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Abstract—3D reconstruction from multi-view images is consid-
ered as a longstanding problem in computer vision and graphics.
In order to achieve high-fidelity geometry and appearance of 3D
scenes, this paper proposes a novel geometric object learning
method for multi-view reconstruction with fuzzy set theory.
We establish a new neural 3D reconstruction theoretical frame
called neural fuzzy geometric representation (NeuFG), which
is a special type of implicit representation of geometric scene
that only takes value in [0, 1]. NeuFG is essentially a volume
image, and thus can be visualized directly with the conventional
volume rendering technique. Extensive experiments on two public
datasets, i.e., DTU and BlendedMVS, show that our method has
the ability of accurately reconstructing complex shapes with vivid
geometric details, without the requirement of mask supervision.
Both qualitative and quantitative comparisons demonstrate that
the proposed method has superior performance over the state-
of-the-art neural scene representation methods. The code will be
released on GitHub soon.

Index Terms—3D Reconstruction, Multi-View, Neural Render-
ing, Fuzzy Set Theory

I. INTRODUCTION

Reconstructing the geometry and appearance of 3D scenes
from multi-view images is one of the fundamental problems in
computer vision and graphics. In recent years, 3D reconstruc-
tion with neural rendering has become a promising alternative
to conventional reconstruction techniques, of which recent
works have shown remarkable performance on novel view
synthesis [1]–[9] [10], [11] and geometry reconstruction [12]–
[25] [26], [27] from a set of images.

Generally, neural rendering techniques can be categorized
into two groups: surface rendering based approaches and
volume rendering based approaches. Surface rendering based
approaches determine the color of a viewing ray by first find-
ing the intersection between the ray and the scene geometry,
then obtaining the RGB value of this point by applying a
certain surface illumination model. In this type of methods,
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Fig. 1. Visual comparisons between our method and NeuS. First row: shape
with tiny hole; Second row: shape with slender structures; Third row: input
image with shadow; Fourth row: shape with texutreless region.

the gradient is only back propagated to a local region near the
intersection, which makes it difficult in reconstructing complex
geometric objects involving sudden change in depths or severe
self-occlusions [28]. In addition, mask supervision is usually
required to converge to a valid surface.

On the other hand, volume rendering based approaches
represent the scene as a continuous field of volume den-
sity or occupancy, and render an image by integrating the
amount of light intensity arriving at the camera along each
view ray. In recent years, NeRF [3] and its follow-ups have
achieved excellent results for novel view synthesis and larger
scene rendering. However, accurate geometry extraction from
the underlying volume density remains a challenging task.
Existing methods often lead to artifacts, redundant surface
patches, and incomplete and non-smooth surfaces. This is
because the radiance field representation is generally too
flexible to constrain the 3D geometry sufficiently, especially
in the presence of ambiguities [29].

Consequently, in order to capture high-quality geometry,
several works [28]–[30] have attempted to combine the im-
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plicit surface representation with neural volume rendering
scheme for multi-view reconstruction. Generally, these meth-
ods can extract smooth surface from the learned volume
density field. However, as shown in Fig. 1, when there is no
mask supervision, they are still struggling in reconstructing
subtle surface details such as objects with tiny holes and
slender structures. In addition, the reconstruction results are
also often greatly affected by the shadow of the input image.
They may even fail in reconstructing the texture-less regions
for some geometric objects.

In this paper, we propose a novel geometric object learning
method for multi-view reconstruction with fuzzy set theory.
By considering different volumetric geometric shapes in the
scene as the visible section of the light radiation fields
generated from these geometric objects in terms of 3D fuzzy
point sets, we establish a new neural 3D reconstruction
theoretical frame called neural fuzzy geometric represen-
tation (NeuFG). The scene learned by NeuFG is essentially
a mapping from R3 to [0, 1], and thus can be considered
naturally as a volume image and visualized following the
standard volume rendering formulation. Extensive experiments
on two public datasets, i.e., DTU and BlendedMVS, show
that our method has the ability of accurately reconstructing
complex shapes with vivid geometric details, without the
requirement of mask supervision. Both qualitative and quan-
titative comparisons demonstrate that the proposed method
has superior performance over the state-of-the-art neural scene
representation methods.

In summary, our contributions are as follows:
• We establish a new neural shape learning theoreti-

cal frame called neural fuzzy geometric representation
(NeuFG) by considering different volumetric shapes as
the light radiation fields generated from these geometric
objects in terms of fuzzy sets.

• We present how this representation can be used for multi-
view reconstruction with the standard volume rendering
formulation.

• We experimentally validate that our technique is capable
of reconstructing high-quality geometries of 3D scenes
and achieving superior results over the state-of-the-art
methods.

II. RELATED WORKS

A. Multi-view 3D Reconstruction

In the past decades, 3D reconstruction from multi-view
images is considered as a longstanding problem in computer
vision and graphics. Before the era of deep learning, classical
techniques for multi-view stereo (MVS) reconstruction can
be divided into depth-based methods [31]–[33] and voxel-
based methods [34]–[36]. In depth-based methods, dense point
clouds are first generated by fusing depth maps; a point
cloud meshing technique is then employed to generate the
surface (Please refer to [37] for the recent advances in depth
completion and depth maps fusion). Depth-based methods
generally require complicated rendering pipelines, which could
result in incomplete 3D models due to the accumulated errors
of all stages [30]. On the other hand, voxel-based methods

directly represent shapes in a volume with a voxel grid, which
can generate complete models but limited to low resolution
due to high memory requirements. At the era of deep learning,
some parts of the classic MVS pipeline can be replaced
with learning-based techniques. For instance, several works
have conducted on learning feature matching [38]–[41], depth
fusion [42], [43] or depth inference [44]–[46] from multi-
view images. Generally, these learning-based MVS methods
have difficulty to generate high-quality 3D geometries and
synthesize photorealistic novel views [29].

B. Neural Rendering

In recent years, 3D reconstruction with neural rendering
has become a highly promising technique to achieve excellent
performance on novel view synthesis [1]–[9], [47], [48] and
geometry reconstruction [13]–[20], [49] from multi-view im-
ages. Generally, the related works about neural rendering can
be categorized as either surface rendering or volume rendering.
Surface rendering-based approaches, like IDR [50] and DVR
[51], utilize a differentiable rendering pipeline to generate
images from a 3D object for the purpose of supervision. For
example, by conditioning on the viewing direction, IDR is able
to capture a high level of surface detail and achieve impressive
reconstruction results, even in the presence of non-lambertian
surfaces. However, both DVR and IDR require pixel-accurate
object masks for all views as input and may fail to reconstruct
objects with complex structures that causes abrupt changes in
depth [28].

On the other hand, volume rendering-based approaches,
like NeRF [3] and follow-ups [52]–[59], utilize volume ren-
dering by learning the accumulated radiance intensity along
each view ray. This kind of methods is cable of produc-
ing excellent results on novel view synthesis without the
requirement of mask supervision. However, the recovered 3D
geometry based on these methods is far from satisfactory
[29]. Aiming at capturing high-quality geometry of objects,
several other works [28]–[30] have attempted to combine the
implicit surface representation with neural volume rendering
scheme for multi-view reconstruction. For instance, Oechsle
et al. [29] proposed a principled unified framework, named
UNISURF, to unify surface and volume rendering via a hybrid
MLP representation. Although UNISURF can improve the
reconstruction quality in a certain extent by shrinking the
sample region of volume rendering during the optimization,
there is still room for further improvement of the reconstructed
surface’s accuracy [28]. By modeling the volume density
as a transformed signed distance function (SDF), VolSDF
[30] is able to produce high-quality geometry reconstructions.
However, additional sampling algorithm is required for the
approximation of opacity for volume rendering of the new
density representation. In NeuS [28], 3D surfaces are modelled
as neural SDF and volume rendering is applied to train
this SDF representation with robustness. NeuS allowed to
achieve an unbiased estimate of the corresponding surface
without additional sampling algorithm. However, it still has
difficulty to accurately reconstruct shapes with tiny holes
and to correctly reconstruct the textureless region of the
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surface, and the reconstruction results are often affected by the
shadow of the input image. Consequently, in order to improve
neural implicit surface reconstruction, more recent works have
focused on introducing additional constraints of geometry
optimization into volume rendering scheme. For example,
Geo-Neus [60] introduced SDF optimization constraints and
geometry-consistent constraints into Neus to focus on the
true surface optimization. Similarly, MonoSDF [61] introduced
depth consistency loss and normal consistency loss on the
basis of VolSDF.

III. METHOD

In this section, we firstly propose a new representation
of scene’s geometry with fuzzy set theory. Then we present
the volume rendering scheme based on the new neural fuzzy
geometric representation. Finally, the loss function for training
our model is presented at the end of this section.

A. Implicit geometric representation in 3D fuzzy sets

a) Neural fuzzy geometric representation: The color
value at a pixel of an image taken with a digital camera
based on a given configuration of the scene is basically the
light intensity received at the pixel when considering the pixel
as a pinhole. To accurately reconstruct the scene geometry
from a given image is fundamentally a task of estimating
the light field of the scene. Given the limitation of the
devices commonly used to visualize the light field, in general,
only a fraction of the whole light spectrum can be sampled.
Therefore, a digital image generated from the light field with
a given device is not based on the whole light field, rather, it
is based only on a very limited section of the light spectrum
that is visible to the device. When represented in floating point
value, in practice, the light intensity captured at each position
is usually represented with a value in [0, 1], which is a direct
mapping from the visible section of the light spectrum to
interval [0, 1]. As is commonly known, three basic phenomena
will happen when light interacts a geometric object: reflection,
refraction, and absorption, which subsequently generate three
volumetric fields, namely, the fields of reflection, refraction,
and shadow. One typical feature of the three fields is that all
these fields are of a soft boundary, with its degree of softness
varying according to the distance between the objects and the
light sources (see Fig. 2). Thus, the light field captured by a
digital imaging device can be naturally modelled as 3D fuzzy
point sets represented in terms of fuzzy set membership.

Fig. 2. The light field as a result of light-objects interaction is of a soft
boundary with the degree of softness varying according to the distance to the
objects.

Our key insight is that, by considering different volumet-
ric geometric shapes in the scene as the light radiation fields

generated from these geometric objects in terms of fuzzy
sets, we establish a new neural shape learning theoretical
frame called neural fuzzy geometric representation (NeuFG).
Light field captured by a camera is only a fraction of the real
light spectrum. The radiance field indicated by multiple views
is therefore only a fraction of the real-world light field visible
to the camera. Compared with other methods, e.g., NeuS, our
mathematical framework better explains the nature of the
light field captured by a camera.

In fuzzy set theory, a fuzzy set for a given domain space
χ is defined as a membership function taking value in [0, 1].
An element with a membership 1 indicates that the element is
in the set, and 0 if the element not in the set. For an element
with membership value larger than 0 and less than 1, say,
0.8, it indicates that the element is partially included in the
set with a degree of membership of 80%, neither definitely
in, nor definitely out. Fuzzy set is a natural generalization of
conventional concept of subset. An ordinary subset in space
χ can be considered as a special type of fuzzy set, whose
membership function only takes either value 0 or 1.

A fuzzy set on R3 is naturally a mapping from R3 → [0, 1],
which is perfectly suitable for neural scene geometric field
representation when the mapping is differentiable. For neural
scene representation, a neural network can be trained to rep-
resent the geometric scene in terms of fuzzy set membership
functions on R3, a special type of implicit function which only
takes value from interval [0, 1]. In this research, we show how
to construct a differentiable membership function to assign to
every location P ∈ R3 a membership value varying between
0 and 1 via neural network learning.

For an ordinary 3D geometric object, its membership func-
tion can be constructed directly by composing its implicit rep-
resentation with the Heaviside step function. Let the implicit
function representing the geometric shape be f(P) (P ∈ R3),
with f(P) = 0 representing set of points on the boundary Ω,
whereas, f(P) > 0 in the interior region Ω+, and f(P) < 0
in the exterior region Ω−. Let H(x) be the Heaviside step
function, that is,

H(x) :=

{
1 if x > 0

0 if x ≤ 0
(1)

Then the membership function of the 3D object can be
defined as the composition:

µ(P) = H ◦ f(P) (2)

which can naturally perform the mapping from R3 → R →
{0, 1}.

Generally, there are several points for the benefits of using
fuzzy set theory in implicit representation:

• Multiple view-based 3D neural learning is fundamentally
about radiance field reconstruction, as the colour at
each pixel of an image is essentially the amount of
light accumulated at the pixel. For any object in the
scene, once illuminated, it can be considered as a kind of
secondary light source, just like the Moon, which does
give light, but once illuminated by the Sun, it becomes a
light source.
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• For a geometric object with diffuse surface, the light field
generated by the object with albedo light source can be
considered naturally as a 3D fuzzy object without a clear
boundary. Any 3D object without a clear boundary can
be directly modelled as an implicit function (Please
refer to [62] for more details).

• In addition, by viewing an object in 3D as a fuzzy set-
based representation can be directly considered as
a volume image when re-represented in a discrete 3D
space.

b) Piecewise polynomial smooth step function for neural
fuzzy represented implicit shapes: As can be seen directly that
the mapping from R3 to {0, 1} obtained by converting an
implicit representation of a geometric object using the classical
Heaviside step function is not continuous and differentiable,
which is not suitable for the training of neural networks
[63]. Hence, smooth step function is required to perform a
continuous 3D mapping for neural rendering of implicit shapes
and to achieve high-quality reconstruction. Fig. 3 presents
a visual illustration how an implicitly represented geometric
object can be interpreted as a fuzzy set.

Fig. 3. A visual illustration how an implicitly represented geometric object
can be interpreted as a fuzzy set. (a) A square is defined by the signed
distance function (a subset of implicit surface function) f(P); (b) The mapping
is performed by the classical Heaviside step function; (c) The mapping
is performed by the smooth step function; (d) The diagrams of classical
Heaviside step function (blue dot curve) and smooth step function (purple
solid curve).

In order to achieve high-quality reconstruction of implicit
surfaces, we apply the piecewise polynomials smooth step
function (PPSSF) [64] to the neural rendering of fuzzy set
represented implicit functions. Piecewise polynomial repre-
sentation of the smooth step function allows more accurate
and efficient implementation than non-polynomial represented

smooth step functions. PPSSF is defined by starting with the
standard Heaviside unit step function and can be expressed
either in iterative or explicit forms [64].

The explicit form of degree n PPSSF is expressed as
follows:

Hn(x) =
1

n!2n

n∑
k=0

(−1)k
(
n
k

)
(x+ (n− 2k))nH0(x+ (n− 2k))

(3)
which is obtained as the recursive convolution of Hn(x) ⋆
g(x), where H0(x) is the classical Heaviside step function
and g(x) = (H0(x+ 1)−H0(x− 1))/2.
Hn(x) increases from 0 to 1 monotonically over the interval

[−n;n], which can be modified to [−δ, δ] by introducing a
nonnegative number δ > 0.

Finally, our neural fuzzy set implicit representation for a 3D
object can be rewritten as:

µ(P) = Hn ◦ f(P) = Hn(f(P)) (4)

B. Rendering scheme based on NeuFG

Fig. 4. Illustration of rendering scheme based on neural fuzzy geometric
representation. (a) A camera ray penetrating into two objects; (b) The signed
distance function of the objects; (c) The neural fuzzy geometric representation
of the objects; (d) The neural fuzzy geometric representation is both unbiased
and occlusion-aware.

a) Rendering scheme: The technique of volume render-
ing considers a camera ray r emanating from a position o ∈ R3

in direction d ∈ R3, |d| = 1 defined by r(t) = o+dt, t ≤ 0. In
the classical volume rendering [65], the expected color C(r)
is accumulated along the ray by

C(r) =
∫ +∞

0

T (t)σ(r(t))c(r(t),d) dt (5)
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where σ(r(t)) is the volume density, and T (t) =

exp

(
−
∫ t

0
σ(r(s)) ds

)
denotes the accumulated transmit-

tance along the ray.
Given the obvious physical and geometric meaning about

Hn(f(P)), we can just model the opacity O directly in terms
of Hn(f(r(t))) shown below:

O(t) = 1− T (t) = Hn(f(r(t))) (6)

According to the properties of smooth step function Hn(x),
Hn(x) can be considered as a cumulative distribution
function of radiance field’s intensity. Thus, the density
function corresponding to the light radiance’s intensity can
thus be directly expressed as the derivative of Hn:

H ′
n(t) =

dHn(f(r(t))))
dt

= H ′
n(f(r(t)))∇f(r(t)) · d (7)

which is typically extremely concentrated near the object’s
front boundary when a geometric object is opaque.

Fig. 4 is the illustration of rendering scheme based on
neural fuzzy geometric representation. As can be observed
from the figures and the properties of Hn(x), H ′

n(t) is not
only unbiased, but also occlusion-aware. It is obvious that,
H ′

n(t) has peak values only when f(r(t)) = 0, which
guarantees that the geometric surfaces can be reconstructed
without bias. In addition, the peak value of H ′

n(t) is positive
at the front surface while negative at the back surface of
the object. That is, only the colors for the front surface need
be blended with occlusion-awareness.

b) The derived new discrete opacity: According to the
discretization of the standard volume rendering formulation
[3], we have:

Ĉ =

n∑
i=1

Tiαici (8)

where Ti is the discrete accumulated transmittance defined by
Ti =

∏i−1
j=1(1 − αj), and αi is the is discrete opacity values

defined by

αi = 1− exp

(
−
∫ ti+1

ti

σ(r(t)) dt
)

(9)

Based on our NeuFG, we can conveniently derive the new
αi from Hn(r(t)). According to Eq.(6), we can directly model
the transmitance function in terms of Hn(t):

T (t) = 1−Hn(f(r(t))) (10)

Expanding the expression of T (t) yields:

exp

(
−
∫ t

0

σ(r(s)) ds
)

= 1−Hn(f(r(t))) (11)

Discretizating Eq.(11), yields:

exp

(
−
∫ ti+1

ti

σ(r(t)) dt
)

= exp

(
−
(∫ ti+1

0

σ(r(t)) dt−
∫ ti

0

σ(r(t)) dt
))

= exp

(
−
∫ ti+1

0

σ(r(t)) dt
)
exp

(∫ ti

0

σ(r(t)) dt
)

=

exp

(
−
∫ ti+1

0
σ(r(t)) dt

)
exp

(
−
∫ ti
0

σ(r(t)) dt
)

=
1−Hn(f(r(ti+1)))

1−Hn(f(r(ti)))

(12)

Then, by combining Eq. (9) and Eq. (12), we can derive the
new αi in terms of Hn(t):

αi = 1− 1−Hn(f(r(ti+1)))

1−Hn(f(r(ti)))

=
1−Hn(f(r(ti)))− (1−Hn(f(r(ti+1))))

1−Hn(f(r(ti)))

=
Hn(f(r(ti+1)))−Hn(f(r(ti)))

1−Hn(f(r(ti)))

(13)

As can be seen from Fig. 4 (d), H ′
n(t) is negative at the back

surface of the object, i.e., Hn(f(r(ti+1)))−Hn(f(r(ti))) < 0.
However, αi should be non-negative, thus we clip it against
zero:

αi = max

(
Hn(f(r(ti+1)))−Hn(f(r(ti)))

1−Hn(f(r(ti)))
, 0

)
(14)

C. Loss function

To train the model of NeuFG, we minimize the difference
between the rendered colors and the ground truth colors
with the constraining of Eikonal term [66] for geometric
regularization. Besides that, masks can also be utilized for
supervision if provided. Specifically, we optimize our neural
networks and δ by randomly sampling a batch of pixels P and
their corresponding rays in world space. For each pixel p ∈ P
we have (Cp,Mp, op,dp) , where Cp ∈ R3 is its intensity
(RGB color), Mp ∈ {0, 1} is its optional mask, op ∈ R3 is
the camera location, and dp ∈ R3 is the viewing direction
(camera to pixel). Our training loss consists of three terms:

L = LRGB + λLE + ρLM (15)

where LRGB is the color loss, LE is the Eikonal loss, LM is
the optional mask loss, and λ and ρ are hyper-parameters.

The color loss is defined as

LRGB =
1

| P |
∑
p

| Ĉp − Cp | (16)

where | · | denotes the 1-norm, and Ĉp is the numerical
approximation to the volume rendering integral in Eq. (8).
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TABLE I
THE QUANTITATIVE COMPARISONS (CHAMFER DISTANCES) BETWEEN OUR METHOD AND BASELINES ON THE DTU MVS DATASET IN BOTH SETTINGS –

WITH/WITHOUT MASK SUPERVISION. BOLD DENOTES THE BEST PERFORMANCE.

With Mask Supervision Without Mask Supervision
Scan ID IDR NeRF NeuS NeuFG (ours) COLMAP NeRF Mip-NeRF UNISURF VolSDF NeuS NeuFG (ours)
scan24 1.63 1.83 0.83 0.68 0.81 1.90 1.98 1.32 1.14 1.00 0.96
scan37 1.87 2.39 0.98 0.93 2.05 1.60 1.65 1.83 1.26 1.37 1.22
scan40 0.63 1.79 0.56 0.49 0.73 1.85 1.65 1.72 0.81 0.93 0.77
scan55 0.48 0.66 0.37 0.37 1.22 0.58 1.61 0.44 0.49 0.43 0.40
scan63 1.04 1.79 1.13 1.18 1.79 2.28 2.90 1.35 1.25 1.10 1.16
scan65 0.79 1.44 0.59 0.63 1.58 1.27 1.79 0.79 0.70 0.65 0.62
scan69 0.77 1.50 0.60 0.60 1.02 1.47 1.51 0.80 0.72 0.57 0.57
scan83 1.33 1.20 1.45 1.33 3.05 1.67 1.93 1.49 1.29 1.48 0.97
scan97 1.16 1.96 0.95 1.00 1.40 2.05 2.19 1.37 1.00 1.09 0.97

scan105 0.76 1.27 0.78 0.76 2.05 1.07 1.32 0.89 0.70 0.83 0.94
scan106 0.67 1.44 0.52 0.52 1.00 0.88 0.83 0.59 0.66 0.52 0.50
scan110 0.90 2.61 1.43 1.30 1.32 2.53 2.52 1.47 1.08 1.20 1.10
scan114 0.42 1.04 0.36 0.36 0.49 1.06 1.38 0.46 0.42 0.35 0.36
scan118 0.51 1.13 0.45 0.43 0.78 1.15 1.49 0.59 0.61 0.49 0.49
scan122 0.53 0.99 0.45 0.50 1.17 0.96 1.12 0.62 0.55 0.54 0.53

mean 0.89 1.53 0.76 0.73 1.36 1.48 1.61 1.01 0.85 0.84 0.77

The Eikonal loss is defined as

LE = Ex(∥ ∇xf(x) ∥ −1)2 (17)

which encourages f(·) to approximate a signed distance
function with Implicit Geometric Regularization (IGR) [66];
the samples x are taken to combine a single random uniform
space point and a single point from P for each pixel p.

The mask loss is defined as

LM = BCE(Mp − Ôp) (18)

where Ôp =
∑n

i=1 Tp,iαp,i is the sum of weights along the
camera ray, and BCE is the binary cross entropy loss.

IV. EXPERIMENTS

A. Baselines

To validate the effectiveness of our method, we compare
it to several different baselines, namely, COLMAP [32],
IDR [50], NeRF [53], Mip-NeRF360 [10] and UNISURF
[29]/VolSDF [30]/NeuS [28]. COLMAP is considered as a
widely-used classical MVS method with impressive perfor-
mance on multi-view reconstruction. IDR is the state-of-the-
art surface reconstruction approach which represents the scene
geometric objects as the 0-level set of an implicit function
represented in a differential neural network and visualized
using a neural surface render. This method can reconstruct
high-quality surfaces but requires input masks as supervision.
Unlike IDR, Mip-NeRF360 is a state-of-the-art implicit geo-
metric learning method based on volume rendering. While it
can produce excellent results on novel view synthesis without
the requirement of mask supervision, it is difficult to extract
geometric surfaces accurately from the volume density learned
by Mip-NeRF. Unisuf/VolSDF/NeuS combine the implicit
surface representation with neural volume rendering scheme,
which can extract high-quality geometric surfaces from the
learned volume density field.

B. Datasets

To evaluate our approach against these baseline methods,
we conduct extensive experiments on two public datasets,
i.e., DTU MVS [32] and BlendedMVS [67]. The DTU MVS
dataset contains multi-view images with respective extrinsic
and intrinsic camera parameters at a resolution of 1200×1600.
We evaluate our method on the 15 scans that were selected
by IDR [50]. The BlendedMVS dataset is a large-scale dataset
containing multi-view images with respective camera extrin-
sics and intrinsics. We use 7 examples from the low-res set
containing 31 to 143 different views of unmasked images at
a resolution of 576× 768.

C. Implementation details

For the loss function (i.e., Eq.(15)), we set λ = 0.1, and
ρ = 0.1 if mask is provided. The ADAM optimizer is used to
train our neural networks. We assume the region of interest is
inside a unit sphere, and sample 512 rays per batch and train
our model for 300k iterations, which costs about 7 hours for
the ‘w/ mask’ setting and 8.5 hours for the ‘w/o mask’ setting
on a single NVIDIA RTX3090 GPU.

Similar to the hierarchical sampling strategy used in NeRF,
we first uniformly sample 64 points along the ray, then we iter-
atively conduct importance sampling for 4 times. The coarse
probability estimation in the i − th iteration (i = 1, . . . , 4)
is computed by a fixed δ value, which is set as 1.4/2i.
Consequently, the probability of fine sampling is computed
by the learned δ value.

D. Quantitative comparisons

We conduct quantitative comparisons between our method
and baselines on the DTU MVS dataset in both settings –
with/without mask supervision. The reconstruction quality is
measured with the Chamfer distances in the same way as IDR
[50]. Table I reports the measured scores of our method and
baselines, which shows that our approach outperforms the
baseline methods on the DTU dataset in both settings – w/
and w/o mask. In detail, for mask supervision, our method
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gets smaller average values of Chamfer distances with 0.15,
0.81, and 0.03 than that of IDR, NeRF, and NeuS, respectively.
Particularly, in the setting of without mask supervision, our
method achieves superior performance to all other methods,
including COLMAP, NeRF, UNISURF, VolSDF, and NeuS.
Specifically, our method can reduce the average value of
Chamfer distances to 0.77, which is 0.07 less than that of
the former best method (i.e., NeuS).

Fig. 5. Qualitative comparison of reconstructed surfaces from the DTU
dataset.

Fig. 6. Qualitative comparison of reconstructed surfaces from the Blended-
MVS dataset. Note that the reconstructed results are all based on the setting
of without mask supervision.

E. Qualitative comparisons

We conduct the qualitative comparisons on both the DTU
dataset and the BlendedMVS in Fig. 5 and Fig. 6, respectively.
As shown in the figures, compared to NeRF and COLMAP,
our method, NeuS, and IDR can capture the overall spatial
arrangement of the scene accurately and produce high-quality
surfaces. In addition, our method does not require mask
supervision when compared to IDR, and can capture more
geometric details, e. g., tiny holes, slender structures, texture-
less region, and shadow region, than NeuS does. The detail
comparisons with NeuS will presented in the next section.

Fig. 7. Detail comparisons with NeuS for the setting of with mask supervision.

Fig. 8. Detail comparisons with NeuS for the setting of without mask
supervision.
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TABLE II
THE QUANTITATIVE COMPARISONS (CHAMFER DISTANCES) BETWEEN

OUR METHOD COMBINED WITH EXPLICIT GEOMETRY SUPERVISION AND
OTHER SOTA METHODS ON THE DTU DATASET. BOLD DENOTES THE

BEST PERFORMANCE.

Scan ID HF-Neus VOXURF 2DGS Geo-Neus NeuFG+(Ours)
scan24 0.76 0.65 0.48 0.50 0.48
scan37 1.32 0.74 0.91 0.72 0.76
scan40 0.7 0.39 0.39 0.38 0.38
scan55 0.39 0.35 0.39 0.37 0.38
scan63 1.06 0.96 1.01 0.92 0.88
scan65 0.63 0.64 0.83 0.51 0.51
scan69 0.63 0.85 0.81 0.50 0.49
scan83 1.15 1.58 1.36 1.27 1.15
scan97 1.12 1.01 1.27 0.89 0.73

scan105 0.80 0.60 0.76 0.66 0.66
scan106 0.52 1.11 0.70 0.51 0.48
scan110 1.22 0.37 1.40 0.80 0.75
scan114 0.33 0.45 0.40 0.31 0.31
scan118 0.49 0.47 0.76 0.42 0.40
scan122 0.50 0.72 0.52 0.44 0.43

mean 0.77 0.72 0.80 0.61 0.58

F. Detail comparisons with NeuS
This section demonstrates the detailed comparisons of our

method with NeuS, which is an excellent method to reconstruct
high-fidelity surfaces, in both settings – with/without mask
supervision. As shown in Fig. 7 for the setting of w/ mask,
the reconstruction result of NeuS is greatly affected by the
shadow of the input image, while our method can correctly
reconstruct the geometry under the shadow (Scan 24 of DTU).
In addition, NeuS has difficulty in estimating the texture-
less regions. This is because in the absence of textures, the
parameters related to light reflection are unknown, and the
materials required for rendering are also a part of learning.
However, the proposed fuzzy set representation can be directly
considered a volumetric image. It can be assumed that the
surfaces of all 3D objects are diffused and can be rendered
with or without material information. As shown in Scan
110 of DTU, our method is able to achieve much better
reconstruction result than NeuS does for the textureless region
of the surface. Particularly, for the setting of w/o mask, our
method is much more powerful than NeuS in the aspect of
capturing more geometric details. As shown in Fig. 8, our
method can accurately reconstruct shapes with tiny holes and
slender structures, such as the chimney of the house (Scan 24
of DTU), the holes of the bunny’s hand (Scan 110 of DTU)
and skull’s eye (Scan 65 of DTU) , and the minute hand of
the clock (Clock of BlendedMVS), while NeuS has difficulty
to capture these geometric details.

G. Combination with geometry optimization
Generally, our neural fuzzy geometric representation can

be considered as a baseline and combined with explicit
geometry supervision to further improve implicit surface
reconstruction. We conduct the experiment on the combina-
tion of our neural fuzzy geometric representation with the
additional constraints of SDF optimization and geometry-
consistent designed in Geo-NeuS [60]. For fair comparison,
the experiment results of Geo-Neus are based on its official
implementation repo1. As presented in Table II, our approach

1https://github.com/GhiXu/Geo-Neus

Fig. 9. Qualitative comparison of reconstructed surfaces between our method
combined with explicit geometry supervision and Geo-Neus on the DTU
dataset.

outperforms other SOTA methods, such as HF-Neus [68],
VOXURF [69], 2DGS [70], and Geo-Neus [60]. In addition,
we also conduct the qualitative comparisons with Geo-Neus, as
shown in Fig. 9. Compared to Geo-Neus, our method has more
powerful capabilities for capturing realistic geometric details
(first three rows of Fig. 9) and repairing geometric integrity
(last row of Fig. 9).

H. Ablation study

To demonstrate the effectiveness of the proposed method,
we experimented the following different implementations: (a)
Hn(t) with n = 2; (b) Hn(t) with n = 3; (c) Hn(t) with
n = 4; (d) replacing Hn(t) by Sigmoid function σ(t); (e)
without Eikonal loss. The qualitative and quantitative results
are shown in Figure 10. From the results, it is evident that a
larger value of n leads to better reconstruction results but also
requires more computation. As depicted in the figure, when
n is set to 4, the roof of Scan 24 becomes remarkably flat,
demonstrating the potential efficacy of our method. In our pa-
per, we chose a balanced approach by selecting n = 3, which
allows us to achieve an enhanced optimization boost without
imposing excessive computational demands. In addition, our
Hn(t) outperforms Sigmoid function σ(t), which is a popular
function with similar properties and widely used for multi-
view reconstruction. It is also worth noting that the omission
of the Eikonal function can significantly influence the final
results.

V. CONCLUSION

This paper presents NeuFG, a novel geometric object
learning method for multi-view reconstruction with 3D fuzzy
set theory. The scene learned by NeuFG is essentially a

https://github.com/GhiXu/Geo-Neus
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Fig. 10. Ablation studies. We depict the qualitative results and report the quantitative metrics in Chamfer distance.

mapping from R3 to [0, 1], and thus can be considered
as a volume image and visualized following the standard
volume rendering formulation. As the conversion of the sdf
function is done using a piecewise polynomial smooth step
function, there is no loss of accuracy during the conversion
process. Experiments demonstrate that the proposed method
has superior performance over the state-of-the-art neural scene
representation methods. Particularly, our method has the ability
of accurately reconstructing complex shapes with tiny holes or
textureless region without mask supervision. In addition, our
neural fuzzy geometric representation can be considered as a
baseline and combined with geometry optimization. Compared
with the framework and explanations provided in NeuS, our
solution is much more elegant and simpler.

Generally, our model is limited to represent solid, non-
transparent objects. One of our future works is to extend our
current model for the representation of transparent objects.
Our method is of high computational resource consumption
for network training, like many other learning-based works.
Thus, another future work we will focus on is the reduction
of computational costs of our model by adopting certain
accelerated algorithms, such as instant NGP [71].
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