
Environmental fluoxetine promotes skin cell proliferation and 
wound healing☆

Quentin Rodriguez-Barucg a, Angel A. Garcia a, Belen Garcia-Merino a,b, Tomilayo Akinmola a,  
Temisanren Okotie-Eboh a, Thomas Francis a, Eugenio Bringas b, Inmaculada Ortiz b,  
Mark A. Wade a, Adam Dowle c, Domino A. Joyce d, Matthew J. Hardman a, Holly N. Wilkinson a,  
Pedro Beltran-Alvarez a,*

a Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK
b Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Av Castros s/n, 39005, Santander, Spain
c Metabolomics & Proteomics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
d Evolutionary and Ecological Genomics Group, School of Natural Sciences, University of Hull, Cottingham Rd, HU6 7RX, Hull, UK

A R T I C L E  I N F O

Keywords:
Fluoxetine
Keratinocyte
Serotonin
Skin
Wound healing

A B S T R A C T

This study investigates the effects of environmentally-relevant concentrations of fluoxetine (FLX, commercial 
name: Prozac) on wound healing. Pollution of water systems with pharmaceutical and personal care products, 
including antidepressants such as FLX and other selective serotonin reuptake inhibitors, is a growing environ
mental concern. Environmentally-relevant FLX concentrations are known to impact physiological functions and 
behaviour of aquatic animals, however, the effects of exposure on humans are currently unknown. Using a 
combination of human skin biopsies and a human keratinocyte cell line, we show that exposure to environmental 
FLX promotes wound closure. We show dose-dependent increases in wound closure with FLX concentrations 
from 125 ng/l. Using several –omics and pharmaceutical approaches, we demonstrate that the mechanisms 
underlying enhanced wound closure are increased cell proliferation and serotonin signalling. Transcriptomic 
analysis revealed 350 differentially expressed genes after exposure. Downregulated genes were enriched in 
pathways related to mitochondrial function and metabolism, while upregulated genes were associated with cell 
proliferation and tissue morphogenesis. Kinase profiling showed altered phosphorylation of kinases linked to the 
MAPK pathway. Consistent with this, phosphoproteomic analyses identified 235 differentially phosphorylated 
proteins after exposure, with enriched GO terms related to cell cycle, division, and protein biosynthesis. 
Treatment of skin biopsies and keratinocytes with ketanserin, a serotonin receptor antagonist, reversed the in
crease in wound closure observed upon exposure. These findings collectively show that exposure to environ
mental FLX promotes wound healing through modulating serotonin signalling, gene expression and protein 
phosphorylation, leading to enhanced cell proliferation. Our results justify a transition from the study of 
behavioural effects of environmental FLX in aquatic animals to the investigation of effects of exposure on wound 
healing in aquatic and terrestrial animals, including direct impacts on human health.

1. Introduction

Pollution of freshwaters with pharmaceuticals and personal care 
products poses a real threat to environmental and human health (Blair 
et al., 2013; Brooks et al., 2005; Cizmas et al., 2015; Daughton & Ternes, 

1999). One example of environmentally relevant pharmaceuticals is 
antidepressants. Fluoxetine (FLX, commercial brand name: Prozac) is a 
selective serotonin reuptake inhibitor (SSRI) widely prescribed for the 
treatment of mental health and mood disorders, including depression, 
obsessive-compulsive disorder and panic disorder (Gosmann et al., 

Abbreviations: 5-HT, 5-hydroxytryptamine, or serotonin; ER, environmentally relevant; FLX, fluoxetine; GO, gene ontology; MAPK, mitogen-activated protein 
kinase; SSRI, selective serotonin reuptake inhibitor.
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2021). After ingestion, FLX is partly metabolised to the active 
nor-fluoxetine and other metabolites which, together with unmodified 
FLX, are then excreted through urine (Edinoff et al., 2021; Vaswani 
et al., 2003). Wastewater treatment plants are not efficient at removing 
FLX and its metabolites (Blair et al., 2013; Brooks et al., 2005; Salahi
nejad et al., 2022; Silva et al., 2012) and, as a result, FLX concentrations 
in the hundreds of ng/l can build up in freshwater systems, making FLX a 
priority contaminant in ecotoxicology (Lyu et al., 2019; Santos et al., 
2013; Silva et al., 2012; Silva et al., 2015).

Indeed, exposure to environmentally-relevant (ER) FLX concentra
tions has effects on the behaviour of many vertebrate and invertebrate 
freshwater species, such as crustaceans and fish. These effects include 
altered physiological function and behaviour and can have a negative 
impact on growth, reproduction, and population success (Bertram et al., 
2018; Bossus et al., 2014; De Castro-Catala et al., 2017; Ford & Fong, 
2016; Guler & Ford, 2010; Martin et al., 2019; Prasad et al., 2015; 
Weinberger & Klaper, 2014). Of note, this impact is likely to increase in 
the 21st century due to population growth, urbanisation and climate 
change-induced water scarcity, which can cause increased FLX con
centrations in local and regional freshwater systems (Cizmas et al., 
2015; Schlusener et al., 2015). FLX has been found in the aquatic 
environment near wastewater plants at concentrations of 0.4–3645 ng/l 
and in surface waters and groundwaters at concentrations of 0.5–596 
ng/l (Batt et al., 2008; Cizmas et al., 2015; Correia et al., 2023; Gros 
et al., 2009; Grzesiuk et al., 2023; Schlusener et al., 2015; Sousa et al., 
2011; Tan et al., 2020; Vasskog et al., 2006). Mechanistically, FLX (and 
other SSRI such as sertraline) blocks the serotonin (5-HT) transporter 
and thus 5-HT clearance from the synaptic cleft, rising extracellular 
5-HT concentrations (Coleman et al., 2016; Tate et al., 2021). 
Serotonin-mediated signalling is regulated through 5-HT receptors 
(5-HTR), of which seven distinct families are encoded for in the human 
genome, known as 5-HTR1-7. Mostly by coupling to G proteins, 5-HTRs 
cascade downstream signalling through a range of evolutionary 
conserved pathways, regulated by protein kinases (notably 
mitogen-activated protein kinases, MAPK) and protein phosphorylation, 
which ultimately control cell fate, growth and proliferation (Sahu et al., 
2018).

Serotonin receptors and transporters are ubiquitously expressed 
(Kim et al., 2014) and control 5-HT signalling pathways in a variety of 
physiological processes, including wound healing (Nguyen et al., 2019; 
Sadiq et al., 2018). Skin wound healing is the well-coordinated process 
of restoring skin integrity after injury. Haemostasis is initiated imme
diately following injury to limit blood loss, and coincides with the 
recruitment of neutrophils and macrophages during early inflammation. 
During the proliferative phase, keratinocytes in the epidermis prolifer
ate and migrate from the edges of the wound to close the wound gap, a 
process known as re-epithelialisation. In this phase (up to 30 days), 
endothelial cells also form new blood vessels (angiogenesis), and fi
broblasts deposit extracellular matrix to form the granulation tissue. A 
final remodelling phase strengthens the healing tissue resulting in scar 
formation and maturation, which can last for up to 2 years (Wilkinson & 
Hardman, 2020).

In the skin, 5-HT receptors have been identified in keratinocytes, 
melanocytes, leukocytes and fibroblasts (Martins et al., 2020; Nordlind 
et al., 2008; Slominski et al., 2004). Serotonin receptors can modulate 
skin inflammation, pigmentation and barrier function, including 
through regulating cell proliferation (Kim et al., 2018). Prior research 
has investigated the role of 5-HT and FLX on various models of wound 
healing, both in vitro and ex vivo. For example, it has been reported that 
5-HT can affect the migration and proliferation of keratinocytes and 
fibroblasts, which are crucial for re-epithelialisation and the formation 
of granulation tissue (Nguyen et al., 2019; Sadiq et al., 2018). Serotonin 
also modulates the inflammatory phase and angiogenesis by impacting 
cytokine release and leukocyte infiltration (Haub et al., 2010; León-
Ponte et al., 2007), and activating kinase (including MAPK) signalling in 
endothelial cells (Zamani & Qu, 2012), respectively. However, previous 

studies have also reported contrasting results. While several groups have 
shown that treatment with 5-HT enhances the migration of keratino
cytes in scratch assays (using cell lines) (Nguyen et al., 2019; Sadiq et al., 
2018), the effect of FLX on wound healing is controversial. Topical 
administration of FLX (0.2–2%, that is, 2–20 g/l) improved wound 
healing in diabetic mouse skin (Nguyen et al., 2019) and infected 
wounds (Yoon et al., 2021), but systemic treatment of mice with 
post-thermal injury with 10 mg/kg FLX suppressed wound 
re-epithelialisation, including through decreasing keratinocyte prolif
eration (Sadiq et al., 2018). Moreover, FLX impaired (Sadiq et al., 2018), 
and enhanced (Nguyen et al., 2019), the migration of keratinocytes in 
scratch assays. Of note, FLX concentrations used by previous research 
could potentially be relevant to therapeutic applications of FLX in 
wound healing, but were orders of magnitude above ER-FLX concen
trations. Therefore, a clear knowledge gap currently exists around any 
effects of ER-FLX concentrations on wound healing.

From the standpoint of the increasing concern about the presence of 
FLX in freshwaters, and of conflicting evidence pointing towards a role 
of FLX (at therapeutic concentrations) in wound healing, in this work we 
set out to investigate any effects of ER-FLX concentrations on wound 
healing. We used a range of FLX concentrations (62.5–5,400 ng/l) and 
exposed cell models and human skin biopsies to FLX for up to 48 h. 
Given the complexity of 5-HT signalling pathways (Sahu et al., 2018), 
we used -omics technologies to provide an in-depth level of analysis of 
the effects of exposure. Our overarching hypothesis was that exposure to 
ER-FLX concentrations promotes wound healing. We specifically 
hypothesised that: 1) the mechanism underlying wound healing 
enhancement is increased 5-HT signalling; 2) exposure leads to changes 
in gene expression and protein phosphorylation associated with 
increased cell proliferation.

2. Materials and methods

2.1. Cells and clinical samples

HaCaT cells are spontaneously immortalised human keratinocytes 
from the cultivation of normal human adult skin keratinocytes and were 
purchased from AddexBio. HaCaT cells have been extensively used as a 
model system in skin research (Jin et al., 2024; Curtytek et al., 2021; 
Kim et al., 2018; Mokrzynski & Szewczyk, 2024; Payuhakrit et al., 
2024). HaCaT cells were cultured in 5% CO2 incubators at 37 ◦C and 
passaged every 3 days or when at 80% confluence.

All procedures with human samples were performed in compliance 
with relevant laws and institutional guidelines and were approved by 
the appropriate institutional committees. Fresh human skin was ob
tained from patients undergoing elective surgeries under NHS REC 
approval (17/SC/0220) with written, informed patient consent and 
using our established protocols (Wilkinson et al., 2021). This work was 
carried out in accordance with The Code of Ethics of the World Medical 
Association (Declaration of Helsinki). Exclusion criteria included factors 
known to influence wound healing (e.g., nutritional deficiencies, steroid 
use, advanced age).

2.2. Scratch assays using cells

Cells grown in 24-well polystyrene plates (Sarstedt) were left at 37 ◦C 
for three days until a monolayer of cells covered the entirety of each 
well. Using a 1000 μL pipette tip, a line was scratched through the 
middle of each well, and cells were exposed to SSRI (FLX or sertraline, at 
concentrations ranging from 62.5 to 5400 ng/l as indicated in figures), 
mitomycin C (800 μg/l) and ketanserin (10 μM). For each exposure and 
treatment condition, at least four biological replicates were done at each 
of four cell passages. For proliferation assays, we used the Click-iT EdU 
kit (#BCK-EDU488, Thermo Fisher). Following 28–36 h after scratch 
(and including a control at time zero), cells were fixed by 1% crystal 
violet. Comparisons between conditions were done at the same 

Q. Rodriguez-Barucg et al.                                                                                                                                                                                                                    Environmental Pollution 362 (2024) 124952 

2 

https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/


endpoint. Wells were visualised using a bright field Olympus BX51 mi
croscope with 4× objectives and using CellSens software to capture 
images. Four pictures of each well were taken. Analysis was done using 
ImageJ (Schneider et al., 2012) by measuring the area of the scratch at 
the appropriate time. The percentage of scratch closure was calculated 
using the formula: 100-((wound area at time of measurement/wound 
area at time zero) x 100).

2.3. Wound healing assays using skin biopsies

Ex vivo experiments with skin biopsies have previously been 
described (Wilkinson et al., 2021). Briefly, skin was placed dermis-side 
down in a 90 mm sterile Petri dish, and adipose tissue was removed 
using sterile scissors. Partial thickness wounds were created by pressing 
a 2 mm biopsy punch against the skin and twisting gently. The 2 mm 
wound was cut out and removed using forceps and curved iris scissors. A 
6 mm biopsy punch was then used to create an explant with the wound 
in the centre. The wound explants were placed epidermis-side up on a 
stack of two sterile absorbent pads and a nylon filter membrane in a 60 
mm Petri dish containing 4 mL of human skin media (DMEM with 2 mM 
L-glutamine, 1% (v:v) antibiotic-antimycotic solution, and 10% (v:v) 
fetal bovine serum), and exposed to/treated with the appropriate FLX 
and ketanserin concentrations. Explants were cultured at 37 ◦C and 5% 
CO2 for 48 h. Biopsies were then fixed in 4% formaldehyde and stained 
with an anti-mouse keratin 14 antibody (LL002, Abcam, 1:1,000, 
overnight). Keratin 14 was detected using a goat anti-mouse Alexa Fluor 
488 – conjugated secondary antibody (1:400) and wounds were coun
terstained using DAPI. Wounds were then imaged using a confocal laser 
scanning microscope (Zeiss LSM 710) equipped with a 2.5× objective 
and 405-nm diode and 488-nm argon lasers. Analysis was performed 
using ImageJ (as previously). The skin samples used in this study were 
obtained from seven donors (please see below for clinical data). At least 
four biopsies per donor, per condition were processed as technical 
replicates.

2.4. RNAseq

HaCaT cells grown in 6-well plates were scratched three times per 
well and total RNA was isolated after either 6 or 36 h using the Pure
Link™ RNA Mini Kit (#12183020, Thermo Fisher Scientific) following 
the manufacturer’s instructions. Total RNA was analysed to yield the 
transcriptomic profile of the cells in the four different conditions 
(exposed to 540 ng/l FLX for 6 and 36 h, and corresponding time con
trols). For each condition, four biological replicates were done at each of 
four cell passages. Library preparation and RNA sequencing were done 
by Novogene Co. Ltd. (Cambridge, UK) using the Illumina NovaSeq 6000 
platform. Briefly, the HISAT2 algorithm was used for read alignment and 
FPKM to normalise gene expression. Differential gene expression was 
determined from read counts using the DESeq2 R package. Gene 
expression was log2 transformed, and the calculated p-values were 
adjusted using the Benjamini–Hochberg correction for false discovery 
rate (padj) (Feugere et al., 2022). Genes significantly (padj ≤0.05) up- or 
down-regulated with a gene symbol/ID annotation were used in subse
quent analysis.

2.5. Protein microarrays

HaCaT cells were transferred to 6-well plates using three wells per 
condition (three technical replicates). Cells were incubated at 37 ◦C until 
confluence and scratched as described before (three scratches per well 
were done for these experiments). After 6 or 36 h as appropriate, cells 
were lysed in 2% SDS. Lysates were centrifuged at 14,000×g for 5 min, 
and the supernatant was kept for processing. Proteome profiler™ kits 
(#ARY003C, R&D systems) were used to profile the phosphorylation 
status on 37 kinases and two related proteins, following the instructions 
of the manufacturer and based on previous in-house work (Riley et al., 

2021). Blots were developed using Clarity™ ECL western substrate 
(Bio-Rad) and visualised using a ChemiDoc™ Imaging system (Bio-Rad). 
Densitometry was done using ImageJ (Schneider et al., 2012). For each 
condition, four biological replicates were done at each of four cell 
passages.

2.6. Phosphoproteomics

Cells were grown and scratched as for protein microarrays. Cells 
were lysed in 9 M urea with 1 mM sodium orthovanadate, 2.5 mM so
dium pyrophosphate, 1 mM B-glycerophosphate and protease inhibitors 
(Complete, Sigma-Aldrich). Proteins were digested using trypsin 
(Promega) and phosphopeptides were enriched using Zr-IMAC HP- 
functionalized magnetic microspheres (MR-ZHP002 MagReSyn) 
following the manufacturer’s protocol. Briefly, peptides were resus
pended in 0.1 M glycolic acid in 80% (v:v) acetonitrile (ACN) and 5% (v: 
v) trifluoroacetic acid (TFA) and mixed with 80 μL of equilibrated mi
crospheres. Bound phosphopeptides were washed with aqueous 80% (v: 
v) ACN containing 1% (v:v) TFA, then aqueous 10% (v:v) ACN con
taining 0.2% (v:v) TFA, before eluting with aqueous 1% (v:v) ammo
nium hydroxide. Phosphopeptide-enriched eluent was dried down in a 
vacuum concentrator and reconstituted in aqueous 0.1% (v:v) TFA for 
LC-MS/MS analysis. Peptides were loaded onto an mClass nanoflow 
UPLC system (Waters) equipped with a nanoEaze M/Z Symmetry 100 Å 
C18, 5 μm trap column (180 μm × 20 mm, Waters) and a PepMap, 2 μm, 
100 Å, C18 EasyNano nanocapillary column (75 μm × 500 mm, 
Thermo). The trap wash solvent was aqueous 0.05% (v:v) trifluoroacetic 
acid and the trapping flow rate was 15 μL/min. The trap was washed for 
5 min before switching flow to the capillary column. Separation used 
gradient elution of two solvents: solvent A, aqueous 0.1% (v:v) formic 
acid; solvent B, acetonitrile containing 0.1% (v:v) formic acid. The flow 
rate for the capillary column was 300 nL/min and the column temper
ature was 40 ◦C. The linear multi-step gradient profile was: 3–10% B 
over 7 min, 10–35% B over 30 min, 35–99% B over 5 min and then wash 
step with 99% solvent B for 4 min. The column was returned to initial 
conditions and re-equilibrated for 15 min before subsequent injections.

The nanoLC system was interfaced with an Orbitrap Fusion Tribrid 
mass spectrometer (Thermo) with an EasyNano ionisation source 
(Thermo) (Marsden et al., 2021a,b). Positive ESI-MS and MS2 spectra 
were acquired using Xcalibur software (version 4.0, Thermo). Instru
ment source settings were: ion spray voltage, 1900 V; sweep gas, 0 Arb; 
ion transfer tube temperature; 275 ◦C. MS1 spectra were acquired in the 
Orbitrap with: 120,000 resolution, scan range: m/z 375-1500; AGC 
target, 4e5; max fill time, 100 ms. Data dependant acquisition was 
performed in top speed mode using a 1 s cycle, selecting the most intense 
precursors with charge states >1. Easy-IC was used for internal cali
bration. Dynamic exclusion was performed for 50 s post precursor se
lection and a minimum threshold for fragmentation was set at 5e3. MS2 
spectra were acquired in the linear ion trap with: scan rate, turbo; 
quadrupole isolation, 1.6 m/z; activation type, HCD; activation energy: 
32%; AGC target, 5e3; first mass, 110 m/z; max fill time, 100 ms. Ac
quisitions were arranged by Xcalibur to inject ions for all available 
parallelizable time.

Peak lists in.raw format were loaded into PEAKS Studio X Pro 
(Version 10.6, Bioinformatics Solutions Inc.) for peptide identification 
and peak area-based label-free relative quantification (Barry et al., 
2023). Database searching was performed against the human subset of 
the SwissProt database appended common proteomic contaminants, 
specifying: Enzyme, trypsin; Max missed cleavages, 1; Fixed modifica
tions, Carbamidomethyl (C); Variable modifications, Oxidation (M), 
Phosphorylation (STY), Pyro-glu (EQ), Deamidation (NQ), Peptide 
tolerance, 3 ppm; MS/MS tolerance, 0.5 Da. Peptide identifications were 
filtered to 1% false discovery rate as assessed empirically against a decoy 
database. Label-free relative quantification was performed using the 
PEAKS-Q module, and pair-wise statistical differences determined using 
the PEAKS Q significance model.
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Additional statistical comparison of relative phosphopeptide abun
dance between groups was performed using FragPipe-Analyst, run 
locally using R (4.3.2). Testing used limma (Ritchie et al., 2015), 
following sample minimum imputation. Multiple-test correction was 
applied using a local and tail area-based approach (Strimmer, 2008) and 
differences in phosphorylation levels cut at padj <0.00001 and log2 fold 
>5. Gene ontology enrichment analysis was performed using 
STRING-DB (Szklarczyk et al., 2023), with the Hochberg and Benjamini 
correction applied to estimate false discovery rates. For each condition, 
three biological replicates were done at each of three cell passages.

2.7. Western blot

Protein lysates were produced from HaCaT cells, both control and 
exposed to FLX (540 ng/l) and scratched as for protein microarrays. 
Cells were lysed in 2% SDS (Gilbert et al., 2024). Protein lysates were 
boiled with Laemmli sample buffer and proteins (20–50 μg) were 
resolved through 10% SDS-PAGE gels run at 120 V. Western transfer was 
done for 2 h at 100 V and proteins transferred to a nitro-cellulose 
membrane (ECL Hybond). Membranes were incubated at 4 ◦C over
night in 1% milk in TBST (w:v) containing 1: 1000 dilutions of primary 
antibodies (MAB8934-SP and MAB1094-SP against GSK3B S9 phos
phorylation and MSK1(RPS6KA5, S376)/MSK2(RPS6KA4, S360) phos
phorylation, respectively, both from R&D Systems), as appropriate. 
Binding was detected using horseradish peroxidase (HRP)-conjugated 
goat anti-rabbit antibody (Dako #P0448, 1: 5000 dilution), using 
Clarity™ ECL Western substrate (Bio-Rad) and imaged as previously 
described (Marsden et al., 2021a,b; Onwuli et al., 2019). Densitometry 
analysis was performed in ImageJ (Schneider et al., 2012) and protein 
band intensity was normalised to loading control bands.

2.8. Statistical analyses

T-tests (for binary comparisons) and ANOVA followed by Tukey 
post-hoc tests (for multiple comparisons) statistical analyses were per
formed where data were parametric. Protein microarray data were non- 
parametric and analysed by PERMANOVA using the Adonis function 
from the vegan (https://CRAN.R-project.org/package=vegan) R pack
age (R 4.1.2) using RStudio.

3. Results

3.1. Exposure to ER-FLX concentrations enhances scratch closure in a 
wound healing keratinocyte model

To investigate any effects of FLX at ER concentrations on wound 
healing, we first used a keratinocyte cell line model. We exposed HaCaT 
cells to a wide range of ER-FLX concentrations (62.5–5400 ng/l) for 
28–36 h. We routinely observed a dose-dependent increase in scratch 
closure starting from 125 ng/l FLX (Fig. 1A–B and Supplementary 
Fig. 1).

To better understand the mechanistic basis and the specificity of this 
observation, we treated cells with mitomycin C (an inhibitor of cell 
proliferation), with a second SSRI, and with 5-HT receptor blockers. 
Firstly, treatment with mitomycin C abrogated the effects of exposure to 
FLX (Fig. 1C and Supplementary Fig. 2), showing that the enhancement 
of scratch closure promoted by FLX was inhibited in the presence of cell 
proliferation inhibitors. We thus inferred that exposure of scratched 
HaCaT cells to FLX induced an increase in cell proliferation which, in 
turn, led to faster scratch closure. To test this hypothesis, we labelled 
proliferating cells in scratch assays with EdU. We observed a dose- 
response relationship between the concentration of FLX and the num
ber of cells labelled by EdU (Fig. 1D). As a control, we repeated some of 
the EdU experiments in the presence of mitomycin C. As expected, the 
addition of mitomycin C abrogated the increase in EdU labelling 
observed with FLX (Supplementary Fig. 3).

Secondly, we tested another SSRI, sertraline, to explore the speci
ficity of our findings. We incubated HaCaT cells with sertraline and 
performed scratch assays as before. Results mirrored those using FLX 
(Fig. 1E and Supplementary Fig. 5), and we observed enhanced scratch 
closure in the presence of ng/l concentrations of sertraline. Together, 
our observations strongly suggested that SSRIs promoted scratch closure 
through cell proliferation and we rationalised that the most likely 
mechanism was through altering 5-HT signalling. To test this hypothe
sis, we first used RNAseq to identify the main 5-HT receptors expressed 
in HaCaT cells and we found evidence for expression of 5-HTRs from the 
seven families (Supplementary Table 1). We then treated cells with 
ketanserin (an antagonist of 5-HTR2a and 5-HTR2c that has been previ
ously used to investigate the role of 5-HT in wound healing, including in 
clinical trials) (Janssen et al., 1989; Lawrence et al., 1995; Nguyen et al., 
2019; Sadiq et al., 2018). Ketanserin treatment reversed the effect of FLX 
on scratch closure (Fig. 1F), which clearly showed that the FLX-induced 
enhancement of scratch closure depended upon 5-HT signalling through 
5-HTRs.

3.2. Exposure to ER-FLX activates transcriptomic networks associated 
with cell proliferation

We sought to understand the molecular mechanisms underlying the 
enhancement of cell proliferation and scratch closure when HaCaT cells 
were exposed to ER-FLX concentrations. Firstly, we performed a tran
scriptomics analysis of the effects of exposure. Given that increased cell 
proliferation was visible after 28–36 h exposure (Fig. 1), we reasoned 
that changes in gene expression may occur earlier than that. To test this 
hypothesis, we exposed scratched HaCaT cells to 540 ng/l FLX for 6 and 
36 h, and analysed gene expression compared to control (not exposed) 
cells. A total of 21,403 (or 31,102) transcripts were sequenced in all (or 
at least one) samples at depths between 43 and 76 million reads per 
sample, with 94–97% mapped to exonic regions (NCBI’s Gene Expres
sion Omnibus (GEO- accession number ([dataset] GSE268987).

We found 350 differentially expressed genes (DEGs) between control 
and exposed samples after 36 h (Fig. 2A and Supplementary Table 2). 
Gene Ontology (GO) term, Reactome and KEGG pathways enrichment 
analysis clearly identified altered respiration, mitochondrial meta
bolism, ribonucleoside/ribonucleotide metabolism, oxidative phos
phorylation and thermogenesis in DEGs downregulated after 36 h of FLX 
exposure (Supplementary Figs. 6–8 and Supplementary Tables 3–5). In 
upregulated DEGs, we found GO terms related to cell proliferation and 
tissue morphogenesis (Supplementary Fig. 9). These findings were 
remarkable in the context of a modest number of DEGs (Fig. 2B), and 
support the specificity of our results. STRING analysis revealed close 
interactions among DEG products, with clusters of ribosomal and 
mitochondrial proteins (Supplementary Fig. 10). Taken together, the 
downregulation of transcriptomic networks associated with mitochon
drial function and the upregulation of the expression of genes involved 
in cell proliferation are consistent with our previous data showing 
enhancement of cell proliferation by ER-FLX. Contrary to our expecta
tions, the number of DEGs (Fig. 2C) and the enrichment in GO terms and 
pathways (Supplementary Table 6) were lower in HaCaT cells exposed 
to ER-FLX for 6 h only, with a just-significant GO term enrichment in 
glutathione transferase activity which may be indicative of an early 
mitochondrial metabolism switch.

3.3. Exposure to ER-FLX changes kinase phosphorylation profiles

Serotonin signalling is regulated by protein kinases and protein 
phosphorylation (Sahu et al., 2018). Having shown that the mechanism 
underlying the effects of ER-FLX on cells was through 5-HT signalling 
(Fig. 1F), we hypothesised that protein kinases, particularly those 
related to MAPK pathways, were differentially phosphorylated upon 
exposure. To test this hypothesis, we exposed scratched HaCaT cells to 
540 ng/l FLX for 6 and 36 h and we profiled the levels of 
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Fig. 1. A. Representative images of scratch assays in the presence of FLX, at the indicated concentrations, and visualised at the start of the experiment (0 h, top left) 
or after 36 h. Scratches at time 0 h were of a width of 1 ± 0.12 mm (n = 4). B. Dose-response dependence of scratch (wound) closure on FLX concentration. X axis not 
to scale. NS: non-significant. *p < 0.05 (0.003556 and 0.000019 for 125 and 250 ng/l, and <0.00001 for 540, 2700 and 5400 ng/l each vs control). C. Treatment with 
mitomycin C (M–C) reversed the effect of FLX. Samples labelled as ‘B’ are significantly different (p < 0.05) to samples labelled as ‘A’. D. Dose-response dependence of 
the number of proliferating cells, as judged by EdU labelling, on FLX concentration (in log scale). *p = 0.01,e **p = 0.0023 vs control (dotted line). E. Dose-response 
dependence of scratch (wound) closure on sertraline concentration. X axis not to scale. NS: non-significant. Significant p-values were as follows: sertraline 125, 540 
and 5400 ng/l vs control: 0.045, 0.0072 and 0.006 respectively (labelled with *); sertraline 540 and 5400 ng/l vs sertraline 62.5 ng/l: 0.014 and 0.012, respectively. 
F. Treatment with ketanserin (Ket) reversed the effect of FLX on scratch (wound) closure. Significant p-values were as follows: p = 0.000388 (FLX vs Ket), 0.0031226 
(FLX vs FLX + Ket).
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phosphorylation of 37 kinases at each endpoint using high-throughput 
protein microarrays. We found trends (padj = 0.1) toward reductions 
in the levels of phosphorylated glycogen-synthase kinase 3 (at least the β 
isoform, GSK3B) and the serine/threonine-protein kinase WNK1 after 6 
h. After 36 h exposure, we found trends toward reduced phosphorylation 
of GSK3A/B, Proto-oncogene tyrosine-protein kinase (SRC) and Ribo
somal protein S6 kinase alpha-4/-5 (RPS6KA4/RPS6KA5), while p70 S6 
kinase (RPS6KB1) phosphorylation levels tended to increase 
(Fig. 3A–C). We validated a subset of these results using Western blot 
and we showed statistically significant reductions in the levels of 

phosphorylation of GSK3B and RPS6KA5 (Fig. 3D–E).
Altered levels of phosphorylated kinases could be due to changes in 

kinase expression levels. To test this hypothesis, we analysed the levels 
of gene expression of GSK3A, GSK3B, SRC, WNK1, RPS6KA4/5 and p70 
S6 kinase using our RNAseq dataset, and we found no statistically sig
nificant differences between control and exposed cells at either endpoint 
(6 or 36 h) (Supplementary Table 2).

Fig. 2. A: Volcano plot illustrating 100 upregulated (in red) and 250 downregulated (in green) genes after 36 h exposure to 540 ng/l FLX. In blue, 26670 genes not 
differentially expressed. B: Heatmap comparing global gene expression (log2 gene counts, average of 4 replicates) in HaCaT cells treated with 540 ng/l for 6 and 36 h, 
and respective controls. C: Volcano plot illustrating 76 upregulated (in red) and 89 downregulated (in green) genes after 6 h exposure to 540 ng/l FLX. In blue, 25141 
genes not differentially expressed. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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3.4. Exposure to ER-FLX leads to 235 differentially phosphorylated 
proteins

Given the effects of exposure to ER-FLX on kinase phosphorylation 
profiles, we reasoned that changes in protein phosphorylation at the 
proteome level should follow. To test this hypothesis and to identify the 
target proteins undergoing differential phosphorylation in FLX-exposed 
cells, we performed phosphoproteomic analyses of HaCaT cells exposed 

to 540 ng/l FLX. Based on our previous findings showing greater effects 
after 36 h than after 6 h of exposure at the transcriptomic and kinase 
phosphorylation levels, phosphoproteomics experiments were designed 
to identify phosphosites after 36 h exposure only. We found a total of 
235 phosphopeptides that were differentially phosphorylated in exposed 
cells (Fig. 4A–B, Supplementary Table 7 and ProteomeXchange ([data
set] PXD052227) and MassIVE ([dataset] MSV000094745) 
(doi:10.25345/C54X54T49)).

Fig. 3. A: Example of raw data from protein microarrays, showing reduced signal (in red) for phosphorylation of GSK3B (labelled as box 1) Ser9, RPS6KA5/4 (MSK1/ 
2) Ser376/Ser360 (box 2), and SRC Tyr419 (box 3); and increased (in green) RPS6KB1 Thr421/Ser424 (box 4) phosphorylation. B. Box plot showing statistical 
analysis of 3 replicates after 6 h exposure to 540 ng/l FLX, compared to control. Left, GSK3 α or β isoforms (Ser21 or Ser9, respectively); centre, GSK3β (Ser9); right, 
WNT1 (Thr60). All cases: padj = 0.1. C. Box plot showing statistical analysis of 4 replicates after 36 h exposure to 540 ng/l FLX, compared to control. From left to 
right, GSK3β (Ser9); RPS6KA5/4 (MSK1 or 2, Ser376 or Ser360 respectively); SRC (Tyr419) and p70 S6 kinase (PRS6KB1, Thr421/Ser424). All cases: padj = 0.1. D. 
Raw western blots showing reduced phosphorylation of RPS6KA5/4 (MSK1/2) and GSK3B in exposed samples (FLX) compared to controls, at the indicated exposure 
times. α-tubulin was used as loading control. E. Box plot showing statistical analysis of n > 3 Western blot replicates, * from left to right, p = 0.0034675 (MSK1/2), 
0.0073869 (GSK3β 36 h) and 0.0000005 (GSK3β 6 h). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.)
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Within the proteins hyperphosphorylated in treated cells, we found 
an enrichment in GO terms and pathways related to cell cycle and di
vision, cellular and chromosome organisation, and mRNA and protein 
biosynthesis, among others (Supplementary Table 7). Proteins clustered 
into several, well-defined protein-protein interactions networks around 
chromosome organisation, ribonucleoproteins, elongation initiation 
factors, and DNA repair, cell signalling and structures associated with 
epithelial cell fate (Fig. 4C). Taken together, these results are consistent 
with our earlier observation that ER-FLX promotes HaCaT cell 
proliferation.

3.5. FLX promotes wound closure in an ex vivo model of wound healing 
using human skin biopsies

To investigate the relevance of our results to human skin wound 
healing, we exposed skin biopsies to FLX for 48 h ex vivo (clinical data in 
Supplementary Table 8). These experiments used higher FLX concen
trations (2.5 and 5 μg/l), which have previously been used as upper 
limits for ER-FLX levels (Correia et al., 2022; Dzieweczynski et al., 2016; 
Guler & Ford, 2010; Miranda et al., 2023; Weinberger & Klaper, 2014).

We observed a statistically significant enhancement of wound 
closure in skin biopsies exposed to 2.5 and 5 μg/l FLX, compared to 
control biopsies (Fig. 5A–B). Of note, the mechanistic basis underlying 
this observation must be augmented 5-HT signalling, because wound 
closure enhancement was reversed in the presence of the 5-HTR 
antagonist ketanserin (Fig. 5C). These data are in accordance with our 

findings using a cell line model and underscore the relevance of our 
results in the human wound microenvironment.

4. Discussion

Using several models of wound healing, we have shown that expo
sure to ER-FLX significantly enhances wound closure in HaCaT cells and 
human skin ex vivo. We used relevant FLX concentrations that are widely 
acknowledged as representative of ‘real world’, environmental settings, 
and report effects on wound healing from SSRI concentrations starting at 
125 ng/l, which are well accepted as ER (De Castro-Català et al., 2017; 
De Lange et al., 2009; Painter et al., 2009; Woodman et al., 2016). We 
have dissected the mechanisms underlying these observations and 
shown that ER-FLX promotes cell proliferation through the 5-HT sig
nalling pathway.

Chronic wounds present a complex, costly and challenging medical 
concern (Wilkinson & Hardman, 2020). These wounds, persisting for an 
extended period (>12 weeks), are typically due to impaired or stalled 
wound healing mechanisms, which in turn can be due to underlying 
conditions such as diabetes or vascular disease. Previous clinical trials 
have targeted 5-HT signalling in wounds using ketanserin, with limited 
success (Janssen et al., 1989; Lawrence et al., 1995). There have also 
been recent attempts at investigating and developing novel treatment 
strategies based on repurposing FLX as a wound healing drug in various 
forms. The evidence we present here strongly indicates that the con
centrations of FLX needed for an improvement in wound healing are 

Fig. 4. A: Volcano plot illustrating 190 upregulated and 45 downregulated phosphosites after 36 h exposure to 540 ng/l FLX (black dots) at padj <0.00001. B: 
Heatmap comparing phosphosites in HaCaT cells exposed to 540 ng/l for 36 h, versus controls. Three individual replicates are shown for control (on the right, 
CTROL1-3) and exposed (on the left, FLX1-3) samples. C: Clusters of protein-protein interactions within proteins with upregulated phosphorylation levels upon 
exposure. For clarity, only the highest confidence interactions are shown (STRING interaction score >0.9). Cluster 1: DNA repair, cell signalling and structures 
associated with epithelial cell fate cluster. Cluster 2: ribonucleoproteins cluster. Cluster 3: chromosome organisation cluster. Cluster 4: elongation initiation factor 
cluster. No enrichment in GO terms or pathways was found within proteins with downregulated phosphorylation levels.
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Fig. 5. A. Representative images (n = 4) of wound healing assays in the presence of FLX, at the indicated concentrations, and visualised after 48 h. In green, keratin 
14; in blue, DAPI. Scale bar: 500 μm. B. Dose-response dependence of wound closure on FLX concentration. Samples labelled as ‘B’ and ‘C’ are significantly different 
between each other and also when compared to control, labelled ‘A’ (p = 0.0133656 and 0.0000003, respectively). C. Treatment with ketanserin (Ket) reverses the 
effect of FLX on wound closure. Samples labelled as ‘B’ are significantly different to samples labelled ‘A’, p = 0.009078 between FLX and FLX + Ket samples. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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much lower than previously thought, which can reduce drug loads and 
any side-effects of treatment in a clinical trial setting. A more intriguing 
medical implication of our work is the possibility that chronic exposure 
to ER-FLX leads to uncontrolled skin cell proliferation, a hallmark of 
cancer (Hanahan & Weinberg, 2011). Our RNAseq results support the 
notion that cells exposed to ER-FLX could switch to a proliferative 
metabolic state reminiscent of the Warburg effect (that is, decreased 
aerobic metabolism and increased glycolysis) (Antico Arciuch et al., 
2012; Chandel, 2021). Clinically relevant doses of FLX have been shown 
to increase glycolysis (Pan et al., 2022) and the role of 5-HT signalling in 
controlling cell fate, including the proliferation of keratinocytes and 
fibroblasts, supports this line of thinking (Kim et al., 2018; Macdonald 
et al., 1958; Wang et al., 2014; Welsh et al., 2004). Indeed, exposure to 
(non-ER) FLX specifically increases the proliferation of brain cells 
(Imoto et al., 2015; Sousa-Ferreira et al., 2014), and breast cancer cells 
(Ballou et al., 2018; Brandes et al., 1992). Our observation that ER-FLX 
promotes wound healing will help us, first, better understand the risks 
(or potential benefits) to human health of the presence of SSRI in the 
environment and, second, justify efforts towards exploring the potential 
for behavioural changes at the system level that reduce the use of an
tidepressants altogether. The general public view on SSRIs is highly 
variable, on the one hand, there is a growing awareness and acceptance 
of mental health issues in societies. On the other hand, some criticise 
SSRIs for the treatment of mental disorders as ‘quick fixes’ for more 
complex issues (Golder et al., 2023). There are trends towards reducing 
oversubscription of antidepressants through green social prescribing 
schemes (Bray et al., 2022), which would reduce SSRI concentrations in 
environmental systems.

Our work also sheds light on previous, sometimes contradictory ev
idence on the role of 5-HT in wound healing. Serotonin is known to be 
part of various wound healing pathways. During the inflammatory 
phase, local 5-HT concentration is increased, as is expression of 5-HT 
receptors in B and T lymphocytes (Alstergren et al., 1999; Zhang 
et al., 2001). Proinflammatory cytokines such as IL-1b or Interferon-c 
upregulate the 5-HT transporter SERT (Mossner et al., 2001), and lym
phocytes are recruited into the inflammatory focus through 5-HT sig
nalling (Laberge et al., 1996), all pointing towards a role of 5-HT 
signalling in this phase. Serotonin also induces fibroblast proliferation 
and adhesion by upregulating the secretion of fibroblast growth factor-2 
(FGF-2) (Seuwen et al., 1988). These mechanisms are relevant in our ex 
vivo model of wound healing using clinical biopsies, which recapitulates 
the wound microenvironment. Clinically, one of the most common tools 
to regulate 5-HT signalling in tissues (that is, the brain in the context of 
clinical depression) is through SSRIs, and SSRIs have also been used in 
previous research to investigate the effects of 5-HT in wound healing. 
For example, Yuksel et al. injected paroxetine in rats (both control and 
diabetic models) every day for 14 days and made excision wounds on 
their skin (Yuksel et al., 2014). The number of fibroblasts in the wound 
was significantly higher for treated rats compared with the 
saline-administered rats; but only in control and not in diabetic rats. 
Complete epithelisation was achieved only for paroxetine-administered 
and control (but not diabetic) rats (Yuksel et al., 2014). Fibroblasts and 
re-epithelisation play an important role in the proliferative phase of 
wound healing and this study showed that systemic treatment with 
paroxetine enhanced cutaneous wound healing in vivo, at least of 
non-diabetic rat skin. An analogous study investigated stressed rats 
(chronic social stress, that is, 24 h of isolation followed by 24 h of 
crowding) treated systemically with FLX for 14 days (1 mg/kg) 
(Farahani et al., 2007). FLX treatment increased wound healing rate by 
68% and 31% for stressed and non-stressed rats, respectively. The au
thors hypothesised that this improvement in wound healing after 
treatment could be explained by FLX-induced increases in the level of 
IL-1 (Kubera et al., 2000), a cytokine that plays a significant role in the 
inflammatory phase of wound healing (Hu et al., 2010). Despite using 
much lower FLX concentrations, our results generally agree with the 
view that SSRI enhance wound healing, a conclusion that is supported 

by both our cell line and our clinical biopsies models. Previous studies 
on the effects of FLX on wound healing have used cell lines and animal 
models. In contrast, here we chose to use human samples to maximise 
physiological and clinical relevance and impact. Although the study 
cohort was small and heterogenous (Supplementary Table 8), our results 
clearly showed increased wound healing after 48 h exposure. At the 
molecular level, we showed that the main mechanism underlying the 
effects of FLX, at least at ER concentrations and in HaCaT cells, was 
increased cell proliferation. This compares to cell migration which was 
proposed by Nguyen et al. (2019) when using Normal Human Epidermal 
Keratinocytes (NHEK). Yoon et al., and Nguyen et al., used FLX at 
concentrations up to 8 orders of magnitude higher than those in this 
work (Nguyen et al., 2019; Yoon et al., 2021) and it is possible that other 
mechanisms, including increased cell migration, may become prominent 
at these higher doses.

The above reports that non-diabetic and stressed rats ‘benefit’ more 
from treatment with SSRI underscore the complex interactions between 
underlying pathologies and wound healing. Our study investigated 
human skin from donors undergoing elective surgery and further 
research is warranted to investigate the effects of ER-FLX on skin from e. 
g., people with chronic wounds. We also acknowledge that we exposed 
cells and biopsies to FLX in isolation, while environmental matrices are 
likely to be much more complex. Based on literature, we had identified 
mitogen-activated protein kinases (MAPK) as master regulators of 5-HT 
signalling (Hsiung et al., 2005; Nebigil et al., 2003; Sahu et al., 2018) 
and we expected changes in the levels of phosphorylation of ERK1/2 
(MAPK3/1), the T202/Y204 and T185/Y187 phosphorylation sites of 
which were included in our protein microarrays. While this was not the 
case in our hands, perhaps due to the transient nature of ERK1/2 
phosphorylation, we did identify changes in the phosphorylation of 
RPS6KA4/5, mitogen- and stress-activated protein kinases that are 
activated by ERK2 and phosphorylate the MAPK mediator CREB (Deak 
et al., 1998). The relevance of MAPK signalling is also supported by our 
phosphoproteomics results, which showed hyperphosphorylation of 
MAPK kinases MAP3K3, MAP3K4 and MAP4K5 in exposed cells 
(Supplementary Table 7). The observation that exposure to ER-FLX 
regulates GSK3, SRC and p70 S6 kinases is consistent with previous 
reports, which have made direct links between 5-HT signalling and 
GSK3A and B (Polter et al., 2012), SRC (Zavaritskaya et al., 2017), and 
p70 S6 kinase (Zamani & Qu, 2012). Of note, GSK3A/B, RPS6KA4/5, 
SRC and p70 S6 kinase are all interconnected through ERK1/2 
(Supplementary Fig. 11) and a golden thread of cell metabolism, cell 
proliferation, cell growth and cell cycle progression (Vindis et al., 2003; 
Zheng et al., 2009). Taken together, our observation that exposure to 
ER-FLX concentrations changed the profile of phosphorylation of several 
protein kinases involved in cell fate decisions was consistent with the 
identification of differentially phosphorylated proteins in cells exposed 
to FLX and with the GO terms and biochemical pathways enriched in 
these differentially phosphorylated proteins.

Our work is the first to investigate the effects of FLX (at any con
centration) on wound healing using –omics technologies, including 
transcriptomics and phosphoproteomics, and we took this systems 
biology approach due to the complexities of interlinked 5-HT signalling 
pathways (Sahu et al., 2018). The reduced number of DEGs after 6 h 
exposure was unexpected, but the enrichment in glutathione transferase 
activity GO terms at this endpoint was consistent with recent reports 
linking FLX to oxidative stress (Correia et al., 2023; Pinto et al., 2024). 
There was very little overlap between DEGs and differentially phos
phorylated proteins measured after 36 h of exposure (Supplementary 
Tables 2 and 7), but both RNAseq and phosphoproteomics results 
strongly supported the conclusion that ER-FLX enhanced cell prolifera
tion at the 36 h endpoint. This means that exposure to ER-FLX caused 
changes at both the gene expression and the protein phosphorylation 
levels that independently promoted cell proliferation. This is congruent 
with our phenotypic observation of improved wound healing in cell 
models and human biopsies.

Q. Rodriguez-Barucg et al.                                                                                                                                                                                                                    Environmental Pollution 362 (2024) 124952 

10 



5. Conclusion

We have shown that exposure to ER-FLX concentrations promotes 
scratch closure and wound healing in keratinocytes and clinical biopsies, 
respectively. This effect was dose- and also serotonin-dependent, 
because it was reversed by a 5-HT receptor blocker. Mechanistically, 
exposure led to hundreds of DEGs and differentially phosphorylated 
proteins, the latter including through modulation of MAPK-related ki
nases. Collectively, these changes at the gene and protein levels were 
associated with increased cell proliferation and an inhibitor of cell 
proliferation reversed the effect of ER-FLX. These results pave the way to 
environmental and clinical research into the effects of environmental 
SSRI on human skin wound healing. Our results also open new avenues 
for transdisciplinary research around the effects of ER-FLX on aquatic 
animals. Non-surprisingly given the clinical applications of SSRI, over 
the past 25 years research has focused on the impact of ER-FLX on 
behaviour (widely understood) of a range of aquatic species, often with 
modest results. Recent research has begun to uncover other impacts 
(Correia et al., 2023), e.g., on oxidative stress and fatty acid profiles 
(Pinto et al., 2024) and on ecosystems (Michelangeli et al., 2024), but 
we are not aware of any study investigating wound healing impacts of 
exposure. Our results justify a transition from the study of behavioural 
effects of ER-FLX in fish to the investigation of effects of exposure on 
wound healing in aquatic and terrestrial animals, including direct im
pacts on human health. We argue that there is an urgent need to develop 
models that can inform risk assessment and regulatory decision making 
(Hollert & Keiter, 2015; Osaki et al., 2018).
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