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Abstract: This paper presents novel chattering‑free robust control strategies for addressing distur‑
bances and uncertainties in a two‑degree‑of‑freedom (2‑DOF) unmanned aerial vehicle (UAV) dy‑
namic model, with a focus on the highly nonlinear and strongly coupled nature of the system. The
novelty lies in the development of slidingmode control (SMC), integral slidingmode control (ISMC),
and terminal sliding mode control (TSMC) laws specifically tailored for the twin‑rotor MIMO sys‑
tem (TRMS). These strategies are validated through both simulation and real‑time experiments. A
key contribution is the introduction of a uniform robust exact differentiator (URED) to recover ro‑
tor speed and missing derivatives, combined with a nonlinear state feedback observer to improve
system observability. A feedback linearization approach, using lie derivatives and diffeomorphism
principles, is employed to decouple the system into horizontal and vertical subsystems. Compara‑
tive analysis of the transient performance of the proposed controllers, with respect to metrics such as
settling time, overshoot, rise time, and steady‑state errors, is provided. The ISMC method, in partic‑
ular, effectively mitigates the chattering issue prevalent in traditional SMC, improving both system
performance and actuator longevity. Experimental results on the TRMS demonstrate the superior
tracking performance and robustness of the proposed control laws in the presence of nonlineari‑
ties, uncertainties, and external disturbances. This research contributes a comprehensive control
design framework with proven real‑time implementation, offering significant advancements over
existing methodologies.

Keywords: unmanned aerial vehicles (UAVs); sliding mode control (SMC); integral sliding mode
control (ISMC); terminal sliding mode (TSMC); twin rotor MIMO system (TRMS); uniform robust
exact differentiator (URED); disturbances

1. Introduction
Recently, UAVs have attracted the attention of researchers owing to their highly non‑

linear, complex nature, and vast area of application. The TRMSmodel provides a beneficial
platform for analyzing and developing control algorithms for UAV during crucial maneu‑
vers. TRMS is a laboratory setup and an experimental prototype of a UAV system that
resembles the flight of a helicopter model. It consists of two main rotors attached to the
beam and is driven by two independent DC motors. The beam is counterbalanced using
an arm with attached weights at its endpoint. The system has two DOF, through which
it freely moves in the horizontal and vertical directions [1]. UAVs have many advantages
such as compact size, flexible flight, vertical and horizontal takeoff, low cost, and adapt‑
able features. Therefore, TRMS can be used in real‑time practical experiments of UAVs and

Drones 2024, 8, 527. https://doi.org/10.3390/drones8100527 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8100527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-4513-2528
https://orcid.org/0000-0001-8017-7006
https://orcid.org/0000-0002-0795-0282
https://doi.org/10.3390/drones8100527
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8100527?type=check_update&version=1


Drones 2024, 8, 527 2 of 37

has many applications for executing complex tasks, such as aircraft control, autonomous
vehicles, robotic manipulation, and industrial automation [2].

It is a formidable challenge to control the pitch and yaw angles of the UAV due to
the inherited coupling effects and extreme nonlinearities in the system dynamics. Various
researchers across the globe have been tackling these challenges by developing precise dy‑
namic models and robust control techniques for system stability. This study is dedicated
to the design of advanced UAV control strategies through innovative and robust control
laws and their real‑time implementation to validate their performance. The main focus is
to enhance both robustness and tracking performance in the presence of uncertainties and
disturbances. The following paragraphs delve into the array of methodologies that have
been adopted and refined by the researchers in recent years, highlighting their contribu‑
tions and advancements.

A genetic algorithm (GA)‑based proportional integral derivative (PID) control was
designed to tackle the complexities of nonlinear dynamic models, aiming to reduce mod‑
eling errors and improve convergence. Despite these intentions, the method fell short due
to fixed system parameters, resulting in less effective performance [3]. In contrast, SMC
and higher‑order SMC (HOSMC) controllers with state varying gain (VG) were applied
to a two‑DOF dynamic model. Unfortunately, these algorithms struggled with unsatisfac‑
tory transient performance, chattering issues, and lacked validation through real‑time ex‑
perimentation [4]. Integral back‑stepping (BS) and super‑twisting algorithms using bond
graphs have been proposed for real‑time testing. Integral BS enhances the slow pitch and
yawmovement, whereas the super‑twisting scheme controls the fast actuator dynamics [5].
The robust generalized inversion‑based (RGIB) technique presented in [6] introduces a
novel approach to addressing the challenges of coupling effects and singularity issues in
control system design. By establishing a feedback linearized platform, this method aims
to mitigate the complexities associated with these phenomena. Through its robust gen‑
eralized inversion‑based framework, the RGIB offers a systematic strategy for effectively
handling the intricate interplay between system dynamics and control actions, thereby en‑
hancing the stability and performance of the overall control system. SMC and HOSMC
algorithms, combined with input–output feedback linearization techniques, were imple‑
mented for a highly coupled system in the presence of model uncertainties and distur‑
bances to decompose it into linear sub‑system. Since the relative degree of the system is
less than its order, i.e., r < n, a feedback linearization technique was employed to con‑
trol the outputs of the coupled system, ensuring closed‑loop stability and fast dynamic
convergence of the system state variables [7].

A discrete feedback linearization approach is implemented to control the yaw move‑
ment of an unmanned helicopter model. However, despite the proposed method, it is
observed that the approach remains highly sensitive to noise factors, consequently leading
to degradation in system performance [8]. A new RGI sliding surface has been proposed
using SMC to control the pitch and yaw orientation movement, but the cross‑coupling ef‑
fect degrades the systemperformance during precisemeasurement; thus, movement along
with the freedom to operate the system in a nonlinear range is not achieved [9]. A synthe‑
sized SMC with disturbance‑observer‑based control is successfully tested through simu‑
lations and verified for a UAV [10]. A robust H‑infinity (∞)‑based controller is proposed
in [11]. However, the standard linear H(∞) controller synthesized by the loop design pro‑
cedure (LSDP) offers robustness at the cost of performance to overcome the cross‑coupling
effect and eliminate it by considering it an external perturbation and utilizing the feedback
linearization approach. The H‑infinity (∞) control theory in [12] defines the conditions for
local disturbance attenuationwith internal stabilitywithmeasurement feedback. This feed‑
back linearization setup is crucial for robust performance in nonlinear affine systems. The
study demonstrates that disturbance attenuation retains a meaningful frequency‑domain
interpretation even in nonlinear setups. It also establishes a family of controllers that en‑
sure robustness for both linear and nonlinear systems using dissipation inequality and
LaSalle’s invariance principle. Thus, clear conditions for controller design are essential for
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stability and disturbance rejection, emphasizing the need for a thorough understanding of
feedback linearization techniques in various contexts.

An adaptive fuzzy control scheme is developed for guidance and control to reduce
errors and control the input energy of the system. The obtained simulation results de‑
pict chattering in the SMC law, whereas the overall system exhibits smooth and robust
tracking performance [13]. In [14], integrator BS and an adaptive estimator through feed‑
back control are developed to control azimuth and pitch angle movement in the presence
of parametric uncertainties. The convergence is verified through simulation and exper‑
imental results within a specified time constraint. A disturbance‑observer‑based model
predictive control design is developed and tested with mapped input–output constraints
to handle external disturbances; however, this technique does not incorporate asymptoti‑
cally to minimize uncertainties and for the application of feedback regulation [15]. SMC
and TSMC are used for small UAVs by considering the system dynamic model in two
single‑input single‑output (SISO) subsystems. Thus, the nonlinear surface used for the
TSMC law provides faster and finite‑time convergence andmakes the systemmore robust.
SMC and TSMC are compared to achieve better control performance, but the convergence
time and chattering problem are not effectively improved through the proposed control
strategies [16]. However, a decoupling technique has not been implemented, leading to
increased control effort.

An integral SMC for small helicopters is proposed to minimize the adverse effects
of disturbances. Stability is achieved through an approximated input–output feedback
control approach and Lyapunov stability theorem and then verified for convergence and
tracking errors [17,18]. Additionally, a novel ISMC is designed for the relative degree goal
to reject external perturbations. However, owing to the improper design of the sliding sur‑
face, the system becomes more complex, and the tracking problem of output trajectories
arises. Thus, the controller obtained is not feasible for stable and long smooth flights [19].
A non‑singular TSMC is proposed in [20] for chattering attenuation and finite‑time conver‑
gence in small helicopters. The obtained simulation‑based results are insufficient because
no real‑time testing is considered to analyze themismatcheddisturbance, resulting inmore
overshoot and steady‑state error. Moreover, a MIMO system is decomposed into an SISO
system and controlled through TSMC for a small, unmanned helicopter. A closed‑loop
analysis of the system indicates that the control performance depends entirely on the ini‑
tially adjusted control parameters and does not rely on the initial set state values [21].

Observers can be readily designed for nonlinear systems that can be transformed into
a linear form through a change in state variables and output injection. The necessary and
sufficient conditions for the existence of such a transformation are provided [22].

Unlike previous studies that primarily focus on simulation, this research extends the
control strategies to real‑time experiments, validating their applicability and robustness.
SMC provides robust control but suffers from chattering, which is mitigated by ISMC.
TSMC, with its finite‑time convergence, improves system response time. The decoupling
of the system into horizontal and vertical subsystems using feedback linearization further
enhances the control design, allowing for independent subsystem regulation. Through
a detailed comparison of SMC, ISMC, and TSMC, this paper offers an in‑depth analysis
of their respective strengths and weaknesses, demonstrating that ISMC provides the best
trade‑off between performance and chattering reduction.

The contributions of this research are summarized as follows:
1. Development and experimental validation of SMC, ISMC, and TSMC for the TRMS,

with ISMC offering significant improvements in chattering reduction and system ro‑
bustness;

2. Application of feedback linearization to decouple the UAV system into horizontal
and vertical subsystems for better control accuracy and stability;

3. Integration of a URED for enhanced differentiation in the presence of system uncer‑
tainties and disturbances.
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The remainder of this paper is organized as follows: Section 2 describes the nonlinear
decoupledmathematical dynamicmodel based on input–output feedback linearization for
TRMS. Section 3 discusses the control design of SMC, ISMC, TSMC and URED, and state
feedback observer design is explicitly carried out along with stability analysis using Lya‑
punov stability criteria. Section 4 presents the numerical simulation and experimental re‑
sults obtained, alongwith the effectiveness and validity of the simulated and experimental
tested test results. Transient and quantitative performance analyses are presented in this
section to compare the results obtained in the simulation and experiments on a physical
TRMS. Finally, Section 5 concludes the paper.

As the literature involves the use of a lot of acronyms, Table 1 defines them.

Table 1. Acronyms and definition.

Acronyms Definition

MIMO Multiple Input Multiple Output

TRMS Twin Rotor MIMO System

SMC Sliding Mode Control

HOSMC Higher Order Sliding Mode Control

DC Direct Current

TSMC Terminal Sliding Mode Control

UAV Unmanned Aerial Vehicle

SISO Single Input Single Output

RGIB Robust Generalized Inversion‑Based

PID Proportional Integral Derivative

LQR Linear Quadratic Regulator

DOF Degree Of Freedom

GA Genetic Algorithm

VG Variable Gain

2. Mathematical Nonlinear Model
TRMS is a MIMO system that is mainly used for real‑time testing of design control

algorithms. The laboratory prototype setup of this system is designed and developed by
Feedback Limited Company, as shown in Figure 1. It is an electromechanical system com‑
prising separate mechanical and electrical units. The mechanical part consists of main and
tail motors. Each motor is driven independently by an individual DC motor, and both
rotors are counterbalanced through the attached beam, which provides additional stabil‑
ity to the system. The main and tail motor blades produce a thrusting force that removes
the system in vertical and horizontal directions [23]. By maintaining the angle of attack
constant, we can change the thrust force based on the speed of the motors.

The dynamic model of the TRMS is obtained using Newton’s second‑law approach.
According to the law of conservation, motors experience a thrust force opposite to that
of accelerated air. The two motors are perpendicular to the plane and exhibit strong cou‑
pling effects [24]. Table 2 presents a detailed comparison of the numerical performance of
the designed controllers. The mathematical model for TRMS, along with the vertical and
horizontal plans, is presented below:
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Figure 1. Physical model of twin rotor system.

Table 2. Assigned parameter values for the TRMS model.

Parameters Definition Value Unit

I1 Moment of inertia for vertical rotor 6.7 × 10−2 Kg.m2

I2 Moment of inertia for horizontal rotor 2.1 × 10−2 Kg.m2

a1 Static characteristics parameter 0.0 ‑

a2 Static characteristics parameter 0.03 ‑

b1 Static characteristics parameter 0.09 ‑

b2 Static characteristics parameter 0.092 ‑

Mg Gyroscopic momentum 0.5 N.m

B1ψ Frictional momentum 6 × 10−4 N.m.s/rad

B2ψ Frictional momentum 1 × 10−2 N.m.s2/rad

B1φ Frictional momentum 1 × 10−3 N.m.s/rad

B2φ Frictional momentum 1 × 10−2 N.m.s2/rad

Kgy Gyroscopic momentum 0.04 s/rad

K1, K2 Motor 1 and motor 2 gains 1.1, 2 ‑

T11, T10, T21, T20
Motor 1 and Motor 2 denominator

parameters 2, 1, 1.5, 1 ‑

Tp,To,Kc Cross reaction momentum parameters 2, 3, −0.5 ‑

The moment equation for the horizontal and vertical plan are given as

I1
..
ψ = M1 − MFG − MBψ − Mg

I2
..
φ = M2 − MBφ − MR

(1)

where the nonlinear static characteristics for the main motor are given by

M1 = a1τ2
1 + b1τ1 (2)

The gravity moment and fractional force momentum is presented by

MFG = Mgsin ψ

MBψ = B1ψ

.
ψ + B2ψsin

.
ψ

(3)
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The gyroscopic momentum is considered as

Mg = Kgy M1
.
φcos ψ (4)

The nonlinear static characteristics and friction force moment for the tail motor are pre‑
sented as

M2 = a2τ2
2 + b2τ2

MBψ = B1φ

.
ψ + B2φsign

( .
ψ
) (5)

The cross‑reaction moment can be written as

MR =
Kc(T0s + 1)(

Tps + 1
) τ1 (6)

The DC motor electrical circuit is approximated using a first‑order transfer function in the
Laplace domain. The momentum for both rotors is given as

τ1 =
K1

(T11s + T10)
u1 (7)

τ2 =
K2

(T21s + T20)
u2 (8)

The mathematical dynamic model of TRMS is presented with the following equations:

d
.
ψ

dt
=

a1

I1
τ1

2 +
b1

I1
τ1 −

Mg

I1
sin(ψ)− B1ψ

I1

.
ψ +

0.0326
2I1

sin(2ψ)
.
ψ

2
−

Kgy

I1
cos (ψ)φ

(
a1τ1

2 + b1τ1

)
d

.
φ

dt
=

a2

I2
τ2

2 +
b2

I2
τ2 −

B1φ

I2

.
φ − Kc

I2
1.75(a1

.
φ

2
+ b1

.
φ)

Here, all the variables in the above equation are in terms of x. Therefore, x1 = ψ,
x2 =

.
ψ, x3 = φ, x4 =

.
φ, x5 = τ1 and x6 = τ2. The mathematical state space representation

of coupled TRMS in term of x can be presented as follows:

.
x1 = x2

.
x2 = a1

I1
x2

5 +
b1
I1

x5 −
Mg
I1
sin(x1)− B1x1

I1
x2 +

0.0236
2I1

sin(2x2)x2
4 −

Kgy
I1

a1cos(x1)x4x2
5−

Kgy
I1

b1cos(x1)x4x5
.
x3 = x4

.
x4 = a2

I2
x2

6 +
b2
I2

x6 − B1x3
I2

x4 − Kc
I2

a11.75x2
5 −

1.75
I2

Kcb1x5
.
x5 = − T10

T11
x5 +

K1
T11

u1
.
x6 = − T20

T21
x6 +

K2
T21

u2

The system input vectors, state equation and control input in new coordinates can be
presented as follows:

Z = [Z1, Z2, Z3, Z4, Z5, Z6]
T =

[
ψ,

.
ψ, φ,

.
φ,τ1, τ2

]T

y = [ψ, φ]T

u = [u1, u2]
T

Here, Z1 and Z2 represent the yaw angle and yaw angular velocity for the main rotor
around the vertical axis, respectively. Where Z3 and Z4 denote the pitch angle and pitch an‑
gular velocity for the tail rotor around horizontal axis. Meanwhile, Z5 and Z6 correspond
to the angular velocities of the main and tail rotor, respectively. Additionally, ψ and

.
ψ

denote the position and velocity for the vertical plane, while φ and
.
φ represent the angle

and angular velocity, respectively.
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Assumption 1. Using the input–output feedback linearization technique, the dynamics of the cou‑
pled TRMS are decoupled into horizontal and vertical subsystems by employing newly mapped
coordinates, effectively achieving decoupling.

2.1. Feedback Linearization
This section illustrates the application of the input–output feedback linearization tech‑

nique for highly coupled TRMS. Feedback linearization is a common approach employed
to control the behavior of nonlinear systems. In our case, the relative degree of the system
is k = 3, and the system order is n = 6, which is greater than the relative degree n > k;
therefore, we used the input–output feedback linearization method to make the relative
degree and system order equal. As shown in Figure 2, this approach aims to transform
a highly nonlinear and coupled system into a linearized decoupled form through coor‑
dinate transformation. By employing an appropriate transformation function, nonlinear
state variables can be converted into new linear state variables. This transformation alters
the system variables, rendering the system more convenient for robust nonlinear control
design. The general representation for the vector field and system output equations can
be presented by

.
x = f (x) + g(x)uy = h(x) (9)

where x ϵ Rn and u ϵ Rm represent the system states and control inputswhile h(x) and g(x)
are the vector fields. Generally, the state space representation for the state transformation
can be given by

ψ(x), φ(x) =

 ψ1(x), φ1(x)
ψ2(x), φ2(x)

ψi−1(x), φi−1(x)

 =

 h(x)
L f h(x)

L f i−1h(x)

 (10)

where the notations L f h(x) and L f
2h(x) are used for the lie derivative of function h(x)

along with the vector field f (x) and Zi = ψi(x), φ(x) = L f i−1h(x); i ⩽ 1 ⩽ n and lie
derivative of a function h(x):Rn → R, with the vector field are given as

f (x) = f1(x), . . . . . . . . . ., f1(n)

where L f h(x) =
n
∑

i=n

∂h
∂xi

fi(x)

Li f h = L f
(

L f i−1h
)

The coordinate mapping state space representation for TRMS can then be presented by

ψ(x), φ(x) =

 ψ1(x), φ1(x)
ψ2(x), φ2(x)
ψ3(x), φ3(x)

 =

 h(x)
L f h(x)
L f

2h(x)

 =


.
Z1a,

.
Z1b.

Z2a,
.
Z2b.

Z3a,
.
Z3b

 (11)

2.1.1. Vertical Decoupled Subsystem
Utilizing the lie derivative and by incorporating the previously mentioned notations,

the newly mapped coordinates for the nonlinear decoupled vertical subsystem, based on
Assumption 1, can be formulated into state space representation as

.
Z1a = Z2a.

Z2a =
a1
I1

Z2
3a +

b1
I1

Z3a −
Mg
I1

sin(Z1a)− B1ψ
I1

Z2a
.
Z3a = − T10

T11
Z3a +

K1
T11

u1

(12)
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where
[ .

Z1a,
.
Z2a,

.
Z3a

]
=

[
ψ,

.
ψ, τ1

]
and ψ,

.
ψ, and τ1 represent the pitch angle, angular

velocity and torque of the main rotor, respectively.
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2.1.2. Horizontal Decoupled Subsystem
The nonlinear decoupled subsystem, by considering Assumption 1, can be presented

into state space form as follows:
.
Z1b = Z2b.

Z2b = a2
I2

Z2
3b +

b2
I2

Z3b −
B1φ

I2
Z2b − Kc

I2
1.75(a1Z2

2b + b1Z2b)
.
Z3b = − T20

T21
Z3b +

K2
T21

u2

(13)

where [
.
Z1b,

.
Z2b,

.
Z3b

]
=

[
φ,

.
φ,τ2

]
and φ,

.
φ, τ2 represent the yaw angle, angular velocity

and torque for the tail rotor.

Remark 1. The objective of this study is to design different robust controllers that efficiently track
the desired system output pitch and yaw angle trajectories (y1d , y2d) in the presence of distur‑
bances. For t ≽ 0, the disturbance ∆(t)  along its derivative 

.
∆(t)  is norm‑bounded, i.e., ∥∆(t)∥ <

Nd and 
∥∥∥ .

∆(t)
∥∥∥ < N̂d, where Nd represents the known positive constant and N̂d is an unknown

positive constant.

Assumption 2. For a closed‑loop system, it is assumed that the dynamics of TRMS, including the
pitch and yaw angle movements, are stable when using SMC, ISMC and TRMC laws. The designed
robust control laws ensure the convergence of sliding mode behavior within finite time, even in
the presence of system‑bounded uncertainties. Consequently, the tracking errors are expected to
converge to zero within a finite time frame.

Assumption 3. It is assumed that the input state equations defined in the system mathematical
model, alongwith the control inputs u1 and u2, are appropriately designed such that both the vertical
and horizontal movements of twin rotor MIMO system achieve stability under the application of
SMC, ISMC and TSMC strategies.

3. Robust Control Strategies
ATRMS is an actuated systemwith strong coupling effects between the rotors. There‑

fore, nonlinear robust control algorithms have been proposed to obtain desired results.
This section presents the step‑by‑step control design of the SMC, ISMC, TSMC, URED,
and state feedback observer for TRMS. The objective is to design various controllers and
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observers that can achieve robust autonomous performance against disturbances and un‑
certainties. The chattering that arises in the control input of the SMC law is consequently
eliminated through the ISMC and TSMC laws, and both output angles show smooth flights
in the horizontal and vertical directions, which also converge the system states to an equi‑
librium position within a finite time. The following subsection and Figure 3 present the
designs of the SMC, ISMC, TSMC laws, URED, and state feedback observer.
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3.1. Sliding Mode Control
SMC is a nonlinear robust control technique that is employed in complex dynamics

and MIMO systems. This technique is based on the Lyapunov stability theorem and en‑
sures the rejection of external disturbances present in the system. A drawback of the SMC
law is the chattering effect. Therefore, the ISMC law is proposed in the next section to
minimize this effect. SMC design mainly involves sliding and reaching phases [25]. In the
reaching phase, the system moves into the sliding manifold through an equivalent con‑
troller, whereas in the reaching phase, the system states remain in equilibrium. The error
dynamics for the controller are given by

e1 = φ1 − φ1d.
e1 =

.
φ1 −

.
φ1d

e2 = φ2 − φ2d.
e2 =

.
φ2 −

.
φ2d

and


e3 = ψ3 − ψ3d
.

e3 =
.
ψ3 −

.
ψ3d

e4 = ψ4 − ψ4d
.

e4 =
.
ψ4 −

.
ψ4d

The sliding surface for the pitch angle are defined as

S1 = c1e1 + c2e2 + Z3a (14)

where c1 and c2 are the positive constant and tuning parameters while e1 and e2 represent
the tracking errors. Taking the derivative of Equation (14) becomes

.
S1 = c1

.
e1 + c2

.
e2 +

.
Z3a (15)

The SMC law incorporates two controller parts, i.e., equivalent control (u1eq
)
anddiscontin‑

uous control (u 1dis). The equivalent controller part is obtained by considering the sliding
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surface with respect to time at
.

S1 = 0. The equivalent controller part for the pitch angle is
computed as follows:

u1eq =
−T11

K1
(c1(φ2 −

.
φ1d)+c2(

.
φ2 −

.
φ2d)−

T10

T11
Z3a (16)

where switching control law is given by u1dis = −n1Sign(S1). Therefore, the overall con‑
trol law for the pitch angle is computed as the sum of u1eq and u1dis as follows:

u1t =
−T11

K1
(c1(φ2 −

.
φ1d)+c2(

.
φ2 −

.
φ2d)−

T10

T11
Z3a − n1Sign(S1) (17)

where the controller tuning parameters should be greater than zero, i.e., c1, c2, n1 > 0. The
sliding surface for the yaw angle is given as

S2 = c3e3 + c4e4 + Z3b (18)

The derivative of sliding surface S2 can be written as
.

S2 = c3
.

e3 + c4
.

e4 +
.
Z3b (19)

Now, when
.
S2 = 0, the equivalent control for the yaw angle is considered as follows:

u2eq =
−T21

K2
c3

(
ψ4 −

.
ψ3d

)
+ c4

( .
ψ4 −

.
ψ4d

)
− T20

T21
Z3b (20)

The reaching law is given by u2dis = −n2Sign(S2). The equivalent and switching control
law for the yaw angle can be presented by

u2t =
−T21

K2
c3

(
ωy −

.
ψ3d

)
+ c4

( .
ψ4 −

.
ψ4d

)
− T20

T21
Z3b − n2Sign(S2) (21)

where the tuning parameters c1, c2, c3, c4, n1 and n2 are the controller tuning parameters
as given in Table 3, where n1 and n2 are strictly positive constants that ensure that the
Lyapunov functions L1 and L2 remain negative definite. The following section shows the
existence of the SMC using Lyapunov stability analysis.

Table 3. Tuning parameters for the controllers.

Parameters SMC ISMC TSMC URED/Observer

n1,n2 5, 11 ‑ ‑ ‑

c1,c2 3.3, 7 4.8, 4 10, 15 ‑

c3,c4 7, 9 2.5, 5 5, 9 ‑

c5, c6 1.1, 3 1.5, 3 6, 8 ‑

ɳ1, ɳ2 ‑ 5, 7 ‑ ‑

ζ1, ζ2 ‑ 7, 9 3, 3.9 ‑

β1, β2 ‑ 1, 1.5 ‑ ‑

p1, q1 ‑ 0.5, 0.3 ‑ ‑

p2, q2 ‑ 0.6, 0.2 ‑ ‑

ĉ, c ‑ 7, 3.3 ‑ 9.5

k1, k2 ‑ ‑ ‑ 10.5, 0.0002

µ ‑ 3.5, 8 ‑ 9.5
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Theorem 1. Consider the dynamics of the system (12) and (13) along with the aforementioned
assumptions for a designed robust control law (16) and (20) and strong reachability laws. The
proposed control laws guarantee finite‑time convergence for the SMC.

Proof.  To prove Theorem 1, the Lyapunov stability analysis for the SMC law, the con‑
vergence of the system is investigated using the Lyapunov stability theorem, which guar‑
antees state convergence within a finite time. In order to design the SMC, consider the
Lyapunov Candidate Function (LCF) as

L1 =
1
2

S2
1 (22)

Differentiating Equation (22) and substituting Equation (15) in (22), we obtain
.
L1 = S1(−n1Sign(S1)) (23)

where Equation (23) reduces to
.
L1 ≤ −n1|S1| (24)

The LCF for the yaw angle is chosen as

L2 =
1
2

S2
2 (25)

Taking the derivative of Equation (25) and incorporate Equation (19) in (25), we obtain
.
L2 = S2(−n2Sign(S2)).

L2 ≤ −n2|S2|
(26)

where n1 and n2 are the tuning parameters and positive constant and should be greater
than zero, while

.
L1 and

.
L2 are the negative definite. Hence, the stability condition is veri‑

fied, and the SMC converges to the origin within a finite time. □

3.2. Integral Sliding Mode Control
The SMC law has the potential advantages of order rejection, insensitivity to paramet‑

ric variations, and the rejection of external disturbances. However, this control technique
suffers from a high‑frequency chattering problem that occurs in the control input, which
may damage the life of the actuators. Therefore, an SMC‑based control technique is pro‑
posed to handle this problem, and the ISMC effectively avoids the singularity problem
arising in the TSMC law [26]. Furthermore, robustness and fast convergence performance
are achieved through the ISMC. Considering the defined dynamic errors for the pitch and
azimuth angles, accurate desired trajectories can be obtained by selecting accurate surfaces.
The sliding surface for the pitch angle is defined as

Sx = c1e1 + c2e2 + Z3a + c
∫

e1(t) (27)

where c, c1 and c2 are the positive constant, i.e., c, c1, c2 > 0, and integral action in the
sliding surface is used to minimize the steady error. After differentiation Sx can be ex‑
pressed as

.
Sx = c1

( .
φ1 −

.
φ1d

)
+ c2

( .
φ2 −

.
φ2d

)
+

.
Z3a + ce1(t) (28)

The equivalent control part is computed by substituting
.
Z3a from Equation (12) into (28).

The u1eq changes as follows:

u1eq =
−T11

K1

(
c1
(
ωx −

.
φ1d

)
+ c2

( .
φ2 −

.
φ2d

)
− T10

T11
Z3a + ce1(t)

)
(29)
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where the reachability control law is given by u1dis = − ɳ1sign(Sx)− ζ1Sx. Consequently,
the overall controller for ISMC law on the horizontal plan movement is designed as fol‑
lows:

u1app=
−T11

K1

(
c1
(
ωx −

.
φ1d

)
+ c2

( .
φ2 −

.
φ2d

)
− T10

T11
Z3a + ce1(t)

)
− ɳ1sign(Sx)− ζ1Sx (30)

Similarly, the sliding surface for vertical plan can be written as

Sy = c3e3 + c4e4 + Z3b + ĉ
∫

e2(t) (31)

where ĉ, c3c4 > 0, which, after differentiating Equation (31), becomes
.

Sy = c3

(
ψ4 −

.
ψ3d

)
+ c4

( .
ψ4 −

.
ψ4d

)
+

.
Z3b + ĉe2(t) (32)

Considering the sliding surface
.

Sy = 0, the equivalent control u2eq can be computed by
substituting the value of

.
Z3b from Equation (13) in (32) as follows:

u2eq =
−T21

K2

(
c3

(
ωy −

.
ψ3d

)
+ c4

( .
ψ4 −

.
ψ4d

)
− T20

T21
Z3b + ĉe1(t)

)
(33)

whereas the discontinuous law is u2dis = − ɳ2sign
(
Sy

)
− ζ2Sy. The overall control law for

the vertical plan movement can be written as

u2app=
−T21

K2

(
c3

(
ωy −

.
ψ3d

)
+ c4

( .
ψ4 −

.
ψ4d

)
− T20

T21
Z3b + ĉe1(t)

)
− ɳ2sign

(
Sy

)
− ζ2Sy (34)

where ɳ1, ɳ2 ζ1, ζ2, c1, c1, c3, c4, c and ĉ are the controller tuning parameters and are selected
in such a way that the Lyapunov functions LX and Ly remain negative definite. Table 3
presents details of the tuning parameters.

Theorem 2. By considering the system dynamics outlined in Equations (12) and (13) and the as‑
sumptions mentioned earlier, the robust control laws (29) and (33) along with the strong reachabil‑
ity laws have been designed. Additionally, the proposed control laws ensure finite‑time convergence
for the ISMC.

Proof.  To prove the Lyapunov stability test, this section explains the Lyapunov stability
criterion for the existence and convergence of ISMC. The LCF for pitch angle is given by

LX =
1
2

S2
x (35)

After differentiating Equation (35), we obtain
.
Lx = Sx

.
Sx (36)

Substituting Equation (28) into (35), and after simplifying, the above equation can be ex‑
pressed as

.
Lx = Sx(−ɳ1sign(Sx)− ζ1Sx).

Lx ≤ −ɳ1|Sx| − ζ1S2
x

(37)

The LCF for the yaw angle is considered as

Ly =
1
2

S2
y (38)
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Taking the time derivative and substituting the value of value of
.

Sy from Equation (32), we
obtain .

Ly = Sy
(
−ɳ2sign

(
Sy

)
− ζ2Sy

)
.
Ly ≤ −ɳ2

∣∣Sy∣∣− ζ2S2
y

(39)

ɳ1, ɳ2, ζ1 and ζ2 are the positive constant tuning parameters and should be greater than
zero, as given in Table 3. All system dynamics for the ISMC converge to the origin within
a finite time. □

Remark 2. The strong reachability lawwill eliminate high‑frequency oscillation, and the chattering
problem arises in the control input of pitch and yaw angle, respectively, as presented below:{

u1dis = −ζ1Sx − ɳ1sign(Sx)
u2dis = −ζ2Sy − ɳ2sign

(
Sy

)
where ζ1, ζ2, ɳ1 and ɳ2 are the positive constant.

3.3. Terminal Sliding Mode Control
Compared to the conventional SMC technique, the TSMC law with a terminal sur‑

face provides fast and finite‑time convergence with high control precision. The chattering
problem that occurred in the first‑order SMC is also successfully reduced by the TSMC. The
fast convergence guarantees that the system states lead to the equilibrium position in finite
time by choosing the accurate parameters of the sliding surface, which also enhances the
control performance [27]. Compared to SMC, TSMC improves the transient performance
and noise problems. To design a robust TSMC control system for TRMS, both system out‑
puts are considered separately, and each sliding surface is proposed for both outputs. In
order to achieve convergence and trajectory tracking, the sliding surface for the pitch angle
are defined as

S1 = c1e1 + c2e2 + Z3a + β1|e1|
p1
q1 sign(e1) (40)

where p1 and q1 must be odd numbers and p1 should be greater than q1 and β1 > 0, while
the range of p1 and q1 lies in between zero and one, i.e., 0 > p1

q1
< 1. Taking the time

derivative of sliding manifold and substituting the value of
.
Z3a in the above equation, we

obtain
.
S1 = c1

.
e1 + c2

.
e1 +

.
Z3a + β1γ1|e1|γ1−1 .

e1
.

S1 = c1
(
φ2 −

.
φ1d

)
+ c2

( .
φ2 −

.
φ2d

)
− T10

T11
Z3a +

K1
T11

u1 + β1
p1
q1

e
p1
q1

−1 .
e1

(41)

After simplification, the equivalent controller is computed as follows:

u1eq =
−T11

K1

(
c1
(
ωx −

.
φ1d

)
+ c2

( .
φ2 −

.
φ2d

)
− T10

T11
Z3a + β1

p1

q1
e

p1
q1

−1 .
e1

)
(42)

The strong reachability law is expressed as u1dis = −ζ1S1 − k1sign(S1). The combined
equivalent and discontinuous controller part for the pitch angle are presented by

u1app =
−T11

K1

(
c1
(
ωx −

.
φ1d

)
+ c2

( .
φ2 −

.
φ2d

)
− T10

T11
Z3a + β1

p1

q1
e

p1
q1

−1 .
e1

)
− ζ1S1 − k1sign(S1) (43)

The sliding surface for the yaw angle is given by

S2 = c3e3 + c4e4 + Z3b + β2|e1|
p2
q2 sign(e2) (44)
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The derivative of Equation (44) becomes

.
S2 = c3

.
e1 + c2

.
e4 +

.
Z3b + β2

p2

q2
e

p2
q2

−1 .
e2 (45)

where p2 and q2 must be odd numbers, i.e.,p2 > q2, β2 > 0, and the range of p1 and q1
should lie between 0 and 1, i.e., 0 > p2

q2
< 1. The Equation (45) can be rewritten as

.
S2 = c3(ψ4 −

.
ψ3d) + c4(

.
ψ4 −

.
ψ4d)−

T20

T21
Z3b +

K2

T21
u2 + β2

p2

q2
e

p2
q2

−1 .
e2 (46)

The equivalent control part for pitch angle can be computed as follows:

u2eq =
−T21

K2

(
c3

(
ωy −

.
ψ3d

)
+ c4

( .
ψ4 −

.
ψ4d

)
− T20

T21
Z3b + β2

p2

q2
e

p2
q2

−1 .
e2

)
(47)

where the discontinuous controller can be written as u2dis = −ζ2S2 − k2sign(S2). The
overall controller for yaw angle can be expressed as

u2app =
−T21

K2

(
c3
(
ωy −

.
φ1d

)
+ c4

( .
ψ4 −

.
φ2d

)
− T20

T21
Z3b + β2

p2

q2
e

p2
q2

−1 .
e2

)
− ζ2S2 − k2sign(S2) (48)

where the controller tuning parameters are ζ1, ζ2, k1,k2, c1, c2, c3, c4 and ĉ. These param‑
eters are selected in such a way that the Lyapunov functions Ln and Lm remain negative
definite. The Lyapunov stability analysis for the TSMC is as follows:

Theorem 3. Considering the system dynamics described by Equations (12) and (13) and the previ‑
ously stated assumptions, robust control laws (42) and (47) have been formulated alongside strong
reachability laws. Furthermore, the subsequent proposed control laws guarantee finite‑time conver‑
gence of the TSMC law.

Proof.  For the Lyapunov stability test, consider the augmented LCF for the pitch angle as

Ln =
1
2

S2
1 (49)

Taking the time derivative of Equation (49), and substituting (41) into (49), we obtain
.
Ln = S1(−k1sign(S1)− ζ1S1) (50)

where .
Ln ≤ −k1|S1| − ζ1S2

1 (51)

The LCF for the yaw angle is chosen as

Lm =
1
2

S2
2 (52)

Differentiating Equation (52), we obtain
.
Lm = S2

.
S2.

Lm = S2(−k2sign(S2)− ζ2S2)
(53)

Equation (53) can be rewritten as
.
Lm ≤ −k2|S2| − ζ2S2

2 (54)
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where k1, ζ1, k2 and ζ2 are positive constants and must be greater than zero. Thus, the
derivatives of

.
Ln and

.
Lm become negative definite and the dynamics of TSMC converge to

an origin over a finite time. □

3.4. Uniform Robust Exact Differentiator
This section introduces the URED for estimating the higher derivative terms in the

aerodynamics of TRMS. URED is used to derive the position states of the system. To for‑
mulate a URED observer, it is assumed that a signal f (t), defined over the interval [0, ∞], is
a measureable function. Additionally, it is decomposed into sub parts f (t) = f0(t) + v(t),
where f0(t) represents the base function that can be further differentiated twice, and v(t)
illustrates the uniformly bounded signal. Considering that e1 = f0(t) and

.
e1 =

.
f 0(t), the

state space representation for base signal can be articulated as
.
e1 = e2,

.
e1 =

..
f 0

To achieve precise estimation of the first derivative of the base signal, a base sensor is
employed. An injection term is utilized to incorporate the information from the actual
measurement of the base signal f0(t), without a dependence on the initial condition of
system dynamics. The following algorithms are presented to ensure accurate estimation:

.
Z0 = −k1 φ1(σ0) + Z1.

Z1 = −k2 φ2(σ0)
(55)

where σ0 = Z0 − f (t) and k1, k2 represent the optimized tuning parameters. We employed
an iterative process to refine the tuning parameters k1, k2, and µ in the URED algorithm.
Each iteration focused on key performance indicators, such as system stability, response
time, and accuracy of derivative estimation. The compensator is adjusted to meet control
objectives, particularly in terms of higher‑order derivative estimation and ensuring stable
pitch and yaw angle behavior.

The value φ1 and φ2 can be expressed as follows:

φ1(σ0) = ∥σ0∥
1
2 sign(σ0) + µ|σ0|

3
2 sign(σ0)

φ2(σ0) =
1
2 sign(σ0) + 2µσ0 +

3
2µ

2|σ0|2sign(σ0)
(56)

When the original arbitrary differentiator is simplified by considering µ = 0 and higher
degree terms |σ0|

3
2 sign(σ0) and |σ0|2sign(σ0), it ensures uniform convergence of the states.

The convergence time is bounded by the independent initial conditions of the differentia‑
tor. Integration terms Z0 and Z1 are utilized for the estimation of f0(t) and

.
f 0(t). The

pitch angle estimated states are as follows: epitch = Z2a − Ẑ2a; the yaw angle estimation is
expressed as eyaw = Z2b − Ẑ2b. Here,

..
Z2a and

..
Z2b represent the second‑order derivative of

outputs Z2a and Z2b, respectively.

Assumption 4. It is assumed that the actual positions of TRMS, denoted by (Z1a, Z1b), as well
as their desired position (Z1ades, y1d, Z2ades, y2d), along with their first and second differentiators,
are measurable.

Nonlinear State Feedback Observer Design Using the Luenberger Technique
The application of the Luenberger method facilitates the design of a nonlinear state

feedback observer for a TRMS, with the aim of altering system coordinates and mitigating
noise in position sensors. Specifically, under Lipschitz conditions and certain assumptions,
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a state observer for a nonlinear system is formulated. This involves considering the state
space representation of the nonlinear system as follows:

.
x = f (z) + g(z)u + d

y = h(z)
(57)

Given z ϵRn and y represent the system outputs, assume that h(0) = 0 and f (0) = 0 denote
the equilibrium position for the unforced system and d ϵR6 represents the disturbances in
TRMS. The nonlinear system described in Equation (57) exhibits a relative degree of m at
z = 0, provided that smooth function σi(z) = 0 exists, where i = 1, . . . . . . ,m, such that

h(z1a) = ψ(z) + σ0(z1a, ua)
h(z1a) = ψ(z) + σ0(z1a, ua)

Lψ(z) = b(z1a) + a(z1a)ua+σ0(z1a, ua)
Lφ(z) = b(z1b) + a(z1b)ub+σ0(z1b, ub)

(58)

whereas

f (z) =

 a1
I1

Z2
3a +

b1
I1

Z3a −
Mg
I1

sin(Z1a)− B1ψ
I1

Z2a
a2
I2

Z2
3b +

b2
I2

Z3b −
B1φ

I2
Z2b − Kc

I2
1.75(a 1Z2

2b + b1Z2b

) (59)

g(z) =

[
0 0 0 0 K1

T11
0

0 0 0 0 0 K2
T21

]
, h(z) =

[
1
0

0
0

0
1

0
0

0
0

]
The state observer equation is defined as follows:

.̂
z(t) = f (ẑ(t) + g(ẑ(t)u(t) +

[
∂ψ, φ(ẑ(t)

∂x̂

]−1
L(y − h(ẑ(t)) (60)

where L represents the observer parameters matrix, while ψ(z1a), φ(z1b), σ0(z1a, ua) and
σ0(z1b, ub) denote the parameters of the horizontal and vertical subsystem, respectively.
The resulting final observer equations for the decoupled TRMS vertical and horizontal sub‑
systems are as follows:

.̂
z1a = fa(ẑ1a) + ga(ẑ1a) +

[
∂ψ ˆ(z 1a)

∂ẑ1a

]−1
L(z1a − ẑ1a)

.̂
z1b = fb(ẑ1b) + gb(ẑ1b) +

[
∂ψ ˆ(z 1b)

∂ẑ2b

]−1
L(z1b − ẑ1b)

(61)

Furthermore, the nonlinear state feedback observer designed using the Luenberger
technique is fine‑tuned through a combination of theoretical considerations and empirical
adjustment. Parameters such as L, the observer gain, are optimized to ensure accurate de‑
coupling of the vertical and horizontal subsystems while minimizing the impact of sensor
noise. Figure 4 presents the close loop state feedback observer for ISMC as presented be‑
low:
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4. Simulation Results
This section presents the simulations of the three different robust control techniques,

URED, and the state feedback observer for TRMS. Nonlinear control strategies and a state
feedback observer were used to evaluate system performance for stable flight testing. All
simulations were performed using the MATLAB/Simulink environment with the software
R2022bwith a DESKTOP‑VISCUS 13th Gen Intel(R) Core (TM) i7‑13700H, 64‑bit operating
system, along with the presence of matched disturbances. Simulation run times of t = 15 s
and t = 20 s were considered with and without disturbances, respectively, while simula‑
tion run times of t = 50 s and t = 20 s were considered for tracking against the reference
sinusoidal and step input trajectories. In the next section, a feedback instrument (TRMS
33‑220) was used to verify the effectiveness of the proposed controllers. System dynamics
Equations (12) and (13) were considered as Z ϵR6, u ϵR2 and y ϵR2, which represent the
state inputs and output vectors.

4.1. Case 1: Trajectory Tracking with Disturbances
In this case, the flight behavior of TRMS and effectiveness of the proposed control

strategies are compared with each other by incorporating the disturbance for both the hor‑
izontal and vertical plan movements in order to check the path following of the desired
trajectories. The obtained results are compared based on the transient performance of the
SMC, ISMC, and TSMC laws. To evaluate the robust performance and comparison of the
controller design in Section 3, disturbances were applied to the aerodynamics of the sys‑
tem at t = 5 s to overcome the model uncertainties and unmeasurable disturbances for a
closed‑loop system. Figures 5–10 show the simulation results of all proposed control tech‑
niques. To demonstrate the effectiveness of the proposed method, simulation results were
compared to examine the performance of all the proposed control techniques.

Figure 5 and Figure 6 illustrate the trajectory tracking and stability behavior of the
pitch and yaw angles along with the addition of disturbances, respectively. As shown
in Figure 4, the response of the pitch angle is achieved against the proposed control algo‑
rithms. The implemented techniques exhibit smooth performance for a closed‑loop system.
The SMC stabilized the pitch orientation movement in 4.2 s while ISMC and TSMC took
3.8 s and 3.3 s, correspondingly. The SMC law demonstrated a slight overshoot and un‑
dershoot of less than 1%, whereas the other two control techniques showed very good con‑
vergence responses with small steady‑state error, and the rise time was almost zero. The
subplot of Figure 5 demonstrates the pitch angle response for the proposed techniques af‑
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ter the addition of disturbances, with settling times of 5.5 s, 2.9 s, and 3.2 s, respectively, to
reach at the desired trajectory. SMC shows minimal steady‑state error and overshoot after
the disturbance, whereas the ISMC and TSMC laws exhibit smooth transient performance.
It can be seen that the proposed controllers reject the effect of disturbances at 12, 7 and 8 s.
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Figure 6. Yaw angle response with disturbance.

Figure 6 presents the convergence response of yaw angle movement together with
addition of disturbances, and it can be observed that settling times of 3.5 s, 2.9 s and 3.1 s
are observed for SMC, ISMC and TSMC, respectively, to stabilize the yaw anglemovement.
All the developed algorithms show significantly zero steady‑state error, rise time, and over‑
shoot, indicating an almost perfect response and guaranteeing the successful execution of
the proposed control schemes on TRMS for the experiment. It could also be observed, ini‑
tially, that the yaw angle deviated from the desired position owing to parametric perturba‑
tion. However, owing to the action of the proposed controllers, both output angles quickly
regained the desired trajectories. Subplot of Figure 6 depicts the yaw angle response with
disturbances. It can be noticed that the proposed control strategies kept the yaw angle
stable after settling times of 7 s, 3.5 s, and 4 s for the SMC, ISMC and TSMC, respectively.
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The simulation results for both outputs show that all controllers have the capability to re‑
ject the external perturbation and maintain the robustness of the system. Moreover, the
proposed design techniques with the application of undesired external disturbances and
uncertainties took the system into the zero position within a finite time.
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Figures 7 and 8 demonstrate the control input effort for the output angles. It can be
noticed that the SMC produces very high‑frequency oscillation and chattering phenomena
in both the control inputs. The oscillation can drastically decrease the health of actuators
and degrade the system dynamic performance; therefore, in a counterpart, the ISMC and
TSMC laws adequately produce chattering‑free control inputwith a reasonablemagnitude,
which can be considerable for real‑time implementation. Moreover, the ISMC and TSMC
laws aim to reduce chattering when compared with the traditional SMC in a more precise
continuous and less oscillatory response. The obtained results demonstrate that system
errors converge within a finite time towards the equilibrium position while reaching the
sliding manifold. The subplots in Figures 7 and 8 show the control input performance
for the implemented control strategies. Disturbances are added to both control inputs at
t = 5 s. It can be seen that the SMC initially produced a large spike, while ISMC and
TSMC illustrated very good responses and kept the control efforts at the desired position.
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Designed integral and terminal sliding surfaces accumulate over time and help the system
to recover from external disturbances and uncertainties.
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In the presence of disturbances, the mathematical representation for vertical and hor‑
izontal planes can be represented as follows:

.
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a1
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Z2
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where d2a(t), d2b(t), d3a(t), and d3b(t) represent the disturbances affecting the pitch and
yaw angles along with the control inputs, u1 and u2, which counteract these disturbances
and maintain the stability of TRMS, where d is the disturbance defined as

d(t − 5) =
{

0 t ̸= 5
1 t = 5

}
4.2. Case 2: Trajectories Tracking with Sinusoidal Wave

This section presents the simulation results of the SMC, ISMC, and TSMC algorithms
for tracking the trajectories of the 2‑DOF TRMS against the reference sinusoidal input. The
control objective is tominimize the errors between the desired andmeasured outputs of the
system. A sinusoidal input signal is considered for all controllers to evaluate the tracking
and stability of the proposed controllers. The desired trajectory is set at time t = 50 s with
an amplitude interval of [−1, 1] considered for the output of TRMS. Figures 8–13 illustrate
a comparison of the pitch angle, yaw angle, control inputs, and tracking errors for a TRMS
under the newly designed control methods. The desired reference trajectory is chosen as
y1,2d = sin (2πt) radian.
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Figures 9 and 10 present the tracking performance of the pitch and yaw angles, re‑
spectively, against the reference sinusoidal input signal for the feedback closed‑loop con‑
trollers. It can be seen that all three controllers show very good tracking performance and
stabilize both angles to the reference input within a finite time, and then asymptotically
stay in a region of origin. The ISMC performance is much better than that of SMC and
TSMC, whereas TSMC exhibits a much more accurate performance than SMC. The SMC
law shows more steady‑state error and overshoot compared to the other two controllers,
and the rise time and setting time of ISMC and TSMC are superior to those of SMC. Com‑
pared with the SMC and TSMC techniques, the ISMC law demonstrates fast convergence,
almost zero steady‑state error, and is close to the reference input for the main and tail ro‑
tors. Table 4 presents a detailed analysis of the transient performance of all the controllers
against the reference sinusoidal input signal.

Table 4. Transient performance analysis for the designed controllers.

Without Disturbance With Disturbance

Control
Techniques

Euler’s
Angles

Settling
Time (s)

Rise Time
(s)

Overshoot
(%)

Steady‑
State Error

(ess)

Settling
Time (s)

Rise Time
(s)

Overshoot
(%)

Steady‑
State Error

(ess)

SMC
Pitch 4.5 4 0.15 0.005 7 6 0.1 0.002
Yaw 3.2 1 0.1 0 6 6.5 0.12 0.009

ISMC
Pitch 2.3 0.6 0.08 0 3.1 1 0.08 0
Yaw 2.9 0.4 0.01 0 3.3 1.1 0.01 0

TSMC
Pitch 3.1 0.7 0.085 0 3.3 1.3 0.082 0
Yaw 3.1 0.5 0.02 0 3.4 1.2 0.02 0

Figures 11 and 12 show the control input performance for the horizontal and vertical
movements of the motor for the proposed control schemes. It can be noted that SMC pro‑
duced chattering phenomena in both the control inputs, which are effectively improved
by ISMC and TSMC. Mitigating the chattering in ISMC and TSMC for TRMS involves a
combination of design techniques and control adjustments. For ISMC, the technique of
smooth approximation is employed to reduce chattering by modifying the control law
to achieve smoother transitions. In Terminal TSMC, techniques of softened and relaxed
terminal sliding modes are utilized to minimize high‑frequency oscillations and improve
system stability.

Figures 13 and 14 depict the tracking error performance for all control algorithms for
pitch and yaw movements, respectively. It can be observed that all errors for each con‑
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trol technique exhibit a smooth finite‑time convergence towards the origin. Both surfaces
smoothly converged towards the origin, and the obtained results demonstrate that the sys‑
tem errors converge to the zero position while reaching the sliding surfaces.
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4.3. Case 3: Trajectories Tracking with Reference Step Input
This section presents the simulation‑based results of the three design control tech‑

niques for tracking TRMS against the reference step input trajectory. It is worth mention‑
ing that our proposed strategies are compared with the Variable Gains SMC (VGSMC),
O‑SMC, and TSMC‑based simulated results in [28,29]. The simulation results presented in
Figures 15–18 demonstrate that the convergence and tracking performance of TRMS un‑
der the newly designed control strategies are significantly improved and faster than those
of [28,29].
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Figures 15–18 represent the tracking response against the step input for the pitch and
yaw angles, along with the control inputs. Figure 15 illustrates the pitch angle response
for all the proposed controllers. SMC, ISMC, and TSMC have settling times of 2 s, 3 s
and 3.4 s, respectively. The SMC requires a longer settling time for the convergence of
system trajectories than the TSMC and ISMC laws, whereas the ISMC law shows the best
performance with the shortest settling time. It is noteworthy that the reference tracking
is very good for all controllers with almost zero steady‑state error and overshoot, which
demonstrates the effectiveness of the investigated control laws. It can be observed that the
proposed SMC and TSMC control laws provide fast convergence and improved settling
time with minimum overshoot and steady error compared to the literature counterpart
in [28,29]. The performance indices called the Integral Square Error (ISE), Integral Absolute
error (IAE), Integral Time Square Error (ITSE), and Integral Time Absolute Error (ITAE)
show the best performance for the ISMC law when compared with the SMC and TSMC
laws, as shown in the figure below. However, the TSMC law shows better performance
than SMC for all the performance indices.

Figure 16 shows the yaw angle response for the SMC, ISMC, and TSMC laws for the
step input. The SMC, ISMC, and TSMC required settling time of 1.8 s, 2.4 s and 2.8 s, re‑
spectively. It is evident from the obtained response that the performance of the ISMC law
is satisfactory. The rise time, steady‑state error, and overshoot are zero for all controllers.
To demonstrate the effectiveness of the proposed work, the SMC and TSMC laws are com‑
pared with those in the literature [28,29]. Both newly designed control laws claimed better
finite‑time convergence to the equilibrium position than the compared work. The TSMC
law shows smooth performance under uncertainties and disturbances compared to the lit‑
erature presented in [29]. The performance indices indicate that the ISMC exhibits the best
performance for IAE, ITSE, ISE, and ITAE, as shown in the figure below.

Figures 17 and 18 illustrate the responses of the control input for the pitch and yaw
angles, respectively. The SMC exhibits chattering phenomena in the control input of both
angles, which can damage the life of the actuator during the experimental study. There‑
fore, the ISMC and TSMC are designed to effectively remove the chattering problem. It is
clear from the figures below that the control input is nominal for the ISMC and TSMC and
is within the bounds of the practical system. The chattering phenomenon that occurred in
the proposed work presents less oscillation and peak‑to‑peak amplitude compared with
the literature presented in [28,29]. In addition, our proposed work shows improved chat‑
tering performance for both control inputs compared to theVG‑SMC,O‑SMC, andNTSMC
laws presented in [28,29]. In the literature [28], SMC illustrates peak‑to‑peak voltage am‑
plitude values of 10 volts for pitch angle and 9 volts for yaw angle, whereas the O‑SMC in
the literature [29] demonstrates peak‑to‑peak amplitude voltages of 14 volts and 12 volts
for both control inputs. However, our proposed work asserts peak‑to‑peak voltages of
4.8 volts and 3.8 volts for both control inputs, which are better than those reported in the
literature. Table 5 briefly explains the proposed and comparison studies.

Figure 19 displays the outcomes of employing URED to accurately determine the sys‑
tem position states. The URED is adept at precisely measuring the unknown state, specifi‑
cally the angular velocity information of the system. Figures 20 and 21 illustrate the results
of employing a state feedback observer within the context of the ISMC. Figure 20 shows
that the design observer effectively monitored and tracked the estimated pitch and yaw
angles. The obtained results demonstrate active steering of the trajectories towards the
desired positions, ensuring alignment with the intended targets. Figure 21 illustrates the
performance of the disturbance observer in response to a step input signal for TRMS. At
t = 30 s, a disturbance is introduced. Following the disturbance, both the pitch and yaw
angles accurately follow the desired trajectories with minimal alterations to the rise time,
overshoot, and settling time.
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Table 5. Comparative analysis of proposed control techniques with literature [28,29].

For Step Input Signal

Control Techniques Euler’s Angles Settling
Time (s)

Control Input
(Volt)

Overshoot
(%)

Steady‑State Error
(ess)

VGSMC proposed in [25] Pitch 5 10 0 0.01
Yaw 3 9 0.1 0

O‑SMC proposed in [26] Pitch 5.2 14 0.05 0.001
Yaw 4 12 0.02 0.003

NTSMC proposed in [26] Pitch 4 ‑ 0.01 0
Yaw 3.5 ‑ 0.02 0

The proposed SMC Pitch 3.4 4.8 0 0
Yaw 2.8 3.8 0 0

The proposed TSMC Pitch 3 ‑ 0 0
Yaw 2.4 ‑ 0 0Drones 2024, 8, x FOR PEER REVIEW 26 of 37 
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4.4. Experimental Results
Thedesigned control techniqueswere tested to validate their performances on aTRMS

test bench. Figures 22 and 23 present the configuration and environment for the real‑time
TRMS. A feedback instrument (TRMS 33‑220) was used for experimental work and test‑
ing of the proposed control schemes. The components used for the experiment were a
desktop computer, Advantech PCI1711 card, adaptor cable, feedback cables, and on/off
switch box. Initially, real‑time implementation of ISMC and TSMC with 2‑DOF TRMS
using MATLAB/Simulink (2023) with the interfacing of the PCI1711 card was completed.
The proposed control scheme was tested using MATLAB/Simulink software along with a
PCI1711card, and the PCI card read the encoder channel information in the feedback in‑
strument using digital I/O lines. The PCI card read data from the encoder and converted
them into analog‑to‑digital and digital‑to‑analog forms. The encoder had two outputs rep‑
resenting the rotor positions on the horizontal and vertical axes. A control signal for both
the angles was applied to the block. The attached sensor sensed the positions of the angles
and the applied control algorithm operated according to the pulses generated by the clock.
Both the output angles were measured in radians to track the desired trajectories. The
ISMC and TSMC techniques were tested in the presence and absence of wind gusts. In the
first stage, the real‑time implementation at different frequencies of trajectory tracking was
tested on a TRMS against a sinusoidal reference input trajectory. In the second stage, tra‑
jectory tracking is accomplished for the reference square wave to analyze the performance
and robustness of the controller.

4.4.1. Real‑Time Implementation with Input Sinusoidal Wave Trajectory Tracking in the
Presence of Wind Effect for ISMC Law

Experimental validation of the IMSC law was accomplished using real‑time TRMS
with a reference input sinusoidal trajectory. Special blocks were used to read the attached
encoder channel information using digital input and output lines. The block mainly con‑
tained three parameters: sample time, channel offset, and two channel offsets. The pa‑
rameters of the PCI1711 card were set as follows: a sample time of 0.001 s and offset were
initially considered zero for both channels. Channel one represents the output of the first
encoder φ whereas channel two presents the second encoder ψ. The reference inputs se‑
lected for the pitch and yaw angles are given as

y1d = 0.7sin (0.1t) + 0.5sin (4t) + 0.2sin(3t)
y2d = sin (t) + 0.3sin (0.4t) + 0.55sin(0.4t)



Drones 2024, 8, 527 28 of 37

Drones 2024, 8, x FOR PEER REVIEW 26 of 36 
 

 

 

Figure 21. URED velocity information for pitch (𝑍ሶଶ௔) and yaw (𝑍ሶଶ௕). 

4.4. Experimental Results 
The designed control techniques were tested to validate their performances on a TRMS 

test bench. Figures 22 and 23 present the configuration and environment for the real-time 
TRMS. A feedback instrument (TRMS 33-220) was used for experimental work and testing of 
the proposed control schemes. The components used for the experiment were a desktop com-
puter, Advantech PCI1711 card, adaptor cable, feedback cables, and on/off switch box. Ini-
tially, real-time implementation of ISMC and TSMC with 2-DOF TRMS using MATLAB/Sim-
ulink (2023) with the interfacing of the PCI1711 card was completed. The proposed control 
scheme was tested using MATLAB/Simulink software along with a PCI1711card, and the PCI 
card read the encoder channel information in the feedback instrument using digital I/O lines. 
The PCI card read data from the encoder and converted them into analog-to-digital and digi-
tal-to-analog forms. The encoder had two outputs representing the rotor positions on the hor-
izontal and vertical axes. A control signal for both the angles was applied to the block. The 
attached sensor sensed the positions of the angles and the applied control algorithm operated 
according to the pulses generated by the clock. Both the output angles were measured in ra-
dians to track the desired trajectories. The ISMC and TSMC techniques were tested in the pres-
ence and absence of wind gusts. In the first stage, the real-time implementation at different 
frequencies of trajectory tracking was tested on a TRMS against a sinusoidal reference input 
trajectory. In the second stage, trajectory tracking is accomplished for the reference square 
wave to analyze the performance and robustness of the controller. 

 
Figure 22. Experimental setup and test bench for TRMS. 

An
gl

e 
ra

te
 (r

ad
/s

ec
)

Figure 22. Experimental setup and test bench for TRMS.

Drones 2024, 8, x FOR PEER REVIEW 27 of 36 
 

 

 
Figure 23. Schematic diagram for experimental setup. 

4.4.1. Real-Time Implementation with Input Sinusoidal Wave Trajectory Tracking in the 
Presence of Wind Effect for ISMC Law 

Experimental validation of the IMSC law was accomplished using real-time TRMS 
with a reference input sinusoidal trajectory. Special blocks were used to read the attached 
encoder channel information using digital input and output lines. The block mainly con-
tained three parameters: sample time, channel offset, and two channel offsets. The param-
eters of the PCI1711 card were set as follows: a sample time of 0.001 s and offset were 
initially considered zero for both channels. Channel one represents the output of the first 
encoder 𝜑 whereas channel two presents the second encoder 𝜓. The reference inputs se-
lected for the pitch and yaw angles are given as 𝑦ଵௗ = 0.7 sin(0.1𝑡) + 0.5 sin(4𝑡) + 0.2 sin(3𝑡) 𝑦ଶௗ = sin(𝑡) + 0.3 sin(0.4𝑡) + 0.55 sin(0.4𝑡) 

Figures 24 and 25 present the tracking response of the pitch and yaw angles, along 
with the control input effort for the ISMC. Figure 23 shows the obtained experimental 
results of the pitch angle tracking response when wind gusts are introduced to validate 
the robust performance of the controller. Three signal generators were used to adjust the 
frequencies of the reference angle, and three frequencies were set for the sinusoidal wave, 
i.e., signal generator 1 (0.0159 Hz), signal generator 2 (0.636 Hz) and signal generator 3 
(0.4775 Hz). It was observed that the pitch angle efficiently tracked the reference input and 
stabilized the desired angle trajectory at 5 s. Initially, it could be observed that the pitch 
angle rapidly tracked the reference trajectory with a small overshoot and steady-state er-
ror. A gust disturbance effect was added to the pitch angle at time 𝑡 = 8 s to verify the 
robustness of the proposed controller. Furthermore, the pitch angle precisely tracked the 
reference trajectory after the application of external disturbances and explicitly main-
tained the output within 5.5 s. Consequently, the implemented technique guaranteed ex-
ternal disturbance rejection properties with good robustness and finite-time convergence. 

Figure 25 shows the tracking performance of the yaw angle against the reference si-
nusoidal wave. It can be noted that the yaw angle was stable after 3.5 s and the controller 
kept the measured angle close to the reference input signal. The frequencies of the input 
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Figures 24 and 25 present the tracking response of the pitch and yaw angles, along
with the control input effort for the ISMC. Figure 23 shows the obtained experimental re‑
sults of the pitch angle tracking response when wind gusts are introduced to validate the
robust performance of the controller. Three signal generators were used to adjust the fre‑
quencies of the reference angle, and three frequencies were set for the sinusoidal wave,
i.e., signal generator 1 (0.0159 Hz), signal generator 2 (0.636 Hz) and signal generator 3
(0.4775 Hz). It was observed that the pitch angle efficiently tracked the reference input and
stabilized the desired angle trajectory at 5 s. Initially, it could be observed that the pitch an‑
gle rapidly tracked the reference trajectorywith a small overshoot and steady‑state error. A
gust disturbance effect was added to the pitch angle at time t = 8 s to verify the robustness
of the proposed controller. Furthermore, the pitch angle precisely tracked the reference tra‑
jectory after the application of external disturbances and explicitly maintained the output
within 5.5 s. Consequently, the implemented technique guaranteed external disturbance
rejection properties with good robustness and finite‑time convergence.
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Figure 25 shows the tracking performance of the yaw angle against the reference si‑
nusoidal wave. It can be noted that the yaw angle was stable after 3.5 s and the controller
kept the measured angle close to the reference input signal. The frequencies of the input
signal were adjusted from channels 1, 2 and 3. The obtained result illustrates that the yaw
angle showed fast convergence towards the reference trajectory as compared to the pitch
angle with a small overshoot of less than 1% and almost zero steady‑state error. More‑
over, the results obtained for both outputs demonstrated the effectiveness of the proposed
control scheme.

Figure 26 shows the input control effort for the pitch and yaw angles. The voltage
from DC motor and control signal are set at [−2.5 − 2.5] volts, respectively, for control
effort uφ and uψ. Both control inputs reject external disturbances and demonstrate satis‑
factory performance in all respects. The initial peak occurred because of the discontinuous
nature of sinusoidal waves. It can be observed that both control inputs remained within a
predefined voltage‑specified interval.
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4.4.2. Input Sinusoidal Wave Trajectories Tracking for TSMC Law
To test the reliability and accuracy of TSMC reference input, sine wave signals were

given to the controller with amplitudes of 0.7 rad, 0.5 rad and 0.2 rad, respectively, for
the output of TRMS. Because of the involvement of the terminal sliding mode component,
the TSMC has a complex control structure; therefore, after careful tuning of the real‑time
system parameters, the results were achieved. Figures 27 and 28 illustrate the output re‑
sponse of the main and tail rotors along with the control efforts to investigate the perfor‑
mance of the TSMC law on a real‑time TRMS. As shown in Figures 27 and 28, both the
pitch and yaw angles follow the reference input control signal and closely maintain both
angles to the desired trajectories. The obtained results showed satisfactory transient per‑
formance, and very small overshoots and rise times were observed. The steady‑state error
between the actual and desired responses was minimal. The experimentally tested sharp
responses of both outputs validate the accuracy and convergence of the controller. Ini‑
tially, a small overshoot arose owing to the highly nonlinear dynamic nature of the system
and the parametric perturbation. Frequencies of 0.1592 Hz, 0.0637 Hz and 0.0637 Hz were
correspondingly considered for both the output angles by using the signal generators. It
can be observed that after the transient deviation in real time tested the TSMC law results,
the pitch angle was stable at time t = 8 s, while the yaw angle showed a relatively fast
convergence at t = 7 s. The overshoot for the main angle was 4%, whereas that for the tail
angle was 3%. This also exhibits a very precise steady‑state error.

Figure 29 shows the control input performance of the main and tail rotors of TRMS.
From the figure, we can observe that the input control voltage signal is restricted within
the defined interval of [−2.5 − 2.5] volts, which ensures that the minimum energy is con‑
sumed.

4.4.3. Real‑Time Implementation of TSMC and ISMC Laws against the Square Wave
In this section, the results of real‑time implementation and system interconnection

for the TSMC and ISMC laws through a system‑integrated circuit are presented. Further‑
more, a succinct overview is provided based on the achieved output results to validate the
performance of the controller. The real‑time implementation of robustly designed control
techniques demonstrates reliable performance in the presence of disturbances, noise sig‑
nals, coupling effects, and parametric variations. Figures 22 and 23 show the experimental
setup and real‑time implementation, respectively. Each diagram offers a comprehensive
depiction of the process involved in the real‑time implementation and provides insight
into the laboratory hardware prototype.
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The TSMC and ISMC laws were tested using various tuning parameters. The exper‑
imental output responses for the pitch and yaw angles against the square‑wave tracking
movement for the TSMC law are shown in Figures 30 and 31, respectively. Both sets of
results illustrate the capability of the controller to mitigate system variations while accu‑
rately tracking the reference input signal. The square wave reference input indicates that
the pitch angle underwent smoother and quicker convergence in comparison to the yaw
angle. This variation can be ascribed to the initial necessity of stabilizing the main rotor to
counteract disturbances originating from the tail rotor, which include gyroscopic torque
and coupling effects. Consequently, the convergence time for the pitch angle should be
greater than that for the yaw angle. The responses of the main and tail rotors for the ISMC
law are illustrated in Figures 32 and 33, respectively, against the input square‑wave trajec‑
tory. It should be noted that the convergence time of the pitch angle is faster than that of the
yaw angle. Additionally, the pitch angle exhibits improved steady‑state error, overshoot,
and rise time compared with the yaw angle.
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The control input signals for the main and tail rotors are shown in Figures 34 and 35,
respectively. The experimental control action responses for both angles can be character‑
ized by minimal voltage fluctuations, highlighting the efficacy of the proposed controllers.
The attenuation observed in the response can be attributed to the introduced noise signal
and controller’s adept handling of a broad spectrum of disturbances. Moreover, the results
demonstrate the controller’s gradual mitigation of the introduced disturbance over time,
thereby enhancing system stability. In addition, both the control inputs remain within the
predefined DC motor and control signal, which are set at [−2.5 − 2.5] volts, thus guaran‑
teeing the minimum consumption of energy.

To further evaluate the performance of the proposed controllers, integral performance
indices and quantitative analyses were performed for all the proposed control algorithms,
the results of which are presented below in Tables 6 and 7.
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Table 6. Quantitative analysis of designed controller for TRMS.

Control
Algorithms

Euler’s
Angles

ISE
(rad2/s)

IAE
(rad/s)

ITSE
(rad2/s2)

ITAE
(rad/s) ∥u∥ uavg erms eMAE

SMC
Pitch 180 1.5 × 102 0.66 50.55 10 × 104 160 0.0095 0.020
Yaw 350 0.9 × 102 0.83 25.25 8.4 × 104 80 0.0055 0.051

ISMC
Pitch 120 1.1 × 103 0.19 25.1 9 × 102 125 0.0011 0.0015
Yaw 225 0.8 × 103 0.80 13.55 8.1 × 102 29 0.0012 0.0049

TSMC
Pitch 123 1.40 × 103 0.50 26.5 9 × 102 135 0.0045 0.0060
Yaw 285 0.88 × 103 0.75 19.65 8.2 × 102 40 0.0017 0.0058
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With careful consideration, the quantitative analysis and performance of different in‑
dices for simulations and real‑time‑implemented controllers for TRMSwere performed, as
presented in Tables 6 and 7. Table 6 briefly explains the information on all the performance
indices. It can be observed that the proposed control techniques provide a good response
with a small IAE and ITSE for all control techniques. The ISMC provides a much better
response for ISE, IAE, ITSE, and ITAE than the SMC, whereas the TSMC provides a more
precise performance with a lower steady state than the SMC. Quantitative analysis demon‑
strated the performance of the control effort and smoothness with root mean square and
absolute errors. The ISMC consumed less energy than the SMC and TSMC for the control
action. Smoothness was also much better in the case of the ISMC compared to the other
two controllers.
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Table 7. Quantitative analysis of ISMC and TSMC for experimental results.

Control
Algorithms

Euler’s
Angles

ISE
(rad2/s)

IAE
(rad/s)

ITSE
(rad2/s2)

ITAE
(rad/s) ∥u∥ uavg erms eMAE

ISMC
Pitch 150.5 1.11 × 102 1.13 10.5 15 130 0.0019 0.75
Yaw 95.5 3.11 × 103 3.12 20.21 9.5 155.5 0.011 0.97

TSMC
Pitch 80.6 2.42 × 102 0.95 25.12 27 180.5 0.0092 1.31
Yaw 110.4 5.11 × 103 4.13 35.11 20 220.5 0.099 1.85

Table 7 presents the quantitative performance analysis and integral indices for the
real‑time tested control techniques of TRMS. It can be seen that both control techniques
produce smooth tracking performance with higher IAE owing to the parameter conver‑
gence problem, whereas after the steady‑state response, better performance is observed
for ISE, ITSE, and ITAE. Energy consumption is proportional to the norm of the control
effort ∥u∥. Therefore, the calculated results predict that both control techniques consume
minimal energy in real‑time implementation against pitch and yaw angles. Similarly, the
root‑mean‑square and maximum absolute error results are obtained accurately.

5. Conclusions
In this study, the research began by presenting the design of advanced nonlinear ro‑

bust control algorithms that combine input–output feedback linearization, URED, and a
state feedback observer, which were then validated through real‑time TRMS experiments.
The feedback linearization method effectively separates the highly interconnected system
into horizontal and vertical subsystems. Brief SMC, ISMC, and TSMC control designswere
produced to compare their performance, while the state feedback observer efficiently pro‑
vided information on estimated states, and the URED measured unknown system states
through estimation. The proposed control algorithms for TRMS demonstrate significant
advancements and practical applications. By addressing the challenges of nonlinearity,
coupling, and external disturbances, these control strategies enhance the performance and
reliability of complex dynamical systems, making them highly relevant in various high‑
precision and safety‑critical applications. All of the designed controllers exhibit robust‑
ness against uncertainties, encompassing nonlinearities and externally matched and un‑
matched disturbances. Additionally, ISMC and TSMC control techniques were imple‑
mented in real‑time trials on TRMS, and concise discussions on their execution are pro‑
vided. The proposed controllers demonstrate exceptional convergence and tracking per‑
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formance in both simulations and real‑time experimental testing, effectively steering the
system output trajectories to the desired positions. Stability of state convergence was en‑
sured using Lyapunov stability analysis. To comprehensively evaluate the results, tran‑
sient responses and integral performance indices were analyzed throughmathematical cal‑
culations. This is crucial for systems requiring high precision and fast dynamic response.
Simulation assessments confirmed the robustness of the controllers against disturbances
and nonlinearities. Notably, the chattering phenomena inherent in the SMC law were ef‑
fectively mitigated by ISMC and TSMC. Both MATLAB/Simulink simulations and experi‑
mental trials validate the methodologies. Particularly, experimental studies showcase the
impressive tracking response of the TRMS against wind gusts when employing ISMC law.
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