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ABSTRACT 

This paper presents a longitudinal interpretive case study of a UK bank’s efforts to combat 

Money Laundering (ML) by expanding the scope of its profiling of ML behaviour. The concept of 

structural coupling, taken from systems theory, is used to reflect on the bank’s approach to 

theorize about the nature of ML-profiling. The paper offers a practical contribution by laying a 

path towards the improvement of money laundering detection in an organizational context while 

a set of evaluation measures is extracted from the case study. Generalizing from the case of the 

bank, the paper presents a systems-oriented conceptual framework for ML monitoring. 
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1. Introduction 

Despite the critical role of technology in tackling money laundering (ML), this socially important 

phenomenon has been examined sparingly in Information Systems (IS) research [1, p.115], 

typically from technical perspectives that focus on algorithmic optimizations alone. By and large, 

these approaches have failed. While algorithmic optimizations remain important and technology 

is central to Anti-Money Laundering (AML) efforts [2], a richer nexus of intertwined human- and 

technology-generated decisions supports the identification of ML-behaviour. This paper is 

motivated by the desire to find a way forward in improving money laundering detection (true 

positive rates), exploring ML-detection challenges within a real organizational context and 

extracting evaluation metrics for AML that can assist the key decision makers. In an attempt to 

uncover what elements affect ML-profiling beyond algorithmic techniques, this paper explores 

these challenges in the richer context of a case study. This paper focuses on banks, which remain 

the main avenue for ML activity [3]. For example, in the UK, banks file more than 85% of 

potential ML-activity to the authorities by submitting Suspicious Activity Reports (SARs) [4].  

     By presenting an in-depth longitudinal case study of a UK bank in the interpretivist tradition 

[5, 6], this paper follows the bank’s efforts to improve ML-detection. This research is based on 

two different but connected EU-funded projects spanning approximately 2.5 years in total 

(JAI/2004/AGIS/182 and SEC6-PR-205800). The case is enriched by data from other key project 

stakeholders (including asset recovery agencies, financial intelligence agencies, central banks, 

police, and other banks from the UK and abroad that were project partners).  

     The paper uses the concept of structural coupling from systems theory to depict the dynamic 

relationship between computer profiling and human profiling in the targeting of ML; structural 

coupling also helps us organize the interactions and reflect on the way the balance between 

information/redundancy is expressed. The paper provides a practical contribution for improving 

the True Positive Rate (TPR) of Transaction Monitoring Systems (TMS) and extracts AML 

evaluation measures that can be considered by key decision makers within AML systems. The 

development of a systems-theoretical conceptual framework for ML detection synthesizes the 

theoretical contribution (Figure 1). The structure of the paper is as follows: a) in the literature 

review, the substantive problem (ML) is reviewed briefly in tandem with IS-related influences; 
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second, the core theoretical concept of structural coupling drawn from systems theory; b) the 

methodology; c) the description of the case study and its analysis; d) the discussion, where the 

findings and the concepts are used in light of the theory to outline the contributions; e) research 

limitations, suggestions for future research; f) conclusions.  

2. Literature Review 

2.1. (Anti-)Money Laundering and Information Systems Research 

ML constitutes the process of masking monetary gain resulting from any type of criminal activity 

(e.g. drug & human trafficking, fraud, extortion, kidnap-for-ransom); the totality of such criminal 

activities associated with ML are labelled as predicate offences, but ML is also considered a 

crime on its own [7, 8]; thus, someone can be charged with drug trafficking & money laundering 

in a combined prosecution (or indeed, separately if the laundering activity is facilitated by an 

associate). The purpose of ML is to create the appearance that money generated by predicate 

criminal offences has a legitimate source [9]. Ultimately, the conversion into legal money assists 

criminals to benefit from the formal financial system, thereby gaining them more flexibility in the 

movement of funds that may subsequently be used to fund further crime. Despite difficulties in 

estimating the size of underground markets [1, p.13, 10], ML is estimated to account for between 

$1.5trillion to $2.85trillion annually [11, 12], making it the world’s third largest market [13, 14]. 

     In the IS literature, ML is significantly under-researched despite early calls by Mumford [15, 

p. 258] who considered it an important research problem and Demetis [1] who studied the 

phenomenon by looking at the AML risk-based approach and technology. Furthermore, the 

semantic ambiguity in how ML has been framed within IS has created some confusion in how it 

is approached. For example, Chung, Chenb, Changc and Chouc [16, p.671] view it in the context 

of cybercrime, even though money laundering rarely involves a security breach or a 

hardware/software compromise of financial systems. Ngai, Hu, Wong, Chen and Sun [17, p. 561] 

see it as part of financial fraud; as we shall see in the case study, that remains equally problematic 

from both organizational and detection perspectives. Of course, ML itself rarely involves 

deception that results in personal or institutional loss of a financial nature; quite the contrary: 

most launderers are happy to pay tax if that means legitimizing their profits and banks usually 

profit from ML activities. Even in the highest-recorded financial fine levied (against HSBC), the 
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bank remained relatively unscathed as it settled for $1.9bn (when accused of laundering money 

for Mexican drug cartels) and turned a net profit in the same year. While ML is related to 

cybercrime, fraud, and risk [18, p.609], this paper calls for it to be treated as a stand-alone 

phenomenon, characterized by distinct stages; it aligns with Pramod and Gao who emphasize the 

importance of working on conceptual frameworks related to AML itself [19].  

     The limited number of IS articles dealing with ML has focused mostly on ML-detection 

through clustering, classification [20], sequence analysis [16, 21], outlier detection [17, 22], and 

real-time detection for ML-monitoring [23]. Attributing ML-risk scores to individual customers 

[24] has also been explored in the context of a risk-based approach to AML [25]. Meanwhile 

network recognition [26] is increasingly emphasized, as terrorist financing has become an integral 

part of the AML-regime [27]. But while there seems to be agreement that ML-detection is very 

challenging, scholars in this domain describe possible techniques decontextualized from an 

organizational setting. Also, they do not discuss the True Positive Rates (TPR) of ML-monitoring 

systems and the challenges that specific financial institutions face in improving those. For 

example, Drezewksi, Sepielak and Filipkowksi [22] describe the broader computational 

architecture that would be required to tackle ML while Khan [24] describes how Bayesian 

networks can assist detection. However, no TPRs are recorded or described in an applied banking 

environment. Ngai [15] does mention the importance of looking at false positives and false 

negatives in a business context but this is not investigated at an empirical level. Canhoto and 

Backhouse [31] mention how most financial institutions experience very low True Positive Rates 

in a general profiling context of customers (often <1%) due to: the underground nature of the 

problem, the complex behaviour of launderers in their efforts to obfuscate the money trail, and the 

sheer volume of banking transactions [28], but they do not relate or explore AML profiling 

strategies and options for TPR development. Just how persistent this problem of low TPRs in 

ML-detection has been is evident in the results of a wide survey conducted by PwC to its AML-

customers where “PricewaterhouseCoopers analysis indicates that 90 percent to 95 percent of all 

alerts generated by AML alert engines are false positives. These high false-positive rates lead to 

significant monitoring costs” [29, p.1] while further liabilities also occur from non-compliance 

and the actual costs can be significantly higher. In summary, previous work is deficient as TPR 
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improvements are not reviewed against a real organizational setting so the challenges that 

decision makers face (and the impact) is decontextualized from technology applications in AML. 

More recent research reinforces the concern that serious problems lurk in ML detection, and calls 

for far more emphasis to be placed on personnel-training [2]. Indeed, while technology remains 

essential for filtering financial transaction data for ML [30], banks have largely failed to 

implement AML-specific IS [18]; these have been unsuccessful, overloaded users with white 

noise [31] and largely failed to support the decisions of ML analysts and the key decision makers 

who corroborate/dismiss ML-suspicions. This has had a negative impact in both banks and 

regulators. Yet, despite technology’s central role in ML detection, technology monitoring in AML 

has not been advanced theoretically or practically. This paper is motivated by the aforementioned 

gaps. It deconstructs how TPR improvements can be achieved, introduces AML evaluation 

measures and develops a systems theoretical-oriented conceptual framework for ML detection.  

     In order to put the ensuing discussion into context, we turn to a few core AML concepts. First, 

ML can be considered to have three distinct stages: the placement stage where illegally earned 

money enters the financial system; the layering stage, where the money trail is deliberately 

complicated in order to avoid detection; and the integration stage, where money becomes part of 

the legitimate economy and used to fund other illegal and even legal activities. While technology 

supports AML-related work across all three stages (and the ensuing discussion applies to all 

three), the most critical stage for detecting ML is considered to be placement as it poses the 

highest risk for the launderers before breaking up the transactions and moving funds [32]. In 

order to put the role of technology into perspective, it is important first to review the lifecycle of 

reporting of suspicious transactions. Customers transact with financial institutions in a number of 

ways (ATMs, branches, e-banking, etc). Checking for ML activity typically takes place through 

Transaction Monitoring Systems (TMS) that profile ML behavior through the batch processing of 

3-months of data at regular intervals (e.g. daily, weekly, monthly). The output is alerts (suspects 

on ML) and is subsequently evaluated manually by a dedicated team of ML analysts who decide 

whether the transaction(s) are indeed suspicious enough to be escalated internally or put on file. If 

suspicion is corroborated, the analysts will escalate the case to the Money Laundering Reporting 

Officer (MLRO). The MLRO’s role is central; she is the only designated individual within the 
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bank that is authorized to file a formal Suspicious Activity Report (SAR) to the Financial 

Intelligence Unit (FIU), the national aggregator of the country where the institution is based (the 

FIU also forwards SARs to prosecution authorities). Thus, the MLRO is a key decision maker. 

      Admittedly, different theoretical approaches can be used to study AML in relation to IS, but 

systems theory is selected here for four main reasons. First, ML and AML co-evolve; systems 

theory (and structural coupling in particular) can enable us to conceptualize this co-dependency. 

Second, we follow Mumford's [15] call for using systems theory to deconstruct ML. Third, 

though the IS community has focused around social theorists like Giddens [33] and Latour [34], 

and more recently socio-materiality [35, 36], systems theory is built into the very roots of 

information systems [37]; with it, IS research can expand its ways of theorizing. Finally, society’s 

excessive reliance on technology [38, 39] places significant demands on IS research for 

integrating theoretical perspectives that help us understand increasingly complex phenomena 

[40]. This paper aligns with the aspiration that IS research should take systems theory seriously 

[37] and the study of AML offers a fruitful ground of exploration within IS.  

2.2. The concept of structural coupling in systems theory 

While it is beyond the scope of this paper to delve into the history of systems concepts [41] or 

deconstruct the exceptions of its use in IS research (e.g. [42]), it is recognized that systems 

concepts have been used in work [44], user-centered design [45, 46], design theory [47], 

information growth [48] and others [49]. Here we focus on the core concept of structural 

coupling. This helps us reflect on the relationship between computer and human profiling and 

organize the different AML structural couplings. Other systems concepts presented in this 

section, help us illustrate – and are in support of – the concept of structural coupling. 

All branches of systems theory agree that we can distinguish between a system and its 

environment [50]. A boundary lies between system/environment, and is part of both. The 

connection and the co-evolution between a system and its environment, is captured in the concept 

of structural coupling, introduced by Maturana and Varela [51]. Any structural coupling is a 

highly selective set-up; not everything that exists in the environment will be structurally coupled 

with the system [52]. What is selected by a system, specifies what can be channeled into it. This 
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is labeled a “canalisation of causalities” [50, p.85]: a necessary selection of limited pathways that 

structure how system/environment interact. Through such pathways, the system becomes 

sensitive to specific irritations of the environment while it ignores others [51]. For example, “the 

brain is structurally coupled with the external environment via eye and ear. It thus possesses a 

very narrow bandwidth of sensibilities that produces what can be seen, limits the spectrum of 

colours, and equally reduces what can be heard. It is only because things are this way that the 

system is not overburdened with external influences” [50, p.86]. The irritations received by the 

system are interpreted as information and prompt it to adjust [50], leading it to either: a) structural 

development, where irritations from the environment will be exploited to the system’s benefit, b) 

structural drift, where such irritations undermine the system’s ability to control itself.  

     An information system tackles environmental complexity by transmuting data to information. 

Data are channeled (from environment to system), internalized and transformed into “information 

(that) is a product of the system itself and not something which exists out there” [53, p.258]. An 

illustrative example is the use of search engines (e.g. Google). After the user’s search query, the - 

typically - tens of millions of results become irrelevant. In order for the user to transform the data 

into information, he/she is forced to engage in human profiling: a selection of will be internalized 

(i.e. read by the user) and what will be ignored. Thus, the top 30 results from a search get over 

90% of traffic [54]; everything else is dismissed. Eventually, in information systems, structural 

coupling can be perceived to expand and reframe the notion of computer/human interaction into 

another expression: the distinction (and structural coupling) between information and redundancy 

[55]. Redundancy is equally (if not more) important in eliminating the demand for (and interest 

in) further information; it protects the system from being overburdened with external influences 

(similar to our sensory example). In this regard, information systems are also redundancy 

systems. Structural coupling then plays a pivotal role in conceptualizing how an (information) 

system interacts with its environment, and sets up its own structures in order to exploit the (data) 

resources of the environment. In summary: structural coupling between a system (e.g. AML 

department) and its environment implies a ‘canalisation of causalities’ (from environment to 

system). Environmental stimuli are internalized by the system as data and the system’s internal 

structures converts them to (an output of) information. The concept of structural coupling 
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illustrates the sensitivity (of the system) to the environment in the process of absorbing 

environmental data through specified canals, as well as optimizing these selections based on 

whether they result in information or redundancy. This also applies to subsystems of the system; 

for example, if we consider the AML department of a bank as a system, then its environment will 

include other departments within the bank, as well as the external – to the bank - environment.   

3. Research Methodology 

A combination of data collection methods was used during the 2.5 years of the EU-funded 

projects on which this research is based (JAI/2004/AGIS/182 and GATE SEC6-PR-205800). This 

includes individual interviews, project meetings (typically a full-day event every two months), 

interviews during on-site visits to Bank X (as well as other institutions), an experiment with 

anonymized raw transaction data, as well as feedback from dissemination seminars from high-

profile events in London, Rome, Athens, Dublin, and Barcelona. While there are research design 

challenges in using a mixed-method approach, in the context of a domain like AML where critical 

information is held by different stakeholders, a mixed-method approach provides a richer picture 

[56]. Due to both the criticality of the domain and confidentiality agreements, at no point was the 

researcher given access to any personally identifiable information from Bank X or from other 

sources. Also, as the project involved other researchers, the author did not include on-site visits to 

all project partners, but focused mostly in Bank X (which is the main case study presented in this 

paper). The concept of structural coupling guided theoretical development and data collection by 

exploring different types of system (i.e. Bank X)/ environment interactions (different forms of 

structural coupling are expressed in Table 2). Structural coupling also helped reframe interactions 

(e.g. between computer/human profiling) as a structural coupling that is expressed by the 

distinction between information/redundancy. This has implications for information systems as 

information is seen as structurally coupled with, and depended on, redundancy; this reframing is 

of particular interest in domains like AML where such structural couplings are shaping the key 

constructs of the domains in which they are applied (e.g. shaping who will be considered as a 

suspect and who will be forwarded for prosecution). Details on the data used for the analysis and 

the profiles of interviewees of Bank X are presented in the table below (Table 1). These are 

accompanied with important ethical considerations and confidentiality issues.  
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Partner 
Institution 

Data types used/collected by 
the researcher  

Ethical considerations and Confidentiality issues  
(these prohibit disclosing actual names of individuals and masking institutions’ names where possible) 

Financial 
Regulator 

Personal notes during project 
meetings 

Not applicable as any regulatory representation was fundamentally disclosing information that was already publicly 
available.  

Law 
Enforcement 

Personal notes during project 
meetings 

Access to sensitive information, which at the time could not have been disclosed, involved: techniques for terrorist 
financing and the cost of attacks in the London Underground on 7/7.  

Bank X 
 
(focus of 
research in 
how it 
becomes 
structurally 
coupled with 
other entities 
in the 
environment 
for AML 
improvement) 

Personal notes, e-mails, 
profiling schemes, raw 
transaction data for 
experiment/visualization, 
models for monitoring ML, 
semi-structured interviews.  

1) Names of customers could not have been disclosed and full anonymization was necessary in the context of the 
bank releasing 250 million financial transactions (corresponding to three months of data). 2) While the general model 
and principles of modeling ML-behaviour were discussed and created the basis for a number of developments/ 
considerations, the actual thresholds being applied could not have been disclosed for all parameters.  

   Profiles of interviewees 
Title Job Description 
Money Laundering Reporting Officer 
(MLRO) 

Manages the AML department, Files SARs to the FIU and reports to the board of directors. The MLRO is the 
key decision maker in the bank in the domain of AML. 

AML Manager Responsible for SQL queries in the transaction monitoring system; manages a small team of ML-analysts who 
go through the submitted reports and check them for due diligence.  

Deputy AML Manager Assists the AML Manager in his duties and works mostly on the scorecard system of risk 
ML-analyst Conducts due diligence and checks transaction history/behavior of suspected customers 

 

Banks Y,Z  Personal notes during project 
meetings, profiling models, TPR 
measurements in AML 

These Bank cases are not used in the context of this paper.  

Financial 
Intelligence 
Unit (FIU) 

Personal notes during project 
meetings 

High-level issues with Financial Intelligence Units (FIUs), guidance on potential monitoring techniques were 
discussed frequently. ML-monitoring application consequences at FIU-level were the main focus.  

Central Bank Personal notes during project 
meetings, e-mail 
communications, profiling 
structures at national level, ML-
modeling frameworks  

In one case, the central bank acted as the FIU as well with a unique scope of pro-active analysis and modeling of ML 
in the national context. Sensitive techniques that would combine different types of behaviours for ML and that have 
led to the identification of suspects have been redacted. 

 

Table 1: Types of data analyzed, ethical and confidential considerations 
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All interviews were conducted in a semi-structured format, allowing the flexibility to explore any 

interesting emergent lines of enquiry. The objective of the interviews was to explore the approach 

of Bank X to its difficulties with ML-monitoring. In analyzing mostly qualitative data, an 

unavoidable process of categorization takes place. In the context of this research, and as scholars 

have analyzed [57-61], this resembles the following 3-stage process: A) open coding (of the 

broader research domain): AML and the role of technology in identifying suspicious behaviour; 

B) axial coding (themes selected): problems of Bank X in the use of transaction monitoring 

systems, identification of different data sources for integration into ML-profiling (presented in 

Table 2); and C) selective coding (last pass of incorporating further data elements): developing 

profiling strategies for the improved detection of money laundering.  

4. Case Study of Bank X in the UK  

4.1. Background to Bank X and its use of transaction monitoring (relating to Phases 1&2) 

In order to avoid confusion in terminology, we will treat the AML department of Bank X as 

our system (in the systems theoretical sense); any software installations (e.g. Transaction 

Monitoring System) will be labeled by their abbreviations (e.g. TMS) or referred to as software.  

Bank X is an important financial institution in the UK, focusing mostly on retail banking with 

branches throughout the country. The bank handles almost half a billion transactions in a quarter; 

due to the volume, the ML-monitoring of any form of transacting (e.g. e-banking, use of 

credit/debit/pre-paid cards, ATM, face-to-face) is down to filtering/monitoring data by automated 

means. Transactions are profiled for spotting potential ML behavior but then, due to regulatory 

requirements and the conduct of due diligence, ML-analysts have to scrutinize the technology-

generated reports and decide whether suspicion can be corroborated or dismissed (a number of IS 

support ML-analysts in this process but the TMS is the most important). For conducting such 

manual checks, the AML department employs several analysts (~10) that review suspicious ML-

cases on a daily basis. The ML-analysts evaluate the overall financial position and transacting 

behavior of technology-flagged suspected customers.  

Bank X had implemented an off-the-shelf TMS that would: a) deal with the volume of raw 

transaction data (past 3 months of transactions), b) model ML-behaviour in a set of SQL rules, c) 

apply the profiles onto transactions in a batch-processing mode every night so that, d) flagged 
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ML-suspects would be investigated further by ML-analysts the following day. Unfortunately, 

according to a ML analyst, when the bank implemented the TMS, it entered a “prolonged period 

of havoc” with a severe negative impact to the MLRO as the key decision maker (the MLRO was 

experiencing an extreme imbalance between information/redundancy due to the skyrocketing 

number of internal ML-related reports from the technology). Having experienced a reasonably 

straightforward implementation of credit-card anti-fraud software, the bank was surprised by the 

extremely low True Positive Rate (TPR). The TPR was calculated by the bank as the following 

percentage: TPRTMS=[(CRML-Analysts/ATMS)*100]% where ATMS was the total number of Alerts 

generated by the TMS and scrutinized by staff whereas CRML-Analysts was the number of 

Corroborated Reports after ML-analysts conducted a thorough analysis those alerts. So, if for a 

given month, the ML-analysts had work-capacity to scrutinize 100 alerts from the TMS and only 

5 would be labelled as ‘truly suspect’ then the TPRTMS would be 5%. Both lack (at first) and then 

scarcity of feedback from the FIU, meant that the bank relied on this internal metric for gauging 

its efforts in ML detection. A different metric TPRstaff was taken for ML-suspicions forwarded to 

the AML team by staff members from the branch network, substituting ATMS for AStaff. The latter 

fluctuated from about 40% to 65% for well trained staff – performing a lot better than technology 

as subtle face-to-face interactions often gave rise to suspicious behavior (a window of detection 

that is en route to becoming marginalized as e-banking becomes dominant). Also, the final 

decision on whether a ‘truly suspect’ SAR from the TMS would be sent to the FIU is taken by the 

MLRO, the key decision maker in the bank.   

     Evidently, in the context of the TPRTMS, the percentage was influenced by what queries were 

used by the bank. The AML-software vendor had preconfigured around 100 SQL queries (system 

rules), from which the bank initially activated 7-8 (those they deemed to be capturing important 

ML techniques). Automated alerts from the TMS would be listed out in a queue each morning 

and indicate the particular system rule which has been hit, together with a finite amount of static 

data from the main legacy system that held the details of the product and customer. These alerts 

would then be allocated to an analyst and reviewed/worked in the same way as a SAR from a 

member of staff. The choice of 7-8 rules was the first important reduction in complexity: a highly 

selective conditioning through which specified ML behavioral indicators aligned the system with 
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part of its environment (money launderers). More specifically, a very limited subset of ML-

behaviour was framed within the 7-8 queries alone; this selection channeled potential ML-

behaviour and enabled the system to react (support the determination of suspicion and forwarding 

to the FIU for further analysis/prosecution). In effect, the bank, or the AML department to be 

more specific, reconfigured its structural coupling with its environment (the money launderers) by 

re-arranging the mechanism through which the distinction between information/redundancy 

would be instantiated.  

Although the 7-8 queries were selected with caution by the bank in the hope of uncovering 

truly suspicious cases, the TPRTMS was less than 0.1%. ML-analysts would check 1,000 

suspicious alerts manually before finding one worthy of escalation. After two years of trial-and-

error in query-adjustment, the bank raised the TPRTMS to 1.42%, while the cost to the bank for 

checking false positives alone was around £450,000/year (with other costs for non-

compliance/fines creating additional risk for the bank). The very low TMS success rate had a 

serious impact in key stakeholders. ML-analysts were demotivated and demoralized from having 

to check very large numbers of false positives and their decisions were influenced by their TMS-

use (they were more inclined to dismiss a technology-based case). Also, MLROs were adversely 

affected by the volume of suspicions but had to defend the bank’s use of AML technology in 

regulatory audits. Based on several interviews, the difficulties were attributed to several factors: 

a) with ML connected to serious criminal activities (e.g. drug trafficking), launderers exercise 

caution when placing money into the financial system; b) banks operate as ‘silos’, and software 

typically monitors ML-behaviour based on raw transaction data; while convenient for 

operational reasons, ML behaviour is far more complex; c) databases degenerate and profiling is 

based on data that is incomplete, unsound, polluted by mistaken manual entries, etc.; d) there is 

minimal feedback from the FIU to the bank. 

To put it in the words of another MLRO, “…we pass on almost every case that is generated by 

the software - let the authorities worry about it; besides, how are we supposed to know whether in 

a national context the case does not make sense? We don’t have access to the transacting data of 

other banks, or tax information from HMRC (Her Majesty’s Revenue & Customs)” That 

approach that led to a staggering increase of SARs in the UK (up by almost 150,000 SARs from 
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20,000 SARs within a decade). Technology-supported decisions by MLROs created massive 

ambiguity in AML with information becoming intertwined with redundancy (and noise). Bank X 

sought to refine its approach as the very low TPRTMS was perceived as structural drift; it also 

raised management concerns of how much money can actually be spent on AML compliance. The 

bank tried to find ways through which the computer profiling of the large volume of transacting 

data would assist the subsequent human profiling (by ML-analysts) achieve better TPRTMS 

results. The sections that follow describe these efforts towards structural development in brief.  

4.2. Visualizing transactions and ‘ML transactions’ (relating to Phase 3 – Step 1) 

One technique that was explored was the dynamic visual exploration of 250 million anonymised 

financial transactions (with Datadesk software – Appendix 1). While visual exploration became 

difficult as the number of categories increased (not computationally impossible, just user 

unfriendly), some promising reflections were gained through it. Instead of visualizing all 

transactions, Bank X isolated from its AML Case Management System, only those accounts that 

corresponded to already-flagged and suspicious customers (but only where the suspicion 

originated by staff members that had a high success rate in detection; this set out to exploit a 

structural coupling between ATMS and ASTAFF). By applying that recursively to transaction data, it 

extracted and then visualized the corresponding transaction data of (potential) money launderers; 

this led to some surprising results: while the AML department was expecting that laundering 

would be spread out across a spectrum of categories, the visualization indicated otherwise and led 

to the decision to restructure the information/redundancy dynamics of the AML department.  

For example, out of a total of 99 transaction categories recorded in the transacting databases 

(e.g. deposit of cash would be one category, ATM withdrawal another, ATM deposit another, and 

so on across all products), it was only 14 transaction categories that were eventually identified as 

relevant to ML for the bank (this was based on ten years of recorded suspicious cases). From the 

14 categories, it surfaced that the biggest transacting category for money launderers was cash-

based transactions. In fact, the top two categories would be 60% for cash-based transactions, and 

12% for wire transfers. This led the bank to apply a risk scoring system on top of the transactions 

for identifying the probability of ML-transacting (more on that in section 4.4.). This implied a 

stricter selection of pathways and entailed the risk of ignoring suspects that fell out of the scope 
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of what those choices reflected. The narrower selection recognized the need to find a better 

structural coupling between human and computer profiling.  

As Bank X concentrated in these 14 transacting categories for profiling ML, the TPR of the 

TMS increased to about 5-7%, while a model was created that sought to enhance profiling by 

integrating other sources of data. Based on project workshops and consolidating ML indicators, 

three other types of behaviours were identified as important: lifestyle, business, and criminal. It is 

beyond the scope of the present paper to deconstruct the details of each one, however, lifestyle 

and business behaviour are most closely related to the following section.  

4.3. The breakthrough in ML profiling of Bank X (relating to Phase 3 – Step 2) 

With transacting behaviour being viewed as just one relevant type to ML activities, the question 

that emerged was how could the profiling of money laundering be enhanced by using additional 

data, from either within the system or the environment? In one of the project meetings that led to 

interesting insights, the MLRO of Bank X said that: “…we realized that the marketing 

department of the bank had access to a (demographics) database that they use all the time… It 

took us quite a bit of time because at first they could not understand what we were saying 

(implying here about ML modeling). Until we put it in their language and said: How would you 

market a product to a money launderer? What sort of characteristics would you be looking for?”  

      Even though the exact profile was not disclosed for confidentiality concerns, the data 

categories that were used are listed in Table 3 (Phase 3, Step 2) and described here in brief. Bank 

X integrated these categories of data from the database of an off-the-shelf product that the 

marketing team had bought. The marketing team was using that database in order to target 

customer groups for particular products, for example, loans, credit cards, etc. While that database 

contained in excess of 60 micro-categories through which they were classifying the totality of the 

UK population, after several workshops between AML/Marketing teams, Bank X decided to 

focus on: i) key demographics (household, population, background) as these would yield 

additional information – at postcode level – for several different segments of the population, ii) 

socio-economics and consumption data (occupation structure, employment status, socio-economic 

status, spending, etc…) that would yield lifestyle and other characteristics that would be 

compared against transacting behaviour; for instance, if a customer was matched against a 
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category of a region where the socioeconomic indicators pointed to a deprived region (whereas 

the transacting behaviour of the customer gave a very different footprint) then along with the 

combination of his/her personal details, occupation, spending patterns, he/she could be flagged as 

a suspect; iii) property value and location (value, tax band, accessibility, urbanization) and 

financial measures (directorships, bad debt, credit behaviour) were also used routinely as an 

information pathway towards investments and business behaviour. Infiltrating businesses, 

investing in real estate (particularly in the London property market – a favorite of Mafiosi around 

the world), setting up cash-intensive businesses with high turnover within short periods of time 

from their establishment (e.g. restaurants), were just a few of the ML typologies that the bank was 

attempting to target from these last two categories.     

     A combination of the above elements was used to inform the profiling queries further and as 

disclosed by the MLRO, increased the TPRTMS to 17.3%. Here, it is worth mentioning that in 

AML technology use, TPRTMS is the key metric used widely by banks and the key decision 

makers in AML; through its monitoring, banks try to improve and justify their AML compliance 

efforts against central bank & regulatory audits on AML technology. But it is not just a 

performance measure. Banks change their algorithmic detection practices routinely in order to 

attempt to improve their TPR and by doing so, they change their operational focus on determining 

suspicious behaviour. In a sense, most AML-operations are guided by the need to improve the 

TPR but any such changes imply a shift in who is actually targeted for ML suspicious behaviour. 

The core findings/reflections in the limitations of the traditional transaction monitoring approach 

and the addition of marketing-oriented data are summarized below:  

a) Peaks and troughs in transactional activity do not give high enough returns of true positive 

identification of ML. There is an attempt to use any data that differ greatly from the norm. 

However, as the head of ML analysts always maintained: “good money launderers try to look like 

the norm”. This complicates matters considerably as ‘outlier detection’ techniques are not as 

useful as they are in fraud; profiling is conducted under conditions of considerable ambiguity. 

b)  Bank X found – accidentally – that high-risk customers for ML also matched a marketing 

demographics group that had greater propensity to apply for a loan; through that comparison they 

©2019, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



16 of 33 

identified key postcode areas as high-risk for ML; these later corresponded with some of the 

postcodes of the suspects that the Police arrested for terrorism after the 7/7 bombings in London.  

c) A simple profile that was originally developed and targeted ML-suspects that were: male, 38-45 

years of age, with an association to the bank between 3-5 years, and living in specific postcodes 

around the UK. This has changed considerably in profiling complexity.  

d) The initial model of Bank X looked at specifics such as: product holdings, income, balance of 

account, debit values compared to credit values, transaction timestamps and amounts overdrawn, 

number of transactions, types of transactions, number of debit card transactions, merchant 

categories where transactions take place, international location of transactions, time of association 

between customer and bank, etc. By approaching this as a problem of the system, its subsystems, 

and its environment, the bank included data related to the behaviour of money launderers, but 

turned to the structural development of the system itself (instead of merely modeling the 

behaviour of money launderers). Following the relative success of the approach, Bank X sought 

to extend its profiling activities by expanding the variety of data that would support the modeling 

of ML-behaviour. This included additional marketing data, referrals from staff members where 

the narrative part of the SARs would be analyzed for additional profiling indicators, Law 

Enforcement Agencies enquiries (e.g. when the police would request transacting data for an 

individual the bank would look at the indicators for this request, potential associates of the 

individual that could be involved in ML, etc), fraud data (including internal fraud), data from 

media sources (TV, Newspapers, etc), industry forums, etc. The rationale of Bank X behind 

integrating these sources is described is the table below (Table 2). A particular disconnect came 

with fraud data, described separately in section 4.5. However, what did make a difference and led 

to another step-change in the improvement of TPRTMS was the introduction of a scorecard system.  

4.4. Risk-based customization and scorecard development (Relating to phase 4) 

Due to the introduction of the risk-based approach in AML monitoring, banks in the UK (and 

globally) were encouraged to create risk-profiles for ML and tailor their own AML handling as 

they saw fit. Bank X chose to do this by attributing a risk score for ML to every single customer 

in the bank. First, the bank reverse-engineered the general categories from already-submitted 

SARs (corroborated by analysts) so that a general risk-scorecard-weighting system could be 
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developed. The scale used was 0 for the lowest risk weight and 5 for the highest. For instance, 

W1 was the assigned risk-code given to gender. If it was found that based on all former 

submissions (based on 10 years of SARs-data), men had a higher propensity to be reported further 

in a case due to their suspicious behaviour and engagement in ML, then a higher risk weight 

would be established based on gender (in this case W1Male=1.52 and W1Female=0.62). A number of 

different weights were issued and implemented (disclosed in Table 3 along with their numerical 

values). These risk weights would be assigned automatically to each customer and this would 

provide the analysts with an automated risk-score for any given customer that was forwarded to 

them for further investigation (either by the TMS or by staff). That risk-score was also using (and 

building upon) the marketing database; customer demographics, socio-economics, etc., were 

bundled into classifications (i.e. “buckets of risk” as the head of AML analysts called them) and 

these became variations of another risk weight (W7). For example, customers that – based on the 

marketing data – resided in certain high-risk postcodes (for ML purposes) were grouped into 

‘classification1’ and were given a score of 3.48 (out of 5) for that weight.  

     By applying these weights in an automated manner, the ML-analysts were given an additional 

indication whether the technology-generated alert was truly suspicious. A web based interface 

allowed analysts to get an instant customer ML-risk score at any time. However, on top of the 

quantitative metric that this risk provided, ML-analysts were asked to add an additional risk-

metric following their manual assessment (low-medium-high). The application of both created a 

composite risk and a further information/redundancy consideration; the case management system 

of the AML-team was scripted to combine the two ratings and produce the final risk factor. By 

using the risk weights as listed in Table 3, the TPR of the TMS was increased further to 20-22%. 

An important finding that the bank stressed was the retrospective fit of SARs cases as they were 

scored out by the AML risk-model. This gave the bank an additional indication of their ‘ML-

suspicious customers’. By applying the risk model to SARs cases, the bank found that about 10% 

of its customers (based on the characteristics assigned) had generated 50% of all SARs.  
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Table 2: Internal, external and self-referential structural couplings from the AML system  
 

ML-Profiling sources 
(S/E) 

Rationale for ML-profiling integration and restrictions Identified Structural 
Coupling 

Marketing data 
(System) 

The use of data from the marketing department has been one of the fundamental successes of Bank X 
in improving its TPR for money laundering profiling, as the marketing department held important 
demographic data that could be used/juxtaposed against transaction data.  

Internal between 
AML/Marketing 
departments.  

Suspicious Activity 
Reports (SARs) 
submitted from 
members of staff 
(System) 

The use of SARs intelligence internally has been critical in improving automated profiling as a 
feedback loop was essentially created between the two. As staff-initiated SARs for money laundering 
had a much higher TPR (following manual analysis from the AML team), isolation of raw transaction 
data that corresponds to customers who have been reported through this route, yielded insights about 
the suspicious clientele of the bank. This process is described in the context of the case study in four 
steps.  

Self-referential, 
reflexive/recursive 
where the AML dept., 
seeks to improve based 
on the data it owns 

Fraud data 
(System) 

As fraud is a very different phenomenon to ML, Bank X did not have much success in using fraud data 
for money laundering purposes with the MLRO arguing that these departments (i.e. fraud and AML) 
should remain separate and exchange financial intelligence when it makes sense. However, the 
conditions for how such an exchange could shape up ML-profiling efforts would demand further 
research. At a minimum, the stance of Bank X in this matter illustrates that the transferability of 
techniques from fraud to AML is not straightforward. Outlier detection used in fraud techniques is not 
easily transferable in AML (as in ML the suspects do their very best to look like the norm), fraud in 
banking often involves taking control of individual accounts (the owners of which have critical 
interests in reporting them).  

Internal between the 
AML department and 
the Fraud department – 
on exception and not a 
regular selection of 
conditions for 
interaction 

Enquiries from Law 
Enforcement Agencies 
(LEAs) 
(Environment) 

When an LEA makes a request to the bank for information (this is typically a request to hand-over 
transaction data for a specific period of time), then the bank may use the request as an information 
resource itself. In other words, if the request is related to the provision of information for a suspect that 
has an account with the bank, then the bank can explore further suspects by its own initiative (e.g. 
potential associates, family members).  

A classic 
system/environment 
structural coupling 
between Bank X and 
data triggered by LEAs 

Data from Media and 
Social Networking 
Services 
(Environment) 

Using information from public media is typically highly-unstructured and not systematic in any way. 
Banks can use XML feeds from news agencies to filter negative news on potential suspects and trigger 
alerts in the TMS through those. Also, a top international bank is using public data from Facebook for 
ML profiling purposes – clearly there are serious implications for privacy here that need to be taken 
into account. 

A classic 
system/environment 
structural coupling 
between Bank X and 
data by media sources 
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AML 
Phases 

(Types of) Data used by the Bank Approach taken in Bank X TPRTMS 

 
Phase 

1 
 

Raw transaction data that were filtered through the TMS based on applied queries  The vendor had provided 100 predefined SQL 
queries that were ‘profiling’ ML behaviour. 

Upon implementation the bank activated only 
7-8 queries. 

 
0.1% 

 

 
Phase 

2 

Raw transaction data that were filtered through the TMS based on applied queries Trial-and-error optimization of the 7-8 queries. 
Basic model contained at least 4 main elements 
that characterized a money-launderer: a) male, 

b) 25-40 years old, c) certain postcodes, d) 
account holder 2-5 years with Bank X 

 
1.42% 

Phase 
3 

Step 1: Extraction of account numbers of truly suspect launderers from Case 
Management System data (10 year period) after ML-analyst due diligence; application 
of account numbers to raw transaction data and subsequent visualized data of the 
launderers’ transactions (Datadesk – Appendix 1)  
Step 2: Introduced marketing data: Demographics (household, population, background), 
socio-economics and consumption (occupation, employment status, socio-economic 
status…), property value and location (value, tax band, accessibility, urbanization) and 
financial measures (directorships, bad debt, credit behaviour)    

 
 
 

see Appendix 1 for screenshots of Step 1 

Step1:  
5-7%  

 
Step 2 
17.3% 

 

Phase 
4 

Scorecard weighting Data* (0 low – 5 highest):  
W1) Gender: M (1.52), F (0.62), W2) Age Group risks: 25-34 (1.71), 18-24(1.66), 35-44 
(1.45), Under 18 (1.04), 45-54 (1.04), 55-64(0.71), 65+ (0.33), W3) Marital status: Single 
(1.90), Other (0.92), W4) Identification of high risk postcode groups: G1 (2.82), G2(1.3), 
G3 (0.83) …, W5) UK Residency: Non-resident (2.7), Resident: (1.0), W6) Directorship: 
Director (1.92), Non-Director (0.95), W7) AMLMARK (Marketing Database) Code: 
Classification1 (3.48), Class2 (1.32), … 
* Existing SARs cases (10 years of data) were used to calculate the weights and W7 was 
based on the marketing database classifications.  

Introduced customized scorecard for all 
customers 

 
10% of customers generated half of all SARs 

 
 
 

22-23% 

  
Table 3: Types of data used along the various profiling phases towards Bank X’s structural development towards AML; approach and True Positive Rate (TPR) 
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4.5. The AML/Fraud disconnect  

The expansion of the profiling elements to a wider variety of data sources created a number of 

difficulties for the bank. From the case, it became clear that simply including more data to target 

ML behaviour would not work. An important finding was the comingling of fraud/ML in the 

context of behavioural modelling and the difficulties that it created. In most cases, integrating 

insights from fraud data to ML profiling gave rise to suspects that were meaningless from an 

investigative perspective. According to the MLRO: “As phenomena, these are very different so it 

is difficult to make the claim that we can take data from one and use it to model the other. We are 

still looking into this area, but so far, we have failed”. While fraud rings were on the rise and the 

supply of fake ID documents (e.g. through www.confidentialaccess.com) resulted in large scale 

mortgage fraud, the bank found the convergence between fraud/ML to be particularly 

problematic. The reasons are summarized here: a) fraud precedes ML: fraud generates the 

illegally earned money that subsequently needs to be laundered; in this regard, fraud-detection 

techniques do not apply to the ML phenomenon per se, but only to stopping one of the many 

avenues for generating illegally-earned money, b) while VAT fraud (e.g. carousel fraud or 

Missing trader Intra-Community Fraud), or other types of fraud constitute predicate offences and 

may be flagged as such in the SARs submissions to assist further investigations (or pass onto 

relevant authorities like the HMRC if it involves tax evasion), from a behavioural profiling 

perspective ML is the intersection where all criminal activities meet; thus, the focus on detection 

should be on the process itself and finding mechanisms through which computer profiling and 

human profiling can be structurally coupled for the improvement of TPR; c) while the bank had 

implemented a TMS that was developed from a company with very strong anti-fraud solutions, 

the transferability of fraud-oriented transaction queries did not work well for Bank X. The exact 

zone of congruence in terms of detection could not be determined but this would be a subject for 

future exploration – if not a research agenda on its own.  

Similar difficulties were raised with the integration of other data sources, even though it 

became clear that the agenda and strategy for such integration was much broader. For example, 

the head of the ML analysts mentioned that they assigned one analyst to check news reports, 

newspaper articles, police announcements, etc., for information that they could check/integrate 
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for targeting ML. This was expanded later to include news feeds in XML format while, over time, 

profiling became more aggressive in how personal data were being used for monitoring purposes. 

Another bank in our project considered using Facebook data to profile customers’ lifestyle 

characteristics and juxtapose with transacting patterns. While out of scope for the present paper, 

this raises substantial privacy concerns; indeed, the European Commission has recently moved to 

suggest that Data Protection Authorities should be granted the right to veto AML legislation.  

 

4.6. Evaluating AML: lessons for AML management in banks, MLROs and regulators  

The study indicates that Money Laundering Reporting Officers (MLROs) that remain the key 

decision makers within a financial institution must make a clear separation between fraud and 

anti-money laundering if they seek to improve AML detection. As MLROs and Heads of AML 

departments use AML-technology systems to support their decisions in determining truly 

suspicious cases before these can be forwarded to FIUs, they need to approach money laundering 

detection systemically and look into a much more structured approach between technology and 

human co-improvement; for instance, training of staff and the improvement of the TPRstaff index 

can be fed back for improvements in detection. MLROs need to steer their departments from 

simply monitoring ML to deconstructing the transacting footprint of their own suspicious 

customers. The one-size-fits-all integration of SQL queries that capture ML typologies 

algorithmically has not worked. Furthermore, thus far, MLROs’ decisions to forward technology-

based suspicions for ML to the FIU have had an overall negative impact on national AML 

systems with skyrocketing SARs of poor quality (the vast majority of which are technology-

generated). If this situation is to be (partly) reversed, MLROs need to steer their AML 

departments and integrate technology monitoring for ML differently. More specifically, the 

specific sequence of Phases 1-4 as described above (based on raw transaction data filtering, 

reverse engineering of transaction from staff-identified suspicious cases – and their subsequent 

visualization, as well as the inclusion of specific marketing data in tandem with risk-based 

scorecards for which indicative weights have been provided), could yield considerable 

improvements in the TPRTMS. In turn, this can have a considerable positive impact for the AML 

management of the bank as it can demonstrate compliance, reduce costs of checking false 
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positives, avoid financial fines and contribute to the identification of illegal behaviour. 

Furthermore, regulators ought to encourage this approach and work with other key decision 

makers both in banks and other reporting entities to reach a consensus of how AML technology 

can be evaluated and audited in a more comprehensive way. In addition to the TPR that remains 

central and indicates how banks progressively customize their AML technology solutions to 

achieve better detection, the case shows that regulators must enhance their feedback mechanisms 

so that MLROs can develop their decisions and deconstruct what suspicious cases were fruitful 

for prosecution and asset recovery and which ones could be improved by changing internal 

processes. In this context, based on the insights from the case of Bank X, the following measures 

can be used in tandem with the TPR. These can be useful in managing AML systems, evaluating 

them, auditing them and considering their impact on MLROs and other key decision makers (both 

within the system and its environment). They can also be considered in light of future AML-IS 

technological developments (e.g. when designing analytics dashboards for MLROs so that there’s 

comprehensive AML monitoring). These are discussed briefly in the table below.  

 

AML Evaluation metrics Implications for key decision makers (MLROs & Head of AML) 

TPRTMS=[(CRML-Analysts/ATMS)*100]% 

and  

TPRStaff=[(CRML-Analysts/Astaff)*100]% 

where: 

CR: Corroborated reports by analysts 

ATMS: Alerts from the TMS 

AStaff: Alerts from branch staff 

Both of these measures are internal to the bank and MLROs should 

continuously support the improvement of both the TPRstaff (e.g. by 

enhancing AML training activities) and managing TPRTMS 

improvements. The two are structurally coupled. As key decision 

makers that rely on both staff and technology in establishing and 

forwarding suspicion for ML to the FIU, MLROs should seek to 

balance these measures with forwarding rates.  

RW(Analyst) = Wstaff-alerts/Wtechnology-alerts  

where 

Wstaff-alerts = (Allocated(Astaff)/AStaff) 

Wtech-alerts=(Allocated(ATMS)/ ATMS) 

Staff demotivation from false positives in managing ATMS needs to be 

managed by MLROs carefully so that their decisions for forwarding 

SARs can be based on high quality reports. A balance of the workload 

of ML-analysts should be maintained in how allocations are being 

conducted between the higher-quality alerts from staff (AStaff) and the 
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Where W is the workload for the 

ratio of ML-Alerts created by staff 

reports from branches and the TMS. 

much lower-quality alerts from technology (ATMS). Rotations of staff 

between the two would assist in managing this process. Technology 

should be optimized so that the workload ratio (Rw) for each analyst 

takes into account additional weights (probability of suspicion for 

ATMS and Astaff)  

(FRate)TOTAL = [(MLROdecisions-to-

forward)/(ATMS+AStaff)] 

 

(FRate)STAFF =(MLROdecisions-to-

forward/Astaff)   indicates how many 

alerts from branch staff are 

eventually forwarded to the FIU 

following an MLRO decision 

 

(FRate)TECH =(MLROdecisions-to-

forward/ATMS)  similarly for 

technology 

The decision for an internally corroborated report to be forwarded to 

the FIU rests with the MLRO. The forwarding rates (representing this 

decision) should be monitored closely in relation to both ATMS and 

AStaff. Very high forwarding rates where low TPRs exist have a 

negative impact to FIUs that are struggling to cope with the volume of 

reports. MLROs should safeguard the process of corroborated reports 

by analysts instead of amplifying any ambiguities and forwarding 

everything for consideration. In addition, FIUs can provide feedback 

for the adjustments of this, by informing MLROs of criteria/cases that 

are helpful in prosecutions. Some FIUs are doing this in a handful of 

countries but this is neither structured nor part of an AML evaluating 

strategy that involves both staff and technology.  

VSuspect categories = Yselected(Astaff)/Xcategories  

where X the total number of 

transacting categories (99 for Bank 

X), Y the selected subset that 

originates from staff alerts and V the 

variety of transacting categories. 

Delineating the suspect transacting categories for a bank focuses the 

scope of profiling and can also be used to monitor the variety of 

transacting categories exploited over time by money launderers. This 

gives an indication of the variety of the suspects’ transacting footprint. 

The closer V is to zero, the more focused the selected categories 

become based on Astaff. A result closer to the number one would imply 

a very wide variety and no real reduction in transacting complexity.  

CStaff = (ATMS+Astaff)/CR 

Cstaff: staff capacity to analyze alerts 

With the daily capacity of members of staff to corroborate reports (CR) 

being limited, the alerts of the TMS (ATMS) needs to be optimized so 

that ATMS+AStaff does not exceed the capacity of staff to analyze 

reports. 

 

 

Table 3: Evaluation metric considerations 
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5. Discussion  

5.1. Implications for practice & contributions 

Abstracting from the case, we can look to implications for institutions that try to improve in their 

handling of AML. One important aspect is that the (AML) system, in its efforts to reduce the 

complexity of the environment, is forced to succumb to a default two-step reduction of 

environmental complexity. The first step involves complexity reduction via technology: data from 

the environment are internalized by the system, which trigger algorithms based on what 

phenomenon is being modeled. The second step is a follow-up complexity-reduction by human 

activity systems. As shown in Table 1, the (AML) system develops three types of structural 

couplings for TPR improvements: i) internal (between itself as a subsystem of the bank and other 

departments like marketing), ii) self-referential (with AML recursive explorations like that in 

Phase 3 – step 1), iii) classic/external types of structural couplings with the environment of the 

bank. These should not be thought of as distinct but as intertwined, affecting ML modeling efforts 

in complex ways. They are depicted in the conceptual model as [A], [B], and [C].  

     The concept of structural coupling and the findings from the case study alert us to the critical 

dynamics between computer profiling (CP) and human profiling (HP). These impose restrictions 

on each other: CP is essential to filter the massive volume of transactions and flag suspected cases 

by reducing behaviour (lifestyle, business) into models that can be monitored. While human 

profiling is typically perceived as an afterthought to CP, the case of AML illustrates that HP 

places severe restrictions that need to be built into the profiling efforts. This re-emphasizes the 

relationship between CP and HP while structural coupling helps us reconsider HP, not as a 

residual category to CP, but as constitutive to it. This change in emphasis implies that profiling a 

phenomenon must be seen as an exercise far beyond the computational modeling of a domain 

(like ML) as HP reconstitutes the way CP is considered. In this context, structural coupling also 

helps us reframe the traditional distinction between computer/human profiling into a highly 

asymmetric relationship between information/redundancy. In domains like AML where we have 

high-ambiguity phenomena (e.g. where we try to model, detect and evaluate suspicious behavior), 

information systems must be considered as redundancy systems first: systems where the reduction 

of environmental complexity takes precedence; systems where data (e.g. about suspicious 
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behaviour in ML) is at the environment of the system and it is only through highly selective 

conditionings that reduce its potentiality that it can become information. The following 

conceptual framework synthesizes the aspects brought forward (and abstracted) from the case 

study and offers a systems theoretical model of ML monitoring, grounded on the concept of 

structural coupling.  

 

Figure 1: Systems theoretical framework for ML monitoring 

In ML, the identification of suspicious behaviour and its consequences are more challenging and 

technology constructs suspicious behaviour (and its identification). The norm against which 

outliers are constructed is very different and much more challenging to fraud (where the victims 

are the customers). This has implications for profiling, for how information systems are designed, 

developed, implemented, and also audited. An important implication for IS is that the ‘normal’ 

interaction between ‘computer’ and ‘human profiling’ mutates into a massive information- 

redundancy structural coupling in high-ambiguity domains. IS scholars exploring such high-

ambiguity domains will benefit from the framework by rendering any computer/human profiling 

interactions onto an information/redundancy structural coupling and are prompted to: a) explore 

and integrate lifestyle, business and criminal behaviour as a different set of behaviours in tandem 

with transacting behaviour,  b) separate AML from fraud as discussed in section 4.6., and explore 
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what internal structural couplings would be most beneficial for the AML system in the context of 

profiling (e.g. marketing), c) take into account the regulating elements [illustrated as e1, e2, … en] 

that influence the process of structural coupling between CP/HP and build them into any future 

profiling; these can also be taken into account in IS development, implementation, audit, and can 

also double as evaluation metrics presented to a dashboard to the two key decision makers in a 

bank (i.e. Head of AML analysts, Money Laundering Reporting Officer); acknowledging the 

structural coupling between the two ‘turns the tables’ on AML profiling and prompts for the 

integration of HP-oriented indicators in the refinement of CP (e.g. adjusting algorithms so that 

human demotivation, workload, forwarding rates are taken into account alongside the modeling 

of the ML-behaviour), d) explore how feedback from the FIU should be enhanced so that decision 

makers can adjust the structural coupling between CP/HP within financial institutions, e) reflect 

and explore further the conditions under which the asymmetry between information and 

redundancy shapes the construct of suspicion in AML; f) consider how profiling decisions create 

redundancy (e.g. in eliminating some suspects over others) and, g) what additional evaluation 

metrics can be developed in the context of AML.   

In this context, the structural coupling between CP and HP in the theoretical model is considered 

to be the core of the conceptual model and alerts us to a number of systems theoretical conditions 

that are important for ML monitoring. First, the way CP considerations inform any AML 

behavioural modeling effort can now be reversed in light of the structural coupling. For example, 

instead of handling CP on its own and ending up with a cost of £450,000 for checking false 

positives, the financial cost of checking for false positives can become part of the modeling effort 

(though as we’ve said, liabilities can be far greater in cases of financial fines for non-compliance). 

Thus, the TMS that is supposed to ‘detect ML behaviour and generate alerts must be optimized to 

produce a number of alerts that would be financially viable for the AML system. Second, any 

restrictions posed by HP that are usually ignored in the context of behavioural modeling, or 

treated as an after-thought, must be factored into the profiling dynamics. For instance, ML-

analysts typically become demotivated by having to check such a large volume of false positives 

and this affects their own performance in conducting checks for real suspicion. Thinking about 

this problem systemically – and through the structural coupling between CP/HP, turns the tables 
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(so to speak) on this problem. Thus, the identification of staff demotivation (as an AML problem) 

when struggling to evaluate false positives might be considered as a prerequisite to adjust 

computer profiling by rotating the allocation of technology-generated alerts to different members 

of staff based on the probability for suspicion. While human profiling is typically treated as an 

after-effect in information systems and a residual category, structural coupling tells us that it must 

be built into profiling. In this manner, the scorecard development at Phase 4 could include an 

additional weight, W8, which would assign a probability of demotivation to a ML-analyst if a 

large number of low-risk alerts had been assigned to him/her that – following analysis – turned 

out as false positives. In this way, the distribution of high-risk TMS alerts would be conducted in 

a way that would be conducive to increased vigilance. Structural coupling alerts us to the need to 

consider not only the behavioural modeling of money launderers but also of ML-analysts.  

The systemic rationale for this applies to many different elements (indicated as general 

conditions [e1… en] in the model). Individual considerations for either side of the CP/HP 

structural coupling (say the cost of checking false positives from a HP perspective), transcend one 

side of the CP/HP distinction and affect the other side as well. For example, abstracting from the 

bank, these include: e1) cost of checking false positives, e2) capacity for human profiling (i.e. 

how many alerts can be manually investigated per day), e3) balancing the percentage of analyzing 

technology-generated alerts that have a low TPR vs staff-generated alerts from branches that have 

a much higher (up to 60%) TPR, e4) staff demotivation, etc. It can also include environmental 

restrictions; for example, the FIU capacity to investigate SARs could be fed back to individual 

AML systems based on what FIUs perceive as information vs redundancy; in turn, the AML 

system (Bank X) would optimize its SARs output. Unfortunately, FIUs generally give minimal or 

often no feedback and without this type of (environment-to-system) coupling, initiated by the 

FIU, banks operate as black-boxes that output noise (i.e. redundancy) instead of information. This 

affects FIUs adversely. This appears to be the case for most AML-national systems around the 

world and constitutes one of the most critical obstacles to developing AML practice further. 

     At the same time, any potential TPR improvements should consider all types of structural 

couplings: internal with other subsystems, external and self-referential/recursive improvements. 

Phases 1-4 as discussed in the case study would relate to internal and self-referential 
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improvements in the TPR and outline the practical contribution of the study. Of particular interest 

could be social media data and how they might impact CP/HP. In the context of the framework, 

the argument can be made that within a bank, despite the fact that ML-detection is a legal 

requirement, the details of who exactly is being ‘detected’, monitored, and produced in a list of 

suspects remains an emergent phenomenon, based on different forms of structural coupling as 

identified above. Here, a significant concern must be raised over aspirations to engage in real-

time detection [23]. In that case, algorithms alone would largely define criminality.  

     While the concept of the structural coupling denotes the form of the interaction between the 

system and its environment [50, 51, 62], it is not very clear in what way data is transformed into 

information other than the claim that a system is capable of effecting this transformation [48].  

Viewed from this outlook, structural coupling does capture the co-dependency between 

system/environment [51] but we find that it is structured via the system’s predisposition to engage 

with selected ‘data sources’ and externalize them as information, as well as the evolving 

dynamics between information/redundancy. The transition then from data to information is 

facilitated through the dynamic demands that computer profiling and human profiling place on 

each other: this interaction between CP and HP guides the distinction between 

information/redundancy so that meaningful decision-making can take place within an 

organization. While we are in agreement with Vanderstraeten [53, p.258], that information 

emerges as a product of the system, we find that this is instantiated in information systems 

through a negotiation between CP/HP. Applied to AML and based on the developed conceptual 

framework, suspicious behaviour then is the product of the AML system, based on the 

multiplicity of structural couplings (internal, external, self-referential). In fact, we can observe 

that all of the profiling efforts of Bank X were geared to reduce the complexity of the ML-

characteristics and reach a more manageable subset of suspicious cases for ML-analysts. In this 

way, the information-value of data, and what can be recognized as useful information (instead of 

redundancy), is only realized after it is internalized within the system. For example, the exact 

same transaction data for customer A can be information for the fraud department but redundant 

for the AML department. Subsystems will exercise their own internal structural couplings 

between CP and HP.  
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     While the key theoretical contribution of this paper is the systems-theoretically-oriented 

conceptual model, the identification of different types of structural couplings and recognition of 

their interactions on an information/redundancy level also contributes to systems theory (the 

concept of structural coupling in particular). In this context, structural coupling can now be 

perceived as the totality of inter-related system/environment couplings, even when the 

environment is the system itself (in case of a self-referential, recursive application of the 

concept). On the basis of how the system evaluates its own structural development or drift, the 

system can adjust the sensitivity of its boundary and modify its structural couplings with the 

environment (e.g. adopt data from other sources, ask additional data from customers, etc). As we 

have seen the system can even mitigate its structural drift by accepting its own redundancy as a 

legitimate form of information output (e.g. not scrutinizing all SARs carefully in order to avoid 

the cost of analysis and passing a volume of useless SARs to the FIU). In this regard, systems do 

not always optimize their structural coupling based on information and structural development, 

but also based on accepting redundancy and structural drift. The unavoidable consequence is that 

carving such pathways through which the (AML) system internalizes data runs an important risk 

in AML: criminal suspects may be informed of how their behaviour is being modeled 

algorithmically and so avoid detection altogether.  

5.2. Study Limitations 

A number of limitations are acknowledged. First, the UK banking environment and the national 

regulatory practices create a unique set of contingencies. While a degree of generalizability is 

claimed in the development of the framework in Figure 1, it is recognized that ML techniques 

often change from one country to another. Also, the transacting behaviour of ‘ML suspects’ is 

dependent on the economic landscape of different countries and the institutionalization of specific 

modes of transacting (e.g. other economies are much more cash-based in transacting within the 

EU, the use of cheques in the US is much more widespread, and so on). A second limitation 

within the context of bank X was posed by the difficulty in getting access to additional 

departments other than the AML group (part of the compliance department). 

 5.3. Suggestions for future research 
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AML is under-researched in IS so there are multiple opportunities for further research. First, a 

wide range of different technologies influence AML and these require further examination [63]. 

These include case management systems, sanction control systems, intranets, etc. Also, industry 

matters within IS research considerably [64] and taken that the securities industry, exchange 

bureaux, insurance companies, casinos, credit card companies, the energy sector, retail, football, 

real estate, non-profit organizations, and so on, are amidst a large number of industries 

affected/exploited by money launderers (and where technology plays a critical role in detection/ 

monitoring/ prevention), the scope is truly vast. Finally, following up from the findings of our 

project, we tried to expand our research agenda and conduct benchmarking of TPRs across 

multiple financial institutions within the City of London. All of the banks approached, declined to 

participate and cited confidentiality concerns in case of possible leaks (the implication is that if a 

very low – relative – score became known, it might signal a bank’s AML weaknesses and attract 

active money laundering or cause reputational harm). This is an area that we prompt others to 

explore; developments in distributed forms of anonymized tools could facilitate this process.  

6. Conclusion 

The present study highlights the critical dynamics between computer profiling and human 

profiling in an AML organizational context. The rich context of the case study and the 

longitudinal nature of this work, advances our understanding on AML detection, provides an 

approach to key decision makers (e.g. MLROs) that can be implemented towards AML 

improvements, delineates a series of steps that a bank can take and provides reflections on key 

AML evaluation metrics (TPR and others in section 4.6) that are useful to both banks and 

regulators. This new study contextualises AML detection within the structural coupling of 

computer/human profiling, re-orients the rationale of AML profiling by emphasizing contingent 

human profiling elements that are often ignored in profiling and disentangles AML from fraud, 

thereby prompting IS scholars to study AML separately. The ensemble of these contributions 

offers practical guidance for banks that seek to develop their AML monitoring strategies and 

prompts IS researchers for additional work in this space: not only from a purely technical-

orientation but also from a deeper exploration of the organizational dynamics that affect ML-

monitoring and the key decision makers in an AML system and its environment.  
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Appendix 1 (Relating to Phase 3 – step 1):  

 
   
Figure A1:  
Visualization of a dataset that money 
laundering analysts would explore/interact 
with in the context of the project in order to 
reflect about the qualitative characteristics of 
suspicious ML-behaviour.  
 
 
 
 
 
 
 
 
 

 
 
 
Figure A2:  
Reduction of the suspicious complexity. From the 99 
transaction codes recorded in the legacy system, the 
isolated suspicious transactions from the money launderers 
would indicate that only 14 categories were dominant. The 
largest area (cash-based transactions) would be present in 
more than 60% of suspicions.  
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