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EXAMINE FATIGUE PROPERTIES OF PORCINE TRABECULAR BONE? 
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Abstract 

Fatigue testing on trabecular bone has been performed throughout the years, the 
data contained could be of use to researchers attempting to find a qualitative link 
between whole-body vibration and spinal damage. 10 porcine trabecular cores were 
testing under fatigue loading at 2Hz with varying normalised stress values. A sample 
specific idealised sine wave was created to simulate comparable data to those found 
in fatigue papers.  The idealised sine wave created a cascading error meaning no 
meaningful data could be unlocked. Examining fatigue and vibration in-vitro requires 
careful data logging of the acceleration component, the level of which is not 
achievable from the results typically found in journal papers.

 

1.  Introduction 

Low back pain (LBP) is a medical condition thought to be caused by damage to the tissues of the spinal 

column. It is thought that whole-body vibration (WBV) has a contributing factor to LBP over the course 

of a person’s life in relation to their exposure. Certain occupations have been linked to an increased risk 

of LBP which coincides with an increased exposure to vibration (Manchikanti 2000) however the general 

prevalence of LBP within the general population is so large (Walsh et al. 1989) it is difficult to ascribe a 

relationship with WBV. As of yet there has been no direct cause and effect clearly defined from WBV. 

The consensus within legislation is to lower exposure to WBV in an attempt to reduce the overall 

incidence of LBP. UK legislation on the control of WBV is based on assessing the severity of vibration 

in relation to frequency, exposure and acceleration, the main body of legislation being the Control of 

Vibration at Work Regulations 2005 (CVWR) (HSE 2005). The method for assessment used within was 

first standardised in ISO 2631-1 (ISO 1997), amongst others. The main methods used are Root Mean 

Squared (RMS) and Vibration Dose Value (VDV). As this paper examines only axial loading in the z-

axis the methods will be detailed specifically in that axis. RMS is calculated through analysis of the 

vibration signal as show in Equation 1 

𝑅𝑀𝑆 = [
1

𝑇
∫ 𝑎𝑤

2 (𝑡)𝑑𝑡

𝑇

0

]

1
2

 

Equation 1: RMS calculation 

Where, 

 T  is the time period observed (s) 



 

p. 182 

 𝑎𝑤 (𝑡) is the instantaneous weighted acceleration (ms-2) 

The VDV is a cumulative vibration statistic of the fourth order and is calculated using Equation 2 below. 

𝑉𝐷𝑉 = { ∫[𝑎𝑤(𝑡)]4𝑑𝑡

𝑇

0

}

1
4

 

Equation 2: VDV calculation 

Where VDV is the Vibration Dose Value (ms-1.75) 

As VDV is cumulative and increases with exposure to vibration, it can be more useful to examine the 

daily exposure VDVexp
 

𝑉𝐷𝑉𝑒𝑥𝑝  =  𝑉𝐷𝑉 (
𝑇𝑒𝑥𝑝

𝑇 
)

1/4

 

Equation 3: VDVexp calculation 

Where, 

 VDVexp is the 4th order daily vibration exposure (ms-1.75) 

 Texp  is the length of time exposed to the vibration signal in a given day (s) 

The vibrational limits described in CVWR are much more lenient than those introduced in the ISO 

standard 2631-1 as shown in Error! Reference source not found. Error! Reference source not 

found.. 

Table 1: Comparison of WBV Limits between ISO 2631-1 and CVWR 

 Lower bound 

(RMS aw(8) ms-2) 

Upper bound 

(RMS aw(8) ms-2) 

ISO 2631-1 0.43 0.87 

CVWR   0.5 1.15 

 

CVWR also does not provide limits using the VDV method unlike the EU regulation 2002/44/EC 

(Directive 2002) which this is a national transposition of. 

Usage of RMS is problematic as it is only a second order statistic. This means that short shock loads 

within examined time history, which are assumed to be more damaging, are weighted the same as 

vibrations of a lower magnitude. VDV, on the other hand, is a cumulative statistic of the 4th order. As it 

is a 4th order statistic, is more sensitive to the short sharp acceleration loads of shock more than RMS. 

Research into the fatigue failure of trabecular bone has been examined for many years. Studies have 

been conducted into areas including the cycles to failure (Moore and Gibson 2003), primary methods of 
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damage accumulation (Moore, O’Brien, and Gibson 2004), micro damage (Goff et al. 2015) and the 

effects of sample orientation (Haddock et al. 2000). A selection of these papers has been collated into 

Error! Reference source not found. Error! Reference source not found.. 

Table 2: Axial trabecular fatigue testing 

Author Year Signal Test Conditions Test end conditions 

Lambers [1] 2013 Sine σ/E0=0.0035 Different fatigue phases 

Rapillard [2] 2006 Sine 16-90% UCS 40% reduction of E0 

Moore[3] 2003 Sine σ/E0=0.005 - 0.008 0.8,1.1,1.3,1.65,2,2.5% - 𝑒 

Haddock[4] 2004 Triangle σ/E0=0.026 - 0.07 σ/E0 = Failure 

Dendorfer[5] 2008 Triangle σ/E0=0.0022 - 0.00147 "Catastrophic failure" 

Cheng[6] 1992 Sine 0.29-0.45% 𝑒 Until failure 

Ganguly [7] 2004 Sine σ/E0=0.005 - 0.009 Until prescribed strain met 

Moore [8] 2004 Sine σ/E0=0.0065 - 0.0095 Fracture or -5% 𝑒 

Haddock [9] 2000 Sine σ/E0=0.4 - 0.5 Fracture 

[1] (Lambers et al. 2013), [2] (Rapillard, Charlebois, and Zysset 2006), [3] (Moore and Gibson 2003), 

[4] (Haddock et al. 2004), [5] (Dendorfer et al. 2008), [6] (Wen and Cheng 1992), [7] (Ganguly, Moore, 

and Gibson 2004), [8] (Moore et al. 2004), [9] (Haddock et al. 2000) 

Where σ/E0 is the normalised stress, UCS is ultimate compressive stress and 𝑒 is strain. 

The mechanical properties of trabecular bone is highly sample specific and so normalised stress is used 

to reduce the scatter caused by this large variation. 

The tests conducted predominantly use sine or triangle waves with a prescribed testing frequency and 

boundary condition; this allows for an estimation of the RMS and VDV. The wealth of data contained in 

those papers may be invaluable for researchers looking to examine the health effects of vibration. Is it 

possible then, to generate a synthetic waveform based upon the data contained within the paper? 

As it stands heath guidance as presented ISO 2631-1 is nothing more than a simple test of whether 

exposure to vibration can be expected to be harmful. They are based on qualitative studies and 

occupational surveys. There is a need to examine a whether a quantitative link exists between vibration 

exposure and spinal damage. 

 

2. Materials and Methods 

Cylindrical samples aligned with the anterior/posterior plane were taken from porcine vertebral bodies 

of freshly butchered animals using a 9mm diamond tipped coring tool. Marrow was removed using a 
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high pressure water jet. The samples were kept frozen at -20oc and only thawed and rehydrated 30 

minutes before testing. PVC end caps were attached to the free faces of the samples using 

cyanoacrylate adhesive to minimise end effect artefacts (Cook 2005). The resulting specimens were 

approximately 25mm long, 15mm between the end caps. 

Testing was performed on a servo-hydraulic testing rig (Dartec, HC-25) under force control. Specimens 

were placed between a self-levelling upper platen and rigid lower platen. Samples were kept moist 

throughout testing with a directed water jet at a constant 38oC. A 5kN load cell was used to record the 

force data and an extensometer with a 6mm nominal gage length was used to record strain. A schematic 

of the test setup is shown in Figure 1. 

 

Figure 1: Testing schematic 

. 

 

Figure 2: Typical test. Specimen shows the three stages of fatigue. Primary stage, where 

the strain increase decelerates. Secondary stage, platuea with slowly increasing strain. 

Tertiary stage, strain accelrates until specimen failure. 
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Before testing, samples were subjected to 20 preconditioning cycles of 10-50N at a frequency of 2Hz. 

The initial stiffness was taken from a linear fit of the Force/Extension graph of cycles 12-16. The 

extensometer was filtered at 5Hz to remove temporal artefacts over this examination window. The 

stiffness was then converted into initial modulus using the cylindrical area and gage length of the sample 

Porcine cylindrical samples were tested at 2Hz from 10N to a given normalised stress value and stopped 

when a prescribed failure of e=0.4% in the extensometer gage length was recorded. 

Throughout testing the number of cycles as well as the cyclic maximum and minimum values from the 

load cell and extensometer were recorded an example of this is shown in Figure 2. Four cycles were 

recorded in detail starting at every y3 cycle, where y is the capture number. All data capture was 

performed on the testing machine at a sampling frequency of 500Hz. 

Once specimen failure was reached the number of cycles to failure (Nf) was recorded. The peak to peak 

displacement was estimated using 𝑥 =
𝐹

𝑘0
, where x is the peak to peak displacement, F is the force 

applied and k0 is the initial stiffness recorded. This is merely as estimation as it assumes that the sample 

stiffness does not change throughout the test, which is not observed through actual testing. 

Using the estimated peak to peak displacement, it is possible to estimate the acceleration through 

Equation 4. 

𝑎𝑝𝑘 =
2𝜋2𝑓2𝑥

𝐺
 

Equation 4: Relationship between acceleration, frequency and peak to peak 

displacement 

 

Where, 

 𝑎𝑝𝑘 is the peak acceleration in ms-2
 

 𝑓 is the frequency in Hz 

 𝐺 is an acceleration constant of 1000 mm/s2 

 

Sine waves were created in over from 0 seconds until 𝑁𝑓 × 𝑓 seconds with a sampling frequency of 500 

Hz, the same sampling frequency used to record the detailed cycle data. The acceleration was weighted 

as per ISO 2631-1. From this sine wave RMS, VDV and VDVexp were calculated. For the analysis T was 

set to the duration of test and Texp was set to an 8 hour reference. 

All and sine wave generation and analysis was performed on a commercial software package (MATLAB 

R2017, The MathWorks Inc., Natick, MA, 2017). 
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3.  Results and Discussion 

Using a specimen which is part of a larger unit makes comparison between real world exposure and ex-

vivo studies difficult, however comparisons can be made between the samples. 

 

Table 3 shows the statistics obtained. Idealised sine wave statistics are shown in mm for convenience. 

 

Table 3: Vibration statistics per sample 

# E0 

(MPa) 

σ/E0 Nf x (mm) apk 

(mms-2) 

RMS 

(mms-2) 

VDV 

(mms-1.75) 

VDVexp 

(mms-1.75) 

1 1111 0.0113 30 0.0667 5.264 1.976 4.30 28.49 

2 1175 0.0054 3456 0.0314 2.483 0.932 6.65 13.44 

3 1025 0.0054 7800 0.0307 2.424 0.910 7.96 13.12 

4 928 0.0068 786 0.0398 3.143 1.180 5.81 17.01 

5 1064 0.0022 2611113 0.0132 1.044 0.392 13.92 5.36 

6 1108 0.0106 49 0.0625 4.935 1.853 4.56 26.71 

7 1187 0.0060 23760 0.0342 2.697 1.013 11.70 14.60 

8 1694 0.0056 192 0.0316 2.493 0.936 3.24 13.50 

9 1747 0.0038 43577 0.0226 1.782 0.669 8.99 9.64 

10 953 0.0051 386705 0.0297 2.346 0.881 20.44 12.70 

 

The values in Table 3 are not representative of the data seen from vibrational studies such as from 

marine seat pad accelerations. The relative displacements observed are at least an order of magnitude 

lower than those experienced in the field. The action value and limit values as described by the CVWR 

would not be met in a 24hr period if the values of RMS observed were used. 

 

Figure 3 shows that as the normalised stress decreases the number of cycles to failure increases. It 

follows a power law where 𝑁𝑓 = 8 × 10−13(
𝜎

𝐸0
)−0.7626 with an R2=0.761. The 10 fatigue tests performed 

demonstrated a small spread in relation to number of cycles to failure and normalised stress this can 

be attributed to the number of samples tested causing a small scatter than what would be typically 

expected. 
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Figure 3: Number of cycles to failure vs Normalised stress 

Figure 4 shows the relationship between the RMS from the idealised sine wave and against cycles to 

failure. It shows a downward trend; the lower the RMS the sample is exposed to the longer it takes to 

fail. The trend line shown follows the power law 𝑁𝑓 = 4096(𝑅𝑀𝑆)−7.072 (R2 = 0.763). 

 

 

Figure 4: Number of cycles to failure vs RMS 

 

Figure 5 shows that as VDV increases so does the number of cycles to failure. This is expected as VDV 

is a cumulative statistic and when the sample takes longer to fail, it is exposed to more vibration. 

The best fit for Figure 5 is 𝑁𝑓 = 0.0266(𝑉𝐷𝑉)−5.99 (R2=0.8359) 
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Figure 5: Number of cycles to failure vs VDV 

Figure 6 shows the relationship between number of cycles to failure and VDVexp. The shape is very 

similar to that obtained in Figure 3 and Figure 4. 

 

 

Figure 6: Number of cycles to failure vs VDVexp 

 

If these results are taken at face value, they show a link between RMS and damage of bone. This cannot 

be done as the statistics are generated from an idealised sine wave which makes the assumption that 

the stiffness of the specimen does not change, when it has been previously shown to decrease after 

fatigue testing (Moore and Gibson 2003) This discrepancy leads on to further assumptions; that the 

peak to peak displacement the sample undergoes is constant and therefore the acceleration also 

remains constant. This leads the RMS and VDVexp values to be based off the initial stiffness values 

giving a graph which follows Figure 3 almost exactly. 
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4. Conclusion 

For an idealised sine wave with one frequency, vibration statistics hold no useful data; it only tells us 

what we already know. Using an accelerometer to measure the acceleration rather than attempting to 

back calculate from an ideal a sine wave would greatly increase the accuracy of the data. Without the 

acceleration data as well as the specific number of cycles to failure for each sample it is difficult to draw 

any meaningful conclusions from a statistical analysis from this data let alone the data condensed into 

the papers referred to in Table 2. 

Further work could be done at examining the fatigue failure of human tissue from a vibration perspective. 

If multiple sine waves with varied frequency content were used it would allow an examination of the 

frequency weighting as used in ISO 2631-1. A shaker table playing back white noise with a prescribed 

RMS and frequency content could be used to simulate fatigue on real world scenarios. 
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order is tailored to your specific requirements to provide individual solutions. 
Perhaps most importantly, thanks to our close links with leading manufacturers our technical team 
provides you with training, support and advice for the lifetime of your instrument for total peace of mind. 
We offer a complete solution, with our manufacturer-trained and approved engineers providing in-house 
servicing and calibration.
http://www.shawcity.co.uk/ 
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