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A Fast and Compact 3D CNN for Hyperspectral
Image Classification
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Abstract—Hyperspectral Images (HSI) are used in a large number
of real-world applications. HSI classification (HSIC) is a challenging
task due to high inter-class similarity, high intra-class variability,
overlapping, and nested regions. The 2D Convolutional Neural
Network (CNN) is a viable classification approach since HSIC
depends on both Spectral-Spatial information. The 3D CNN is a
good alternative for improving accuracy of HSIC, but it can be
computationally-intensive due to the volume and spectral dimensions
of HSI. Furthermore, these models may fail to extract quality feature
maps and underperform over the regions having similar textures.
This work proposes a 3D CNN model that utilizes both spatial-
spectral feature maps to improve the performance of HSIC. For
this purpose, the HSI cube is first divided into small overlapping
3D patches, which are processed to generate 3D feature maps using
a 3D kernel function over multiple contiguous bands of the spectral
information in a computationally efficient way. In brief, our end-to-
end trained model requires fewer parameters to significantly reduce
the convergence time while providing better accuracy than existing
models. The results are further compared with several state-of-the-
art 2D/3D CNN models, demonstrating remarkable performance
both in terms of accuracy and computational time.

Index Terms—3D Convolutional Neural Network (CNN); Kernel
Function; Classification; Hyperspectral Images (HSI).

I. INTRODUCTION

HYPERSPECTRAL sensors collect information (reflectance)
in several hundreds of contiguous bands with a very high

spectral resolution enabling us to classify objects based on their
spectral signatures. However, these images are in relatively low
spatial resolution due to the sensor limitations, SNR, and com-
plexity constraints which significantly affect the performance for
several real-world applications [1]. The traditional classifiers, for
instance, KNN [2], SVM [3], Maximum Likelihood [4], Logistic
Regression [2] and Extreme Learning Machine (ELM) [5] only
employ spectral information. These classifiers do not perform
well due to spectral redundancy and high correlation among the
spectral bands. Furthermore, these classifiers fail to preserve the
important spatial variability of Hyperspectral data which also
results in their low performance.

The simplest way to improve the classification performance is
to design a classifier that should incorporate both spectral and
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spatial information. Spatial information is considered as addi-
tional discriminatory information associated with the size, shape,
and structure of the object which, if provided correctly, brings
more competitive results. Spatial-spectral classifiers can generally
be classified into two groups. The first category explores spatial
and spectral information separately. The spatial information is
extracted in advance using entropy [6], morphological operations
[7], [8], low rank representation [9], attribute profiles [10] and
fuzziness [11]. Later this information is combined with spectral
information to perform pixel-level classification.

The second category fuses spatial-spectral information to get
joint features [12], for instance, 3D wavelet, scattering wavelet
and Gabor filter [13], [14] are generated at different frequen-
cies and scales to extract the joint spatial-spectral features for
classification. HSI are in 3D cubes thus the former category
results in several 3D features, i.e., spatial-spectra feature cubes
comprising key information, thus preserving joint spatial-spectral
correlations that enables the extracted features to produce better
results. However, the classical feature extraction methods are
based on shallow learning and handcrafted features which largely
depend on domain knowledge [15]. Accordingly, Deep models
have been used to automatically learn low to high-level features
from raw HSI data which have attained incredible success for
HSIC.

The last few years witnessed an intensive improvement in
CNN for HSIC where the spatial features are tailored by a 2D
CNN model [16], [17], [18]. These spatial features are usually
extracted separately that, to some extent, void the reason to
jointly exploit the spatial-spectral information for HISC. A hybrid
spectral CNN for HSIC has been proposed in [15], in which
the authors proposed a 3D CNN followed by a spatial 2D CNN
model. The 3D convolutional layers facilitate the spectral-spatial
feature representation whereas 2D convolutional layers are used
to learn abstract level information. The hybrid model produces
better results as compared to the conventional 3D models but still
lacks at extracting the abstract level spatial information. Recently,
Paoletti et. al., [19], [20] proposed two deep pyramidal residual
networks for HSI feature extraction and classification. The former
work only considered spectral information for HSIC whereas
the latter considered both the spectral-spatial capsule network
for feature learning and classification. Chen et. al., proposed a
3D CNN model for feature extraction and classification [21].
Similarly, Zhong et. al., [22] proposed a spatial-spectral residual
network for HSIC in which the residual blocks used identity
mapping to connect 3D convolutional layers. Mou et. al., [23]
proposed an unsupervised HSIC to further explore the residual
CNNs.
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Our review of the literature revealed several shortcomings,
including but not limited to;

1) Though CNNs have become a promising method for HSIC,
their memory requirement and high computational com-
plexity makes it challenging to accelerate their performance.
This work investigates their application to HSIC targetting
high accuracy but under controlled computational cost, in
terms of time it takes for them to converge. To achieve this,
our work progressively modifies a baseline model while
preserving its accuracy and reducing its time complexity.

2) Preserving channel relationship information is a challenging
problem. CNN models are usually trained on reshaped spec-
tral bands or use single band (gray-scale) information (con-
taining different properties), resulting in failure to extract
the “fine structural/spatial information of HSI”. Further-
more, the high inter-class similarity, intra-class variability,
overlapping and nested regions of HSI data makes classifi-
cation a challenging problem. To overcome the said issue,
the proposed architecture first divides the HSI cube into
small overlapping 3D patches. These patches are processed
to generate 3D feature maps using 3D kernel function over
multiple contiguous bands to preserve the joint spatial and
spectral information for the feature learning process which
exploits important discriminatory information for HSIC.

3) As a preprocessing step, incremental Principle Component
Analysis (iPCA) is employed to reduce the redundancy
among the bands to process the few important wavelengths
out of the entire HSI cube. Finally, to increase the number
of spatial-spectral feature maps, four 3D convolutional
layers are deployed to ensure that the model is able to
discriminate the spatial information within different spectral
bands without any loss.

In a nutshell, our end-to-end trained model requires fewer
parameters, which significantly reduces the time it takes for the
model to converge without compromising its accuracy, which is
better than the existing models, as evident by our experimental
results. We performed a comparative study with several state-of-
the-art 2D/3D CNN methods proposed in the literature, and the
experimental/comparative results confirm the superiority of our
approach.

The rest of the paper is structured as follows: Section II presents
the proposed methodology. Section III describes the experimental
Datasets, Results, and discussion. Finally Section IV concludes
the paper with possible future research directions.

II. PROPOSED METHODOLOGY

Let us assume a HSI can be expressed as X =
[x1, x2, x3, ..., xL]

T ∈ RL×(N×M) consisting of N ×M samples
associated with C classes per band with total L bands, in which
each sample is represented as (xi, yj), where yj is the class label
of xi sample. The HSI pixels exhibit high inter-class similarity,
high intra-class variability, overlapping, and nested regions. To
overcome the aforesaid issues, iPCA is applied to eliminate the
redundant bands. iPCA reduces the number of bands (L to B,

where B � L) while maintaining the spatial dimensions as shown
in Figure 11.

Fig. 1: Proposed 3D CNN Model for HSIC. 3D CNN Model
details, i.e., the number of 3D Convectional and fully connected
layers, can be found in Table I.

TABLE I: Layer based Summary of our Proposed 3D CNN Model
architecture shown in Figure 2 with Window Size set as 11× 11.

Layer Output Shape # of Parameters
Input Layer (11, 11, 20, 1) 0

Conv3D 1 (Conv3D) (9, 9, 14, 8) 512
Conv3D 2 (Conv3D) (7, 7, 10, 16) 5776
Conv3D 3 (Conv3D) (5, 5, 8, 32) 13856
Conv3D 4 (Conv3D) (3, 3, 6, 64) 55360

Flatten 1 (Flatten) (3456) 0
Dense 1 (Dense) (256) 884992

Dropout 1 (Dropout) (256) 0
Dense 2 (Dense) (128) 32896

Dropout 2 (Dropout) (128) 0
Dense 3 (Dense) (# of Classes) 774

In total, 994,166 trainable parameters are required

In order to pass the HSI cube to the model, it must be divided
into a small overlapping 3D spatial patches on which the ground
labels are formed based on the central pixel, as shown in Figure 2.
The process creates neighboring patches P ∈ RS×S×B centered
at the spatial location (a, b) covering (S × S) spatial windows
[15]. The total of n patches given by (M–S + 1)× (N–S + 1).
Thus, these patches cover the width from a−(S−1)

2 to a+(S−1)
2

and height from b−(S−1)
2 to b+(S−1)

2 .

Fig. 2: 3D Convolution Operation

The input patches are first convolved with a 3D kernel function
which computes the sum of the dot product between kernel
function and input patch [24], [15]. Later these learned features
are processed through an activation function that introduces the
nonlinearity. The activation values at spatial position (x, y, z) in
the ith layer and jth feature map is denoted as vx,y,zi,j . Thus, the
final model can be created as follows:

1Demo code is available at GitHub

https://github.com/mahmad00/A-Fast-3D-CNN-for-HSIC
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vx,y,zi,j = F
( di−1∑
τ=1

ν∑
λ=−ν

γ∑
ρ=−γ

δ∑
φ=−δ

wλ,ρ,φi,j,τ × v
(x+λ),(y+ρ),(z+φ)
(i−1),τ

+ bi,j

)
where F is an activation function, di−1 be the number of 3D
feature maps at (i − 1)th layer and wi,j be the depth of the
kernel, bi,j is the bias, 2δ + 1, 2γ + 1 and 2ν + 1 be the height,
width and depth of the kernel.

In short, the proposed 3D CNN convolutional kernels are as
follows: 3D conv layer1 = 8 × 3 × 3 × 7 × 1 where K1

1 =
3,K1

2 = 3 and K1
3 = 7. 3D conv layer2 = 16× 3× 3× 5× 8

where K2
1 = 3,K2

2 = 3 and K2
3 = 5. 3D conv layer3 =

32 × 3 × 3 × 3 × 16 where K3
1 = 3,K3

2 = 3 and K3
3 = 3

and finally 3D conv layer4 = 64 × 3 × 3 × 3 × 16 where
K3

1 = 3,K3
2 = 3 and K3

3 = 3. To increase the number of
spatial-spectral feature maps, four 3D convolutional layers are
deployed before the flatten layer to make sure the model is able
to discriminate the spatial information within different spectral
bands without any loss. Further details regarding the proposed
model can be found in Table I. The total number of parameters
(i.e., tune-able weights) of our proposed 3D CNN model is
994, 166. The weights are initially randomized and optimized
using Adam optimizer back-propagation with a soft-max loss
function. The weights are updated using a mini-batch of size 256
with 50 epochs without batch normalization and augmentation.

III. EXPERIMENTAL DATASETS AND RESULTS

The Salinas dataset (SD) was acquired over Salinas Valley
California using AVIRIS sensor. SD is of size 512×217×224 with
a 3.7 meter spatial resolution with 512× 217 is spatial and 224
spectral dimensions. SD consists of vineyard fields, vegetables,
and bare soils. SD consist of 16 classes. A few water absorption
bands 108−112, 154−167, and 224 are removed before analysis.

Indian Pines Dataset (IPD) is obtained over northwestern
Indiana’s test site by Airborne Visible / Infrared Imaging Spec-
trometer (AVIRIS) sensor. IPD is of size 145× 145× 224 in the
wavelength range 0.4−2.5×10−6 meters where 145×145 is the
spatial and 224 spectral dimensions. IPD consists of 1/3 forest
and 2/3 agriculture area and other naturally evergreen vegetation.
Some crops in the early stages of their growth are also present
with approximately less than 5% of total coverage. Low-density
housing, building, and small roads, two dual-lane highway and
a railway line are also a part of IPD. The IPD ground truth
comprised of 16 classes which are not mutually exclusive. The
water absorption bands have been removed before the experiments
thus the remaining 200 bands are used in this experiment.

Pavia University Dataset (PUD) gathered over Pavia in northern
Italy using a Reflective Optics System Imaging Spectrometer
(ROSIS) optical sensor. PUD consists of 610 × 610 spatial and
103 spectral bands with a spatial resolution of 1.3 meters. PUD
ground truth classes are 9. Further details about the experimental
datasets can be found at [25].

All the experiments were performed on an online platform
known as Google Colab [26]. Google Colab is an online platform

that requires a good speed of internet to run any environment.
Google Colab provides an option to execute the codes on python
3 notebook with Graphical Processing Unit (GPU), 25 GB of
Random Access Memory (RAM) and 358.27 GB of could storage
for data computation. In all the experiments, the initial Test/Train
set is divided into a 30/70% ratio on which Training samples
(70% of the entire population) are further divided into 50/50%
for the Training and Validation set.

For fair comparisons, the learning rate for all the experiments
is set to 0.001, relu as an activation function is used for all layers
except last on which softmax is used, the patch sizes are set as
11×11×20, 13×13×20, 15×15×20, 17×17×20, 19×19×20,
21×21×20 and 25×25×20, respectively with 20 most informa-
tive bands selected by iPCA method. For evaluation purposes, the
Average Accuracy (AA), Overall Accuracy (OA), and Kappa (κ)
coefficient have been computed from the confusion matrices. AA
represents the average class-wise classification performance, OA
is computed as the number of correctly classified examples out
of the total test examples, and finally, κ is known as a statistical
metric that considered the mutual information regarding a strong
agreement among classification and ground-truth maps. Along
with OA, AA, and κ metrics, several statistical tests are also
being considered such as F1-Score, Precision, and Recall.

The convergence loss and accuracy of our proposed 3D CNN
model for a 50 number of epochs are shown in Figure 3. From
these figures, one can conclude that the proposed model is
converged almost around 20 epochs.

0 10 20 30 40 50
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training and Validation Accuracy

Training
Validation

(a) Accuracy

0 10 20 30 40 50
Epochs

0

2

4

6

8

Lo
ss

Training and Validation loss
Training
Validation

(b) Loss

Fig. 3: Accuracy and Loss for Training and Validation sets on
Indian Pines Dataset with 11 × 11 window patch correspond to
the 50 number of Epochs.

Whereas, the computational time of our proposed model is
shown in Table II which reveals a fast convergence and com-
putational efficiency of our proposed model. The computational
time highly depends on the speed of the internet and available
RAM.

TABLE II: Computational time in minutes for all the experimental
datasets with several window sizes.

Dataset Proposed with Several Window Sizes 2D CNN 3D-CNN MS-3D-CNN
11× 11 13× 13 15× 15 17× 17 19× 19 21× 21 25× 25

SL-A 0.22 0.23 0.56 0.28 0.98 0.37 0.45 — — —
SL 1.34 1.41 1.60 2.00 3.17 2.63 3.52 2.2 74.0 25.5
IP 0.33 0.33 0.61 0.78 0.62 0.58 0.76 1.9 15.2 14.1
PU 2.16 5.26 1.35 2.00 2.46 2.14 2.83 1.8 58.0 20.3
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(a) GT (b) GT (c) 11× 11 (d) 13× 13 (e) 15× 15 (f) 17× 17 (g) 19× 19 (h) 21× 21 (i) 25× 25

Fig. 4: Indian Pines Dataset Ground Truths for each spatial dimensions processed through our proposed model.

(a) SA (b) GT (c) 11× 11 (d) 13× 13 (e) 15× 15 (f) 17× 17 (g) 19× 19 (h) 21× 21 (i) 25× 25

Fig. 5: Salinas Dataset Ground Truths for each spatial dimensions processed through our proposed model.

(a) GT (b) GT (c) 11× 11 (d) 13× 13 (e) 15× 15 (f) 17× 17 (g) 19× 19 (h) 21× 21 (i) 25× 25

Fig. 6: Pavia University Dataset Ground Truths for each spatial dimensions processed through our proposed model.

(a) GT (b) GT (c) 11× 11 (d) 13× 13 (e) 15× 15 (f) 17× 17 (g) 19× 19 (h) 21× 21 (i) 25× 25

Fig. 7: Salinas-A Dataset Ground Truths for each spatial dimensions processed through our proposed model.

TABLE III: Impact of window size on our proposed model

Window PU IP SA SL-A
OA AA κ OA AA κ OA AA κ OA AA κ

11× 11 99.94 99.89 99.92 88.65 83.52 87.11 99.80 99.91 99.78 100 100 100
13× 13 99.81 99.65 99.75 95.38 94.14 94.72 99.93 99.94 99.93 100 100 100
15× 15 99.85 99.62 99.80 93.69 93.09 92.79 99.99 99.99 99.99 100 100 100
17× 17 99.05 98.49 98.75 91.80 91.74 90.62 99.95 99.97 99.95 99.93 99.93 99.92
19× 19 99.93 99.78 99.91 93.13 93.42 92.15 98.04 94.02 97.81 100 100 100
21× 21 99.78 99.43 99.72 94.34 91.31 93.52 99.99 99.99 99.99 100 100 100
25× 25 98.79 97.67 98.39 97.75 96.17 97.44 99.96 99.93 99.95 100 100 100

The accuracy analysis i.e., OA, AA, and κ based on the
impact of spatial dimensions processed by the proposed model
is presented in Table III. While looking into the Table III, one
can conclude that the window size of 11×11 is enough for Pavia
University, Salinas, and Salinas-A dataset whereas the window
size of 13 × 13 and 25 × 25 both works almost the same.

Furthermore, the classification maps (geographical locations for
each class) according to the different number of window sizes
(spatial dimensions) are shown in Figures 4-7. In regards to
comparison, the proposed model is compared with several state-
of-the-art methods published in recent years. From experimental
results listed in Table IV one can conclude that the proposed
model has competitive results and to some extent better in regards
to the other methods. The comparative methods includes Multi-
scale-3D-CNN [27], 3D/2D-CNN [24], [28]. All the comparative
methods are being trained according to the settings mentioned in
their respective papers. Experiments listed in Table IV shows the
proposed method improves the results significantly then the state-
of-the-art methods with even fewer training samples, number of
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convolutional layers, number of filters, number of epochs, and
above all, in less computational time.

TABLE IV: Comparative evaluations with State-of-the-art meth-
ods while considering 11× 11 Spatial dimensions with even less
number of training samples (i.e., 60/40% (train/test) and 70/30%
(train/validation)).

Dataset MS-3D-CNN 3D-CNN 2D-CNN Proposed
OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

PU 95.95 97.52 93.40 96.34 97.03 94.90 96.63 94.84 95.53 98.40 97.89 97.89
IP 81.39 75.22 81.20 82.62 76.51 79.25 80.27 68.32 75.26 97.75 94.54 97.44
SA 94.20 96.66 93.61 85.00 89.63 83.20 96.34 94.36 95.93 98.06 98.80 97.85

IV. CONCLUSION

Hyperspectral Image Classification (HSIC) is a challenging task
due to high inter-class similarity, high intra-class variability, over-
lapping, and nested regions. Though 2D Convolutional Neural
Networks (CNNs) have emerged as a viable approach for HSIC,
3D CNNs are a better alternative because accurate HSIC depends
on both Spectral-Spatial information. However, 3D CNN can be
highly computational complex due to their volume and spectral
dimensions. Therefore, this paper proposed a compact and fast 3D
CNN model, which overcame the above-mentioned challenges.
Our model provided state-of-the-art experimental results in a com-
putationally efficient fashion on four Hyperspectral benchmark
datasets. We resolved the problem of inter-class similarity and
high intra-class variability using 3D convolution-based spatial-
spectral information. To summarize, our end-to-end trained 3D
CNN has fewer parameters, better recognition accuracy, and fast
convergence time than existing 2D/3D CNN models. The experi-
mental results reveal that the proposed method outperformed the
state of the art methods on various public benchmarks while being
less complex than the conventional 3D CNN models.
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