the particle edge undulations respectively. (c,d) Side view of the system for (c) H0 and 
(d) H30 hexagonal plates. 

Having established the equilibrium properties for isolated particles, we now study the pair 
interaction and self-assembly of many particles. Note that when calculating the energy of two- or 
many-particle systems, we fix 𝑧𝑧𝑝𝑝 ,𝛼𝛼 and 𝛽𝛽 for each particle to their isolated-particle values since 
previous studies have shown that the height and polar orientation of adsorbed particles is 
essentially unaffected by the proximity of other particles (24,25,38). In this case, the configuration 
of a system consisting of 𝑁𝑁 polygonal plates is specified by the set of variables �𝑥𝑥𝑝𝑝𝑝𝑝 ,𝑦𝑦𝑝𝑝𝑝𝑝 ,𝜑𝜑𝑝𝑝� with 
𝑖𝑖 = 1, … ,𝑁𝑁, where 𝑥𝑥𝑝𝑝𝑝𝑝 ,𝑦𝑦𝑝𝑝𝑝𝑝 are the 𝑥𝑥, 𝑦𝑦 centre of mass coordinates of the 𝑖𝑖-th plate and 𝜑𝜑𝑝𝑝 is the 
azimuthal angle of the 𝑖𝑖-th plate (see Figure S1).  

We first consider the capillary pair interaction potential between two hexagonal plates as a function 
of their centre-to-centre separation 𝑑𝑑 and the orientation of the two particles which is defined as 

𝑉𝑉2(𝑑𝑑,𝜙𝜙1,𝜙𝜙2) = 𝐸𝐸2(𝑑𝑑,𝜙𝜙1,𝜙𝜙2) − 𝐸𝐸2(∞),          (4) 

where 𝜙𝜙1, 𝜙𝜙2 are the azimuthal angles of the capillary multipoles for particle 1 and 2 respectively 
relative to the centre-to-centre line between the particles (see Figure S5 in Supplementary 
Information) and 𝐸𝐸2(𝑑𝑑,𝜙𝜙1,𝜙𝜙2), 𝐸𝐸2(∞) are the energies of the two-particle system at separation 𝑑𝑑 
and orientation 𝜙𝜙1, 𝜙𝜙2 and at infinite separation respectively, calculated from Equation (3).  

(Figure 2) 

Figure 2: (a,b) Attractive (top) and repulsive (bottom) capillary pair interactions as a function of 
centre-to-centre separation for different relative orientations of interacting particles for (a) H0 and 



 

 

7 

 

(b) H30 particles. The solid and dotted vertical lines denote the separation for side-to-side and 
corner-to-corner contact of the hexagons respectively. (c,d) The crystal structures we consider for 
(c) H0 and (d) H30. For each crystal structure, we show the lattice vectors 𝒂𝒂, 𝒃𝒃, the nearest 
neighbour separation 𝑑𝑑, and the unit cell used in the Surface Evolver calculations, where sides of 
the unit cell with the same colour have the same interface height. The yellow and purple spots in 
(a-d) denote positive and negative capillary poles respectively. (e,f) Plot of 𝜂𝜂𝑣𝑣∞ vs. 𝜂𝜂 for the different 
crystals structures shown in (c) and (d), where 𝜂𝜂 is the area fraction and 𝑣𝑣∞ is the many-body 
capillary interaction per particle given by Equation (5). The data points are numerical results 
calculated from Surface Evolver and the solid lines are the fits to the numerical data using the form 
𝐵𝐵𝜂𝜂𝐶𝐶, where the fitting parameters 𝐵𝐵, 𝐶𝐶 for each crystal phase are given in Table S2 in 
Supplementary Information. The vertical dashed lines are the highest area fraction for each crystal 
phase and the black solid and dashed lines are the equilibrium common tangent lines. 

In Figure 2a,b, we show the capillary interaction for H0 and H30 respectively for different relative 
azimuthal orientations of the interacting particles. Note that the yellow and purple spots in Figure 2 
indicate positive and negative interfacial deformations (or capillary poles) respectively. We see that 
particles attract each other when capillary poles of the same sign overlap (Figure 2a,b top), and 
they repel each other when capillary poles of opposite sign overlap (Figure 2a,b bottom). 
Specifically, following the terminology used by Soligno et al. (24,25), there are two types of particle 
orientations that are attractive: (i) dipole-dipole attraction, where one set of two capillary poles from 
one plate (one positive, one negative) overlap with the same set of two capillary poles from the 
other plate (red curves); (ii) tripole-tripole attraction, where one set of three capillary poles from one 
plate (positive-negative-positive or negative-positive-negative) overlap with the same set of three 
capillary poles from the other plate (blue curves). From Figure 2a,b, we see that for both H0 and 
H30, the interaction energy at the same particle separation is essentially the same for dipole-dipole 
and tripole-tripole attractions. For a given particle type, the minimum interaction energy is therefore 
given by the relative orientation that allows the two particles to come closest to each other, i.e., 
where the hexagons are in side-to-side contact. Since the orientation of the capillary hexapole 
relative to the hexagonal shape is different for H0 and H30, the lowest energy (i.e., strongest) 
capillary bond is the dipole-dipole bond for H0 (red curve in Figure 2a top) but the tripole-tripole 
bond for H30 (blue curve in Figure 2b top).  

The apparently subtle difference between H0 and H30 in the nature of their ground state capillary 
bonds has profound consequences for their self-assembly as we shall now discuss. When H0 or 
H30 are bonded to six nearest-neighbours via dipole-dipole bonds, they form a hexagonal lattice 
(Hex), specifically a hexagonal close-packed lattice for H0 (Figure 2c top left) and a Kagome lattice 
(Kag) for H30 (Figure 2d top left). On the other hand, when these particles are bonded to two 
opposite nearest-neighbours via dipole-dipole bonds and two other nearest-neighbours via tripole-
tripole bonds, they form a rectangular lattice (Rec, Figure 2c,d top right). Finally, when these 
particles are bonded to three nearest-neighbours via tripole-tripole bonds, they form a honeycomb 
lattice (Hon, Figure 2c,d bottom). Note that there are two versions of the honeycomb phase, namely 
where the primary overlapping capillary pole is positive (Hon+, Figure 2c,d bottom left) or negative 
(Hon-, Figure 2c,d bottom right). For the neutrally wetting particles we are considering in this paper 
(𝜃𝜃𝑤𝑤 = 90°), Hon+ and Hon- are degenerate in energy. Note also the honeycomb phase is not an 
incomplete hexagonal phase because the holes in the honeycomb lattice are surrounded by 
capillary poles of the same sign (either negative for Hon+ or positive for Hon-), so that it is 
energetically unfavourable to insert hexapolar particles to fill these holes (24,25). 

Since the ground state capillary bond is the dipole-dipole bond for H0 and the tripole-tripole bond 
for H30, we anticipate that in the low temperature regime that we are considering in this paper, the 
equilibrium phase is the hexagonal close-packed structure for H0 but the honeycomb structure for 
H30. In order to check this prediction, we calculate the equilibrium state of the two particle shapes 
by plotting 𝜂𝜂𝑣𝑣∞ vs. 𝜂𝜂 for the different phases discussed above for H0 (Figure 2e) and H30 (Figure 
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2f), where 𝜂𝜂 is the area fraction of the hexagonal plates and 𝑣𝑣∞ is the many-body capillary 
interaction per particle for a given phase which is defined by 

𝑣𝑣∞(𝑑𝑑) = 𝜀𝜀∞(𝑑𝑑) − 𝜀𝜀∞(∞).          (5) 

Here 𝑑𝑑 is the separation between nearest neighbours (shown in Figure 2c,d for the different 
phases) and 𝜀𝜀∞(𝑑𝑑), 𝜀𝜀∞(∞) is the energy per particle in a given phase at separation 𝑑𝑑 and at infinite 
separation respectively. These energies are obtained by using Surface Evolver to calculate the 
energy of a unit cell (shown in Figure 2c,d for the different phases) and applying periodic boundary 
conditions to the sides of the unit cell as indicated in Figure 2c,d. Note that the Hex phase contains 
one particle per unit cell, while the Rec and Hon phases contain two particles per unit cell, with one 
of the particles rotated azimuthally by 180° relative to the other. Note also that since Hon+ and 
Hon- are degenerate, we only plot a single curve for the honeycomb phase in Figure 2,e,f. In 
addition, the maximum area fraction for each phase 𝜂𝜂𝑐𝑐 (i.e., when nearest neighbours are in contact 
𝑑𝑑 = 𝑑𝑑𝑐𝑐) is represented by vertical dashed lines in Figure 2e,f. The parameters for all the crystal 
structures considered in this paper are given in Table S1 in Supplementary Information.  

Since Figure 2e,f are essentially plots of energy per unit area versus density, we can determine the 
equilibrium state for each particle shape graphically by using a common tangent analysis (24,25). 
Specifically, the common tangent line for each crystal structure is the straight line joining the points 
on the plot corresponding to the empty phase 𝜂𝜂 = 0 and the highest density state of that crystal 
𝜂𝜂 = 𝜂𝜂𝑐𝑐; the equilibrium state of the system for any given value of 𝜂𝜂 is then given by the lowest 
common tangent line at that value of 𝜂𝜂, and these lines are denoted by black solid or dashed lines 
in Figure 2e,f. From the common tangent analysis of Figure 2e, we see that (for small enough 𝜂𝜂) 
the equilibrium state for H0 is where the empty phase coexists with the hexagonal close-packed 
structure, while from Figure 2f, the equilibrium state for H30 is where the empty phase coexists with 
the honeycomb structure. These results confirm our earlier prediction that the ground state crystal 
structure for H0 and H30 are the hexagonal close-packed structure and the honeycomb structure 
respectively. Thus, by a subtle change in the orientation of the capillary hexapole relative to the 
hexagonal shape, we have changed the equilibrium crystal structure of the hexagonal plates 
dramatically.  

To check whether the ground state crystal structures for H0 and H30 are accessible kinetically, we 
performed finite temperature Monte Carlo (MC) simulations for these particle shapes, including 
both hard-core and capillary interactions between the particles in our simulations. The MC 
simulations were performed at an area fraction of 𝜂𝜂 = 0.3. This area fraction was chosen since it is 
low enough for the system to be in the dilute regime (i.e., polygons on a hexagonal lattice can freely 
rotate about their centres without interfering with each other) but high enough for extended 
structures to be formed in reasonable simulation time. In Supplementary Information, we show that 
for particles on the micron-scale or larger, the system is in the low temperature regime 𝑇𝑇∗ =
𝑘𝑘𝐵𝐵𝑇𝑇 𝑈𝑈0⁄ ≪ 1, where 𝑘𝑘𝐵𝐵𝑇𝑇 is the thermal energy and 𝑈𝑈0 is the energy of the ground state capillary 
bond; values for 𝑈𝑈0 for the different particle shape pairs are given in Table S3. For larger than 
micron-scale particles whose random motion is induced by external mechanical vibrations rather 
than thermal energy, motivated by the equipartition theorem, we can define an effective 
temperature for the system 𝑇𝑇eff from the relation 𝑘𝑘𝐵𝐵𝑇𝑇eff ≈ 𝛾𝛾〈𝑢𝑢2〉, where 𝛾𝛾 is the interfacial tension 
and 〈𝑢𝑢2〉 is the mean-squared vertical displacement of the fluid-fluid interface relative to its 
equilibrium height (39). The low temperature regime in this case therefore corresponds to the 
condition 𝑇𝑇∗ = 𝛾𝛾〈𝑢𝑢2〉 𝑈𝑈0⁄ ≪ 1. To ensure efficient equilibration of the system in our MC simulation, 
the system is slowly cooled from a high initial temperature to a final normalised temperature of 𝑇𝑇∗ =
0.05 (see Methods). The choice of the final temperature represents a good compromise between 
being low enough for the system to be in the low temperature regime while still being high enough 
for the MC simulation to equilibrate the system efficiently.  
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In our simulations, we assume that the capillary interactions are pair-wise additive and quasistatic. 
We therefore model capillary interactions by calculating 𝑉𝑉2 given by Equation (4) for 𝑑𝑑,𝜙𝜙1,𝜙𝜙2 values 
on a grid and use this data to generate a look-up table. Note that the quasistatic approximation is 
accurate for 𝑇𝑇∗ ≪ 1, as evidenced by the fact that it is possible to accurately model the trajectory 
of micron-sized particles moving under the action of capillary forces by using this approximation 
(23,40). Note also that 𝑉𝑉2 represents the capillary interaction at zero temperature. At finite 
temperature, thermal fluctuations of the liquid interface induce additional interactions due to the 
Casimir effect (41-43). However, since such thermal Casimir interactions are proportional to 𝑘𝑘𝐵𝐵𝑇𝑇 
(41,42), we can safely neglect them in the low temperature regime 𝑘𝑘𝐵𝐵𝑇𝑇 ≪ 𝑈𝑈0 that are we 
considering here. Further details of our MC simulations, including how we model particle 
interactions, can be found in Methods and Supplementary Information.  

In Figures 3a and 3b, we show the final snapshots from our MC simulations for H0 and H30 
respectively. We see that H0 forms hexagonal close packed structures, in good agreement with 
the thermodynamic analysis in Figure 2e. However, rather surprisingly, H30 forms a mixture of 
different structures, with only small domains of honeycomb order, even though the latter is 
predicted by Figure 2f to be the ground state structure. One reason for this surprising result is the 
fact that from Figure 2f, H30 has a number of competing metastable structures which are very close 
in energy to the honeycomb structure, i.e., the common tangent lines for the rectangular (Rec) and 
Kagome (Kag) structures in Figure 2f are very close to the ground state common tangent line. 
Indeed, as highlighted in Figure 3b, we do see small domains of Rec and Kag structures in the final 
snapshot.  

(Figure 3) 
Figure 3: (a-c) Final snapshots for Monte Carlo simulations of (a) H0, (b) H30 and (c) H30+ 
particles. In (b), we highlight small domains of Kagome (red) and Rectangular (black) structures 
and in the inset we show the linear structures that poison the formation of extended honeycombs. 
In the inset of (c), we confirm that the honeycomb structures are Hon+. (d) Two options for adding 
a third H30 particle to an existing dimer of H30 particles. (e) Superposition of hexapole and 
dodecapole edge undulations to create H30+. (f) Top view of the particle geometry and contour 
plot of the liquid interface height (normalized to the hexagon side length 𝐿𝐿) around H30+. (g,h) The 
negative and positive tripole-tripole interaction potentials as a function of particle separation for (g) 
H30 and (h) H30+. The solid vertical lines denote the separation for side-to-side contact of the 
hexagons. The yellow and purple spots in (g,h) denote positive and negative capillary poles 
respectively.  

However, the absence of extended honeycomb structures in Figure 3b also arises from a deeper 
kinetic problem where the formation of the two degenerate honeycomb phases Hon+ and Hon- are 
antagonistic to each other. This point is illustrated in Figure 3d (Figure 3c will be discussed later in 
this section). Consider a dimer consisting of two H30 particles which are attached to each other via 
a positive tripole-tripole bond. When a third H30 particle is introduced, this particle can either attach 
itself to the dimer via a tripole-tripole bond of the same sign to form a bent trimer which is compatible 
with the subsequent formation of a honeycomb structure (in this case Hon+), or it can attach itself 
to the dimer via a tripole-tripole bond of the opposite sign to form a linear trimer which blocks the 
further formation of the honeycomb structure. However, since positive and negative tripole-tripole 
bonds are degenerate in energy, both pathways are equally likely. This means that as successive 
H30 particles are added to a growing cluster, the probability that all particles in the cluster are 
bonded to each other via tripole-tripole bonds of the same sign becomes vanishingly small. Thus, 
although Hon+ and Hon- are the thermodynamic ground states for H30, neither structure is 
accessible kinetically. The prevalence of the linear structures discussed above in Figure 3b (see 
for example the inset), confirms that the self-assembly process is indeed ‘poisoned’ by the bottom 
pathway in Figure 3d, preventing H30 from forming extended honeycomb structures.  
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To overcome this problem, we can make one set of alternate sides in H30 more ‘sticky’ than the 
other by adding a 𝑚𝑚 = 6 multipole (dodecapole) to the contact line undulations of the hexapolar 
particle. This is illustrated in Figure 3e, where the dodecapole is oriented such that it reinforces the 
positive poles and suppresses the negative poles of the hexapole. Specifically, we modify the edge 
undulation given by including both 𝑚𝑚 = 3 and 𝑚𝑚 = 6 multipoles in Equation (2), with 𝐴𝐴3,𝐴𝐴6 = 0.05𝐿𝐿 
and 𝜃𝜃03,𝜃𝜃06 = 𝜋𝜋 6⁄ , where 𝐴𝐴𝑚𝑚, 𝜃𝜃0𝑚𝑚 are the amplitude and phase angle of the 𝑚𝑚th multipole, and we 
call this particle shape H30+. In Figure 3f, we plot the height of the liquid meniscus around an 
isolated H30+ particle and we see that the addition of the 𝑚𝑚 = 6 multipole amplifies the magnitude 
and range of the positive deformations of the liquid interface and suppresses the same for the 
negative deformations. In Figures 3g and 3h, we plot the positive and negative tripole-tripole 
interaction potential as a function of particle separation for H30 and H30+ respectively. We see that 
adding the 𝑚𝑚 = 6 multipole indeed makes the positive tripole-tripole bonds much stronger than the 
negative tripole-tripole bonds for H30+. These results suggest that adding the 𝑚𝑚 = 6 multipole 
breaks the degeneracy between Hon+ and Hon-, causing Hon+ to be the thermodynamic ground 
state for H30+. 

The fact that the Hon+ structure is the kinetically accessible ground state structure for H30+ is 
confirmed in Figure 3c where we show the final snapshots from MC simulations for H30+. We see 
that, in contrast to H30, the H30+ particles are able to self-assemble into extended honeycomb 
structures, and the inset confirms that the honeycomb structures are Hon+ rather than Hon-. The 
good agreement in the ground state crystal structure between the Surface Evolver calculations in 
Figure 2 (which include all many-body interactions through the periodic boundary conditions) and 
the Monte Carlo simulations in Figure 3 (which include two-body interactions only) suggests that 
many-body interactions are negligible in this system. This fact is not surprising since the capillary 
interactions between high order multipoles are very short-ranged and we therefore expect two-body 
interactions to be dominant over many-body interactions in this case.  
 

Truncated Triangles 

In the previous section, we saw that the Kagome lattice in Figure 2d (top left) is a metastable crystal 
structure for H30. However, we can also form a Kagome lattice using equilateral triangular plates 
instead of hexagonal plates by interchanging the role of particle and free space in the figure. Since 
the polygonal plates in all the lattice structures considered in this paper are bonded to each other 
by soft, flexible capillary bonds, the resultant open Kagome lattice is isostatic, i.e., it has marginal 
mechanical stability, and there has been growing interest in such lattices in recent years because 
of the unique mechanical properties they possess (44,45).  

To create the open Kagome lattice, in principle we could use equilateral triangular plates with 
appropriate edge undulations to promote capillary bonding between the corners of the triangles. 
However, the relatively large separation between triangular plates when they are in corner-to-
corner contact reduces the capillary bond strength significantly, making it challenging to stabilize 
the open lattice structure against collapse into compact lattice structures where the plates are in 
side-to-side contact. In order to address this problem, we reduce the particle separation for corner-
to-corner contact by considering triangles with slightly truncated corners (see Figure 4a). Denoting 
the long and short side lengths of the truncated triangle as 𝐿𝐿 and 𝑆𝑆 respectively, the shape 
parameters in Equation (1) for this particle shape are 𝜓𝜓1 = 𝜋𝜋 2⁄ ,𝜓𝜓2 = 7𝜋𝜋 6⁄ ,𝜓𝜓3 = 11𝜋𝜋 6⁄ ,Δ =
(𝐿𝐿 − 𝑆𝑆) �4√3�⁄ , 𝑎𝑎 = √3(𝐿𝐿 + 𝑆𝑆) 4⁄  and we work with length units where 𝐿𝐿 = 1, see Supplementary 
Information. In order to encourage the truncated triangles to associate with each other along their 
short sides rather than their long sides, we use the same strategy that was used to create 
honeycombs in the previous section, namely we include both hexapoles (𝑚𝑚 = 3) and dodecapoles 
(𝑚𝑚 = 6) in the edge undulations, orienting the hexapole so that it’s poles coincide with the middle 
of the short or long sides, and orienting the dodecapole so that it reinforces the poles on short sides 
and suppresses the poles on the long sides, see Figure 4a. Specifically, we include both 𝑚𝑚 = 3 
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and 𝑚𝑚 = 6 multipoles in Equation (2), with 𝐴𝐴3,𝐴𝐴6 = 0.05𝐿𝐿 and 𝜃𝜃03,𝜃𝜃06 = 𝜋𝜋 2⁄ , where 𝐴𝐴𝑚𝑚, 𝜃𝜃0𝑚𝑚 are 
the amplitude and phase angle of the 𝑚𝑚th multipole.   

(Figure 4) 

Figure 4: (a) Superposition of hexapole and dodecapole edge undulations in the truncated triangle 
(TT) particles. (b) Top view of the particle geometry and contour plot of the liquid interface height 
(normalized to the long side length 𝐿𝐿) around the TT particles. (c) Capillary bond energy at contact 
𝑉𝑉𝑐𝑐 as a function of 𝐿𝐿 𝑆𝑆⁄  for short side-short side and long side-long side contact of the TT particles. 
(d) The crystal structures we consider for the TT particles. For each crystal structure, we show the 
lattice vectors 𝒂𝒂, 𝒃𝒃, the nearest neighbour separation 𝑑𝑑, and the unit cell used in the Surface Evolver 
calculations, where sides of the unit cell with the same colour have the same interface height. The 
yellow spots in (c,d) denote positive capillary poles. (e) Plot of 𝜂𝜂𝑣𝑣∞ vs. 𝜂𝜂 for the different crystals 
structures shown in (d), where 𝜂𝜂 is the area fraction and 𝑣𝑣∞ is the many-body capillary interaction 
per particle given by Equation (5). The data points are numerical results calculated from Surface 
Evolver and the solid lines are the fits to the numerical data using the form 𝐵𝐵𝜂𝜂𝐶𝐶, where the fitting 
parameters 𝐵𝐵, 𝐶𝐶 for each crystal phase are given in Table S2 in Supplementary Information. The 
vertical dashed lines are the highest area fraction for each crystal phase and the black solid and 
dashed lines are the equilibrium common tangent lines. (f) Final snapshots for Monte Carlo 
simulations of the TT particles.  

In Figure 4b, we plot the height of the liquid meniscus around an isolated truncated triangle (TT) 
with 𝐿𝐿 𝑆𝑆⁄ = 2 and we see that the addition of the 𝑚𝑚 = 6 multipole indeed amplifies the magnitude 
and range of interfacial deformations near the short sides and suppresses interfacial deformations 
near the long sides. In Figure 4c, we plot the capillary bond energy at contact 𝑉𝑉𝑐𝑐 as a function of 
𝐿𝐿 𝑆𝑆⁄  for short side-short side (SS) contact (𝑉𝑉𝐶𝐶𝑆𝑆𝑆𝑆, red curve) and long side-long side (LL) contact (𝑉𝑉𝐶𝐶𝐿𝐿𝐿𝐿, 
blue curve). These results show that we can change the ground state capillary bond of the system 
by tuning the ratio 𝐿𝐿 𝑆𝑆⁄ . Specifically, the ground state capillary bond is SS for 𝐿𝐿 𝑆𝑆⁄  values below the 
crossover point 𝐿𝐿 𝑆𝑆⁄ = 2.23, and it is LL for 𝐿𝐿 𝑆𝑆⁄  values above the crossover point. 

Figure 4c suggests that the ground state crystal structure for TT particles with 𝐿𝐿 𝑆𝑆⁄ < 2.23 is the 
open Kagome lattice (Kag-O, Figure 4d, bottom left) while for 𝐿𝐿 𝑆𝑆⁄ > 2.23, it is the compact Kagome 
lattice (Kag-C, Figure 4d, bottom right). In order to check this prediction, in Figure 4e, we perform 
a common tangent analysis for TT particles with 𝐿𝐿 𝑆𝑆⁄ = 2 by plotting 𝜂𝜂𝑣𝑣∞ against 𝜂𝜂 for all the crystal 
structures shown in Figure 4d. Note that in Figure 4d, we show the nearest neighbor separation 𝑑𝑑 
and the unit cell for each crystal structure, while in Figure 4e, the vertical dashed lines represent 
the maximum area fraction 𝜂𝜂𝑐𝑐 for each crystal phase and the black solid and dashed lines are the 
equilibrium common tangent lines of the system. The results in Figure 4e confirm that Kag-O is 
indeed the ground state crystal structure for 𝐿𝐿 𝑆𝑆⁄ = 2. In Figure 4f, we show the final snapshot from 
MC simulations of TT particles with 𝐿𝐿 𝑆𝑆⁄ = 2 with area fraction 𝜂𝜂 = 0.3, where the system is slowly 
cooled from a high initial temperature to a final temperature of 𝑇𝑇∗ = 0.05. We see that the TT 
particles indeed self-assemble into open Kagome lattice structures, confirming that this structure is 
kinetically accessible to the system.  

To study how the self-assembly of TT particles depends on the value of 𝐿𝐿 𝑆𝑆⁄  in more detail, in Figure 
S8 in Supplementary Information, we show the final snapshot from MC simulations of TT particles 
with area fraction 𝜂𝜂 = 0.3 and a range of different 𝐿𝐿 𝑆𝑆⁄  values around the crossover point, where 
the system is slowly cooled from a high initial temperature to a final temperature of 𝑇𝑇∗ = 0.05. We 
also plot the difference in the capillary bond energy per particle between Kag-O and Kag-C, i.e., 
∆𝑣𝑣𝐶𝐶 = 3(𝑉𝑉𝐶𝐶𝑆𝑆𝑆𝑆 − 𝑉𝑉𝐶𝐶𝐿𝐿𝐿𝐿) 2⁄ , as a function of 𝐿𝐿 𝑆𝑆⁄ , where the factor 3 2⁄  comes from the fact that there 
are 3 2⁄  capillary bonds per particle in the Kagome structures. As expected, the system forms Kag-
O for 𝐿𝐿 𝑆𝑆⁄ = 2 where ∆𝑣𝑣𝐶𝐶 ≈ −3𝑘𝑘𝐵𝐵𝑇𝑇, while it forms Kag-C for 𝐿𝐿 𝑆𝑆⁄ = 2.5 where ∆𝑣𝑣𝐶𝐶 ≈ +3𝑘𝑘𝐵𝐵𝑇𝑇. 
Interestingly, for 𝐿𝐿 𝑆𝑆⁄  values very close to the crossover point, i.e., where |∆𝑣𝑣𝐶𝐶| ≲ 𝑘𝑘𝐵𝐵𝑇𝑇, the system 
forms a mixture of Kag-O, Kag-C, Rec (Figure 4d top right) and intricate hybrid structures involving 
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both SS and LL bonds, with a bias towards Kag-O below the crossover point, and towards Kag-C 
above the crossover point. The results in Figure S8 demonstrate that the ground state structure is 
the one with the lowest capillary interaction energy per particle, and that we can exclusively select 
one polymorph over another by ensuring that the difference in this energy for the different 
polymorphs is significantly greater than 𝑘𝑘𝐵𝐵𝑇𝑇. This result provides a simple but powerful design 
principle for programming self-assembly in our system.  

 

Mixtures of Squares and Equilateral Triangles 

So far, we have studied the self-assembly of one-component systems consisting of a single particle 
shape. However, we can access an even richer range of self-assembled structures if we consider 
mixtures of different particle shapes. In this section, we illustrate this point by using a binary mixture 
of squares and equilateral triangles to form randomly tiled 12-fold quasicrystals (46,47). 
Specifically, we consider squares and equilateral triangle plates with side length 𝐿𝐿 where the shape 
parameters in Equation (1) are 𝜓𝜓1 = 𝜋𝜋 2⁄ ,𝜓𝜓2 = 7𝜋𝜋 6⁄ ,𝜓𝜓3 = 11𝜋𝜋 6⁄ ,Δ = 𝐿𝐿 �4√3�⁄ , 𝑎𝑎 = √3𝐿𝐿 4⁄  for 
the triangles and 𝜓𝜓1 = 0, 𝜓𝜓2 = 𝜋𝜋 2⁄ , Δ = 0, 𝑎𝑎 = 𝐿𝐿 2⁄  for the squares (we only need two sets of 
parallel sides to form squares) and we work in units of length where 𝐿𝐿 = 1, see Supplementary 
Information. 

In order to promote random tiling, the edge undulations along the square and triangle sides need 
be commensurate with each other so that the capillary bond energies for square-square, triangle-
triangle and square-triangle side-to-side contact are equal to each other (48). Having the same 
contact energies between the different species is important for two reasons. Firstly, the contact 
energy for triangle-square contacts needs to be at least as large as that for triangle-triangle and 
square-square contacts in order to suppress phase separation between the two species (46,49). 
Secondly, the triangle-triangle and square-square contact energies need to be the same to prevent 
the two species from crystallizing at different points as we cool the system which would lead to 
kinetic de-mixing (see later). In order to obtain commensurate edge undulations for squares and 
triangles, we use hexapolar edge undulations for the triangles and octopolar edge undulations for 
squares, with the multipoles oriented so that the positive poles coincide with the middle of each 
side, i.e., 𝑚𝑚 = 3, 𝜃𝜃0 = 𝜋𝜋 6⁄  for triangles and 𝑚𝑚 = 4, 𝜃𝜃0 = 0 for squares in Equation (2). In Figures 
5a and 5b respectively, we plot the interfacial deformations around an isolated square with 𝐴𝐴𝑠𝑠 =
0.200𝐿𝐿 and around a triangle with 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.48, where 𝐴𝐴𝑠𝑠, 𝐴𝐴𝑡𝑡 are the 𝐴𝐴 values in Equation (2) for 
squares and triangles respectively, and we see that the interfacial deformations conform well to the 
edge undulations in both cases. Note that we use slightly larger 𝐴𝐴 values for both squares and 
triangles compared to the other shapes we have studied in this paper to increase the signal-to-
noise ratio in our Surface Evolver simulations as the centre-to-side distances (relative to 𝐿𝐿) are 
smaller for triangles and squares compared hexagons and truncated triangles.  

(Figure 5) 

Figure 5: (a,b) Top view of the particle geometry and contour plot of liquid interface height 
(normalized to the side length 𝐿𝐿) around (a) triangular and (b) square particles. (c) Contact energies 
for the different shape pairs 𝑉𝑉𝑐𝑐

𝐼𝐼𝐼𝐼 (normalized to the square-square contact energy) as a function of 
𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ , where 𝐴𝐴𝑠𝑠, 𝐴𝐴𝑡𝑡 are the 𝐴𝐴 values in Equation (2) for squares and triangles respectively. The 
vertical dotted and dashed lines correspond to the cases 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.00 and 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.48 
respectively. (d) Final snapshots for Monte Carlo simulations of a mixture of squares and triangles 
for 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.00. The largest cluster is highlighted. (e) The 𝑚𝑚-fold bond orientational order 
parameter 𝜒𝜒𝑚𝑚 as a function of 𝑚𝑚 for the largest cluster in (d). The inset shows the structure factor 
for the largest cluster. (f), (g) show the plots corresponding to (d), (e) for 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.48. 
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Note that since the centre-to-side distance is different for squares and triangles, we need to use 
different 𝐴𝐴𝑡𝑡 and 𝐴𝐴𝑠𝑠 values to match the amplitude of interfacial undulations for the two shapes and 
hence match the contact energy between the different species. This point is illustrated in Figure 5c 
where we plot the contact energies for the different shape pairs 𝑉𝑉𝑐𝑐

𝐼𝐼𝐼𝐼 (normalized to the square-
square contact energy) as a function of 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄  for 𝐴𝐴𝑠𝑠 = 0.200𝐿𝐿, where 𝐼𝐼, 𝐽𝐽 = 𝑠𝑠 (square) or 𝑡𝑡 (triangle). 
We see that for 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.00 (vertical dotted line), there is a large discrepancy in contact energies 
for the different shape pairs, while for 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.48 (vertical dashed line), the contact energies for 
the different shape pairs are essentially equal.  

To illustrate the importance of tuning 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄  in order to obtain 12-fold quasicrystals, we performed 
MC simulations of mixtures of squares and triangles with a total area fraction of 𝜂𝜂 = 0.3, 𝐴𝐴𝑠𝑠 =
0.200𝐿𝐿 and different 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄  values. Theoretically, the optimum number ratio of squares to triangles 
to form randomly tiled 12-fold quasicrystals is √3 4⁄ , i.e., a square number fraction of 
√3 �4 + √3�� ≈ 0.30 (46,50). In fact, we found that the highest quality quasicrystals were obtained 
for a slightly higher square number fraction of 0.33, and we therefore report results for this 
composition in Figure 5d-g below. However, in Supplementary Information we show that 
quasicrystals (albeit of poorer quality) are also formed for the compositions 0.27, 0.30, 0.36 and 
0.39, indicating that the formation of quasicrystals is relatively insensitive to composition for the 
composition range we have studied. Quasicrystals are very delicate structures that are easily 
destroyed by the presence of too many defects (46). We therefore cooled the mixture much more 
slowly compared to the other systems studied in this paper (see Methods), with a final temperature 
of 𝑇𝑇∗ = 0.05, allowing us to minimize defects and grow large enough crystal domains to produce 
clear diffraction patterns.  

In Figure 5d, we show the final snapshot from MC simulations of a mixture of squares and triangles 
with 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.00 (i.e., dotted vertical line in Figure 5c). We see that no 12-fold quasicrystals are 
formed in this case as there is a clear phase separation between squares and triangles within the 
clusters, with the square crystals forming the core and the triangle crystals forming the corona. The 
observed core-corona cluster morphology is a consequence of the square-square capillary bond 
energy being significantly higher than the square-triangle and triangle-triangle bond energies. This 
means that as the system is slowly cooled during the MC simulation, the squares crystallize out of 
solution first, and act as the nuclei for the subsequent crystallization of the triangles. The dominance 
of square crystalline order, and absence of 12-fold quasicrystalline order, is confirmed in Figure 5e 
where we plot the 𝑚𝑚-fold bond orientational order parameter 𝜒𝜒𝑚𝑚 for different values of 𝑚𝑚 for the 
largest cluster (highlighted in Figure 5d). The order parameter 𝜒𝜒𝑚𝑚 ∈ [0,1] characterizes the degree 
of 𝑚𝑚-fold orientational order of the system (see Supplementary Information), and we see that there 
is significant orientational order for 𝑚𝑚 = 4, 8, 12, consistent with the presence of 4-fold orientational 
order in the cluster. In the inset, we show the scattering structure factor for the largest cluster, which 
clearly shows strong square crystalline order in the sample.   

In Figure 5f, we show the final snapshot from MC simulations of a mixture of squares and triangles 
with 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.48 (i.e., dashed vertical line in Figure 5c). In contrast to Figure 5d, there is now very 
good mixing between squares and triangles within the clusters. However, because the clusters 
consist of close-packed polygons, rearrangements are very restricted after structures are formed, 
making it very difficult to heal any defects in the interior or boundary of the cluster. The very slow 
structural relaxation limits the maximum crystalline domain size to just over 100 particles, even with 
the very slow cooling protocol we use. Notwithstanding this limitation, we can clearly see 
characteristic features of 12-fold quasicrystalline order in the largest cluster (highlighted in Figure 
5f), for example the presence of complete or partially complete dodecagons consisting of 6 triangles 
in the core surrounded by 6 squares and 6 triangles (46,47).  

The presence of 12-fold quasicrystalline order for the system with 𝐴𝐴𝑡𝑡 𝐴𝐴𝑠𝑠⁄ = 1.48 is more strikingly 
demonstrated in Figure 5g, where we plot the bond orientational order parameter 𝜒𝜒𝑚𝑚 for different 
𝑚𝑚 for the largest cluster. We see that the cluster has significant 12-fold orientational order (𝜒𝜒12 ≈
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0.95), but negligible orientational order for all lower 𝑚𝑚, in particular for 𝑚𝑚 = 3, 4, 6, the factors of 12. 
In the inset we show the scattering structure factor of the cluster, and we clearly see 12 scattering 
peaks around each of the circles that have been highlighted. Furthermore, the wavenumber ratio 
between successive circles is 1.93, consistent with the presence of 12-fold quasicrystalline order 
in the system (51).  

The results in Figure 5 once again highlight the advantage of using polygonal plates with undulating 
edges to control self-assembly. Specifically, this geometry gives us very precise control over 
capillary interactions, allowing us to access delicate structures such as quasicrystals which only 
exist over a very narrow range of relative contact energies (Figure 5c). For future work, we plan to 
use edge undulations to impose matching rules, i.e., rules that dictate which polygon sides may or 
may not be next to each other (48), allowing us to assemble deterministic quasicrystal which should 
form much larger clusters (50). The application of such matching rules may also allow us to use 
self-assembly to create the recently discovered quasicrystals made from a single tile shape (52). 
Without such matching rules, the concave shape of these tiles would greatly restrict structural 
rearrangements during self-assembly, potentially causing the system to be kinetically trapped in 
metastable states with many defects and preventing the system from reaching its ground state.  

 

Conclusions 

We have used minimum energy calculations and Monte Carlo simulations to study the capillary 
assembly of a novel class of colloidal particles at a liquid interface, namely polygonal plates with 
homogeneous surface chemistry and undulating edges. This particle geometry gives us precise 
and independent control over both short-ranged hard-core repulsions (through the polygonal 
shape) and longer-range capillary interactions (through the edge undulations), allowing us to select 
specific polymorphs over others and providing essentially limitless possibilities for programming 
self-assembly in 2D. In addition, the fact that particle interactions are controlled by particle shape 
rather than surface chemistry considerably simplifies the task of fabricating the colloidal building 
blocks, allowing us to synthesise the required particle shapes down to the micron scale using 
currently available fabrication technologies (30-32). 

To illustrate the immense potential provided by our system for programming self-assembly, we 
used polygonal plates with different in-plane shapes and edge undulations to create a rich variety 
of complex 2D structures. Specifically, for hexagonal plates, we showed that a subtle change in the 
phase angle between the hexapolar edge undulations and the hexagon shape led to a dramatic 
change in the thermodynamic ground state from a hexagonal close packed structure to an open 
honeycomb structure. We also showed that by using a suitable superposition of hexapolar and 
dodecapolar edge undulations, we could selectively make some edges of a hexagon or truncated 
triangle more ‘sticky’ than others, allowing us to effectively create 2D patchy particles using shape 
alone. Using such particles allowed us to control both the thermodynamics and kinetics of self-
assembly to create open structures such as honeycomb and Kagome lattices. Finally, by carefully 
tuning the multipole order and amplitude of edge undulations in triangles and squares, we were 
able to accurately tune the contact energies between the two shapes and create 12-fold 
quasicrystals.    

Since the particle shapes above can be readily fabricated experimentally, we can use our novel 
colloidal system to control the entire process chain for materials design, from initial design and 
fabrication of the building blocks to final self-assembled structure and emergent properties of the 
material. As such, our novel colloidal system could revolutionise colloidal self-assembly in two 
dimensions, in the same way that DNA linker technology has revolutionised colloidal self-assembly 
in three dimensions (9). 
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Materials & Methods 
 
Surface Evolver: The interfacial energy given by Equation (3) is calculated using Surface Evolver, 
a finite element program that represents each interface as a mesh of triangles (36). The resultant 
vertices are displaced to minimise the interfacial energy, subject to the constraints of the boundary 
conditions at the edge of the simulation box and the particle contact line. We work with length and 
energy units where the particle side length 𝐿𝐿 = 1 and the fluid-fluid interfacial tension 𝛾𝛾 = 1 and 
use a variable triangular mesh with edge length between 0.02𝐿𝐿 to 0.1𝐿𝐿 with quadratic edges to 
capture the shape of the fluid-fluid interface more accurately. When calculating pair capillary 
interactions using Equation (4), we use reflecting boundary conditions at the simulation box edge. 
Since we are considering higher order capillary multipoles whose interactions fall off rapidly with 
separation, finite size effects are less severe and we can use relatively small simulation box sizes. 
Specifically, we use a simulation box with boundaries at 𝑥𝑥 = ±8𝑟𝑟0, 𝑦𝑦 = ±4𝑟𝑟0, the interacting 
particles are at (±2𝑟𝑟0, 0) at maximum separation, and at (±4𝑟𝑟0, 0) at ‘infinite’ separation, where 𝑟𝑟0 
is the radius of the circle circumscribing the polygonal plates; in the case of squares and equilateral 
triangles, we use 𝑟𝑟0 for the square, i.e., the larger circumscribing circle. When calculating many-
body capillary interactions using Equation (5), we use periodic boundary conditions at the edge of 
the simulation box as described in Figure 2c,d, with a nearest neighbor separation of 𝑑𝑑 = 10𝐿𝐿 at 
‘infinite’ separation. When calculating capillary interactions, the smallest surface-to-surface 
separation we consider is 0.1𝐿𝐿 for many-body interactions, 0.03𝐿𝐿 for pair interactions for binary 
mixtures of squares and triangles, and 0.03𝑟𝑟0 for all other pair interactions, where 𝑟𝑟0 is the radius 
of the circle circumscribing the polygon. These separations are small enough to give a good 
approximation to the true contact energy (either directly in Figures 4c and 5c, or through 
extrapolation in the MC simulation look-up tables), but large enough to avoid numerical problems 
in our finite element simulations. The Surface Evolver scripts that we use in this paper are available 
in the persistent repository detailed at the end of this article. 

Monte Carlo (MC) simulations: NVT Metropolis simulations were performed on 400 polygonal 
plates interacting via both hard-core and capillary interactions with periodic boundary conditions. 
Details of how hard-core and capillary interactions are implemented in our simulation can be found 
in Supplementary Information. We used a rectangular simulation box with aspect ratio of 2:√3 
starting with particles in a hexagonal lattice with an area fraction of 𝜂𝜂 = 0.3. In a MC move, particles 
were either translated or rotated (with equal probability) with adjustable step lengths or rotation 
angles to achieve an acceptance probability of 30% for each type of move. To ensure efficient 
equilibration, for hexagons and truncated triangles, the particles were first disordered at a 
temperature of 𝑇𝑇∗ = 100 for 103 attempted moves per particle, then brought to the final temperature 
𝑇𝑇∗ = 0.05 through a slow cool process by successively quenching to 𝑇𝑇∗ = 0.15, 0.12, 0.1, 0.09, 0.08, 
0.07, 0.05, with 5 × 105 attempted moves per particle at each temperature. For the mixture of 
squares and equilateral triangles, we used a much slower cooling protocol to minimize the number 
of defects. Specifically, the system was first disordered at a temperature of 𝑇𝑇∗ = 100 for 103 
attempted moves per particle then quenched to 𝑇𝑇∗ = 0.25. The temperature was then reduced by 
a factor of 0.95 every 3 × 105 attempted moves per particle until we reached 𝑇𝑇∗ = 0.1. Finally, the 
temperature was reduced by a factor of 0.95 every 105 attempted moves per particle until we 
reached a final temperature of 𝑇𝑇∗ = 0.05. For each composition of the squares and triangles, 10 
simulation runs were carried out to increase the effective sample size from which to identify 
quasicrystalline structures. 
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