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Abstract. This research explores the application of predictive analytics through 

Machine Learning (ML) algorithms to enhance Mobile Network Key Perfor-

mance Indicators (KPIs), specifically focusing on Reference Signal Received 

Power (RSRP) as coverage and Reference Signal Received Quality (RSRQ) as 

quality. Various regression and classification modelling techniques were applied 

to drive-test measurements collected around the University of Hull, utilizing su-

pervised ML algorithms such as Decision Tree (DT), Logistic Regression 

(LogisticR), Random Forest (RF), Support Vector Machine/Regressor 

(SVM/SVR), Light Gradient Boosting Machine (LightGBM), K-Nearest Neigh-

bour (KNN), Extra Trees (ET), Extreme Gradient Boosting (XGB), Multi-Layer 

Perceptron (MLP), Deep Neural Network (DNN), Gaussian Naïve Bayes (GNB), 

and Gradient Boosting (GB) to benchmark the performance of four Mobile Net-

work Operators (MNOs)/Mobile Virtual Network Operators (MVNOs) at various 

locations around the University of Hull, with additional model validation con-

ducted in Hull City Centre, Barton Upon Humber, and Newland as use cases. 

The Random Forest (RF) model emerged as the best-performing algorithm, 

achieving a Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) 

below 3.7, a Mean Absolute Percentage Error (MAPE) under 7.03, a Coefficient 

of Determination (R²) greater than 74%, a Receiver Operating Characteristic 

Area Under the Curve (ROC_AUC) above 93%, and an Accuracy exceeding 

82%. Additionally, the ensemble learning (EL) model, which combined the 

strengths of RF, GB, ET, SVR, XGB, and LightGBM for regression, and 

LogisticR, SVM, MLP, GB, ET, and RF for classification, delivered an overall 

performance with RMSE and MAE below 4, R² above 72%, accuracy exceeding 

81%, and ROC_AUC above 85%. This highlights the EL model’s ability to pre-

dict network coverage (RSRP) and quality (RSRQ) as excellent, good, fair, bad, 

or poor with high precision.  

This study demonstrates the uniqueness of integrating multiple KPIs (RSRP 

and RSRQ) and prediction techniques (regression and classification) within an 

Artificial Intelligence (AI)-driven solution, providing a robust framework for im-

proving network performance, particularly in scenarios where data collection 

through drive testing is limited. 
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1 Introduction 

Mobile Network Operators (MNOs) and Mobile Virtual Network Operators (MVNOs) 

worldwide strive to achieve profitability by offering high-quality services to their sub-

scribers. In the UK, for instance, leading MNOs include O2, EE, Three, and Vodafone, 

while MVNOs like BT Mobile (EE), Lebara (Vodafone), TESCO (O2), giffgaff (O2), 

and SMARTY (Three) also contribute significantly by utilizing licensed spectrum from 

MNOs [1]. The University of Hull, a major institution with substantial network traffic, 

generates high demand for services including voice (Circuit Switch – CS) and data 

(Packet Switch – PS), such as phone calls, SMS, high-speed internet browsing, 4G/5G 

video streaming, and fast uploads/downloads. To meet these demands, MNOs and 

MVNOs invest heavily in maintaining and enhancing their services through infrastruc-

tural developments [2], which involve complex and costly planning, optimization, and 

monitoring of radio frequencies, microwave links, fiber optics, and core networks. For 

instance, achieving End-to-End Quality of Service (QoS) involves rigorous and expen-

sive drive-test campaigns, live-network performance planning, monitoring, and optimi-

zation to ensure optimal signal transmission through base stations. 

Given the high costs and complexities involved, integrating a cost-effective Machine 

Learning (ML) solution can provide valuable insights from the vast amounts of data 

generated daily by users and connected devices. ML, which involves training models 

to perform tasks without explicit programming [3], offers significant advantages in tel-

ecommunications. By applying ML to predictive analytics, MNOs and MVNOs can 

enhance planning, monitoring, and optimization processes. Key Performance Indicators 

(KPIs) such as Reference Signal Received Power (RSRP) for network coverage and 

Reference Signal Received Quality (RSRQ) for signal quality are crucial for assessing 

network performance. RSRP, measured in Decibel Meter (dBm) for 4G and 5G, and 

RSRQ, measured in Decibels (dB), must consistently meet high standards to ensure 

quality service. Other KPIs, including Signal Interference and Noise Ratio (SINR), 

Channel Quality Index (CQI), Mean Opinion Score (MOS), Physical Cell Identity 

(PCI), and E-UTRA Absolute Radio Frequency Channel Number (EARFCN), also play 

a role in network performance and can be optimized through ML as well. 

This research aims to develop a solution to support Mobile Network Planning, Mon-

itoring, and Optimization by predicting Coverage (RSRP) and Quality (RSRQ) at var-

ious locations. The study employs robust and well-researched Supervised ML algo-

rithms, including Decision Tree (DT), Logistic Regression (LogisticR), Random Forest 

(RF), Support Vector Machine/Regressor (SVM/SVR), Light Gradient Boosting Ma-

chine (LightGBM), K-Nearest Neighbour (KNN), Extra Trees (ET), Extreme Gradient 

Boosting (XGB), Multi-Layer Perceptron (MLP), Deep Neural Network (DNN), 

Gaussian Naïve Bayes (GNB), and Gradient Boosting (GB) in both Regression and 

Classification models using drive-test measurements. 
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2 Related Work 

The application of AI and ML in predicting mobile network coverage and other KPIs 

has been explored extensively by researchers globally. Table 1 compares how AI is 

bridging gaps in telecommunications through ML-based Quality of Service (QoS) pre-

dictions.  

One study utilized the Light Gradient Boosting Machine (LightGBM) to predict 

wireless coverage by combining crowd-sourced measurements with Radio Access Net-

work (RAN) configuration parameters. This was compared to Drive-Test measure-

ments and the empirical Okumura-Hata model. Using basic features such as frequency, 

distance, and antenna height, predictions with Okumura-Hata, Drive-Test interpolation, 

and LightGBM resulted in Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and Mean Absolute Percentage Error (MAPE) exceeding 8.05, and Coefficient 

of determination (R²) values below 32%. However, using all available features with 

LightGBM improved the R² to 63% and reduced RMSE, MAE, and MAPE to 7.45 or 

lower for LTE RSRP predictions [4]. Herath et al. [5] developed an encoder-decoder-

based sequence-to-sequence Deep Neural Network (DNN) model incorporating Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. This model 

predicted signal strengths for various networks, including 4G LTE, WiFi, Zigbee, Wi-

MAX, and an industrial network at 5.8 GHz. Results indicated very good predictions 

(<7 RMSE) for 4G LTE and WiFi networks, while other networks showed RMSE >20.  

An Artificial Neural Network (ANN) model was employed to predict ground-level 

RSRP at Sultan Qaboos University, Oman, using UAV/drone-collected measurements. 

This model achieved 97% accuracy and 10% Mean Squared Error (MSE) when pre-

dicting RSRP across different zones [6]. In another study, Radial Basis Network 

(RBN), Sigmoid-Based ANN, Multi-Layer Perceptron (MLP), and K-Nearest Neigh-

bour (KNN) were used to predict Signal-to-Interference Ratio (SIR) for wireless cov-

erage maps using simulation data. The RBN, MLP, and KNN models performed well 

with Absolute Relative Error (ARE) <5.1%, while the ANN with a Sigmoid activation 

function had ARE >7% [7]. Further research explored six Supervised ML algorithms, 

including Linear Regression, ANN, Support Vector Machine (SVM), Regression Trees 

(RT), Ensembles of Trees (EnT), and Gaussian Process Regression (GPR), to predict 

RSRP in Putrajaya, Malaysia. GPR performed best with RMSE of 5.64 and R² of 75% 

but was computationally expensive. RT, which performed second best with an RMSE 

of 6.18 and R² of 70%, was suggested for deployment after hyperparameter optimiza-

tion improved its RMSE to 5.74 and R² to 74% [8]. 
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Mohammadjafari et al. [9] evaluated RSRP predictions using the Generalized Linear Model 

(GLM), MLP, KNN, and DNN on simulated datasets. KNN outperformed with MAE <2, while 

others had MAE values between 2 and 13. In a study on Mobile Network Quality of Experience 

(QoE) and monitoring, classification algorithms including MLP, C4.5, Random Forest (RF), Na-

ïve Bayes (NB), and SVM were applied to real-life user experiences from YouTube, Facebook, 

and Google Maps. The predictions achieved over 90% accuracy for C4.5 and RF, over 75% for 

MLP, and between 40% and 60% for SVM and NB. Binary acceptability predictions also 

achieved high accuracy, with MLP, C4.5, and RF exceeding 90%, and SVM and NB over 70% 

[10]. Tomic et al. [11] used Linear Regression, Extreme Gradient Boosting (XGB), and Feed-

Forward Neural Network (FFNN) algorithms to predict the Channel Quality Index for a Tier 1 

Mobile Network Operator in Belgrade, Serbia. All algorithms showed <6% MAPE, with XGB 

performing best at 5.51% MAPE. 
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Table 1. Related Works Comparison with This Research 

Article Reference Location Dataset Type Tech Tool 
ML Technique and 

Algorithm 
KPI Prediction Evaluation Metrics Results 

This Research 

Main Study,  

Use Case 1, 

Use Case 2,  

Use Case 3 

Real-life Drive-Test Measure-

ments 
4G, 5G 

G-NetTrack Pro Soft-

ware, Redmi Note 7, 

Samsung Galaxy A32 

5G, SIM Cards (Leb-

ara/Vodafone, 3, EE, 

TESCO/O2), Python, HP 

Laptop 

Regression: RF, 

LGBM, SVR, GB, 

XGB, KNN, DT, 

ET, MLP, DNN, En-

semble 

Classification: 

LogisticR, SVM, 

GB, GNB, LGBM, 

RF, KNN, MLP, 

DT, ET, Ensemble 

RSRP and RSRQ 

MAE, MAPE, 

RMSE, MSE, R², 

Accuracy, Precision, 

Recall, F1-score, 

Receiver Operating 

Characteristic Area 

Under the Curve 

(ROC_AUC) 

RSRP: 3.35 RMSE, 

11.58 MSE, 2.46 

MAE, 2.55% 

MAPE, 86.9% R², 

89.61% ROC_AUC, 

and 87.74% Accu-

racy 87.74 

RSRQ: 1.30 RMSE, 

1.75 MSE, 0.93 

MAE, 7.15% 

MAPE, 72.63% R², 

85.62% ROC_AUC, 

and 81.02% Accu-

racy 

[9] City Hall, Ottawa Simulated Radio Propagation 4G Ray-Tracing Software 

Regression: Gener-

alized Linear Mod-

els (GLM), MLP, 

KNN, DNN 

RSRP MAE 
<13 (GLM, MLP, 

DNN), <2 (KNN) 

[4] 
Crowd-sourced, 

Ottawa 

Crowd-sourced, Drive-Test, Oku-

mura-Hata 

4G Long-Term Evolution 

(LTE) 

Sharpley Additive Expla-

nations (SHAP) 

Regression: 

LightGBM 
RSRP 

MAE, MAPE, 

RMSE, R² 

<7.45 (RMSE, 

MAE, MAPE), 0.63 

(R²) 

[6] 

Sultan Qaboos 

University, Mus-

cat, Oman 

Real-life Flight-Test Measure-

ments 
4G LTE 

Unmanned Aerial 

Vehicle/Drone (DJI Ma-

trice 200 V2 quadcopter), 

G-NetTrack Software, 

Omantel SIM, Smart 

Phone 

Regression: ANN RSRP MSE, Accuracy 
97% Accuracy, < 

10% MSE 

[8] 
Putrajaya, Malay-

sia 

Real-life Drive-Test Measure-

ments 
4G LTE 

CloudRF, G-NetTrack, 

SIM, Smart Phone, 4G 

LTE Switcher, MATLAB 

2020a, Neural Net Fit-

ting, Laptop 

Regression: Linear 

Regression, ANN, 

SVM, RT, ET, GPR 

RSRP RMSE, R² 5.74 RMSE, 0.74 R² 

[7] Israel Simulated Radio Propagation 4G LTE MATLAB 

Clustering: Radial 

Basis Network 

(RBN) with Gauss-

ian AF, ANN (with 

Sigmoid AF), MLP, 

K-NN 

SIR ARE 

<5.1% ARE for 

RBN, MLP, & KNN 

>=7% & <13% for 

ANN-Sigmoid 

[5] N/A 
Real-life Drive-Test Measure-

ments 

4G LTE, WIFI, WiMAX, 

Industrial Network (at 

5.8GHz) 

SIM (AT & T, T-Mo-

bile), Motorola G5 

Regression: DNN 

(with LSTM and 

GRU) 

RSRP RMSE 

<7 RMSE for 4G 

LTE (T-Mobile and 

AT & T)  

>20 RMSE for Wi-

MAX, Zigbee, and 

Industrial Network 

[10] Vienna, Austria 
Real-life Drive-Test Measure-

ments & Crowdsourced 
2G, EDGE, 3G, LTE 

YouTube, Facebook, 

Google Maps, Passive 

flow-level traffic moni-

tor, Web-based QoE 

feedback survey, Weka- 

ML Software Tool 

Classification: MLP, 

C.45, SVM, RF, NB 

MOS and Binary 

Acceptability 

(YES/NO) 

Global Accuracy, 

Recall, Precision 

MOS - Accuracy 

>90% (C4.5 & RF), 

>75% (MLP), >40 

& <60 (SVM & NB) 

Acceptability - Ac-

curacy: >90% 

(MLP, C4.5 & RF), 

>70% (SVM & NB) 

[11] N/A Live Network LTE, 5G NR 
Performance Manage-

ment System, Laptop 

Regression: Linear 

Regression, XGB, 

Feed-Forward Neu-

ral Network (FFNN) 

CQI MAPE 
<6% for LR, XGB, 

& FFNN 
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2.1 Advantages and Limitations Compared to Related Works 

Pros 

a. Multiple Prediction Techniques: This study employs both regression and classi-

fication techniques, providing a comprehensive approach to predicting mobile network 

performance metrics such as Reference Signal Received Power (RSRP) and Reference 

Signal Received Quality (RSRQ). This multi-faceted approach distinguishes it from the 

studies [4-9, 11] that typically focus on single prediction methods or KPIs. 

b. Diverse KPI Predictions: Unlike the referenced studies, which primarily concen-

trate on RSRP or a limited range of KPIs, this study includes predictions for both RSRP 

and RSRQ. This broader scope allows for a more complete assessment of network per-

formance. 

 

Cons: 

a. Small Data Sizes: One limitation of this study is the relatively small size of the 

data set, which may affect the generalizability of the results. Larger data sets are often 

needed to develop more robust and scalable models. 

b. Limited Access to Live Network Data: The study's reliance on historical drive-test 

data rather than real-time live network performance data can limit the applicability and 

timeliness of the predictions. Real-time data could enhance model accuracy and rele-

vance. 

2.2 Benefits and Potential Improvements in Telecommunication Services 

a. High Scalability: The study's methodologies are designed to be scalable, allowing 

for application across various geographic locations and network sizes, which can adapt 

to different network environments. 

b. Fast and Timely Results: The use of ML algorithms provides quick predictions, 

facilitating rapid decision-making and timely adjustments in network planning and op-

timization. 

c. Cost-Effectiveness: The approach is computationally less expensive compared to 

traditional methods, reducing the overall cost of network performance monitoring and 

optimization. 

d. Efficient Diagnosis: The ML models enable efficient detection of network issues, 

allowing for swift recommendations and resolutions. This leads to improved network 

performance and service quality. 
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3 Methodology 

This research was conducted following the procedures outlined below. 

3.1 Data Collection Process 

The data collection process involved conducting drive tests around the University of 

Hull and nearby locations, including Hull City Centre, Barton Upon Humber, and New-

land, which served as use cases. The primary tools used in this process were: 

a. Smartphones: Redmi Note 7 (4G) and Samsung Galaxy A32 (5G) were 

used to record and store the logged data.  

b. SIM Cards: SIM cards from four different Mobile Network Operators 

(MNOs)/Mobile Virtual Network Operators (MVNOs)—Three, EE, TESCO, 

and Vodafone—were utilized to ensure network availability during the meas-

urements. 

c. G-NetTrack Pro Application: This open-source application was employed 

to capture and log mobile network parameters during the drive tests. 

The smartphones, equipped with an in-built Global Positioning System (GPS), were 

used to log data in real-time as the drive tests were conducted. Each benchmarking test 

lasted approximately one hour per location, except for Barton Upon Humber, where the 

test duration was slightly shorter due to its sparse population and fewer base transceiver 

stations (BTS) or nodes. The benchmarking process involved testing all four 

MNOs/MVNOs simultaneously, facilitated by the smartphones' capability to support 

two mobile networks each. This allowed for the collection of comprehensive data 

across different network operators in the same timeframe. Table 2 below provides more 

detailed information about the measurement locations and the duration of each test. 

Table 2. Drive Test Measurement Locations and Test Duration of This Research 

Drive Test Location Test Duration (Hr. Min) 

Around The University of Hull – Main Study 1.24 

Barton Upon Humber – Use Case 3 0.13 

Hull City Centre – Use Case 1 1.18 

Newland – Use Case 2 1.02 

Median Test Duration (Hr. Min) 1.10 

3.2 Data Cleaning Process 

The log files generated from the Drive-Tests were initially in text document (.txt) 

format and were subsequently converted into comma-separated value (.csv) format to 

facilitate further processing. The CSV data were then imported into Python using the 

Jupyter Notebook environment for detailed cleaning. During the cleaning process, 

missing values, outliers, duplicates, and unnecessary strings were systematically 
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identified and removed. Outliers were detected and handled using a combination of 

techniques, including the Interquartile Range (IQR) method, Local Outlier Factor, and 

domain-specific knowledge. Figure 1 below illustrates the process of outlier detection 

and removal in the RSRP distribution across the mobile networks, where IQR and 

domain expertise were employed to ensure data accuracy and reliability. 

 

 

 
Fig. 1. RSRP distribution of all four MNOs/MVNOs showing potential outliers before and after 

cleaning with IQR and Domain Knowledge 



9 

3.3 Exploratory Data Analysis (EDA) 

During the EDA phase, classes were created to facilitate classification predictions, 

mapping the RSRP values into categories of excellent, good, fair, and bad coverage, 

and the RSRQ values into categories of excellent, good, fair, and poor quality. Table 3 

and Figure 2 provide further details on these classifications. Visualizations were then 

utilized to benchmark the RSRP and RSRQ values, allowing for the validation of 

changes made during the data cleaning process. 

Table 3. Class Mapping (Legend) for Classification 

Colour Class Label RSRP (dBm) Colour Class Label RSRQ (dB) 

Light Green Excellent >=-75 Blue Excellent >-8 

Dark Green Good >=-95 - <-75 Dark Green Good >=-14 - <-8 

Yellow Fair >=-105 - <-95 Yellow Fair >=-18 - <-14 

Red Bad <-115 Red Poor <-18 

3.4 Data Preprocessing 

The data preprocessing phase began with the selection of the most relevant features or 

KPIs for building the regression and classification prediction models. This selection 

was guided by a correlation matrix, accompanied by a heatmap visualization, to repre-

sent the input features. The already labeled RSRP and RSRQ values were selected as 

the target outputs. To handle categorical variables, one-hot encoding was applied, con-

verting these entries into binary values (1s and 0s). Following this, the dataset was split 

into training (80% of the sample) and testing (20% of the sample) subsets. To minimize 

model overfitting and ensure data balance, regularization was applied using Standard 

Scaler, marking the end of the preprocessing stage. 

3.5 Machine Learning (ML) Modelling  

The modelling process began with the development of a regression model aimed at 

predicting coverage (RSRP) and quality (RSRQ) using a variety of supervised ML al-
gorithms. The base models employed included Decision Tree (DT), Extra Trees (ET), 

Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LightGBM), 

Deep Neural Network (DNN), Multi-Layer Perceptron (MLP), Support Vector Regres-

sor (SVR), K-Nearest Neighbour (KNN), Gradient Boosting (GB), and Random Forest 

(RF). An Ensemble Learning (EL) technique, specifically voting, was then applied to 

combine these base models, utilizing a 10-fold Cross-Validation (CV) to prevent over-

fitting. Following the regression modelling, a classification model was developed to 

similarly predict RSRP and RSRQ. The base models used for classification included 

Logistic Regression (LogisticR), MLP, DT, ET, Gaussian Naïve Bayes (GNB), 

LightGBM, Support Vector Machine (SVM), GB, KNN, and RF. This was also fol-

lowed by EL modelling, applying stacking/voting methods, and a 10-fold CV. The EL 

model, combining the best-performing base models (RF, GB, ET, SVM, XGB, and 
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LightGBM for regression, and LogisticR, SVM, MLP, GB, ET, and RF for classifica-

tion), achieved superior predictive performance. These algorithms were selected for 

their robustness, ease of use, computational efficiency, and strong research backing. 

3.6 Model Evaluation  

The effectiveness of the Regression models was assessed using key evaluation metrics 

including the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), 

Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Coefficient of 

Determination (R²). For the Classification models, evaluation was conducted using 

metrics such as Accuracy, Receiver Operating Characteristic Area Under the Curve 

(ROC_AUC), Precision, Recall, and F-1 Score, along with a classification and confu-

sion matrix report to separate actual from predicted classes. Further discussion and 

analysis of these evaluation metrics and their implications for model evaluation are 

provided in the subsequent section. 

4 Discussion 

This section delves into the detailed analysis of the measurements and modelling results 

from the main study, along with a comprehensive examination of the outcomes from 

the use cases. 

4.1 EDA and Feature Engineering 

In this section, the results from the benchmark tests conducted across the four 

MNOs/MVNOs (Three, EE, TESCO, Vodafone) around the University of Hull and its 

surrounding areas are analyzed. Figure 2 showcases the distribution of coverage 

(RSRP) and quality (RSRQ) across various locations, categorized into areas of 

excellent, good, fair, bad, or poor performance. These categories were crucial for 

training the ML models to predict network performance effectively. 

 

a. Exploratory Data Analysis (EDA) 
The exploratory data analysis focused on understanding the distribution of key 

variables and their relationships with the target metrics, RSRP (Level) and RSRQ 

(Quality). Visualizations were utilized to benchmark and validate the data post-

cleaning, ensuring that the outlier removal and other preprocessing steps effectively 

prepared the data for model training. EDA also helped in identifying patterns in the 

data, such as geographic locations with consistently poor coverage, which could be 

indicative of underlying network issues. 

 

b. Feature Engineering 

Feature selection and engineering were pivotal in building accurate predictive models. 

Apart from the target variables (RSRP and RSRQ), several independent features were 

identified as significant contributors to the model's performance. These features 
included: 
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 Longitude and Latitude: Geographic coordinates were essential for spatial 

analysis of network performance. 

 Speed: The speed of the device during the drive tests influenced signal quality, 

with faster speeds generally correlating with lower RSRP/RSRQ. 

 Cell Global Identity (CGI), Node, CellID, and Location Area Code (LAC): 

These identifiers were crucial for distinguishing between different network 

cells and their performance characteristics. 

 Signal-to-Noise Ratio (SNR): Higher SNR values generally indicated better 

signal quality, making this a key predictor for RSRQ. 

 Absolute Radio Frequency Channel Number (ARFCN): This feature provides 

insight into the specific frequency bands used by the networks, which can 

affect coverage. 

 Downlink (DL) and Uplink (UL) Bitrate: These features represented the data 

throughput in both directions, closely linked with the overall user experience 

and network quality. 

 Primary Scrambling Code (PSC) or Physical Cell Identity (PCI): For 4G/5G 

networks, these identifiers were essential for understanding which cell or 

sector the device was connected to. 

 Altitude and Height: These factors influenced signal propagation, especially 

in areas with varying topography. 

 Accuracy, Servingtime, and Rawcellid: These additional parameters provided 

more context for the signal measurements, helping to refine the model's 

predictions. 

 Network Type Number and Carrier Aggregation (CA): Network type (e.g., 

4G, 5G) and the use of carrier aggregation were significant factors in 

determining RSRP and RSRQ. 

 

The features were selected based on their correlation with the target variables, where 

strong positive or negative correlations (close to +1 or -1) indicated high feature 
importance. Additionally, domain knowledge played a crucial role in feature selection, 

ensuring that the models were built using variables that were not only statistically 

significant but also relevant in real-world network scenarios. The combination of these 

carefully selected features and the results from the EDA laid a strong foundation for 

building robust and accurate predictive models. These models were then used to 

identify and predict areas of varying network performance across the study area, 

providing valuable insights for network optimization. 
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Fig. 2. Coverage (RSRP) and Quality (RSRQ) Benchmark Plots, Feature Correlation Heatmap 

and Matrix Highlighting Their Relevance to The RSRP and RSRQ – Main Study 
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4.2 Regression Analysis - Main Study 

For the coverage (RSRP) predictions, the MSE of most base models remained below 

37.03, with exceptions in KNN at 50.86, MLP at 72.30, and DNN at 92.50. The RMSE 

for all base models was below 9.63, with MAE under 5.72, and MAPE below 6.3%. R² 

exceeded 71% for most models, except for MLP at 59.63% and DNN at 48.36%. De-

spite these variations, the overall coverage (RSRP) prediction performed very well, 

with the EL model (using a 10-fold CV) showing superior performance. The EL model 

achieved an RMSE of 3.87, MSE of 15.49, MAE of 2.69, MAPE of 2.75%, and an R² 

of 90.83%, indicating a high level of predictive accuracy. For the quality (RSRQ) pre-

dictions, the MSE of the base models stayed below 2.77, with RMSE under 1.67, MAE 

below 1.14, MAPE under 7.62%, and R² values above 62.74%, except for DNN at 

54.49% and KNN at 45.85%, both of which were below 55%. The EL model (with 10-
fold CV) also demonstrated strong performance in predicting RSRQ, with an MSE of 

0.79, RMSE of 0.88, MAE of 0.6, MAPE of 4.28%, and R² of 81%. Figures 3 and 4 

below provide further details. 

 

 
Fig. 3. MSE and RMSE Model Performance Evaluation for RSRP and RSRQ Predictions – Main 

Study 
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Fig. 4. MAE, MAPE, and R² Model Performance Evaluation for RSRP and RSRQ Predictions – 

Main Study 
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4.3 Classification Analysis - Main Study 

For the coverage (RSRP) and quality (RSRQ) predictions, all base models achieved an 

accuracy greater than 70%, except for KNN, which recorded 66.99% for RSRP and 

69.90% for RSRQ, and GNB, with 46.12% for RSRP and 63.59% for RSRQ. Addition-

ally, the ROC_AUC values for all base models were above 75%, except GNB, which 

scored 69.69% for RSRQ. The EL model, incorporating a 10-fold CV, delivered strong 

overall performance, with an accuracy of 82% for RSRP and 85.51% for RSRQ. Figure 

5 below provides further details, including the classification report and confusion ma-

trix, which offer additional insights into the evaluation metrics and illustrate the sepa-

ration between actual and predicted values. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 

 

 

 
Fig. 5. RSRP and RSRQ Model Performance Evaluation with Accuracy, ROC_AUC, 

Classification Report, and Confusion Matrix - Main Study 
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4.4 Use Case Analysis 

Further coverage (RSRP) and quality (RSRQ) predictions were conducted in additional 

locations as use cases—Hull City Centre (case 1), Newland (case 2), and Barton Upon 

Humber (case 3)—to validate the effectiveness of the Regression and Classification 

models from the main study. These additional tests also demonstrated good 

performance across various metrics. 

For RSRP and RSRQ predictions, the average RMSE for all base models and use 

cases was below 6. The R² values exceeded 61% for RSRP, except for the DNN model 

(24.04% in use case 2), DT (56.67% in use case 2), and MLP (52.42% in use case 2). 

For RSRQ, the R² values were above 50% across all base models and use cases, except 

for DT (38.89% in use case 3) and KNN (48.80%). The MSE remained under 36 for 

RSRP and below 4.08 for RSRQ across all models and use cases. The MAPE was less 
than 4.82 for RSRP and under 12.35 for RSRQ. Additionally, the MAE for all base 

models and use cases was below 4.25 for both RSRP and RSRQ. Accuracy was greater 

than 70% for both RSRP and RSRQ across all base models and use cases, except for 

GNB, which had accuracy below 51% for both RSRP and RSRQ in all three use cases. 

The ROC_AUC exceeded 67% for all models and use cases, except GNB, which had 

an ROC_AUC of 57.14% in use case 2. The Ensemble Learning (EL) model continued 

to perform very well, achieving R² values greater than 78.5% across all cases, MSE 

values below 13.4 for RSRP and below 2.4 for RSRQ, RMSE values under 3.66 for 

both RSRP and RSRQ, MAE values below 2.74 for both RSRP and RSRQ and MAPE 

values less than 3.3% for RSRP and below 9.65% for RSRQ. Figures 6, 7, 8, and 9 

provide more detailed insights below. 
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Fig. 6. MSE and RMSE Model Performance Evaluation for RSRP and RSRQ Predictions – Use 

Cases 1, 2, and 3 



19 

 

 

 
Fig. 7. MAE, MAPE, and R² Model Performance Evaluation for RSRP and RSRQ Predictions – 

Use Cases 1, 2, and 3 
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Fig. 8. Accuracy and ROC_AUC Model Performance Evaluation for RSRP and RSRQ 

Predictions – Use Cases 1, 2, and 3 
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Fig. 9. Classification Report and Confusion Matrix EL+CV Model Performance Evaluation for 

RSRP and RSRQ Predictions – Use Cases 1, 2, and 3 

 

4.5 Summary 

The overall model performance for this research, as shown in Figures 10, 11, and Table 

4 below, demonstrates excellent results compared to related works [4, 5, 8, 9]. Notably, 

all errors (RMSE, MAE, MAPE for RSRP, and MSE for RSRQ) are below 4, except 

for MSE in RSRP (11.58) and MAPE in RSRQ (7.15%). The R² remains above 72% 

for RSRQ and over 86% for RSRP. Additionally, the ROC_AUC is above 85% for 
RSRQ and greater than 89% for RSRP, while Accuracy exceeds 81% for RSRQ and 

87% for RSRP. These strong results are attributed to the high performance of base 

models such as RF, ET, LogisticR, GB, SVM/SVR, XGB, LightGBM, and MLP. A 

smart solution that MNOs/MVNOs can easily deploy to enhance QoS for end-users has 

been achieved [12]. 
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Fig. 10. MAE, MAPE, MSE, RMSE, R², ACCURACY, and ROC_AUC Model Performance 

Evaluation for RSRP and RSRQ Predictions Across All Locations 
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Fig. 11. Summarized Overall Model Performance for this Research with MAE, MAPE, MSE, 

RMSE, R², ACCURACY, and ROC_AUC 

 

 

 

 

 

 
 

Table 4. Overall Model Performance Comparison with Related Work 

Article 

Reference 

KPI 

Prediction 

Results 

(Related Work) 

Results 

(This Research) 

This Research 

Achievement 

[9] RSRP 
<13 (GLM, MLP, DNN) and <2 

(KNN) MAE 
< 2.46 MAE Lower MAE 

[4] RSRP 
<7.45 RMSE, MAE, and MAPE, 

63% R² 

<4 RMSE, MAE, 

and MAPE, 

72.63% R² 

Lower RMSE, 

MAE, MAPE, 

and higher R² 

[8] RSRP 5.74 RMSE, 74% R² 
<3.4 RMSE,  

86.90% R² 

Lower RMSE 

and higher R² 

[5] RSRP 

<7 RMSE for 4G LTE (T-Mobile 

and AT&T)  

>20 RMSE for WiMAX, Zigbee, 

and Industrial Network (at 

5.8GHz) 

<3.4 RMSE 

 
Lower RMSE 
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5 Conclusion 

The application of multiple prediction techniques (Regression and Classification) and 
prediction KPIs (RSRP and RSRQ) using EL with the best-performing base models 

differentiates this research significantly from related works [4 - 11]. The overall 

average model performance—achieving metrics such as <4 RMSE and MAE, <7.16% 

MAPE, <11.59 MSE, >72% R², >85% ROC_AUC, and >81% Accuracy—

demonstrates the effectiveness of using Ensemble Supervised Machine Learning 

algorithms to predict Mobile Network Coverage (RSRP) and Quality (RSRQ).  

This research has successfully identified areas with excellent, good, and fair RSRP 

and RSRQ, which can be highly lucrative zones for MNOs and MVNOs. However, the 

study also identified coverage holes or areas with bad RSRP and poor RSRQ that 

require improvement. These issues could be addressed by MNOs/MVNOs through 

physical optimizations such as Antenna Tilt Change, Azimuth Re-Orientation, or Sector 

Swap Corrections, or through parametric adjustments [13, 14, 15] like Neighbour 
Relations Definition, Mobility Load Balancing (MLB) Tuning, and Random Physical 

Resource Block (PRB) Allocation Tuning.  

This predictive AI solution is particularly valuable in scenarios where network data 

collection is limited or impossible, making it a potent tool for improving network 

quality, especially when traditional methods like drive testing are constrained. 

 

6 Future Work 

Future work could involve exploring the use of Live Network (or Radio Access Net-

work – RAN) datasets obtained directly from MNOs/MVNOs, in combination with 

Drive-Test datasets, to enhance QoS and end-user experiences through improved ML 

modelling. Additionally, there could be a focus on how these ML models can be more 

effectively and efficiently deployed [16], offering practical insights into the seamless 

integration of these predictive tools into real-world telecommunications networks. This 

could pave the way for more dynamic and adaptive network optimization strategies, 

ultimately leading to better service delivery and customer satisfaction. 

 

 

 
 

 

 

 

 

 



25 

References 

1. Cable Homepage. What is an MVNO?, https://www.cable.co.uk/mobiles/guides/mvno, last 
accessed 2023/10/2 

2. Oughton, E., Frias, Z., Russell, T., Sicker, D., & Cleevely, D. D.: Towards 5G: Scenario-
based assessment of the future supply and demand for mobile telecommunications 
infrastructure. Technological Forecasting and Social Change, 133, 141-155 (2018) 

3. Yuanwei, L., Suzhi, B., Zhiyuan, S., and Lajos, H.: When Machine Learning Meets Big 
Data: A Wireless Communication Perspective. 15(1), 63–72 (2020) 

4. Amir, G.: Data-Driven Prediction of Cellular Networks Coverage: An Interpretable 
Machine-Learning Model. p. 604–8 (2018) 

5. Jerome, D. H., Anand, S., and Arti, R.: A Deep Learning Model for Wireless Channel 
Quality Prediction. p. 1–6 (2019) 

6. Naser, T., Ibtihal, A. S., Hafiz, M. A., Mostefa, M., Omer, E., and Abdulnasir, H.: Machine-
Learning-Based Ground-Level Mobile Network Coverage Prediction Using UAV 
Measurements. Journal of Sensor and Actuator Networks, 12(3), 44 (2023) 

7. Orit, R., Yoram, H., Yisroel, M., and Rina, A.: Machine Learning Methods for SIR 
Prediction in Cellular Networks. 31, 239–53 (2018)  

8. Mohd, F., A., F., Rosdiadee, N., Nor, F. A., and Haidah, A., H., A.: Mobile Network 
Coverage Prediction Based on Supervised Machine Learning Algorithms. 10, 55782–93 
(2022) 

9. Sanaz, M., Sophie, R., Emir, K., Muscahit, C., Jonathan, E., and Ayse, B., B.: Machine 
Learning-Based Radio Coverage Prediction in Urban Environments. IEEE Transactions on 
Network and Service Management; vol. 17, p. 2117–30 (2020) 

10. Pedro, C., Alessandro, D., Florian, W.,  Michael, S., Bruno, G., Anika, S. et al.: Predicting 
QoE in Cellular Networks Using Machine Learning and In-Smartphone Measurements. p. 
1–6 (2017) 

11. Igor, T., Eoin, B., and Predrag, I.: Predictive Capacity Planning for Mobile Networks—ML 
Supported Prediction of Network Performance and User Experience Evolution. Electronics, 
11(4), 626 (2022)  

12. Xin-Lin, H. Xiaomin, M, and Fei, H.: Editorial: Machine Learning and Intelligent 
Communications. 23(1), 68–70 (2018) 

13. Jales, G., Sousa, M., and Vieiral, P.: Optimizing the 4G Mobility Strategy after Diagnosing 
Network Sub-Performance Areas. p. 1–6 (2019) 

14. Bauer, C., I., and Rees, S., J.: Classification of Handover Schemes Within a Cellular 
Environment. vol.5, p. 2199–203 (2002) 

15. Abdelrahim, M., Oluwakayode, O., Seyed, A., H., Muhammad, I., Ali, I., and Rahim, T.: 
Mobility Prediction for Handover Management in Cellular Networks with Control/Data 
Separation. p. 3939–44 (2015) 

16. Janne, R., and Petri, M.: Machine Learning for Performance Prediction in Mobile Cellular 
Networks. 13(1), 51–60 (2015) 

https://www.cable.co.uk/mobiles/guides/mvno

	1 Introduction
	2 Related Work
	2.1 Advantages and Limitations Compared to Related Works
	Pros
	2.2 Benefits and Potential Improvements in Telecommunication Services

	3 Methodology
	3.1 Data Collection Process
	3.2 Data Cleaning Process
	3.3 Exploratory Data Analysis (EDA)
	3.4 Data Preprocessing
	3.5 Machine Learning (ML) Modelling
	3.6 Model Evaluation

	4 Discussion
	4.1 EDA and Feature Engineering
	4.2 Regression Analysis - Main Study
	4.3 Classification Analysis - Main Study
	4.4 Use Case Analysis
	4.5 Summary

	5 Conclusion
	6 Future Work
	References

