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K-nearest neighbours (kNN) is a very popular instance-based classifier due to its simplicity and good empirical performance.
However, large-scale datasets are a big problem for building fast and compact neighbourhood-based classifiers.(is work presents
the design and implementation of a classification algorithm with index data structures, which would allow us to build fast and
scalable solutions for large multidimensional datasets. We propose a novel approach that uses navigable small-world (NSW)
proximity graph representation of large-scale datasets. Our approach shows 2–4 times classification speedup for both average and
99th percentile time with asymptotically close classification accuracy compared to the 1-NN method. We observe two orders of
magnitude better classification time in cases when method uses swap memory. We show that NSW graph used in our method
outperforms other proximity graphs in classification accuracy. Our results suggest that the algorithm can be used in large-scale
applications for fast and robust classification, especially when the search index is already constructed for the data.

1. Introduction

Proximity graphs are a practical class of graphs with ap-
plications in multiple areas. For example, they are used for
motion planning, as rapidly exploring random trees in [1, 2]
and minimum spanning trees in clustering [3]. Most im-
portantly, they lay in the core of log(|V|) search time data
structures for large-scale multidimensional data indexing,
where |V| stands for dataset cardinality.

Instance-based classification (IbC) methods store items
(instances) from the training dataset as part of the classifier.
Unlike other methods such as decision trees and artificial
neural networks, the IbC algorithms do not estimate the
classifier function from the training data in advance; instead,
they store training data and derive a class label from an
examination of the unseen sample’s nearest neighbours at
test time [4]. Such methods easily adopt to unseen data by
extending the list of stored samples.

Among pure IbC methods, we can identify k-nearest
neighbours (kNN) with different variations [5–7], piecewise
functions (e.g., splines [8]), and kernel approximators, such as

radial basis function (RBF) interpolation methods. Splines and
kernel approximation are frequently used in numericalmethods
for equation solving. At the same time, kNN is considered both
a good basis for novel machine learning approaches [5] and
useful tool for complex applied machine learning tasks [9].

Decision trees, support vector machines (SVM), self-
organizing maps [10], learning vector quantization [11], and
RBF networks [12] can also be attributed to instance-based
methods. However, we avoid such wide interpretation, as
these methods do not require storing original samples for
classification.

In this paper, we address the problem of classification
speed in the context of IbC using proximity graphs. Large
datasets often appear in content recommendation tasks of
internet services: search, online shops, streaming, or social
networks. Classification accompanies recommendations in
such tasks as sentiment analysis [13] or auto-labelling [14].
As such systems serve millions or even billions of requests
per day, this makes a millisecond algorithm overhead scale
into hours and days of CPU time every day. (is is a notable
financial load.
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(e K-nearest neighbours method estimates the class
label of a test sample based on the labels of its closest
neighbours from the training set. Distance is defined with
some metric function. To avoid computing the distance of
the test sample to every item in the training data, indexing is
employed.(is allows achieving sublinear classification time
with various data structures such as trees, graphs, and
inverted indices.

Graph-based indexing utilizes the idea that a dataset can
often be represented in ametric space.(us, adding a distance
metric for nodes and requiring edges to represent close
neighbourhoods, we can benefit from greedy-like search al-
gorithms, traversing the graph with preliminary knowledge
about the desired direction towards a query sample.

In instance-based methods, algorithm execution time
depends on the number of stored instances, while model-
based methods depend on the number of model parameters.
(us, IbC should offer both asymptotically and practically fast
methods even for very large datasets, which requires con-
structing additional structures to navigate the data, such as
search indices. We consider the case where index creation is
indispensable and try to reduce the classification wall time.
More specifically, we show how navigable small-world (NSW)
[15] and hierarchical navigable small-world (HNSW) graphs
[16] properties can be utilized in machine learning. We
propose an improvement to NSW and HNSW index data
structures, which results in 2–4 times sustainable speedup on
average compared to 1-NN classification baseline.

(e contribution of this work can be summarized as
follows:

(i) We propose a new instance-based classification
approach, which utilizes properties of NSW and
HNSW index data structures to achieve 2–4 times 1-
NN classification speedup.

(ii) Our proposed methods show a 2-order time im-
provement when used with a memory swap file.

(e rest of the paper is organized as follows. Section 2
discusses different indexing strategies for large multidimen-
sional datasets. Section 3 covers both algorithm construction
and theoretical justification of the proposed idea. Section 4
describes the experimental setup, datasets, hardware, and
ways of comparison of our method to other approaches.
Section 5 is devoted to the numerical results of our experi-
ments. In this section, a proposed classifier is assessed in terms
of speed and accuracy, and the NSW graph is compared to
other proximity graphs. Section 6 analyses obtained numbers
and state conditions in which using our method is beneficial
and discusses interesting properties. Section 7 closes the paper
with a highlight of major outcomes.

Our experiments, results, and code are available in the
GitHub repository (https://github.com/IUCVLab/proximity-
cut).

2. Related Work

(is section overviews how a problem of large dataset
indexing is solved in the industry right now and considers
indexing application to instance-based learning.

(e problem of large-scale indexing for multidimensional
data arose together with efficient methods of document em-
bedding using artificial neural networks [17–19]. (e Internet
became an endless source of data, including web pages,
Wikipedia articles (https://dumps.wikimedia.org/), scientific
papers (https://en.wikipedia.org/wiki/Web_of_Science) and
images (https://en.wikipedia.org/wiki/Google_Photos) which
form collections with 105 to 1010 items in each. Contemporary
research in natural language processing also requires bigger
datasets to prove robustness [20]. As there is no exact bor-
derline, we address these sizes as large. Search on such a scale
can no longer be exhaustive. To be practical, it requires
sublinear time. For an unsorted collection, this means that, on
classical computers, we need to use approximate methods, also
known as approximate nearest neighbour search (ANNS).
Exact and approximate nearest neighbour searches are the
core tool of many metric-based machine learning algorithms,
including kNN classification, k-means, k-centroids, and
DBSCAN clustering. We discuss three approaches to building
large dataset indices to guarantee fast ANNS. In this paper, we
assume that the data can be represented in a metric or in a
vector space depending on indexing method.

2.1. Tree Based. (e invention of AVL-trees and B-trees
made search trees a powerful tool to build O(log(|V|))

indices for numerical data. Quad-trees [21] and KD-trees
[22] have been used for indexing multidimensional vector
data. Unfortunately, their usage is limited to low dimensions
because they suffer from the curse of dimensionality. For
example, indexing 109 items with KD-tree will utilize at most
log2(109) ≈ 30 first dimensions of the vector, while con-
temporary deep models produce 100–1000 dimensional
vectors, such as 768-dimensional BERT embeddings as in
[17]. For such big vectors, the search procedure will not
account the majority of dimensions. (us, it cannot guar-
antee a low distance from the query to the obtained
“neighbours.” To solve this problem, authors of annoy
(https://github.com/spotify/annoy) apply random projec-
tions instead of predefined vector dimensions and multiple
search trees, which is proven an efficient way of reducing
data dimensions for large datasets [23]. A collection of trees
can achieve high ANNS accuracy with a small search time.
However, it comes with a significant memory overhead as
each tree consumes memory proportional to dataset size.

2.2. Inverted Index Based. An inverted index file (IVF) is an
efficient method for text indexing, as it utilizes statistical
properties of human language and discrete word repre-
sentation. Since multidimensional vector data is continuous,
various metric-based discretization approaches, such as
vector quantization and vector clustering, are used to pre-
pare the so-called vocabularies—finite collections of vectors,
representing data clusters [24, 25]. Current works discuss
methods to avoid the problem from which IVF suffers in
natural language processing. Word frequencies in natural
language are different, leading to a skewed index. (e
proposed methods include different k-means implementa-
tions to form a vocabulary and product quantization
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technique for a better space partitioning as in [24]. (ough
IVF is a fast and scalable method with promising search
speed and ANNS accuracy, it requires significant additional
memory [26].

2.2.1. Proximity Graph-Based. A proximity graph is a graph
with a distance metric defined for vertices [27]. In practice,
the metric can be defined not for all pairs of vertices, and
edge in such a graph exists if and only if (or with higher
probability if ) its vertices satisfy particular geometric re-
quirements; for example, if they are close in metric space.
Building a proximity graph with dataset items as vertices can
be understood as building a road network. It allows the
search algorithm to travel starting from the arbitrary vertex
in the direction of the search query by following some greedy
strategy.

(ere are multiple types of deterministic and probabi-
listic proximity graphs, including minimum spanning trees
(MST), relative neighbourhood graphs (RNG), Gabriel
graphs, and Delaunay triangulations [28]. Among them,
there are a group of data structures based on the idea of
small-world graphs. A major feature of small-world (SW)
networks [29] compared to other graphs is that together with
edges connecting tight neighbourhoods (compare with local
roads), they also include “distant” edges (compare with
flights). In this example, “distant” means the edge which
connects near-clique clusters which do not share any nodes.
(e existence of such “distant” edges leads to E(log(|V|))

expected shortest path length (edges count) between arbi-
trary pair of vertices which was proven in [30]. NSW and
HNSW graphs [16] place graph vertices into a metric space,
introducing a highly efficient greedy-like algorithm to tra-
verse the graph. (e authors claim that their data structure
approximates Delaunay triangulations in high dimensions
and propose a novel method of constructing SW graphs in
metric space, which has O(|V|log|V|) construction time
complexity and |V|∗ d memory overhead, where d repre-
sents the number of dimensions in data vectors.

3. Methodology

(is work is dedicated to an improvement of the IbC
methods. Given a big multidimensional dataset, we can
achieve good results with the kNN classifier: using existing
search indices, we can guarantee log(|V|) search time
without sacrificing accuracy. (ese methods are competitive
and are used in recent applied research as in [5, 9]. Still, we
must consider speed in terms of both theoretical complexity
and wall time, as large-scale services are sensitive to even a
millisecond overhead in a single function. Proximity graphs
(NSW and HNSW in our case) built upon the unlabelled
collection achieve expected logarithmic nearest neighbours
search time with a greedy-like algorithm. (erefore using a
graph-based index, the kNN classifier can run in logarithmic
time, which can hardly be improved in terms of theoretical
complexity. On the contrary, we concentrate our efforts on
utilizing label information to reduce practical computation
time and preserve classification accuracy.

Our work is limited to the assumption that the dataset
has a property of a metric space, with high probability
nearest neighbours (in terms of the metric) of an item
belonging to the same class as the item. (is assumption is
sometimes called the compactness hypothesis [31]. (is
assumption is general for all metric-based machine learning
methods, including both unsupervised (e.g., k-means and
DBSCAN) and supervised (e.g., kNN and linear models)
approaches.

(e core theoretical idea of the proposed method lies in
the fact that a proximity graph cut can be used to ap-
proximate the class boundaries. A graph cut is a set of edges
where the source and destination vertices belong to different
classes. A graph cut example is given in Figure 1.

(e outline of our methodology is the following:

(i) (e same as in kNN classification, we accept the
compactness hypothesis. (is allows making an
assumption that classes are closed volumes in Rn.

(ii) kNN classifier assigns a class to an unseen sample
based on implicit class border estimation with
neighbours voting. Border estimation can be
replaced with faster border crossing detection,
based on (e Jordan Curve theorem [32] and its
extension [33].

(iii) (e proposed border crossing detection technique is
based on traversing NSW and HNSW graphs with a
greedy algorithm (beam search). (is algorithm
produces the near-shortest path between the
starting point and unseen sample, which is shown to
be log(|V|) long [30].

Further paragraphs expand the listed ideas.
(e Jordan curve theorem guarantees that if there are

two classes in R2 where one class is surrounded by a closed
curve, then an arbitrary path between two points belonging
to different classes intersects this border an odd number of
times and at least once. We apply multidimensional con-
sequence [33] of the theorem following the compactness
hypothesis: for an arbitrary path (edges sequence) in
proximity graph, single class border crossing can be used to
indicate class change. An exact crossing point location is not
needed. It is enough to account edges where vertices have
different labels, that is, which belong to the graph cut. (e
method also works even if the class is not a single cluster but
a set of disconnected clusters.

Speed characteristics of our implementation are derived
from two properties of NSW and HNSW graphs. Firstly, in
small-world graphs (by definition), the shortest path be-
tween two arbitrary vertices has expected logarithmic length.
(us, any query search algorithm can start from a random
graph node and find the nodes closest to the query node in
log(|V|) time on average if the shortest path is known.
Secondly, the greedy beam search algorithm in a dense
enough NSW graph produces a path with O(log(|V|)) edges
with a probability of 1 − o(1), which is shown by the ex-
periments in [15] and theoretical proof in [30]. Greediness
here is defined as selecting the next vertex from the
neighbours, such that it is the closest (in metric space) to the
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destination. Euclidean and angular metrics are the most
popular for vector space datasets. In other words, if algo-
rithms search for query node q starting in node n, at each
step, it should move to such a neighbor n′ of n, which has the
smallest distance to q in terms of metric. (e aforemen-
tioned properties guarantee that this search, on average, will
successfully converge in log(|V|) time.

To sum up, for a classification task, class boundary es-
timation is not needed. Instead, it is enough to detect the
event of boundary-crossing. (is useful observation allows
reducing computational overhead, which is valuable for
large systems. For implementation, we use both properties of
NSW graphs to efficiently obtain a path in a graph and
combine them with the Jordan curve theorem.

A formal description of our method is as follows: let a
class be a set of volumes in a multidimensional metric space.
As we mentioned earlier, we approximate class boundaries
with a graph cut. Boundary-crossing occurs if an edge in a
path belongs to a cut. (us, we propose the following al-
gorithm of classification. Given a sample vector that needs to
be classified, a search is started from a graph vertex with a
random index taken from a uniform distribution. A vertex
choice procedure does not influence the result as any shorted
path in the NSW graph has a logarithmic length.(en, graph
nodes are greedily traversed towards the given vector, and
the algorithm stops if it cannot find a closer neighbour. If
class labels are available for all vertices, only the last border
crossing is needed (if any happened) to assign a class to the
sample.

(e algorithm works for both binary and multiclass
problems. Generalization to multiclass comes from applying
the one-vs-all technique: the last border crossing can be
considered as moving from the united “all” class to “one” class.

(e proposed approach for NSW graphs is summarized in
algorithm 1, which is an approximate equivalent to 1-NN
classification. (e only difference for HNSW implementation
requires to start at the top level of the graph and repeat the same
algorithm at the lower levels until 0th convergence. (is also
means that the choice of vertex v for HNSW graphs is
deterministic.

(e Euclidean distance for normalized features is used as a
metric in tests if other is not mentioned explicitly.(is choice
is reasonable in many practical applications as it captures the
human perception of “closeness”: a significant change in the
value of one feature or insignificant changes in multiple
features should not dramatically influence the distancemetric.

NSW graph allows using the proposed algorithm to-
gether with the kNN voting procedure. (at is, classification
can be run multiple times to achieve better accuracy. In the
case of the HNSW graph, the search procedure always uses a
predefined starting point. (us applying voting will not
bring any benefit.

4. Experiments

We implement our method to improve the original NSW
and HNSW graph search procedure. Our experiments study
our method from three points of view:

(i) NSW graph ANNS quality compared to other
proximity graphs,

(ii) Classification accuracy compared to 1-NN,
(iii) Time improvement compared to baseline 1-NN

classification with HNSW.

We understand graph quality criterion as an ability to
provide a better approximation for the ANNS problem.
Application of proximity graphs is always a trade-off be-
tween speed of neighbourhood exploration and percentage
of actual neighbours retrieved (which can be referred to as
recall metric). Experiments show that graph choice is good.
(e other two criteria are devoted to the method assessment
for both accuracy and time. 1-NN classification is used as a
baseline. (e first reason is that a proposed method is an
approximation for this classification technique, so we assess
our solution compared to the best achievable nonexhaustive
1-NN classification method done with NHSW. Our target is
to achieve better practical time with acceptable accuracy loss.
(e second reason is that based on 1-NN results, one can
easily extrapolate the time cost for an arbitrary kNN clas-
sification method.

To compare a graph type used in our method with all graph
types presented in survey [28], we run experiments with 3 UCI
datasetsmentioned in a paper: Dermatology (https://archive.ics.
uci.edu/ml/datasets/dermatology), Isolet (https://archive.ics.uci.
edu/ml/datasets/isolet), and Image Segmentation (https://
archive.ics.uci.edu/ml/datasets/Image+Segmentation). Non-
normalized Euclidean distance is used for Isolet and Image
Segmentation to reproduce original accuracy results. For the
Dermatology dataset, as it contains both categorical and nu-
merical features, we implement and use the Heterogeneous
Value Difference Metric (HVDM) defined in [34] (imple-
mented in https://github.com/IUCVLab/proximity-cut/blob/
master/modules/tools/hvdm.py). For this set of experiments,
NSW implementation from our repository was used.

By construction, the HNSW graph contains the NSW
graph as a subset on level 0. (us, all remaining experiments
are conducted with hnswlib implementation where NSW
graphs are extracted from the parent HNSW graph.

Figure 1: NSW index graph is built on 2 data classes (circles and
triangles) in metric space. Black edges represent graph cut. (ey
have source and destination vertices in different classes.

4 Complexity
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(e speed and accuracy of classification are compared to
the 1-NN classifier on the medium-size road signs dataset
[35] with 43 classes (images are resized to 256-dimensional
representation, 10% test set) and two large binary classifi-
cation datasets HIGGS (1.1∗ 107 items) and SUSY (5∗ 106
items) [36] (5% test set). Detailed speedup statistics are
measured using another medium-size Cover Type dataset
[37].

In this work, we do not claim to invent or improve
existing classification algorithm(s). (ese types of work
require exhaustive testing for all marginal cases. We aim to
apply state-of-the-art indexing infrastructure and show what
can we gain from it (in speedup) and at what cost (in ac-
curacy). As NSW and HNSW’s time complexity charac-
teristics have already been studied [15, 16] and proven [30],
in this paper, we focus on practical improvement. Since
algorithm time is shown to depend on dataset dimension-
ality and size, we cover both aspects.

All experiments were conducted at a 64-bit Windows 10
laptop using a single CPU core.(e laptop has AMD Rizen 3
3200U chip with 2.6 GHz frequency and 2 physical cores.
6GB RAM is installed in the machine with 3.5GB available
for experiments. Python implementations were launched at
Jupyter notebooks with Python 3.7.4. C++ implementation
was compiled with GCC 7.4.0 usingWindows Subsystem for
Linux (Ubuntu 18.04).

5. Results

5.1. Graphs Comparison. (e choice of NSW graph was
validated by comparing accuracy results with other prox-
imity graphs, namely, relative neighbourhood graphs
(RNG), Gabriel graphs, and minimum spanning trees
(MST). We compare our results against implementations
from [28] on UCI datasets proposed in the paper. (e
authors intentionally focused only on classification accuracy
and omitted speed comparison. (us, we can compare our
results by accuracy only. On Isolet, our method out-
performed RNG graphs classification with 88.5% accuracy
against 88.1%. With Dermatology data, it achieved the same
95.65% accuracy as RNG graphs, which can be the result of
very small dataset and almost complete graph. With Image
Segmentation data, our method achieved 87.5% accuracy
which is only slightly worse than 1-NN (90.3%) and RNG
(88.8%). Detailed results are given in Table 1.

5.2. Average Classification Accuracy and Time. In NSW and
HNSW graphs, the construction phase depends on hyper-
parameter M, which linearly influences the number of graph
edges. According to original papers, increasing this parameter
can bring better accuracy results paying with additional index
memory. We compared how this parameter influences
baseline 1-NN classification and the proposed method on two
large datasets. Results are provided in Figure 2.

We also studied how dataset size and graph edges density
controlled by NSW hyperparameter M influence average
classification time and accuracy. We compared baseline 1-
NN classification with the proposed method on three

datasets with different hyperparameter values. With com-
parable accuracy number, our method showed sustainable
speedup on both graphs. Time and accuracy results are given
in Table 2.

NSW and HNSW graphs are built by a deterministic
procedure, but their properties depend on the order of
inserting and the structure of the dataset itself. Search and
classification time for such graphs can only be estimated in
terms of expected values. We used a medium-size Cover
Type dataset to compare classification times distributions.
While both baseline 1-NN classification and NSW-based
proposed method show comparable time spread growth, the
HNSW-based method shows extremely good numbers. For
visual comparison, please refer to Figure 3.

5.3. Service Reliability Comparison. Indexing structures are
used in different search tasks to improve the quality of
service. Service reliability is frequently assessed in terms of
95th or 99th percentiles.(us, we prepared a percentile-based
comparison of the proposed method to the 1-NN baseline,
which shows 1.5–2 times speedup for NSW-based imple-
mentation and 4+ times comparison for NSW-based. (e
numbers are given in Table 3.

6. Discussion

(e experiments on graph comparison show that NSW-
based classification accuracy outperforms sparse Gabriel and
MST graphs in all experiments. Also, the resulting classifier
shows a behavior very similar to RNG-based implementa-
tion for each of the experiments. Considering this, we refer
to [38], which states that although 2-dimensional case RNG
construction requires Θ(|V|log|V|) operations, the k-di-
mensional and non-Euclidean metric spaces will require
O(|V|3) operations. NSW graphs are constructed in
E(|V|log|V|) which is a significant gain for large-scale
datasets.

Comparison of the proposed method accuracy to the
baseline 1-NN classifier shows that the proposed method is
slightly under the baseline, HNSW-based implementation in
all tests 0–7 percent points worse than 1-NN. But we also
observed that NSW-based implementation asymptotically
tends to the baseline (see Figure 2) with the growth of graph
density, defined by M hyperparameter. For the small size of
the dataset, the NSW-based implementation showed sig-
nificant speedup, thus using k–NN classifiers where
k< speedup built upon the proposed method will achieve
asymptotically better accuracy for the smaller time. HNSW-
based implementation at the same time shows consistent
speedup for all graph sizes and densities.(e loss in accuracy
can be explained by the fact that the final step of our method
returns only an approximation of the nearest neighbour.
(us, in future studies, improvement of the algorithm for a
better approximation at the last search iterations can be
addressed to compete with the baseline in accuracy while
preserving similar time. We can also say that speedup was
observed at all experiments for all sizes of the datasets and
graph densities. A general observation is that speedup tends

Complexity 5
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to be bigger for smaller datasets, but for 107-scale datasets, it
remains on a significant level.

We separately stop on the speedup value for the SUSY
dataset with high density (M� 128), which shows 1.17 times
improvement for NSW and enormous 148.1 times im-
provement for HNSW (see Table 2). (e experiment was
conducted multiple times with different system parameters
showing the same result. We found out that this behavior
fully depends on using swap memory. For the small Road
Signs dataset, doubling graph density (parameter M) implies

linear absolute time growth for 1-NN classification, whereas
for SUSY, we observe 3-order time growth compared to 16
times density growth (M � 8, 128). We detected that, at the
test machine, the process could only allocate ∼ 3.5GB of
physical RAM, while the data structure required almost 5GB
of virtual memory. (us, a significant part of the data was
dumped into HDD. (is slowed down both the index
construction phase and classification. (e HNSW graph
architecture uses exponentially smaller parts of memory for
higher graph levels according to the construction process.

Input: NSW - dataset index; x - sample to be classified
Result: class label
v⟵ random vertex from NSW;
dnew⟵ distance(v, x);
classnew⟵ v.class

repeat
d⟵ dnew;
class⟵ classnew;
// closest to x neighbours of d
v⟵ closest(v.neighbours ∣ x);
dnew⟵ distance(v, x);
classnew⟵ v.class;
// until we can‘t get closer to x

until dnew >d;
return class

ALGORITHM 1: Greedy graph-based in NSW for multiclass classification.

Table 1: Comparison of classification accuracy for different proximity graphs against SVM classifier with polynomial kernel.

Dataset
Accuracy (%)

SVM kNN RNG MST Gabriel NSW
Dermatology (k� 10) 96.9 98.6 95.6 86.7 65.4 95.65
Isolet (k� 7) 96.0 91.9 88.1 N/A N/A 88.5
Image Segmentation (k� 1) 92.9 90.3 88.8 76.7 82.1 87.5
k refers to the best kNN hyperparameter. NSW is our choice. Bold shows our study implementations.
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Figure 2: Accuracy comparison of the proposed NSW-PATH and HNSW-PATH classifiers with 1-NN baseline at two large-scale datasets
SUSY (5M items) and HIGGS (11M items).
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(us, only the last steps of the algorithm require 0-level
graph traversal, while the level with higher numbers can

easily fit into physical RAM. (is makes HNSW-based
classification very promising in cases of low physical RAM.

Considering potential service quality, we state that both
NSW and HNSW-based implementations of the proposed
method show comparable speed improvement for the av-
erage and high-percentile classification time. We also ob-
serve that this speedup does not depend on graph density as
shown in Table 3.

To sum up, we define two potential applications for our
proposed method. Firstly, both NSW- and HNSW-based
algorithms can be used as dedicated classifiers for datasets of
all sizes to improve absolute classification time still sacri-
ficing a few percent points of accuracy. NSW-based clas-
sifier, in this case, will offer asymptotically growing accuracy
for denser graphs, HNSW-based version will be extremely
time-efficient when RAM does not fit the dataset, and a swap
file is used. Secondly, for small- and medium-sized datasets,
NSW-based kNN implementation can offer better accuracy
for the same classification time.

Wewant tomention that althoughwe discussed competing
indexing approaches (IVF, trees) in Section 2, we cannot
implement our methods with these data structures, as they do
not produce the graph cut we use in both our methods.

7. Conclusion

In this paper, we introduced the novel approach to instance-
based classification. (e approach improves existing NSW
and HNSW data structures for faster classification of unseen
items. It simplifies the original search algorithm and con-
nects it with the Jordan curve theorem.(emethod achieved
sustainable 4x speedup at real medium-scale datasets and
more than 2x speedup for a large dataset using production
hnswlib C++ library while preserving asymptotically close
accuracy. It also showed extremely good time improvement
if used with swap file.

We analysed our solution execution time, and we can say
that it provides significantly better reliability in terms of 95th

and 99th classification time percentile compared to the 1-NN
classification baseline.

Our future research can target improvement of nearest
neighbour estimation in the end of the proposed search
algorithm which will improve classification accuracy while
keeping time smaller.

Table 2: Time and accuracy comparison of a proposed graph-based method implemented with NSW and HNSW graphs. Graph parameters
are given as follows: dataset name (number of items, HNSW connectivity parameter M).

Graph parameters
Time (ms), accuracy (%)

Speedup NSW vs. 1-NN Speedup HNSW vs. 1-NN
1-NN NSW-PATH HNSW-PATH

Road signs (10K, M� 8) 209 92.57% 25.2 92.57% 72.4 92.57% 8.3 2.89
Road signs (10K, M� 64) 1615 82.57% 151 82.57% 186 82.57% 10.7 8.68
SUSY (5M, M� 4) 78.16 71.74% 22.41 62.74% 15.01 69.02% 3.49 5.21
SUSY (5M, M� 8) 89.5 71.87% 49.43 69.19% 21.43 70.58% 1.81 4.18
SUSY (5M, M� 128) 8538 71.86% 7271 71.12% 57.66 70.1% 1.17 148.1
HIGGS (11M, M� 32) 596.08 64.09% 253.61 62.27% 218.11 57.14% 2.35 2.73
Bold values refer to the best achieved speedup.
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Figure 3: Comparison of classification time distribution on me-
dium-size Cover Type dataset.

Table 3: Algorithm speedup comparison with respect to different
graph densities (tuned by NSW M hyperparameter) and percentile.
Speedup values compared to baseline HNSW-based 1-NN classi-
fication are provided for 99th percentile (p99), 95th percentile (p95),
and average classification time (Avg).

M
NSW-PATH HNSW-PATH

p99 p95 Avg p99 p95 Avg
4 2.44 2.17 2.85 5.59 4.55 4.16
8 1.56 1.71 2.12 4.07 4.36 4.34
16 1.47 1.42 1.84 4.31 4.18 4.45
32 1.55 1.55 2.10 4.51 4.14 4.62
64 1.32 1.26 1.61 6.44 6.50 7.10
128 1.45 1.42 1.82 4.11 3.18 5.30
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Data Availability

(e machine learning classification datasets (Dermatology,
Isolet, Image Segmentation, Cover Type, SUSY, and HIGGS)
used to support the findings of this study have been
deposited in the UCI repository (https://archive.ics.uci.edu/ml/
datasets/dermatology, https://archive.ics.uci.edu/ml/datasets/
isolet, archive.ics.uci.edu/ml/datasets/Image+Segmentation,
https://archive.ics.uci.edu/ml/datasets/HIGGS, https://archive.
ics.uci.edu/ml/datasets/SUSY, https://archive.ics.uci.edu/ml/
datasets/covertype). (ese prior studies (and datasets) are
cited at relevant places within the text as references [28, 36, 37].
(e machine learning classification dataset with road signs
used to support the findings of this study has been deposited in
the INI Benchmark Website https://benchmark.ini.rub.de.
(ese prior studies (and datasets) are cited at relevant places
within the text as references [35]. (e code related to synthetic
dataset generation used to support the findings of this study has
been deposited in the GitHub repository https://github.com/
IUCVLab/proximity-cut.
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