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Abstract—Next-generation vehicular networks will impose un-
precedented computation demand due to the wide adoption
of compute-intensive services such as autonomous driving, in-
vehicle infotainment systems, and real-time navigation systems,
to name a few. Such services demand computational resources
with stringent latency and resource requirements. Vehicular edge
or fog computing has been adopted to enhance the computational
capacity of vehicular networks; however, the computation, com-
munication, and energy requirements of these applications some-
times surpass the capabilities of edge computing. To address this
challenge, the on-board resources of neighboring mobile vehicles
can be utilized. However, such resource utilization requires an
incentive mechanism to motivate privately owned neighboring
vehicles to participate in sharing their resources. To fill the
gaps, in this paper, we propose a contract theory-based incentive
mechanism to maximize the social welfare of the vehicular
networks. The proposed approach enables the Road Side Units
(RSUs) to provide appropriate rewards to resource sharing
vehicles based on their contribution. This is done by offering
a tailored contract for each contributing vehicle based on its
unique characteristics. Moreover, we derive an optimal contract
scheme for computational task offloading, taking into account
the individual rationality and incentive-compatible constraints.
Finally, we perform numerical evaluations to demonstrate the
effectiveness of our proposed scheme. The proposed scheme
achieves up to 29% higher resource utilization, 17% lower energy
consumption per resource utilization, and 10% higher number of
tasks completed when compared to the linear pricing incentive
baseline.

Index Terms—Next-generation vehicular network, task offload-
ing, contract theory, vehicle to vehicle resource sharing.

I. INTRODUCTION

Intelligent Transportation System (ITS) realized through
connected car technology is poised to transmute the traditional
driving experience to a new digital experience. Over the last
few decades, the automotive industry in cooperation with tech-
giants has been successful in equipping their products with
communication, computation, and storage capabilities. As a
result, such cars have become a part of the communication
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eco-system. However, these cars are still resource-constrained
for applications that require enormous communication, compu-
tation, and storage resources such as autonomous driving. On
the other hand, the inception of electrically charged battery-
propelled vehicles (Electric Vehicles – EV) instead of fossil
fuel-propelled vehicles has considerably contributed to the
decrease in carbon emission, footprints and other greenhouse
gases that are endangering the environment [1], [2]. Apart
from EV, the integration of connected car technology, EV,
and autonomous car will be another step towards realiz-
ing a futuristic service- and application-rich paradigm [3].
Moving forward, connected car technology (with the add-
on of EV and autonomous car) alone cannot complete the
smart city eco-system without enabling technologies such as
cloud computing and Internet of Things (IoT). In this regard,
connected car technology is further extended (from services
and applications perspective) to vehicular cloud computing
[4], [5] and vehicular social networks [6]. Despite the exciting
advancements in these technologies, there are still challenges
such as security, privacy, trust, and operational issues that need
to be addressed [7], [8]. However, the scope of this work
is limited to task offloading and resource utilization. In the
following, we discuss the challenges of ITS realized through
integrated connected, electric, and autonomous cars.

To this end, connected car technology has the following
players: autonomous cars, EVs, fuel-propelled cars, and a
combination of these. In EV, although advances in battery tech-
nologies have significantly improved but the energy preserva-
tion in EVs is still considered as one of the most important
challenges [1]–[3]. Moreover, the integration of information
and communication technologies to enable futuristic services
such as augmented reality [9], infotainment services , and
autonomous driving [10], [11] in connected car technology
put additional strain of high data communication and compu-
tational demands for processing computation-intensive tasks.

For instance, autonomous car performs compute-intensive
tasks such as real-time object detection and recognition, route
calculation, traffic condition monitoring via communication,
and vehicle coordination that result in increased requirements
in terms of energy, computation, and communication. One
promising approach to alleviate these challenges is to out-
source certain resource-hungry tasks and leverage task of-
floading where a car can offload some of its tasks to nearby
devices (that could be another car or a Base Station – BS)
that are not resource constrained (neither energy-constrained
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nor computation resource-constrained).
Task offloading is a key feature in the cloud computing

paradigm to successfully support resource-constrained devices
[12]. However, this approach suffers from the inherent high-
latency limitation of cloud computing due to long distances
between resource-constrained devices and the cloud. In case
of connected car technology, mobility of vehicles introduces
more challenges for efficient task offloading. One possible
solution is the edge computing paradigm in which the com-
puting capability reside in close proximity to end-devices
(i.e., cars), thus, offering on-demand computing resources
with extremely low-latency [13], [14]. Nevertheless, vehicular
networks cover a large geographical area that would require
a huge number of edge servers, posing a significant challenge
in terms of installation and maintenance cost. Furthermore,
the opportunistic and intermittent nature of vehicular networks
will result in huge resource wastage especially in off-peak
hours. To alleviate this problem, task offloading to nearby
vehicles can be an ideal solution to the described challenges.
Such offloading reaps a number of benefits including more
computational capacity, lower latency, and higher communi-
cation efficiency for vehicular networks. In this regard, it is
imperative to design efficient offloading solutions taking into
account, vehicular mobility, high computational capacity and
latency requirements.

The core challenges for vehicle-to-vehicle (V2V) task of-
floading in a highway scenario include meeting the task’s
latency requirement and motivating privately owned mobile
cars to participate in offering its resources. Meeting the
latency requirements becomes increasingly challenging due to
vehicular mobility that might result in longer distance between
moving cars and eventually result in more resources (energy)
required to serve the offloaded task. Moreover, additional
resource overheads such as communication channel utilization
might incur, which if not handled properly, might hinder
the performance in terms of latency of the offloaded task.
Furthermore, the serving cars also have resource constraints in
terms of additional energy, communication, and computation
power that cannot be shared unconditionally. Similarly, serving
other cars would incur further computation overhead due to
task processing in terms of its own resources (i.e., consumed
computation and communication power) that require compen-
sation by the vehicular network, otherwise it will be very
hard to convince vehicular nodes to participate in the task
offloading scheme. Thus, an efficient, viable, and acceptable
incentive mechanism is required to motivate vehicular nodes1

to participate in the task offloading as well as optimize the
economical benefit of the vehicular network subject to the
latency requirement of each task.

A. Related Works

Task offloading has captivated significant attention in fu-
turistic networks such as smart cities, smart homes, and

1We want to clarify that we use the terms ‘cars’, ‘vehicular nodes’,
and ‘vehicles’ interchangeably and they represent vehicles including EVs,
autonomous cars, and normal vehicles, unless specified, otherwise.

vehicular networks due to the emergence of novel applica-
tions and high computational demands. Several works have
been carried out to enhance the task offloading performance
in edge computing considering key factors such as fairness
among tasks [15], energy optimization [16], etc. In particular,
there have been several recent works [17]–[19] that have
utilized edge computing paradigm in vehicular networks to
achieve fruitful performance gains. For instance, in [17], the
authors solved a mixed-integer linear programming problem
to optimize the cost of edge computing deployment in a
vehicular network coverage area. In [18], the authors proposed
a heuristic energy-efficient task scheduling approach for edge
computing in vehicular networks. Edge computing has also
been proposed to enable infotainment services in vehicular
networks. In this context, an optimization-based solution to
minimize the task latency in vehicular networks for joint com-
munication, caching, and computational problems, has been
proposed in [19]. Indeed, edge computing for vehicular net-
works has enhanced the network performance as evident from
the aforementioned works; however, the exponential growth of
smart vehicles with increasing task offloading requirement will
strain the edge computing capacities and increase the network
cost due to massive installation of edge computing servers
to meet the next-generation vehicular network requirements.
To alleviate this problem, one possible solution is to employ
the strong on-board computing resources of the vehicles via
V2V communication for task offloading. This phenomenon is
also referred to as vehicular Fog to meet the next generation
vehicular network requirements.

Leveraging on-board vehicular resources for task offloading
have been studied in [20]–[25]. In [20], the authors exploited
the vehicular resources to provide a collaborative task offload-
ing mechanism to minimize the latency of the task. Similarly,
the work in [21] proposed Fog Following Me (Folo), a solution
by utilizing the vehicular resources to achieve a latency bound
solution. Similarly, in [22], the authors proposed an efficient
task offloading solution to enhance the quality of experience
for its users by utilizing vehicular resources. Although these
works significantly improved the task offloading mechanism.
The principal assumption is that vehicular resources can be
utilized unconditionally and these works did not consider any
consent from the vehicle owners. Depending on the owner of
the vehicle, both consent and motivation for using vehicular
resources are essential. To this end, an incentive is the only
solution to motivate owners to rent out the resources of
their vehicles. An interesting incentive-based task offloading
scheme based on the Stackelberg game has been proposed
in [23] that uses parked vehicle resources to run distributed
compute-intensive applications with the help of a sub-gradient-
based iterative algorithm. Similarly, the work in [24] also
proposed a multi-level offloading scheme using a Stackelberg
game to maximize the benefits for both the vehicles and
the edge servers. In [25], another Stackelberg game-based
incentive scheme has been devised for task offloading in which
the resources of parked vehicles are utilized to maximize
the benefits of RSU, parked vehicles, and serving vehicles.
Typically in the Stackelberg game framework, a leader has
perfect information of follower’s strategy leading to a scenario



of information symmetry. Then, the results of a Stackelberg
game are generally obtained by an iterative algorithm requiring
several iterations. However, practically the owners of private-
owned vehicles are reluctant in revealing their strategies or
information due to privacy concerns or other personal factors.
Thus, we require incentive mechanisms that can handle the
situation of information asymmetry.

To address the challenge of information asymmetry in wire-
less networks, contract theory framework has been adopted
to design an effective incentive mechanism [26]. Zhang et
al. [27] proposed efficient computation offloading strategies
using contract theory that reduces latency and transmission
cost for task offloading in vehicular networks. They further
extended their work by prioritizing the offloaded tasks [28].
Similarly in [29], the authors used the integration of contract
and matching theories to devise and solve the resource allo-
cation and task assignment issues in vehicular fog networks.
Similarly, in [30], the authors proposed the integration of
learning with contract theory to enhance the task offloading
performance in vehicular networks. In all the aforementioned
contract-based task offloading schemes, task offloading in a
mobile environment does not take mobility into account which
is the pinnacle of vehicular networks. In practice, mobility
can significantly hinder the overall performance of the task
offloaded. Therefore, a mobility-aware design of a contract-
based incentive scheme is essential in vehicular networks.
Furthermore, the incentive mechanism should be able to
address the energy efficiency aspect, especially in electric
vehicles as executing tasks would consume energy and this
accounts for the most important parameter in task offloading
in vehicular networks. In [31], an effective solution based on
an Alternating Direction Method of Multipliers (ADMM) has
been proposed to solve the joint task offloading and power
control problem in vehicular networks. However, this approach
only allows energy-intensive tasks to be offloaded to the edge
as opposed to offloading to other vehicles. Another notable
tasks-offloading solution to assist energy-constrained vehicles
is the introduction of Unmanned Aerial Vehicles (UAVs) to
assist edge computing servers [32]. However, this type of
solution increases the cost of the network.

In summary, none of the aforementioned solutions consider
the incentive-based task offloading approach for practical
mobile environments with information asymmetric scenarios.
Setting out incentivizing measures in terms of task offloading
will motivate private-owned cars to participate and result in
a huge resource capacity for vehicular networks. This will
result in unlocking the full potential of novel resource-hungry
services in next-generation vehicular networks.

B. Contributions and Organizations

Motivated by the aforementioned challenges, in this work,
we design an incentive mechanism to enable task offloading
in vehicular networks subject to energy, computation, and
communication constraints. Designing an effective incentive
mechanism demands that the incentives or rewards are paid to
the participating nodes based on their contributions, i.e., partic-
ipant that contribute more in the offloading must be rewarded

more and vice-versa. Moreover, privately-owned cars will
act selfishly claiming high preference towards contribution to
harness maximum reward from the incentive mechanism. This
becomes challenging for the incentive mechanism designer
(i.e., RSU) to design an effective incentive mechanism because
of the lack of a prior information that is only available locally
at each participating car (i.e., information asymmetry). To this
end, we propose a contract theory-based framework and design
the task offloading incentive mechanism under information
asymmetry. Contract theory framework from microeconomics
enables to capture the interactions between the employers and
employees in which the skill-set of the later are unknown in
advance (i.e., information asymmetry). In our task offloading
scenario in vehicular networks, the RSU acts as the employer
and offers a bundle of contracts to resource sharing cars
(i.e., employees) whose preference is unknown. Each car then
chooses a contract that maximizes its utility for performing the
task. The contract offered by the RSU represents the reward
offered to the participating car for providing its resources (for
instance computation and energy resources) to perform the
task. Although the preference of participating car in unknown
at the RSU side, it has prior knowledge about the evaluation
function (preference), an example would be that the evaluation
function is strictly concave and has non-decreasing nature.
This information is used by the RSU in designing the contract
for the incentive calculation. The benefits of using contract
theory in our scenario enable us, i) to handle the information
asymmetry scenario by allowing self-revealing contract that
is primarily important for multi-owner markets (i.e., private-
owned cars) where information sharing between owners raise
privacy and security concerns, ii) to have a distributed control
in which the task offloading is only monitored by the RSU
instead of optimization-based approaches in which the RSU
has to carry out all operations in a centralized way, and iii)
to devise optimal contract thereby maximizing the benefits in
terms of utilities both for RSU and the participating cars. Our
main contributions of this work are summarized below.

• We propose a novel system model where cars in vehicular
networks perform task offloading under the information
asymmetry condition. Then, we formulate an optimiza-
tion problem for task offloading aiming at maximizing
the social welfare capturing the utilities of both the RSU
and cars. The formulated problem turns out to have a
very large size of constraints and obtaining an optimal
solution for such a large size is extremely difficult for
practical settings.

• Then, we propose an equivalent problem with reduced
constraint size. Finally, we propose an optimal contract-
based incentive scheme for task offloading based on in-
dividual rationality and incentive-compatible constraints.

• We carry out numerical analysis and obtain results to
validate the superiority of our proposal under different
scenarios and show that the proposed contract-theoretic
model can guarantee that the participating cars receive
positive payoffs and compatible incentives. Moreover, the
proposed scheme achieves up to 29% higher resource
utilization, 17% lower energy consumption per resource



utilization, and 10% higher number of tasks completed
when compared to the linear pricing incentive baseline.

The rest of this paper is organized as follows. Section II
presents the system model of this paper and Section III de-
scribes in detail the contract-theory based problem modelling
followed by its solution in Section IV. In SectionV, we
present the analysis of the numerical results to validate the
performance of our proposed solution. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 illustrates our system model in which a vehicular
network consisting of a single Road Side Unit (RSU) equipped
with a Multi-access Edge Computing (MEC) server is con-
sidered. The RSU is responsible for assigning resources, its
coordination, and task assignment to a set of EVs. These EVs
are distributed using the Homogeneous Poisson Point Process
(HPPP) under the RSU service radius R. Moreover, we assume
that the RSU has prior knowledge from the previous time
slot pertaining to EV pairs that can support each other in
the offloading process. Multiple approaches such as matching
games [29], learning-based clustering approaches [33] can be
adopted through which the best EVs pairs can be formed based
on parameters such as EVs distance, energy, etc.

In this paper we consider a set N = {1, 2, . . . , N} pairs of
EVs. For each i ∈ N , let iSE ∈ i be the source EV (SE) that
requests for offloading service to perform a task and let iDE ∈
i be the destination EV (DE) that has available resources to
assist the RSU for serving the task of this SE. The task profile
of an SE iSE is given by oi = {si, ci, ei}, where si represents
the size of task (bits), ci is the number of CPU cycles required
to process a bit of data of the task, and ei represents the worst
case execution threshold (i.e., latency threshold) for the task of
SE iSE . Moreover, we consider a scenario2 in which these EVs
drive on a freeway or highway following the same direction.

In this study, we consider three stages in the offloading
process. In the first stage, the SE has to transfer the input
data of the task to DE, i.e., oi. In the second stage, the
DE processes the task oi according to SE’s requirement. In
the third stage, the DE sends back the result(s) to the SE.
These three stages are dependent and related to each other, if
any of the stages fails then the offloading process also fails.
Therefore, to successfully offload we have to guarantee the
completion of all stages. Next, we present the mobility model
along with their communication and computation models in
the subsequent subsections.

A. Vehicle Mobility Model

In this paper, we consider that both SE, and DE pair i
are travelling from their initial position xSEi (t0) and xDEi (t0)
at time t0 with velocity vSEi (t0) and vDEi (t0), respectively.
Similarly, the acceleration at time t0 of both SE, and DE pair
i is represented by aSEi (t0) and aDEi (t0), respectively. Since
both EVs are moving with non-negative velocities, thus, to

2In this study, we consider that all EVs are associated with a single RSU,
and challenges stemming from multi-RSU settings such as hand-off, task
division and etc. would be subject to our future work.
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Fig. 1: Vehicle Assisted Task Offloading.

TABLE I: Summary of the key notations.

Notation Definition
N Set of pairs of EVs
iSE Source EV
iDE Destination EV
oi Task profile
si Size of task
ci Number of required CPU cycles
ei Execution threshold

xSE
i (t0) Initial position of SE at time t0
xDE
i (t0) Initial position of DE at time t0
vSE
i (t0) Velocity of SE at time t0
vDE
i (t0) Velocity of DE at time t0
aSE
i (t0) Acceleration of SE at time t0
aDE
i (t0) Acceleration of DE at time t0
4ai Relative acceleration
di Distance at time t
rUL
i Uplink data rate of pair i
rDL
i Downlink data rate of pair i
pUL
i Uplink transmission power of pair i
pDL
i Downlink transmission power of pair i
gUL
i Uplink channel gain of pair i
gDL
i Downlink channel gain of pair i
I0 Additive White Gaussian Noise (AWGN)
W System bandwidth
hi Total CPU cycles of DE to process the task of SE
lexei Execution delay
lUL
i Uplink delay
lDL
i Downlink delay
τi Execution threshold
κ Constant of energy consumption

measure the distance between each other at any time t, we
use the linear motion of relative acceleration between SE and
DE pair i represented by 4ai. Then, based on the notion of
relative acceleration 4ai, we can observe whether or not SE
and DE pair i is able to use V2V communication. Formally,
4ai is calculated using the kinematic equation as follows:

aSEi (t0) = lim
t→t0

|vSEi (t)− vSEi (t0)|
t− t0

,

aDEi (t0) = lim
t→t0

|vDEi (t)− vDEi (t0)|
t− t0

,

4ai(t0) = |aDEi (t0)− aSEi (t0)|.

(1)

Note that relative acceleration between SE and DE might
lead to a problem of task interruption due to the difference in
acceleration between the SE and DE after some time. The



relative acceleration will define the distance after the time
interval 4t = t − t0 between both SE and DE if it is
too large during the interval, the distance between two EVs
might violate the acceptable range dmax for V2V communi-
cation. Thus, interpreting the task offloading mechanism. An
offloading process is completed if and only if after UL and
EXE step, SE and DE pair i is still able to communicate
with each other or exist within the acceptable range of V2V
communication. Therefore, we need to calculate the distance
di(t) at time instant t. As the EVs are mobile with their
respective velocities and acceleration, the distance between SE
and DE might vary based on their relative acceleration 4ai.
Then, di(t) can be calculated using the following sequence of
kinematics equation:

xSEi (t) =

t∫
t0

(
vSEi (t0) + aSEi (x)x

)
∂x,

xDEi (t) =

t∫
t0

(
vDEi (t0) + aDEi (x)x

)
∂x,

⇒ di(t) = 4vi(t0)t+
1

2
4ai(t)t2.

(2)

On the other hand, the RSU is only aware of the current veloc-
ity of the SE-DE pair at time t0, and is unable to determine the
SE-DE pair’s velocities for any future t time slot. Therefore,
it is hard to find the distance between two vehicles. One
viable option for the RSU to observe this information would
be if both SE and DE synchronously increase or decrease
its acceleration, thereby enabling the offloading process to be
done within the duration of4t. However, in reality, each EV’s
behavior is independent and different from other EVs, thus,
this observation is not applicable. This leads to the problem
of interruption of the offloaded process. To enable such an
option, the RSU has to offer a reward to motivate EVs to syn-
chronously increase or decrease its acceleration with respect to
each other during the offloading process. Then, the goal is to
enable an incentive-based task offloading mechanism between
these mobile EVs with the collaboration of the RSU. Next
subsection, we define the communication and computation
model for the proposed incentive-based offloading scheme.

B. Communication Model

In this section, we present our communication model. In
the model, we choose a Long-Term Evolution (LTE) and Fifth
Generation (5G) based technologies opposed to the Dedicated
Short-range Communications (DSRC)/IEEE802.11p technolo-
gies for communication modeling as the LTE provides a higher
channel bandwidth compared to the DSRC which is more
suitable for task offloading in vehicular networks. For these
LTE merits, the proposed solution is based on it [29], [34].
However, the methodology developed in this paper can be
applied to the DSRC based technologies as well. In order to
enable communication in any pair of EVs, we need to calculate
the achievable rate between them under both scenarios UL and
DL. Let rULi represent the achievable data rate (i.e., UL step

communication) of SE-DE pair i at time t0 which can be
calculated as follows:

rULi = W (t0) log2

(
1 +

pULi gULi di(t0)−α

I +N0

)
, (3)

where W (t0) is the system bandwidth at the time t0, pULi
represents the transmit power of SE iSE , gULi is the chan-
nel gain of between SE-DE pair i and di(t0) represents
the distance between SE-DE pair i, where α represents the
path loss exponent. We use the slow-flat Rayleigh fading to
deal with the small scale fading, where its channel gain is
assumed to be exponentially distributed with unit mean [35].
I =

∑
i′∈N\i

pULi′ gULi′ di′(t0)−α represents the interference from

all other i′ V2V pairs and N0 represents the Additive White
Gaussian Noise (AWGN).

Note that we have considered that RSU allocates orthogonal
resource blocks for enabling the V2V communication. Thus,
we assume no inter resource blocks interference in this work
and would be a subject for future studies. Similarly, the DL
achievable data rate between DE and SE pair i after time t =
t0 +4t is represented by rDLi (t) as follows:

rDLi = W (t) log2

(
1 +

pDLi gDLi di(t)
−α

I +N0

)
. (4)

Based on (3), and (4), we can calculate the UL and DL delay
as following:

lULi = si/r
UL
i , (5)

lDLi = souti /rDLi , (6)

where si is the task size as input to the DE and souti represents
the result in terms of size of the computational task after the
execution step. Moreover, the transmit power for DL and UL
is calculated as:

pULi =
I0

gULi di(t0)−α

(
2r

UL
i /W (t0) − 1

)
, (7)

pDLi =
I0

gDLi di(t)−α

(
2r

UL
i /W (t) − 1

)
. (8)

Next, we present our computation model.

C. Computation Model

In this section, we present our computational resource
allocation model. To find the required computational resource
for executing a task, we need to calculate the total delay
for executing the task. Therefore, we first calculate the delay
required to execute the offloaded task from SE to DE. Given
the size of offloading task si, the processing or execution delay
(i.e., lexei ) can be calculated as follows:

lexei = cisi/hi, (9)

where hi is the total CPU cycles allocated by DE to process the
task of SE. According to the delay constraint ei, the offloading
task must be completed within the time threshold executing
all the three steps, i.e., UL, DL, and EXE steps. Let 4ti be
the time that SE-DE pair i requires to execute these steps,



then, the following constraint requires to be satisfied for the
successful execution of the task offloading:

lULi + lDLi + lexei ≤ τi = min{ei,4ti},∀i ∈ N. (10)

Based on (10), we can measurement the total required
computational resource in terms of computation cycles hi by
the DE iDE to execute the task of SE iSE given as follows:

hi ≥
sici

τi − lULi − lDLi
,∀i ∈ N. (11)

Note that from (11), a DE can measure the number of
computation cycles it has to provide for successful task execu-
tion subject to the task’s execution threshold τi by taking the
inequality to be the equality constraint. Thus, we can observe
the correlation between computational resource requirement
and relative acceleration from (10) and (11). It can be inferred
that if the relative acceleration between the SE and DE is
higher, more computation resources need to be provided by
the DE to abide by the task’s execution threshold τi. In the
next subsection, we define the utility function of our offloading
problem in mobile V2V networks.

D. Utility modeling and Task Offloading challenges

First, we model the utility of our approach under the energy
consumption with respect to the quality of service (QoS) of
the task. In this paper, we consider the energy efficiency
problem, hence, we formulate our utility function under energy
consumption as following:

E(i) = pULi si/r
UL
i +pDLi souti /rDLi +κ(hi)

2si,∀i ∈ N, (12)

where κ is a constant of energy consumption that depends
on the CPU architecture. In order to utilize DE resources, the
RSU has to pay an incentive amount to the DE proportional
with its effort in task offloading services.

Then, the objective of our task offloading problem would be
to minimize the utility given in (12) subject to the minimum
required computational resource given in (11) and worst-
case latency threshold for each offloaded task i provided in
(10). Moreover, the problem also needs to capture the relative
acceleration bounded by the maximum V2V communication
range given as follows:

4ai ≤
2dmax
τ2i

. (13)

Note that minimizing the utility of the task offloading
problem in highly mobile V2V networks is not a trivial task
subject to the aforementioned constraints. The main challenges
are the coupling stemming from the minimum required com-
putational resource given in (11) and un-observable values
of relative acceleration 4ai given in (13) due to the lack
of prior knowledge. Thus, it is extremely hard to obtain
an optimal solution for the task offloading problem without
significant message passing overhead. For instance, the RSU
needs information pertaining to SE and DE real-time locations,
current accelerations, DEs’ computational resources and etc.
to compute the feasibility of task offloading between the
SE-DE pair. Thus, given the tight latency constraint and
highly mobile V2V networks obtaining an optimal solution

for such a problem becomes intractable for a practical setting
of vehicular networks using traditional optimization based
approaches. Moreover, another challenge would be motivating
private-owned DEs to contribute towards offloading service
by providing them with appropriate incentives or rewards and
ensuring that private owned DEs do not act selfishly by not
revealing its true local capabilities which can result in degrad-
ing of the offloading services. This reflects the information
asymmetry challenge in which the RSU is unaware of DE’s
local state and capabilities.

Therefore, we propose a solution approach based on the
framework of contract theory through which we can handle
the aforementioned challenges of un-observable values and
information asymmetry, i.e., lack of prior information (local
DE information). Moreover, adopting this approach enables us
to make the relative acceleration 4ai observable which results
in obtaining the distance between the SE-DE pair after time
4t. Consequently, then the coupling constraint in (11) can be
relaxed as lULi , lDLi , lexei is separately observable.

III. CONTRACT THEORY BASED MODEL FOR TASK
OFFLOADING

In this section, we model our task offloading problem
using the contract theory framework and propose a contract
based incentive mechanism for task offloading in mobile V2V
networks. In the following subsections, first, we model the
different types of EVs3 that exist in our model. Second, we
introduce the utilities of both the participating DEs and the
RSU followed by the introduction of the social welfare for
the task offloading problem.

The goal of this work is to design an incentive approach that
aims to maximize the utility of both the DEs and the RSU.
As stated in the previous section, we have N pair of SE-
DE denoted as N = {1, 2, . . . , N}, in which, each DE has
heterogeneous capabilities: computational capacity, accelera-
tion, energy, etc. Then, to enable the V2V offloading service,
the RSU has to specify a bundle of contract {U [(θ)], R(θ)}.
Where R(θ) is the payoff or reward given to the DE at type
θ for using its resources and U [(θ)] represents the expected
benefit gained by the RSU for the type θ. Note that it is
assumed that the function U [(θ)] is strictly increasing function
with respect to θ, which infers that a DE who provides more
expected benefit value to RSU will get more reward. Next, we
design the contract types based on different DE types in our
system.

A. DE Vehicle Types

In this subsection, we define the DE types available in our
system. The types of DEs are defined based on their effort to
contribute to the task offloading service. Thus, if DE has spent
a higher effort in the system it is given more reward and has
a higher type compared to DE putting a lower effort.

In our work, we define the availability of a DE iDE to
perform task offloading based on the relative acceleration with

3In this study, we base our analysis on the DE as it is sharing its resources
and acting as an employee.



respect to SE iSE . Thus, the type of each DE depends on its
acceleration relative to SE. Let us assume a set of DE belongs
to a group type θ if and only if it has a relative acceleration
of 4aθ with respect to an SE. Since the behavior of DE is
unpredictable, and has different acceleration representing its
type, therefore, this information is unknown to the RSU. Thus,
it cannot measures the availability of DE for any SE after 4t
time slots. However, under information asymmetry condition,
the only information available at RSU is the probability density
function (PDF) f(θ) on a continuous interval [θ, θ]. Thus,
the RSU is then required to design multiple contracts for
all types starting from the minimum (θ) to maximum (θ)
relative acceleration represented by the continuous interval
[θ, θ]. Note that the maximum relative acceleration threshold
can be calculated by setting an acceptable communication
distance between SE-DE pairs (i.e., dmax ). As we have a set
of SEs in our network that requires offloading services, then,
for each SE iSE ∈ i, the RSU will offer a contract bundle[
U(i, θ), R(i, θ)

]
. However, it is assumed that each SE-DE

pair i task is identically independent with each other, then,
we can analyze for a single task and apply the analysis for
the whole system. Thus, we simplify the contract bundle as[
U(θ), R(θ)

]
, where U(θ) is a utility function for any given

task of SE-DE pair i at type-θ, and R(θ) is the reward associate
with U(θ).

Definition 1. The type of DEs are sorted in ascending order

0 < θ < . . . < θ < . . . < θ, (14)

The type of DE depends upon the relative acceleration with
respect to the SE. If relative acceleration is small, it will be
associated with a lower type, and vice versa.

Based on the type of DE, the RSU will offer a contract to
a DE. The DE can either choose to participate or reject the
contract offered based on its local or private information. In
case of DE declining to participate, we can assume that a DE
has signed a contract of

[
U(0), R(0)

]
, U(0) = 0, representing

the DE and RSU will be awarded R(0) = U [R(0)] = 0 utility.
Next, we define the RSU and DEs utilities for designing the
contract in our model.

B. RSU Utility

The utility function of the RSU to offload the SE’s task
is linear to its task size. Then, the utility of the RSU for
offloading oi at θ be represented as:

URSU (θ) = U(θ)− γR(θ), (15)

where R(θ) is the incentive RSU has to pay to the DE with
type θ to process the task and γ represents the unit cost of the
effort paid by the RSU. U(θ) represents the expected utility
benefit achieved by the RSU by utilizing the resource of DE
at type θ. In this work, we use (12) as the utility U . Moreover,
it can be seen from (15) that it is beneficial for an RSU to
enable V2V communication between the SE-DE pair only if
the U(θ) − γR(θ) > 0. As there are infinite number of DE
types represented by the contracts ranging from the interval

[θ, θ] of RSU for any given SE-DE pair’s i task, then, the
expected utility of the RSU can be calculated as follows:

URSU =

θ∫
θ

URSU (θ)f(θ)dθ. (16)

C. DE Utility

The utility of any DE with type-θ associated with a bundle
of contract

[
U (θ) , R(θ)

]
is denoted as:

UDE(θ) = θν
(
R (θ)

)
− ρU (θ) (17)

where ν(·) is the self evaluation function of the DE,
which is strictly concave, increasing function of R(θ), where
∂ν
[
R (θ)

]
/∂R (θ) > 0 and ∂2ν

[
R (θ)

]
/∂R (θ)

2
< 0. ρ rep-

resents the unit cost of effort put in by the DE according to the
expected utility U . This can be represented as additional power
or energy consumed by the DE to process the computation task
of SE. Given the above information, DE needs to choose the
bundle of contract that maximizes its utility.

D. Social Welfare

In this subsection, we design the social welfare of our
incentive-based proposed approach. Social welfare is defined
by the summation of the RSU and DEs utilities. In our work,
there are N SE-DE pairs that are involved in the offloading
of tasks, each choosing a contract bundle associated with type
θ from the continuous range [θ, θ]. Then, the social welfare
can be defined as the summation of both the RSU and DEs
utilities as follows:

Γ =

θ∫
θ

(
URSU (θ) + UDE(θ)

)
f(θ)dθ,

=

θ∫
θ

(
θν
(
R (θ)

)
− γR(θ)

)
f(θ)dθ.

(18)

The aim of this work is to maximize the social welfare of
the network for the task offloading problem which implicitly
maximizes the utilities of both the RSU and the DEs.

IV. PROPOSED APPROACH

In this section, we present the solution to the task offloading
problem in V2V networks. First, the necessary conditions are
derived to achieve a contract followed by the formulation
of the contract based optimization problem to handle the
offloading problem. Finally, we present the proposed solution
of the optimization problem to obtain the optimal contracts.

A. Contract Feasible Conditions

In this subsection, we discuss the contract feasibility con-
ditions. A contract is considered feasible if and only if
two conditions are held, i.e., Individual Rationality (IR) and
Individual Compatibility (IC).



Definition 2. Individual Rationality (IR): The utility of a DE
participating in any feasible contract bundle

[
U (θ) , R(θ)

]
must be non-negative,

UDE(θ) = θν(R (θ))− U (θ) ≥ 0. (19)

The IR constraint ensures that a DE that offers its offloading
services achieves a benefit that motivates DEs’ participation in
the offloading scheme. If UDE(θ) ≤ 0, the DE will not accept
the contract as it is not beneficial for it. Next, we discuss the
second basic property for the contract feasibility, i.e., incentive
compatibility. It is important that once a contract bundle is
offered by the RSU, the DE of type θ chooses the contract
designed only for its type, i.e., (type θ). This is ensured by
the incentive compatibility constraint as follows:

Definition 3. Incentive Compatible (IC): A DE must prefer
the contract designed for its type θ among the offered contract
bundle

θν(R (θ))− U (θ) > θν(R (θ)
′
)− U

(
θ′
)
,

∀θ, θ′ ∈ [θ, θ].
(20)

This property of contact theory ensures that a DE always
chooses the correct type to maximize its utility. Otherwise, it
will be penalized for choosing the wrong type. This property
ensures private owned selfish DE’s to choose the correct type
to maximize their benefit. Next, we define an additional condi-
tion for the reward function in the contract theory framework,
i.e., the monotonicity condition. This condition ensures that
the DE with a higher type receives more reward as it would
contribute more in the task offloading. Formally, stated as:

Definition 4. Monotonicity: Given any task of SE-DE pair
i ∈ N , for any feasible contract bundle

[
U (θ) , R(θ)

]
, the

reward function must satisfy the following condition,

0 = R(0) < R(θ) < . . . < R(θ) < . . . < R(θ). (21)

It is equivalent to stating that if DE spends more effort in
the offloading service it will get more benefit compared to any
DE that spends less effort.

In summary, these aforementioned conditions ensure that
DEs processing any task of SE iSE with type θ receives a non-
negative benefit, maximizes its utility by choosing the correct
type of contract among all types, and a DE that participates
more resources in the task offloading service receives more
benefit when compared to less participating EVs.

B. Problem Formulation

Given the feasibility conditions for contract design, we
formulate the task offloading problem with an objective to

maximize the social welfare of the network as follows:

max
U(θ),R(θ)

θ∫
θ

(
θν
(
R(θ)

)
− γR(θ)

)
f(θ)dθ (22a)

s.t.
C1 :θν[R(θ)]− U(θ) ≥ 0, (22b)

C2 :θν(θ)− U (θ) > θν(θ′)− U
(
θ′
)
, (22c)

C3 :0 = R(0) < R(θ) < . . . < R(θ), (22d)

∀θ, θ′ ∈ [θ, θ].

The constrain (C1) represents the IR constraint, and the IC
constraint is represented by (C2). Moreover, for simplicity, we
denote ν(R (θ)) as ν(θ). The constrain (C3) represents the
monotonicity condition ensuring the reward function which is
an increasing function of θ. Note that the problem (22) has a
very large size due to constraints (C1) (i.e., |[θ, θ]|) and (C2)
(i.e., |[θ, θ]| × |[θ, θ]| − 1). Thus, finding a solution for such
large scale problems for a practical settings is intractable or
time consuming which cannot be applied for practical mobile
V2V networks due to stringent delay requirements and highly
dynamic nature. Therefore, in order to solve this problem,
we need to reduce the size of the problem. This is done by
reducing the number of constraints in the problem. Therefore,
to reduce the size, we do the following scaling of IC and IR
constraints:

Lemma 1. Local Downward Incentive Constrains (LDICs):
For any feasible contract bundle

[
U (θ) , R(θ)

]
, the following

condition will be held:

θν(θ)− U (θ) ≥ θν(θ)− U (θ) ,

θ ≥ θ > θ ≥ 0.
(23)

if and only if

θν(θ)− U (θ) > θν(θ − ξ)− U (θ − ξ) , (24)

where ξ represents any positive number, i.e. ξ > 0.

Proof: We can observe from the IC constraint that:

θ1ν(θ1)− U (θ1) > θ1ν(θ2)− U (θ2) ,

θ2ν(θ2)− U (θ2) > θ2ν(θ1)− U (θ1) ,
(25)

where θ1, θ2 ∈ [θ, θ], θ1 < θ2. Then, based on (12) and strictly
concave function property of ν(·), it can be observed that the
equality only occurs if and only if θ1 = θ2. When θ1 6= θ2,
after some manipulations, we can achieve the following:

ν(θ1) (θ1 − θ2) > ν(θ2) (θ1 − θ2) (26)

Then, we divide both sides of inequality with the term (θ1−
θ2), since θ1 < θ2, we get ν(θ2) > ν(θ1). Thus, for any given
θ > θ̂ = θ − ξ > θ, we have:

θ
(
ν(θ)− ν(θ̂)

)
≥ θ̂

(
ν(θ)− ν(θ̂)

)
. (27)

On the other hand, ν(·) is a strictly concave function, increas-
ing function of R(θ). Moreover, note that if ν(θ) ≥ ν(θ̂), then
UDE(θ) ≥ UDE(θ̂) must also hold. Then, using the property
of IR constraints, without loss generality, we can approximate



ν(θ) by U(θ), and ν(θ̂) by U(θ̂), respectively. Hence, we can
rewrite (27) by the following:

θ
(
ν(θ)− ν(θ̂)

)
≥ U(θ)− U(θ̂) (28)

From (27), and (28) we can express as follows:

θν(θ)− U (θ) ≥ θν(θ̂)− U(θ̂),

≥ . . . ,
≥ θν(θ)− U (θ) .

(29)

This means that if the LDIC between adjacent types hold, then
all LDICs hold automatically. Hence, we have completed the
proof for LDICs.

Lemma 2. Local Upward Incentive Constrains (LUICs): For
any feasible contract bundle

[
U (θ) , R(θ)

]
, the following will

be held:
θν(θ)− U (θ) ≥ θν(θ)− U(θ),

0 < θ ≤ θ ≤ θ.
(30)

if and only if,

θν(θ)− U (θ) ≥ θν(θ + ξ)− U (θ + ξ) , (31)

where ξ represents any small positive number, i.e., ξ > 0.

Proof: Similar to the proof of Lemma. 1. For given any
θ < θ̂ = θ + ξ > θ, we have :

θν(θ)− U (θ) ≥ θν(θ̂)− U(θ̂),

≥ . . . ,
≥ θν(θ)− U(θ).

(32)

Thus, we complete the proof for LUICs.

Lemma 3. IR constraints reduction: The number IR con-
straints will be held if and only if

θν(θ)− U(θ) ≥ 0. (33)

Proof: Based on (26), (28), and Monotonicity of U , we
can easily see that

θν(θ)− U(θ) ≥ θν(θ)− U(θ),

≥ . . . ,
≥ θν(θ)− U(θ).

(34)

Therefore, total number of |[θ, θ]| can be reduced into a single
constraint (33). It means if the utility of the lowest type is
satisfied, the entirety of the constraint set will hold.

C. Optimal Contract Design

Based on the aforementioned lemmas and feasible con-
ditions, we can rewrite the reduced problem of (22) as an
equivalent problem as follows:

max
U(θ),R(θ)

θ∫
θ

(
θν
(
R(θ)

)
− γR(θ)

)
f(θ)dθ, (35a)

s.t.
C1 :θν[R(θ)]− U(θ) ≥ 0, (35b)
C2 :θν(θ)− U (θ) ≥ θν(θ + ξ)− U (θ + ξ) , (35c)
C3 :θν(θ)− U (θ) ≥ θν(θ − ξ)− U (θ − ξ) , (35d)

C4 :0 = R(0) < R(θ) < . . . R(θ) . . . < R(θ), (35e)

∀θ, θ′ ∈ [θ, θ],∀ξ ≥ 0.

Since the number of IR and IC constraint are now reduced.
The problem in (35) can be solved by using the Lagrangian
multiplier method by relaxing the constraint (C4). This can
be considered as a projection function that can capture the
feasibility of the solutions [36]. The pseudo-code for the
contract based incentive scheme for task offloading in mobile
V2V networks is presented in Algo. 1.

D. Practical Implementation

The Algo. 1 starts by initializing the parameters as inputs
(line 1). Once the RSU receives requests from SEs regarding
the task, the RSU needs to check if there are some potential
DE in the range of the requesting SE to which the task can
be offloaded. After receiving this information regarding the
SE-DE pairs, the RSU will inform the DEs regarding the the
task profile oi = {si, ci, ei},∀i ∈ N by using the broadcast
channel. Then, all vehicles will calculate its effort for serving
the task via Eq. (7, 8, 11, 9 ), simultaneously. Note that
the task’s payload consists of 3 real values in which each
value can be represented by 4 bytes [37], thus, 12 bytes of
overhead in total to execute this step. Then, the RSU solves
the problem stated in (35) to calculate the optimal contract
and inform this information to the candidate DE (lines 3-4).
This will incur an overhead in which the payload would be
4 × 2 × T bytes for each contract bundle (i.e., contract type,
reward value). Moreover, it will also calculate the initial inter
SE-DE pair distance di (line 5). If di turns out to be greater
than the maximum V2V range dmax, then, the RSU will not
offer the contract and will serve the request itself (lines 6-
7). Otherwise, the RSU will inform the contract bundles to
the candidate DE along with information regarding the task
profile, SE’s position, and its acceleration (lines 8-9). Note
that, if the relative acceleration between SE and DE is high,
the inter SE-DE distance can violate the maximum V2V limit
threshold dmax. Based on these pieces of information, the
DE will estimate the effort required to serve the task and
evaluate the contract (line 10). After the evaluation of the
contract by the DE in terms of its utility, it will send feedback
(i.e., payload of 4 bytes which contains only the contract type)
to the RSU making a decision to either accept or reject the
contract based on its local information (lines 11-17). After
getting the feedback from DE in case of DE’s rejection, RSU
serves the request. Otherwise, the RSU will sign the contract
with the DE that has accepted for offering the offloading



Algorithm 1 Optimal Contract based Task Offloading

1: Input: θ, θ, f(θ),v, γ, oi = {si, ci, ei},∀i ∈ N
2: Output:

[
U((·)), R(·)

]
3: Task offloading request, ∀i ∈ N ;
4: Optimal Contract: Solve problem in (35);
5: RSU calculates di =

√
(xSEi )2 − (xDEi )2;

6: if di ≥ dmax then
7: RSU serves the request with

[
U(0), R(0)

]
;

8: else
9: RSU broadcasts contract bundle [U(θ), R(θ)], oi, xSEi ,

and aSEi to candidate DE;
10: DE estimate effort based on information via (17);
11: if UDE > 0 then
12: DE accepts and sends feedback;
13: else
14: DE rejects and sends feedback;
15: RSU serves the request with

[
U(0), R(0)

]
;

16: end if
17: end if
18: Contract Execution:
19: RSU establishes SE-DE connection for accepted pairs;
20: if lULi + lDLi + lexei ≤ τi then
21: DE receives R(θ) as committed in contract;
22: else
23: RSU serves the request with

[
U(0), R(0)

]
;

24: end if

services. Then, the RSU will inform the respective SEs to
be served by the employed DEs (i.e., the overhead would
be the input data of the task transmitted to the DE with
payload of si,∀i ∈ N bytes.) that have signed the contract
with the RSU for task offloading resulting in task execution.
Note that the SE and DE will then set up a V2V link for
task offloading under the supervision of the RSU by sending
control signals, and also receiving feedback signals from the
V2V pair (i.e., RSU provides communication channels) (lines
18-19). If the task offloading process is performed successfully
(i.e., the overhead would be the output of task oi represented
as s′i ≤ si bytes), the RSU rewards the DE as agreed by
the contract (line 21), otherwise, no reward is given and the
RSU serves the task request (line 23). Next, we evaluate the
computational complexity of the proposed approach. Note that
we need to calculate the complexity based on the problem (i.e.,
(35) ) that is solved in line 4 of Algo. 1. As the number of
EV pairs are N in our system, thus, the overall complexity
of our proposed Algo. 1 is O(N × M log(M)) based on
finding a solution for a convex problem as stated in (35) [38].
However, our proposed model assumes independent tasks,
then, the RSU can solve this problem in a parallel manner
for each SE-DE pair. Then, we can claim that our proposed
algorithm has a computational complexity of O(M log(M))
which is polynomial with respect to feasible set of θ and shows
reasonable performance for practical implementation.

V. NUMERICAL RESULTS

In this section, we present our numerical results to validate
the proposed scheme through simulations. In the following

TABLE II: Simulation parameters [29], [35]

Simulation Parameters Values
Radius of RSU 500 m
Number of vehicles 20
Task data size 100− 200 Mb
Task computation size 100− 400 Mb
Task deadline 1− 5 s
Bandwidth of EV 20MHz
Transmission power of EV 23 dBm
Communication range of EV 100m
Noise Power −174 dBm
Path loss exponent 4

subsections, first, we present the simulation setup and the
parameters used in our simulation. Second, we present the con-
tract feasibility conditions for the proposed incentive scheme
based on the optimal contract for task offloading in mobile
V2V networks. Finally, we investigate the system performance
of the proposed scheme by varying various parameters to
analyze its results.

A. Simulation Setup

We assume a single RSU scenario installed at a fixed
location providing a coverage range of 500m to N = 20
SE-DE pairs deployed randomly following a homogeneous
Poisson point process (PPP) under its coverage, wherein each
pair represents a task to be offloaded. The inter SE-DE distance
between each pair is chosen based on uniform distribution
ranging from [20−200]m. Each SE and DE pair i is travelling
in a uniform direction with constant acceleration ranging from
[0−20]m/s. For simplicity, it is assumed that DE has enough
resources to fulfill these requirements given the optimal in-
centives provided. Furthermore, the main parameters used in
our simulations are shown in Table. II unless stated otherwise.
Note that, all statistical results are averaged over large runs of
random locations of SE-DE pairs and task profiles.

B. Contract Feasibility

We conduct a series of simulations to present the contract
feasibility for the proposed incentive-based task offloading
scheme. We validate the conditions of incentive compatibility
and monotonicity presented in Definition 3 and 4, respectively.
In Fig. 2, we present the contract feasibility conditions for
the contract. In this simulation, we consider a network with
N = 20 SE-DE pairs each accelerating in the range of
[0− 20] m/s, where the task profile of each SE is considered
fixed with task size of 100 Mb and task deadline of 2 s. To
draw comparisons against the proposed scheme, we introduce
two baseline schemes, first, the ”Linear Pricing” scheme also
adopted by the works in [36] as a baseline incentive scheme
for the domain of enabling underlaid device to device com-
munication in the cellular network. In this scheme, the RSU
pays a unit price of γ per resource utilization as an incentive
proposed by the DE for using its resources. We choose two unit
prices, i.e, γ = 1.25 and γ = 1.5 for this simulation to analyze
the effect of prices. Note that, this incentive-based scheme
also falls under the category of information asymmetry, i.e.,
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Fig. 2: Contract feasibility conditions (a) Resource utilization, (b) Reward (c) DE utility.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Type of DE ( )

0

1

2

3

4

5

6

RS
U

 U
ili

ty

Contract
Complete information
Linear pricing, =1.25
Linear pricing, =1.5

(a) RSU Utility

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Type of DE ( )

0

1

2

3

4

D
E 

U
ili

ty

Contract
Complete information
Linear pricing, =1.25
Linear pricing, =1.5

(b) DE Utility

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Type of DE ( )

0

1

2

3

4

5

6

So
ci

al
 W

el
fa

re

Contract
Complete information
Linear pricing, =1.25
Linear pricing, =1.5

(c) Social Welfare

Fig. 3: System performance with respect to different DE Type (a) RSU utility (b) DE utility (c) Social welfare.
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Fig. 4: System performance with respect to inter SE-DE distance (a) Resource utilization (b) Rewards (c) Social welfare.
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RSU has no acknowledgment of the DE type. The second
scheme, namely “Complete Information” is a scheme that
employs contract with complete knowledge of DE types. In
this scheme, the RSU acts selfishly and increases its profit
by offering all DEs the minimum reward (i.e., meeting the IR
constraint). Moreover, in this study, we assume that the task is
non-divisible and cannot be performed based on the available
resources.

Fig. 2a and 2b presents the DEs’ resource utilization and its
reward to validate the monotonicity condition of the proposed
scheme. It can be seen that the resource utilization and reward
increase with respect to the DE type which is consistent
with our model, which has been already presented in (21).
Moreover, we observe that in Fig. 2a, a sudden drop for
the linear pricing scheme once the type of DE( i.e., relative
acceleration) exceeds a certain threshold, i.e., type 12.5 and
type 16 for prices γ = 1.25 and γ = 1.5, respectively. The
main reason behind this trend is that as relative acceleration
increases, more resources are required by the DE and it
demands more reward, thereby reducing the RSU’s utility until
achieving zero utility. It can also be seen that once the price
per resource utilization is reduced by the DE, more resources
are utilized. Fig. 2b also follows this trend in which the reward
is a strictly increasing function of the DE type that follows the
property of monotonicity.

Fig. 2c shows the utilities of DE with type 2, 3, and 4 for all
contracts offered by the RSU. We can infer that the maximum
utility of a DE can only be achieved if it selects the contract
based on its type and will be penalized if it selects any other
contract which corroborates with the incentive compatibility
condition presented in Definition 3 as well as Lemma 1 and
Lemma 2. Moreover, this also allows the RSU to automatically
identify the DE type once the contract is accepted by the DE.
Furthermore, numerical results provide evidence that DE’s of
higher type will have a higher utility when compared to lower
type, i.e. UDE(2) < UDE(3) < UDE(4) which agrees with
the analysis of the proposed contract design.

C. System Performance
We evaluate the performance of our incentive-based scheme

by varying different parameters to analyze their impact. In
Fig 3, we evaluate the utilities of RSU, DE, and present social
welfare with respect to varying DE types. We can observe that
as the DE type increases the utilities of RSU and DE increase,
resulting in higher social welfare. Moreover, we observe that
the proposed approach outperforms the linear pricing scheme
in terms of BS utility (i.e., Fig. 3a) and social welfare (i.e.,
Fig. 3c). The main reason behind this is that in linear pricing
mechanism the DE sets a price per computational resource
to maximize its benefit (i.e., Fig. 3b) without considering
anything else. Once the relative acceleration increases, i.e,
type of DE, the DE needs more resources that will increase
its price. On the other hand, the RSU is unaware of its type
and will only accept DE’s offloading services for prices that
result in a positive utility. This is also evident from Fig. 3b in
which once the DE demands higher prices, the RSU rejects
the offers, thereby resulting in a lower RSU utility and overall
social welfare.

Fig. 4 presents the average resource utilization, average
reward, and average social welfare with respect to the inter SE-
DE distance. We run this simulation with the same parameters
but relax the task deadline threshold to 5 s to evaluate the effect
as inter SE-DE pair distance increases. Moreover, we use the
linear pricing scheme with a price γ = 1.25 for all further
simulations and introduce a new baseline denoted as the ”Ran-
dom” scheme. The random scheme also operates under the
information asymmetry scenario; however, in this scheme, the
DE’s do not take into account the relative acceleration of SE’s
during the task offloading service. It can be seen that as the
inter SE-DE distance increases the average resource utilization
(i.e., Fig. 4a), average reward (i.e., Fig. 4b) and average social
welfare (i.e., Fig. 4c) decreases for all schemes. However, the
proposed scheme achieves a significantly higher performance
compared to the linear pricing and random baseline schemes.
For instance, the optimal contract based scheme achieves
an average performing gain of up to 29% and 300% when
compared with the linear and random baselines respectively in
terms of resource utilization. On the other hand, the average
social welfare even at an extreme distance of 400 m increases
by 90% and 130% when compared to the linear and random
baselines, respectively. The reason for performance drop with
respect to distance is that higher relative accelerating DEs’
cannot abide by the task offloading threshold (i.e., lines 20-
21 of Algo. 1) at larger inter SE-DE distance (i.e., above
350 m for the proposed scheme). Consequently, resulting in
incomplete task execution and achieving zero rewards and
utility (i.e., lines 22-23 of Algo. 1). On the other hand, DEs
with lower relative acceleration maintain almost indistinguish-
able inter SE-DE distance which results in successful task
offloading.

In Fig. 5, we compare average resource utilization (i.e.,
Fig. 5a), the average energy consumption for the utilized
resources (i.e., Fig. 5b), and average number of successful
tasks offloaded (i.e., Fig. 5c). In the simulation, we fix the
inter SE-DE distance to 100 m for a network with 20 SE-DE
pairs and compare the performance with the baselines in terms
of average energy consumption per resource utilization for
two different task sizes. Fig. 5a presents the average resource
utilization for all schemes. We infer that the optimal contract-
based schemes utilize the resources most efficiently under both
task sizes compared to the baselines. In Fig. 5b, we compute
the average energy required by all schemes to perform these
tasks. It can be seen that the proposed contract based approach
achieves a significantly higher energy efficiency per resource
utilization by controlling DE’s acceleration relative to SE. This
approach allows the DE to use its computational resources
efficiently and reduces the downlink transmission energy;
whereas, in the random baseline, the energy efficiency results
are worst as in that case DE’s do not abide by the relative
acceleration. For instance, the energy per resource utilization
ratio for the proposed scheme to process a task of size 80
Mb is 10.1; whereas, the linear and random baselines perform
the same task with ratios of 12.2 and 62.4, respectively. The
energy reduction of up to 17.2% and 84% is achieved in
terms of energy per resource utilization. In Fig. 5, we see
that because of the optimal contract proposed in our approach,
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the average number of task offloaded and completed are
significantly higher compared to both the baselines, thereby
resulting in higher SE’s satisfaction. Moreover, the energy per
task completed using the optimal contract-based scheme is
significantly lower in all cases compared to both baselines.
For instance, each task requires 3.65J and 4.47J of energy
via the contract and linear schemes when task size size is 70
Mb. On the other hand when task size is 80 MB, the energy
per task for the proposed and linear scheme is 5.3J and 5.86J
respectively. This gives us up to 17.1% and 9.3% lesser energy
per task compared to the linear baseline for task sizes of 70
Mb and 80 Mb, respectively. Similarly, 87.4% lesser energy
is consumed compared to the random baseline for task size of
80 Mb.

Fig. 6 provides the analysis of energy consumption for
the proposed scheme by varying the parameters of task size,
type of DE, and deadline threshold (τ ). In Fig. 6a, we vary
the task size and the type of DE for a network with a
fixed task deadline threshold of 2 s to investigate the energy
consumption. We observe that energy consumption increases
with respect to both the task size and type of DE. This is
because as task size increases more computation resources are
required as stated in (11) to complete the task resulting in
higher energy which corroborates to (12). Additionally, we can
infer that as the type of DE values become larger ( i.e., a large
type of DE value reflects high relative acceleration between
the SE-DE pair compared to a lower type of DE) the inter
SE-DE distance increases. Then, to ensure the task deadline
threshold (i.e., line 20 of Algo.1), DE has to provide more
computational resources resulting in an overall increase in
energy consumption. Next in Fig. 6b, we vary the parameters
of task size and the deadline threshold to investigate the effect
of energy. It can be observed that energy increases with an
increase in the task size and decreases as the deadline threshold
is relaxed. Finally, in Fig. 6c, we vary the deadline threshold
and the type of DE for a network with a fixed task size of
80 Mb. The energy consumption increases as the relative
acceleration increases similar to the Fig. 6a due to higher
inter SE-DE distance. On the other hand, we observe that
as the deadline threshold becomes strict, energy consumption
increases due to higher resource requirements even at lower
acceleration following the trend of Fig. 6b.

VI. CONCLUSIONS

In this paper, a task offloading mechanism between moving
vehicles has been proposed using a contract-theoretic model
through which we motivate vehicles to participate in the
offloading process. We use the framework of contract theory to
develop a novel self revealing scheme to address the challenge
of information asymmetry due to which private information of
vehicles is unknown to the road side unit. Numerical results
demonstrate the superiority of the proposed incentive-based
scheme when compared to the linear pricing and random
baselines. Moreover, the results indicate that the proposed
approach significantly enhances the overall energy efficiency
and computational resource utilization. In future works, we
would extend our study by investigating more complicated
scenarios by collecting real traces of traffic and extending our
solution by incorporating leaning-based approaches.
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