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Pyramid Hierarchical Spatial-Spectral Transformer
for Hyperspectral Image Classification

Muhammad Ahmad , Muhammad Hassaan Farooq Butt , Manuel Mazzara , Salvatore Distefano,
Adil Mehmood Khan , and Hamad Ahmed Altuwaijri

Abstract—The transformer model encounters challenges with
variable-length input sequences, leading to efficiency and scala-
bility concerns. To overcome this, we propose a pyramid-based
hierarchical spatial-spectral transformer (PyFormer). This inno-
vative approach organizes input data hierarchically into pyramid
segments, each representing distinct abstraction levels, thereby
enhancing processing efficiency. At each level, a dedicated trans-
former encoder is applied, effectively capturing both local and
global context. Integration of outputs from different levels cul-
minates in the final input representation. In short, the pyramid
excels at capturing spatial features and local patterns, while the
transformer effectively models spatial-spectral correlations and
long-range dependencies. Experimental results underscore the su-
periority of the proposed method over state-of-the-art approaches,
achieving overall accuracies of 96.28% for the Pavia University
dataset and 97.36% for the University of Houston dataset. In ad-
dition, the incorporation of disjoint samples augments robustness
and reliability, thereby highlighting the potential of PyFormer in
advancing hyperspectral image classification (HSIC).

Index Terms—Pyramid network, spatial-spectral transformer
(SST), hyperspectral image classification (HSIC).

I. INTRODUCTION

HYPERSPECTRAL image classification (HSIC) is crucial
in diverse domains [1], [2], [3]. CNNs [4], [5], [6], [7],

[8], [9], [10], [11], [12] specifically Pyramid-CNN (PCNN) [13],
[14], [15], [16], [17] and transformers [18], [19], [20], [21]
have shown success in computer vision tasks, there is a growing
interest in exploring these models for advancing HSI analysis.
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PCNN incorporates multiscale processing by using multiple
convolutional branches, allowing the network to capture fea-
tures at different scales and levels of abstraction [22]. PCNN
has been extensively studied for HSIC, and several innovative
solutions have been proposed [14], [15]; however, PCNN has
several limitations; first, high computational cost due to the
high dimensionality, e.g., the number of convolutional branches
increases with the number of scales [22]. Second, the multiple
branches increase the model’s complexity, i.e., a high number
of parameters are required. Moreover, the complex models
are prone to overfitting, particularly when the training data is
limited [23]. Third, PCNN primarily focuses on the multiscale
processing of spectral information, but it may not fully exploit
the spatial context. Spatial context is important as neighboring
pixels often exhibit strong correlations. PCNN may not fully
capture these dependencies, potentially limiting its performance
for HSIC [24], [25].

Whereas, the spatial-spectral Transformers (SSTs) [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36] excel in cap-
turing global contextual information via self-attention mecha-
nisms [37], [38], [39], [40], facilitating simultaneous considera-
tion of relationships between all HSI regions [41]. Unlike PCNN,
SSTs demonstrate strong scalability to high-resolution HSIs, ef-
fectively handling large datasets without complex pooling oper-
ations. Their adaptability contributes to widespread applicability
in HSIC [42]. Furthermore, SSTs learn stratified representations
directly from raw pixel values, simplifying the model-building
process and often leading to improved performance [34], [43].

Recent advancements in HSIC have explored CNN-
Transformer-based architectures [44], [45] that harness the
complementary strengths of CNNs and Transformers. In these
architectures, CNNs are utilized to capture local spatial fea-
tures, while transformers preserves long-range dependencies
and global context. Such approaches effectively integrate the
detailed spatial information provided by CNNs with the global
contextual understanding offered by transformers, enhancing
overall classification performance. Tan et al. [46] developed
the transformer-in-transformer module, which constructs a deep
network model tailored for HSIC by incorporating extended
morphological contour features. Tang et al. [47] introduced a
ViT-based backbone network for HSIC that integrates a stack of
spectral attention and spatial attention layers to enhance feature
representation. Ma et al. [48] utilized a deep CNN to extract
spatial features, followed by a densely connected ViT to capture
spectral relationships within the data sequence. Song et al. [49]
proposed a dual-branch framework combining a 3-D CNN with
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a spatial-spectral transformer network to extract local and global
features from HSI data jointly. Zhao et al. [50] developed
a convolution transformer fusion splicing network for HSIC,
incorporating a residual splicing convolution block to serialize
HSI data. However, many CNN-transformer-based methods face
limitations, as they often use low-level CNN features as inputs
to transformers, leading to a deficiency in capturing semantic
information.

To overcome the aforementioned limitations, Sun et al. [51]
introduced the spectral–spatial feature Tokenization transformer
(SSFTT), which incorporates a hybrid CNN module to capture
local features and employs a Gaussian-weighted tokenizer to
extract high-level semantic information. Zhang et al. [52] pro-
posed the convolution transformer mixer (CT Mixer), which
combines the strengths of ViTs and CNNs, leveraging a local-
global multihead self-attention (MHSA) mechanism to enhance
classification accuracy. Zhao et al. [53] developed a convolu-
tional transformer network, utilizing CNNs for local feature
extraction (LFE) and transformers for global feature extraction,
and introduced a center position encoding technique to integrate
spectral features with pixel positions. Yang et al. [54] designed a
ViT incorporating the spectral adaptive 3-D convolution projec-
tion and the convolution permutator to capture spectral-spatial
information. Li et al. [55] proposed a multigranularity ViT that
employs semantic tokens to learn features at multiple granu-
larities, aiming to enhance accuracy. This framework’s LFE
module is specifically designed for LFE. Ouyang et al. [56]
introduced the HybridFormer network, which utilizes CNNs for
extracting shallow features and a spectral-spatial attention-based
transformer encoder to capture semantic features.

Despite their success, SSTs have limitations, for instance,
training large SSTs can be computationally demanding [57],
[58]. The self-attention mechanism introduces quadratic com-
plexity with respect to sequence length, potentially hindering
scalability [59], [60]. Unlike CNNs, which inherently possess
translation invariance, SSTs may struggle to capture spatial re-
lationships invariant to small translations in the input [61], [62].
Moreover, the tokenization process of dividing input images into
fixed-size patches may not efficiently capture fine-grained de-
tails [63], [64]. Furthermore, optimal performance often requires
substantial training data, and training on smaller datasets may
lead to overfitting, limiting effectiveness [19], [65].

Therefore, this work synergistically integrates a PCNN and
SST, resulting in an innovative hierarchical SST for HSIC.
The hierarchical structure partitions the input into segmenta-
tion, each denoting varying abstraction levels, organized in a
pyramid-like manner. Transformer modules are applied at each
level for multilevel processing, ensuring efficient capture of local
and global context. Information flow occurs both spatially and
spectrally within the hierarchy, fostering abstraction propaga-
tion. Integration of transformer outputs from different levels
yields the final output maps. In short, the following contributions
are made; first, the input sequences are divided into hierarchi-
cal segments, each representing varying levels of abstraction.
Second, these segments adopt a pyramid structure, wherein the
lowest level retains detailed information while higher levels con-
vey increasingly abstract representations. Third, the transformer
modules are independently applied at each level of the hierarchy,

facilitating efficient capture of both local and global contexts.
In a nutshell, the Pyramid excels at capturing spatial features
and local patterns, while the transformer effectively models
spatial-spectral correlations and long-range dependencies.

II. PROPOSED METHODOLOGY

An HSI cubeX = {xi, yi} ∈ R(M×N×B), comprises spectral
vectors xi = {xi,1, xi,2, xi,3, . . . , xi,L}, and yi be the corre-
sponding class label ofxi. The cube is initially divided into over-
lapping 3-D patches, each centered at spatial coordinates (α, β)
and spanning S × S pixels across B bands. The total count of
extracted patches (m) from X is (M − S + 1)× (N − S + 1),
where a patch Pα,β covers spatial dimensions within α± S−1

2

and β ± S−1
2 . In cases, where the stride s is less than the patch

size,S, which results in overlapping patches. The overlap ratio r
can be defined as: r = 1− s

S . The extracted patches, along with
their central pixel labels, constitute the trainingXtrain, validation
Xval, and a test Xtest sets, ensuring Xtrain ∩Xval ∩Xtest = ∅ to
prevent sample overlaps and biases. The complete model is
presented in the Fig. 1.

Let (S, S,B) denote the input shape. The scale is utilized
to derive the input shape for the pyramid layers, given by Input
shape; l1 = S

2 × S
2 ×B and l2 = S

4 × S
4 ×B, respectively, i.e.,

each pyramid level l extracts features at different scales with the
scaling factor sl = 2l

X = Downsample(X, sl) ∈ R
S
sl

× S
sl

×B (1)

where the Downsample(., s) reduces the spatial dimensions
by a factor of s. These Downsample patches are fed into a
convolutional layer to extract spatial-spectral semantic features
from HSI patches. Each patch, with dimensions ( S

sl
× S

sl
×B),

undergoes processing using 3-D convolutional layers with ker-
nel sizes (32× S × S ×B) and (64× S × S ×B), along with
ReLU activation as

Y
(1)
i = σ

(
Xl ∗W (1)

l + b
(1)
l

)
∈ R

S
sl

× S
sl

×B×32 (2)

Y
(2)
i = σ

(
Y

(1)
i ∗W (2)

l + b
(2)
l

)
∈ R

S
sl

× S
sl

×B×64 (3)

where σ(.) denotes the ReLU activation function, ∗ denotes the
convolution operation, and W

(i)
l and b

(i)
l are the convolution

kernels and biases. Later, the upsampling(., s) is performed,
which increases the spatial dimensions by a factor of s as

Ul = Upsample(Y (2)
l , sl) ∈ RS×S×B×64 (4)

where the output of each pyramid level is Ul. The feature maps
from all pyramid levels are concatenated along the channel
dimensions as

YPyramid = concat(U1, U2, . . . , Ul) ∈ RS×S×B×(64×l). (5)

Let YPyramid ∈ RS×S×B×(64×l) denote the input tensor to the
transformer. This encoding is integrated with the input embed-
dings, augmenting the model with spatial arrangement details.
The foundational architecture of the transformer centers around
the encoder, which consists of multiple layers incorporating
multimodal attention and a feedforward network. Each trans-
former layer incorporates multihead self-attention specifically
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Fig. 1. Pyramid hierarchical transformer features a structured pyramid block comprising two levels. The hierarchical transformer block, receiving the learned
multiscale information, consists of two layers and four multiheads. The acquired information undergoes flattening and is subsequently subjected to the ReLU
activation function and L2 regularization technique. This regularization aids in mitigating overfitting by reducing weights, rendering the network less responsive
to minor input variations. Finally, the output layer employs softmax activation for final maps.

adapted for HSI data. For each transformer layer i where (i =
1, 2, . . . , layers) first undergoes a layer normalization as

Zi = LayerNorm(Ypyramid). (6)

The attention mechanism plays a pivotal role in enabling the
model to capture intricate relationships between distinct patches
using the query, key, and value matrices as

Q = ZiWQ;K = ZiWK ;V = ZiWV (7)

whereWQ,WK ,WV ∈ R(64×l)×dk and dk is the dimensionality
of the attention space. Finally, the scaled dot product attention
is computed as

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V (8)

where the output of multihead is computed as

MHAi(Zi) = concat (head1, head2, . . . , headl)Wo (9)

where each head is computed as headj = Attention(Qj ,Kj , Vj)

andWo ∈ R(heads×dk)×(63×l). Later, the model adds and normal-
izes the output Y(i+1) as follows:

Y(i+1) = LayerNorm (Ypyramid + MHAi(Zi)) . (10)

After the transformer layers, the model applies convolutional
layers with residual connections to integrate spectral-spatial fea-
tures as initial convolution, second convolution, and a residual
connection

C
(1)
i = σ

(
Yi+1 ∗W (1)

i + bi(2)
)
∈ RS×S×B×B (11)

C
(2)
i = σ

(
C

(1)
i ∗W (2)

i + bi(2)
)
∈ RS×S×B×(2×mlp_dim)

(12)

Y(i+2) = Y(i+1) + Ci(2). (13)

The final output of the hierarchical transformer model is
flattened and passed through dense layers for classification as

F = Flatten(YFinal) (14)

TABLE I
OVERVIEW OF HSI DATASETS EMPLOYED IN EXPERIMENTAL EVALUATION

D = σ(FWd + bd) + λ||Wd||22 (15)

O = Softmax(DWo + bo) (16)

where F , D, and O represent flattened, dense, and classification
layers, respectively. Within the dense layer, L2 regularization
L2 = λ|W |22 is added to the loss function during training, with
ReLU as the activation function and λ = 0.01 as the regular-
ization parameter. Finally, a Softmax function is employed to
generate the classification maps.

III. EXPERIMENTAL DATASETS

In this section, we introduce the experimental datasets along
with their corresponding ground truths, class names, and the total
number of samples in each class. Table I presents the details of
each dataset used in the experiments. Here, we emphasize that
the number of disjoint training, validation, and test samples, as
well as their geographical distributions, are consistent across all
methods employed in the experimental evaluation. This ensures
unbiased and equitable assessments across the board.

The IEEE Geoscience and Remote Sensing Society pub-
lished the University of Houston (UH) dataset–collected by the
Compact Airborne Spectrographic Imager (CASI)–in 2013 as
part of its Data Fusion Contest. This dataset is composed of
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Fig. 2. Ground truth maps for UH dataset.

Fig. 3. Ground truth maps for SA dataset.

Fig. 4. Ground truth maps for PU dataset.

340×1905 pixels with 144 spectral bands. The spatial resolution
is 2.5 meters per pixel (MPP), with wavelengths ranging from
0.38 to 1.05 μm. The ground truth comprises 15 different land-
cover classes. The ground truth maps are presented in Fig. 2.
Originally, the dataset comprised 664 845 samples, as shown on
the true map. For training, we utilized a subset of 745 samples,
while 751 samples were set aside for validation. The remaining
13 533 samples were used for testing.

Salinas (SA) scene was collected by the 224-band Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
SA Valley, California, and is characterized by high spatial resolu-
tion with 3.7-m pixels. The area covered comprises 512 lines by
217 samples. This image is available only as at-sensor radiance
data and includes vegetables, bare soils, and vineyard fields. The
SA ground truth contains 16 classes. The ground truth maps are
presented in Fig. 3.

Pavia University (PU) is acquired by the reflective optics
system imaging spectrometer (ROSIS) sensor during a flight
campaign over Pavia, northern Italy. The number of spectral
bands is 103 for PU. PU is 610 × 610 pixels. The geometric
resolution is 1.3 m. PU image ground truths differentiate nine
classes. The ground truth maps are presented in Fig. 4.

TABLE II
PERFORMANCE ON DIFFERENT TRAIN RATIOS ACROSS DIFFERENT DATASETS

TABLE III
PERFORMANCE ON DIFFERENT PATCH SIZES ACROSS DIFFERENT DATASETS

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Random sample selection can introduce variability, poten-
tially causing discrepancies among models executed at different
times. Another common issue in recent literature is the overlap of
training and test samples, leading to biased models with inflated
accuracy. To mitigate this, the PyFormer ensures that while
training, validation, and test samples are randomly selected,
efforts are made to prevent any overlap between these sets,
thereby reducing biases introduced by overlapping samples. In
the experimental setup, the proposed PyFormer was assessed
using a mini-batch size of 128, the Adam optimizer with a
learning rate of 0.0001, and a decay rate of 1e-06 over 50 epochs.
We systematically tested various configurations to comprehen-
sively evaluate the proposed model. This exploration aimed to
thoroughly understand the model’s performance under diverse
training scenarios and spatial resolutions. Initially, we examine
four critical factors impacting the model’s performance: patch
sizes and training samples, as shown in Tables II and III, and the
Number of heads and layers in the transformer model as shown
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Fig. 5. PyFormer model achieves kappa accuracies of 99.73%, on 25% disjoint test samples for the PU dataset. (a) Disjoint test GTs. (b) 5% training. (c) 10%
training. (d) 15% training. (e) 20% training. (f) 25% training.

Fig. 6. PyFormer model achieves kappa accuracies of 99.84%, on 25% disjoint test samples for the SA dataset. (a) Disjoint test GTs. (b) 5% training. (c) 10%
training. (d) 15% training. (e) 20% training. (f) 20% training.

TABLE IV
PERFORMANCE ON DIFFERENT NUMBER OF HEADS ACROSS

DIFFERENT DATASETS

in Tables IV and V. These factors are pivotal for performance
optimization. Ensuring an adequately sized training set covering

TABLE V
PERFORMANCE ON DIFFERENT NUMBER OF LAYERS ACROSS

DIFFERENT DATASETS

diverse spectral signatures and representative samples from each
class is crucial.
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Fig. 7. PyFormer model achieves kappa accuracies of 98.03%, on 25% disjoint test samples for the UH dataset. (a) Disjoint test GTs. (b) 5% training. (c) 10%
training. (d) 15% training. (e) 20% training. (f) 20% training.

Table II and Figs. 5–7 highlights the impact of varying training
set sizes on performance metrics across the PU, SA, and UH
datasets. Beginning with fewer labeled samples allows us to
simulate real-world scenarios where data scarcity is common,
helping us assess the model’s robustness under constrained con-
ditions. As the training set size gradually increases, the model
benefits from exposure to a more diverse range of examples,
which enhances its learning and generalization capabilities. For
instance, the smaller and less complex PU dataset requires fewer
training samples to achieve high performance, while the larger
and more diverse UH dataset benefits from a higher percentage
of training data to capture its variability. This trend is evident
in consistently improving metrics such as OA, AA, KA, and
F1 scores, particularly in the PU and SA datasets. However, an
imbalanced distribution of training samples among classes can
bias models toward dominant classes, compromising general-
ization. Balancing sample distribution across classes is crucial
to mitigate biases and enhance the model’s generalization ability
across all classes.

Moreover, patch size denotes the spatial extent of input
patches, crucial for capturing local spatial information and con-
textual relationships within HSI data as shown in Table III.
Table III illustrates the performance of different patch sizes
across the PU, SA, and UH datasets. Patch size is crucial as it
determines the spatial extent of the input, which is essential for
capturing local spatial information and contextual relationships
within HSI. A gradual increase in patch size generally leads
to improved performance across all metrics, with the optimal
patch size varying slightly depending on the dataset. For exam-
ple, the SA dataset shows the best OA with a 10 × 10 patch
size, while the UH dataset achieves its highest OA with an
8 × 8 patch size. The choice of an 8 × 8 patch size strikes a
balance between capturing sufficient spatial context and main-
taining computational efficiency, making it a consistent choice
for both PU and UH datasets. This approach standardizes the
comparison while ensuring that the spatial characteristics of each
dataset are adequately represented. The analysis underscores the

importance of selecting an appropriate patch size to optimize
performance while considering the unique attributes of each
dataset.

Table IV presents the performance metrics—overall accu-
racy (OA), average accuracy (AA), Kappa (κ), and F1-score
(F1)—for three different datasets. The performance is evaluated
across varying numbers of heads (2, 4, 6, 8, and 10) used in the
transformer model. The highest OA is 99.36, achieved with 10
heads, indicating that increasing the number of heads generally
improves accuracy for the PU dataset. However, two heads also
perform exceptionally well with 99.33 OA, suggesting that a
simpler model can still achieve high accuracy. The best AA
is observed with two heads (98.83), but it drops slightly with
four heads (95.99). This indicates that while more heads can
capture more features, it might lead to overfitting or increased
complexity that does not generalize well. The highest κ is 99.15
with ten heads, mirroring the trend in OA. The best F1 score
is 98.88 with two heads, followed closely by ten heads with
98.77. For the SA dataset, The highest OA is 99.61 with ten
heads, indicating a clear benefit from increasing heads in this
dataset. The best AA is 99.66 with ten heads, supporting the
observation that more heads improve performance. The highest
κ is 99.57 with ten heads. The best F1-score is 99.75 with ten
heads, indicating that the increased heads improve the harmonic
mean of precision and recall. For the UH dataset, The highest
OA is 97.82 with six heads. Interestingly, eight heads result in
a significant drop to 84.47, suggesting potential overfitting or
instability with too many heads. The best AA is 97.32 with six
heads, again showing that six heads are optimal for this dataset.
The highest κ is 97.65 with six heads and the best F1-score is
97.56 with six heads.

Table V presents the performance metrics across varying
numbers of layers (2, 4, 6, 8, and 10) used in the transformer
model. The highest OA is 99.44 with six layers, indicating that
increasing layers to a certain point improves accuracy. Beyond
six layers, the performance drops. The best AA is 99.19 with six
layers, suggesting that a moderate number of layers provides the
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TABLE VI
PU: PYFORMER IS COMPARED AGAINST OTHER SOTA MODELS

best generalization. The highest κ is 99.38 with six layers, and
the best F1-score is 99.33 with six layers for the PU dataset. The
highest OA is 99.47 with two layers, indicating that fewer layers
might be more beneficial for this dataset. The best AA is 99.87
with six layers, showing that for some metrics, more layers can
still be advantageous. The highest κ is 99.65 with six layers,
and the best F1-score is 99.87 with six layers for the SA dataset.
Similarly, the highest OA is 98.10 with four layers, suggesting
that an intermediate number of layers is optimal. The best AA is
97.47 with four layers. The highest κ is 97.95 with four layers,
and the best F1-score is 97.75 with four layers.

The UH dataset, as depicted in the true map of Fig. 2,
originally comprised 664 845 samples. For our experiments,
we selected a subset of 745 samples for training, allocated
751 samples for validation, and reserved the remaining 13 533
samples for testing. Similarly, the SA dataset, illustrated in
Fig. 2, consisted of 111 104 samples in the true map. From
this dataset, we used 2497 samples for training, 2706 samples
for validation, and the remaining 48 726 samples for testing. In
addition, the ground truth maps for the PU dataset, shown in
Fig. 4, initially contained 207 400 samples. For this dataset, we
utilized 2135 samples for training, set aside 2138 samples for
validation, and designated 38 503 samples for testing.

The comprehensive evaluation across Tables II–V reveals key
insights into optimizing model performance. Table II demon-
strates that increasing the training set size consistently enhances
model performance metrics (OA, AA, KA, F1 Score), empha-
sizing the importance of adequate labeled data for robust gener-
alization and bias mitigation. Table III indicates that larger patch
sizes generally improve performance, with the 8× 8 patch size
being optimal for balancing spatial context and computational
efficiency across datasets. Table IV shows that increasing the
number of attention heads generally improves performance, with
ten heads being optimal for PU and SA datasets, while six heads
are best for UH, suggesting variability in effectiveness based
on dataset complexity. Table V reveals that while increasing the
number of layers enhances performance up to a point, the opti-
mal number varies by dataset, with six layers being ideal for PU
and SA and eight layers for UH. These findings underscore the
importance of tailoring training data size, patch size, attention
heads, and network depth to the specific characteristics of each
dataset for achieving optimal model performance.

Maintaining a consistent experimental methodology is
essential when evaluating CNN and transformer approaches.
Consistency in the distribution of samples for training,
validation, and testing is crucial. Each comparative model

was trained and validated using 5% of the samples, with the
remaining samples utilized for classification using 8 × 8 pixel
patches. The performance of PyFormer was assessed using
the UH and PU datasets, comparing it against several models:
SpectralFormer (SF): rethinking HSIC with transformers [34],
Attention is all you need (ViT) [35], WaveFormer (WF):
spectral–spatial wavelet transformer for HSIC [19], CSiT:
a multiscale vision transformer for HSIC (CSiT) [36],
hyperspectral image transformer (HiT) classification networks
(HiT) [54], Spectral–Spatial Residual Network (SSRN) for
HSIC: A 3-D deep learning framework [7], enhanced multiscale
feature fusion network (EMFFN) for HSI classification [8],
double-branch multiattention (DBMA) mechanism network
for HSIC [9], classification of hyperspectral image based
on double-branch dual-attention (DBDA) mechanism
network [10], spectral and spatial global context (SSGC)
attention for HSIC [11], one-shot dense network (OSDN) with
polarized attention for HSIC [12], double-branch network
with pyramidal convolution and iterative attention (PCIA) for
HSIC [16], and pyramidal multiscale convolutional network
(PMCN) with polarized self-attention for pixel-wise HSIC [17].

The detailed results of the aforementioned models can be
found in Tables VI and VII. In summary, the proposed PyFormer
model exhibits outstanding performance, surpassing state-of-
the-art (SOTA) ViT-based models across various evaluation
metrics, including OA, AA, and κ coefficient. A comprehen-
sive analysis of the quantitative results indicates that PyFormer
consistently achieves superior performance across different cat-
egories, demonstrating significant improvements in accuracy, as
illustrated in the Tables. Notably, while the performance gaps are
relatively small in the PU dataset due to the abundance of sam-
ples, the UH dataset presents a considerable challenge for mod-
eling. For instance, when evaluating the challenging UH dataset,
PyFormer outperforms the baseline ViT by more than 7% and
exceeds SF by approximately 4%. Moreover, the AA achieved
by PyFormer surpasses that of both ViT and SpectralFormer
by margins of around 5%, highlighting the potential effective-
ness of spatial-spectral feature extraction. In comparison with
the most recent SST and CSiT models, PyFormer consistently
delivers promising results, demonstrating its proficiency in both
spectral and spectral-spatial feature extraction tasks. It is note-
worthy that while HiT excels in identifying land-cover classes
with spectral-spatial information, PyFormer approaches similar
levels of performance. In conclusion, these findings underscore
the robustness and effectiveness of the PyFormer, particularly in
scenarios where the extraction of spatial-spectral information is
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TABLE VII
UH: PYFORMER IS COMPARED AGAINST OTHER SOTA MODELS

crucial, especially considering the limited availability of training
samples.

V. CONCLUSION

In this article, we introduced PyFormer, a novel approach
that leverages the strengths of Pyramid and SST for HSIC. By
extracting multiscale spatial-spectral features using Pyramid and
integrating them into a transformer encoder, PyFormer can effec-
tively capture both local texture patterns and global contextual
relationships within a single, end-to-end trainable model. A key
innovation is the incorporation of Pyramid convolutions within
the transformer’s attention mechanism, facilitating enhanced in-
tegration of spectral and structural information. Extensive exper-
iments demonstrate that PyFormer achieves SOTA performance,
particularly on challenging datasets with limited training data. In
addition to superior classification accuracy, PyFormer exhibits
robustness and generalizability, showing promise for addressing
real-world problems. Future research could explore techniques,
such as self-supervised pretraining and network optimizations,
to further enhance PyFormer’s performance, especially in sce-
narios with limited data availability.
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