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Abstract: We evaluate whether machine learning methods can better model excess portfolio returns
compared to the standard regression-based strategies generally used in the finance and econometric
literature. We examine 17 benchmark factor model specifications based on Expected Utility Theory
and theory drawn from behavioural finance. We assess whether machine learning can identify
features of the data-generating process undetected by standard methods and rank the best-performing
algorithms. Our tests use 95 years of CRSP data, from 1926 to 2021, encompassing the price history
of the broad US stock market. Our findings suggest that machine learning methods provide more
accurate models of stock returns based on risk factors than standard regression-based methods
of estimation. They also indicate that certain risk factors and combinations of risk factors may
be more attractive when more appropriate account is taken of the non-linear properties of the
underlying assets.
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1. Introduction

The application of machine learning in finance has grown along with increased com-
puting power speed, memory capacity, and the vast amounts of data generated by modern
financial markets. The development of “data science” as a distinct field has led to the
recent development of numerous ML algorithms and their applications to tasks such as
portfolio optimisation, risk modelling, trend analysis, and sentiment analysis of news,
amongst others. However, regulators and many finance academics perceive ML methods
as “black-box” procedures, and are sceptical of “empirical” or “engineering” techniques.
This is particularly true for asset pricing, where the price and hence the future return of
financial assets is estimated from a variety of factors.

There are two broad established approaches to asset pricing in the finance literature,
namely, work based on Expected Utility Theory and that drawing on “behavioural finance”.
The first approach assumes that investors are rational and will make investment decisions
with the objective of maximising their expected utility. These decisions will involve making
appropriate “trade-offs” between risk and expected return. This approach is exemplified
in the work of (Treynor 1961), and (Sharpe 1963, 1964) who developed the Capital Asset
Pricing Model (CAPM) linking risk, as quantified by the standard deviation of market
returns, and return in a way consistent with Expected Utility Theory. Subsequently, Mossin
(1966), Lintner (1965, 1969), Black (1972), Merton (1973), Ross (1976), Fama and French
(1993, 2015), Carhart (1997), and others extended and generalised the CAPM. The later work
introduced a number of additional factors which empirically explain observed returns.
Given that, by definition, expected returns should be driven by risk, in this research the
extra factors are often referred to as risk factors.
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Although the Expected Utility Theory approach to asset pricing remains the dominant
paradigm for academics and many market practitioners, the second approach, popularly
referred to as “behavioural finance”, is an important alternative and a more recent develop-
ment. It rests on behavioural or cognitive models of decision-making under risk, and builds
on insights from psychology and neuroscience. These insights can be used to develop
factors which can be used to price assets without necessarily assuming rationality on the
part of market participants.

It is, of course, empirically feasible to combine factors drawn from both the behavioural
and Expected Utility Approaches to pragmatically derive the most effective asset pricing
models. To a large extent, this is an empirical exercise and thus it is important to consider
the most effective empirical methods, and this is the main issue addressed in this paper.

In our paper, we evaluate a number of appropriate asset pricing models. A number of
models have become standard and well established in studies drawing on the Expected
Utility approach. There is the original CAPM, which has been supplemented and partially
replaced first by the Fama French three-factor model, and subsequently the Fama French
five-factor model. There are many models associated with behavioural finance, so the choice
of factors is less obvious. However, arguably, the most seminal work in the behavioural
area is that of (Kahneman and Tversky 1979), who developed Prospect Theory and the
related concept of reference dependence. One of the best-known examples of reference
dependence is the Peak-End rule (Fredrickson and Kahneman 1993). Thus, it is reasonable
to consider combining the Peak-End rule with factor models based on Expected Utility
theory as a benchmark for our empirical work.

Our selection of factors follows the work of (Gregoriou et al. 2019), who tested the
asset pricing performance of the Peak-End rule, and thus of Prospect Theory. Their results
confirmed that Peak-End behaviour by investors occurs and is not captured by factor
models based on Expected Utility Theory. Their proposed seven-factor pricing model,
incorporating the insights of both Expected Utility theory and Prospect Theory, outperforms
other popular factor models in explaining portfolio returns.1

However, their tests of asset pricing models were based on the use of standard re-
gression techniques utilising OLS, as indeed is standard in the asset pricing literature. In
this paper, we investigate whether recently developed machine learning algorithms can
identify features of the data generating process undetected by standard methods. A major
reason for applying ML techniques to financial tasks is that ML methods are able to model
non-linear relationships in the data. Non-linear techniques are required when outputs are
not directly proportional to the inputs. Traditional analytical methods (e.g., OLS) assume
that a linear relationship exists, or utilise non-linear functions that can be simplified to
a linear model. There is considerable general evidence that non-linear relationships are
prevalent in the financial markets (Amini et al. 2021). Moreno and Olmeda (2007) give a
summary of inter-temporal work on non-linear modelling. Kolm et al. (2014) and Carroll
et al. (2017) give summaries of cross-sectional work on non-linear modelling in financial
markets. Despite this, there is very limited academic work considering non-linear effects in
asset pricing. Similarly, to our knowledge, modern machine learning techniques have not
been used in asset pricing.2

In our paper, we specifically test whether Automated Machine Learning (AutoML) can
better model excess portfolio returns compared to the standard regression-based strategies
used in the econometric literature. Our results support (Gu et al. 2020) by showing that
machine learning methods provide a superior fit of the data given the non-linearities
involved. This is very important when it comes to how stock markets react to news. An
important element of this is that reactions to news (under- and over-reactions) are possibly
not estimated correctly with the use of OLS. This clearly implies that machine learning
should be applied in the estimation of not only asset pricing models but also to the efficient
market hypothesis. Machine learning could provide a solution to the joint hypothesis
problem when testing for market efficiency.
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The remainder of the paper is organized as follows. Section 2 discusses the reasons for
applying machine learning and particularly AutoML and describes the specific instantiation
of the technology which we use. Section 3 describes our data sources and the testing
methodology we use. Section 4 discusses our findings. Finally, Section 5 terminates the
article with our summary, suggestions for further work, and conclusions.

2. Machine Learning and AutoML

Machine Learning is a sub field of Artificial Intelligence (AI), and encompasses a large
and varied set of algorithms suited to different tasks. Broadly, these can be classified into
three categories:

(1) Unsupervised machine learning: a data mining technique for partitioning and re-
ducing the dimensionality of data. Unsupervised learning generalizes statistical
approaches to data reduction, such as principal component analysis. An example of
unsupervised learning is K-means clustering for portfolio selection.

(2) Supervised machine learning: either a parametric or non-parametric, algorithmic
or probabilistic method of learning the relationship between response and explana-
tory variables. Supervised machine learning generalizes statistical techniques such
as ordinary least squares (OLS) regression, or time series methods such as auto-
regressive models.

(3) Reinforcement learning: a method of stochastic control, with feedback, which learns
a policy based on decisions which change the state of inputs. Reinforcement learn-
ing generalizes stochastic dynamic programming. Example applications include
derivative pricing, optimal hedging, and optimal trade execution.

In our study, we investigated Supervised Learning (task 2) through the use of re-
gression analysis. For our empirical analysis, we used Automated Machine Learning and
we elected to use Microsoft H2O Automl (https://azure.microsoft.com/en-us/solutions/
automated-machine-learning accessed on 21 August 2024). This is an open-source code,
which avoids the problems associated with “black-box” systems. Also, it offers a selection
of up-to-date ML algorithms, and is among the industry leaders in the field. We will now
describe H2O AutoML and the ML algorithms it offers.

2.1. H2O AutoML

H2O AutoML (LeDell and Poirier 2020) provides an interface which automates the
process of training a large selection of candidate models by performing a number of
modelling-related tasks. These include the automatic training and tuning of many models
within a user-specified number or time-limit. Stacked Ensembles—one based on all pre-
viously trained models, another one on the best model of each family—are automatically
trained on collections of individual models to produce ensemble models which, in most
cases, will be the top performing models in theAutoML Leaderboard. A number of model
explanatory methods are provided. These apply to AutoML objects (groups of models)
as well as individual models. Explanations can be generated automatically, with a single
function call providing an interface for exploring and explaining the AutoMLmodels. The
H2O AutoML interface is designed to have as few parameters as possible so that all the
user needs to do is point to their data set, identify the response column, and specify a time
constraint or limit on the number of total models trained.

2.2. H2O AutoML Machine Learning Algorithms

The following algorithms are currently supported: Distributed Random Forest (DRF),
Extremely Randomised Trees (XRT), General Linearised Models (GLM), Gradient Boosting
Machine (GBM), Deep Learning (Neural Networks), and Stacked Ensembles. There follows
a brief description of each algorithm.

https://azure.microsoft.com/en-us/solutions/automated-machine-learning
https://azure.microsoft.com/en-us/solutions/automated-machine-learning


Risks 2024, 12, 148 4 of 12

2.2.1. DRF

Distributed Random Forest (DRF) (Assunçao et al. 2013; Breiman 2001) is a tree-based
classification and regression tool. When given a set of data, DRF generates a “forest”
of classification or regression trees, rather than a single classification or regression tree.
Increasing the number of trees will reduce the variance, without increasing the bias. Both
classification and regression take the average prediction over all of the trees generated to
make a final prediction. For a classification task this will be a category, and for a regression
task it will take a numeric value.

2.2.2. XRT

In random forests, a randomly selected subset of data features (variables) is used to
decide on the splitting rule for each branching. In extremely randomized trees (XRT), a
random subset of candidate features is also used. However, thresholds are also drawn at
random for each data feature, and the best is picked as the splitting rule. This allows a
further reduction in the variance of the model, but at the cost of a small increase in bias
(Geurts et al. 2006).

2.2.3. GLM

A generalized linear model (GLM), as its name suggests, is a generalization of ordinary
linear regression (OLS) that allows the dependent (response) variable to have a non-normal
error distribution. In a GLM, the linear model is related to the response variable by a
link function and by permitting the variance of each measurement to be a function of its
predicted value. In a GLM, each value Y of the response variables is assumed to follow an
exponential distribution, which could be, e.g., a normal, binomial, Poisson, gamma, or other
exponential distribution. The mean, µ, of the distribution depends on the independent
variables, X, through

E(Y|X) = µ = g−1(Xβ)

where E(Y|X) is the expected value of Y given X, and β is a vector of unknown parameters.
g is the link function. The variance of each measurement is given by

Var(Y|X) = V
(

g−1(Xβ)
)

Any of Maximum Likelihood, Maximum Quasi-Likelihood, or Bayesian techniques can
be used to estimate the parameters β, and the V may be from any exponential distribution
(Nelder and Wedderburn 1972; Lee et al. 2006; Friedman et al. 2010). GLMs can be used for
prediction or classification.

2.2.4. GBM

Gradient Boosting Machines can be used for both regression and classification tasks.
They are an ensemble modelling technique based, usually, on decision trees, which produce
an ensemble of weakly predictive models. Gradient boosting combines these weakly
predictive models into one strongly predictive model by an iterative process. Suppose we
run the algorithm for m iterations. Each run produces an imperfect model

Fm(x) = ŷm

The next iteration will improve this estimate by appending another estimator, thus

Fm+1(x) = Fm(x) + hm(x) = ŷm+1

where hm(x) = y − Fm(x). Thus, gradient boosting fits h to the residuals y − Fm(x).
Each iteration Fm+1 therefore improves on the estimate of the previous iteration Fm+1, by
minimising the loss function (Friedman et al. 2000; Hastie et al. 2009).
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2.3. Deep Learning

Deep Learning networks are a form of Artificial Neural Network (ANN) containing
multiple hidden layers. In recent years, the term “Deep Learning” has become synonymous
with “neural network”. Kolmogorov (1957), in his representation theorem, showed that an
ANN with a single hidden layer can approximate any Borel measurable function. In their
seminal papers, (Hornik et al. 1989, 1990) showed that an ANN with a single hidden layer
is capable of arbitrarily accurate approximation to any function and its derivatives, to any
desired degree of accuracy, provided that sufficient hidden units are available. This class of
network is now referred to as a “shallow network” (Figure 1c), whereas the term “deep
network” refers to ANNs with multiple hidden layers.
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Deep Learning has become popular in finance because it can handle high dimensional
inputs. The principal advantage of Deep Learning, however, is computational speed
and efficiency.

Figure 2 shows a deep learning network applied to the task of forecasting the S&P500
index. The inputs are the 10 largest stocks in the index and there are two hidden layers.
Mathematically, the network is represented as follows:

µ̂y(x; Ω̂ = Θ
(
∑H

h=1 wlhΦh(∑K
k=1 whkxk + ωh) + ωl

)
Here, the left-hand side is the output. The DL network consists of one layer of K

input nodes x1, . . ., xK, a layer of l output nodes, and H hidden layer nodes. In this case,
K = 10, l = 1, and H = 2. The functions Θ and Φ are termed activation functions. These
can be sigmoidal 1/(1 + e−x), cosh(x), tanh(x), heavyside gate functions, or rectified linear
units (ReLU), Max(x, 0). The latter function has proved particularly effective for dimension
reduction. For a continuously valued target variable, the output functions Θ are usually
linear and may be the identity. The w are referred to as the weights and the ω are constant
intercept terms known as biases. The set of estimated weights and biases is denoted by
{Ω̂, (w1, . . ., wKH+Hl, ω1, . . ., ωH+l) ∈ Ω̂}. These weights and biases cannot be interpreted,
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as coefficients in OLS regression are interpreted. However, the Jacobian matrix of these
weights and biases can be used to calculate the relative importance of each input to the
network.
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H2O’s Deep Learning is based on a multi-layer feed-forward ANN that is trained
with stochastic gradient descent using back propagation. The network can contain a large
number of hidden layers consisting of neurons with tanh, rectifier, and maxout activation
functions. Advanced features such as adaptive learning rate, rate annealing, momentum
training, dropout, L1 or L2 regularization, checkpointing, and grid search are provided.3

2.4. Stacked Ensembles

Ensemble ML methods use multiple learning algorithms to obtain better predictive
performance than could be obtained from any one of the constituent ML algorithms. Many
popular modern machine learning algorithms are actually ensembles. For example, the
above discussed Random Forest and Gradient Boosting Machine (GBM) are both ensemble
learners. Both bagging (e.g., Random Forest) and boosting (e.g., GBM) are methods for
ensembling that take a collection of weak learners (e.g., decision tree) and form a single,
strong learner. Stacking (Wolpert 1992), also referred to as stacked generalization, is
another method of combining the predictions of several individual ML algorithms. The
ML algorithms are first trained on the available data. A combiner algorithm is then trained
to make a final prediction using the individual predictions of the ML algorithms as inputs.
A logistic regression model is commonly used as the combiner. The resulting stacked
ensemble frequently out-performs any of the constituent individual ML algorithms.

H2O’s Stacked Ensemble method is a supervised ensemble machine learning algo-
rithm that finds the optimal combination of a collection of prediction algorithms using
stacking. Like all supervised models in H2O, Stacked Ensemble supports regression, binary
classification, and multi-class classification.4

3. Data and Methodology

Following Fama and French (2015), and Gregoriou et al. (2019), we tested all our
specifications on a common data set. We initially used the U.S. Research Returns Data
25 value-weighted portfolios (daily and monthly), sorted by size and momentum, together
with the associated momentum risk factors. In addition, we used the Fama–French three-
factor model and five-factor model risk factors, together with the applicable one-month
T-bill rates,5 which were obtained from the Kenneth R. French Data Library. These data
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provide the most complete history of returns possible for the broad US stock market from
1926 to 2021. Using these data facilitates comparability with the results of Fama and French
(1993, 2015), Carhart (1997), and others who have used the same data. The full sample
period we used was 1927:01 to 2021:06, giving 1133 monthly observations. We used the full
sample period for our analysis. We tested thirteen different model specifications on the full
sample period. Our test assets (dependent variables) were the excess returns generated by
the 25 portfolios. We also added a 26th asset, the excess return of Portfolio 25—Portfolio
1 (big minus small). We computed the excess returns by subtracting the T-bill rate from
each portfolio return. We examined how well each of our specifications and each ML
algorithm priced the excess returns of these portfolios, compared to a conventional analysis
using OLS. Additionally, we calculated four further models which included the RMW
and CMA profitability and investment risk factors from the Fama and French (2015) five-
factor model for the 693 months for which these factors are available. In all, we estimated
4420 individual models for 17 specifications and 26 portfolios, and generated 10 different
ML models for each.

3.1. The Factor Model Specifications Estimated

In order to assess how well ML algorithms measure risk-adjusted returns, we first
analysed model specifications (1)–(13) in Table 1 on the full data set, and then specifications
(14) to (17) on the smaller 693 month data set.

Table 1. Specifications tested.

rit − r f t = αi + βi,MaxPit−1 MaxPit−1 + βi,Pit−1 Pit−1 + εit (1)

rit − r f t = αi + βi,MKTt MKTt + εit (2)

rit − r f t = αi + βi,MKTt MKTt+βi,MaxPit−1
MaxPit−1 + εit (3)

rit − r f t = αi + βi,MKTt MKTt + βi,Pit−1 Pit−1 + εit (4)

rit − r f t = αi + βi,MKTt MKTt+βi,MaxPit−1
MaxPit−1 + βi,Pit−1 Pit−1 + εit (5)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB3i
SMB3t + βi,HMLi HMLt + εit (6)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB3i
SMB3t + βi,HMLi HMLt+βi,MaxPit−1

MaxPit−1 + εit (7)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB3i
SMB3t + βi,HMLi HMLt + βi,Pit−1 Pit−1 + εit (8)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB3i
SMB3t + βi,HMLi HMLt+βi,MaxPit−1

MaxPit−1 + βi,Pit−1 Pit−1 + εit (9)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB3i
SMB3t + βi,HMLi HMLt+βi,MOMt

MOMt + εit (10)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB3i
SMB3t + βi,HMLi HMLt+βi,MOMt

MOMt+βi,MaxPit−1
MaxPit−1 + εit (11)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB3i
SMB3t + βi,HMLi HMLt+βi,MOMt

MOMt + βi,Pit−1 Pit−1 + εit (12)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB3i
SMB3t + βi,HMLi HMLt+βi,MOMt

MOMt+βi,MaxPit−1
MaxPit−1 + βi,Pit−1 Pit−1 + εit (13)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB5i
SMB5t + βi,HMLi HMLt+βi,RMWt

RMWt+βi,CMAt
CMAt + εit (14)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB5i
SMB5t + βi,HMLi HMLt+βi,RMWt

RMWt+βi,CMAt
CMAt+βi,MaxPit−1

MaxPit−1 + εit (15)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB5i
SMB5t + βi,HMLi HMLt+βi,RMWt

RMWt+βi,CMAt
CMAt + βi,Pit−1 Pit−1 + εit (16)

rit − r f t = αi + βi,MKTt MKTt+βi,SMB5i
SMB5t + βi,HMLi HMLt+βi,RMWt

RMWt+βi,CMAt
CMAt+βi,MaxPit−1

MaxPit−1 +

βi,Pit−1 Pit−1 + εit
(17)

Specification (1) is the Peak-End hypothesis in isolation. In Specification (1), rit − r f t is
the portfolio i alpha. MaxPit−1 is the monthly excess return for portfolio i, implied by the
highest daily return occurring in the previous month. This is the PEAK variable. Pit−1 is the
monthly excess return for portfolio i for the previous month; this is the END variable. εit is
a zero-mean residual. Specification (2) is the single-factor CAPM. The variable MKTt in
Specification (2) is (rMKTt − rft), and represents the excess return on the market at time t.
Specifications (3), (4), and (5), respectively, add first the peak factor MaxPit−1, then the end
factor Pit−1, and finally both together to the single CAPM risk factor. Specification (6) is
the Fama and French (1993) three-factor model, which adds firm size and value factors
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to the single CAPM factor. Specifications (7), (8), and (9), respectively, add first the peak
factor MaxPit−1, then the end factor Pit−1, and finally both together to the three (Fama and
French 1993) risk factors. Specification (10) is the Carhart (1997) model, which extends the
Fama and French (1993) three-factor model by additionally including a momentum factor.
As before, specifications (11), (12), and (13), respectively, add first the peak factor MaxPit−1,
then the end factor Pit−1, and finally both together to the four Carhart (1997) factors.

Specification (14) in Table 1 is the Fama and French (2015) five-factor model. This
includes two additional factors, RMWt and CMAt, intended to capture profitability and
investment effects, respectively. As before, we added first the peak factor MaxPit−1, then
the end factor Pit−1, and finally both together to Specification (14), giving us Specifications
(15)–(17).

If, in any of the specifications in Table 1, ML algorithms provide more accurate mea-
surements of excess returns, then we should expect to find significantly smaller residuals
in out-of-sample tests than we observe for conventional estimation methods.

3.2. Testing Procedure

Firstly, we used our software to perform data scaling. ML algorithms generally
perform better if the data are scaled between 0 and 1. AutoML does not currently support
this data pre-processing feature. However, the required data pre-processing (scaling) and
post-processing (inverse scaling) is provided by our Python code. Next, we utilised AutoML
to generate 10 models, using its supported algorithms for each of our 17 specifications
on each of the 26 portfolios. We generated out-of-sample performance statistics for each
model. Following inverse scaling, the out-of-sample actual and estimated values of excess
returns for each model were saved. Two-sample t-tests assuming unequal variances were
performed on each of these pairs.

For comparison, we next performed OLS regressions for each of our 17 specifications
for each of the 26 portfolios. The resulting models were again used to generate out-of-
sample performance statistics, on the same-sized withholding data sets as used for our
ML models. The out-of-sample actual and estimated excess returns were again saved and
paired t-tests performed.

4. Empirical Findings

Our findings are presented in Table 2. The table compares the results from the ML
algorithms with those from OLS regressions for the same data for portfolio 26 which
represents the difference between portfolio’s P25 and P1. In particular, we compare the
two approaches on one month’s, out-of-sample data. We measure the out-of-sample root
mean squared error (RMSE), mean absolute error (MAE) and excess returns for each of the
methods. We initially see that various different H2O AutoML algorithms performed best
depending on the particular Asset Pricing model. It can be seen that the out-of-sample root
mean squared error (RMSE) are smaller for the ML algorithms in almost all cases, the only
exceptions being for specifications (7) and (14) where the OLS results are marginally smaller.
The results are also strong for the mean absolute error (MAE) figures with the ML being
superior for all except 5 specifications and in these cases the difference is marginal. Thus,
generally, for any given model the ML algorithms will give more accurate projections.

As another comparison between the ML algorithms and the OLS estimates, we ex-
amined the out-of-sample excess returns (alphas). If the risk factors in an asset pricing
model explain all the variation in expected returns, then alpha should be 0 (Gregoriou
et al. 2019). Thus, a larger value of alpha in absolute terms indicates a less effective asset
pricing model. Given this, we can evaluate how well the risk factors in the model explain
the market performance out of sample and whether different risk factors or combinations
of risk factors might perform better. We see that whether the absolute values of alpha from
the ML algorithms or OLS are larger varies substantially across the asset pricing models,
with neither approach being systematically dominant. For the simple Peak + End model
(model 1), the OLS performs significantly better. For the single factor CAPM (model 2),
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there is no significant difference between the alpha estimates. For the models extending
the CAPM by adding in the peak and/or end variables (models 3 to 5), the OLS tends to
perform better although not always to a significant extent. For the models based on the FF
three-factor model (models 6 to 9), the ML performs substantially better for models 6 and
8 but not for the other two models. For the models based on the Carhart model (models
10 to 13), the ML always performs substantially and significantly better. For the models
based on the FF five-factor model (models 14 to 17), there are not significant differences in
performance except for in model 17, where OLS performs significantly better.

Table 2. Portfolio P26—out-of-sample results, H2O AutoML vs. OLS estimation. This table shows the
estimates of abnormal returns (Jensen’s Alpha) for portfolio 26 (the difference between portfolio P25
and portfolio P1), estimated by AutoML and OLS, respectively, for each of 17 popular factor models
from the asset pricing literature. Portfolio P25 contains the largest capitalisation firms with the largest
momentum. Portfolio P1 contains the smallest capitalisation firms with the smallest momentum.
In the table, the first column gives the specification tested. The second column indicates which
H2O AutoML algorithm performed the best for each specification for portfolio P26. The next two
columns give the RMSE and MAE achieved by the algorithm in question on out-of-sample data.
The following column gives the corresponding out-of-sample estimate of annualised excess returns.
The following three columns give corresponding out-of-sample statistics for the same specifications
resulting from OLS regressions. The final column gives the t-statistic for a paired t-test of the AutoML
vs. OLS estimates.

Specification H2O AutoML OLS T-stat

Results for Portfolios P26 Algorithm RMSE MAE Alpha RMSE MAE Alpha H2O Automl
vs. OLS

(1) PEAK + END alpha SE Best of Family 7.31 5.84 −0.36 7.46 5.92 −0.11 −2.51 ***

(2) SINGLE FACTOR
CAPM alpha GBM 6.46 5.42 0.22 6.50 5.44 −0.02 1.27

(3) SINGLE FACTOR
CAPM + PEAK alpha GLM 6.48 5.36 −0.59 6.48 5.37 −0.49 −5.35 ***

(4) SINGLE FACTOR
CAPM + END alpha GBM 6.32 5.10 −0.32 6.51 5.43 −0.04 −1.02

(5) SINGLE FACTOR CAPM
+PEAK + END alpha GBM 6.46 5.24 −1.01 6.49 5.38 −0.47 −1.89 *

(6) FF 3 FACTOR MODEL
alpha SE Best of Family 5.90 4.84 0.75 5.94 4.74 1.83 −4.65 ***

(7) FF 3 FACTOR MODEL +
PEAK alpha SE Best of Family 5.75 4.67 1.28 5.69 4.63 1.17 3.91 ***

(8) FF 3 FACTOR MODEL+
END alpha SE All Models 5.67 4.66 0.71 6.00 4.78 1.84 −3.56 ***

(9) FF 3 FACTOR MODEL +
PEAK + END alpha SE Best of Family 5.72 4.66 1.22 5.72 4.65 1.22 −0.19

(10) CARHART MODEL
alpha SE All Models 4.39 3.39 0.26 4.65 3.51 1.01 −6.55 ***

(11) CARHART MODEL +
PEAK alpha SE All Models 4.38 3.39 −0.01 4.39 3.31 0.48 −4.08 ***

(12) CARHART MODEL +
END alpha SE Best of Family 4.49 3.48 0.14 4.65 3.49 0.97 −5.55 ***

(13) CARHART MODEL +
PEAK + END alpha SE Best of Family 4.41 3.38 −0.30 4.46 3.34 0.60 −5.53



Risks 2024, 12, 148 10 of 12

Table 2. Cont.

Specification H2O AutoML OLS T-stat

Results for Portfolios P26 Algorithm RMSE MAE Alpha RMSE MAE Alpha H2O Automl
vs. OLS

(14) FF 5 FACTOR MODEL
alpha SE Best of Family 4.76 3.67 1.17 4.72 3.74 1.21 −0.14

(15) FF 5 FACTOR MODEL
+ PEAK alpha SE Best of Family 4.53 3.49 0.60 4.54 3.58 0.40 1.28

(16) FF 5 FACTOR MODEL+
END alpha SE Best of Family 4.62 3.61 1.30 4.75 3.75 1.21 0.62

(17) FF 5 FACTOR MODEL
+ PEAK + END alpha SE All Models 4.13 3.38 1.02 4.51 3.57 0.37 2.70 ***

Significant at 1% level ***. Significant at 5% level **. Significant at 10% level *.

Given the foregoing, we can see that if ML algorithms are used we might arrive at
rather different optimal factor models from those determined using OLS. For example,
taking into account the accuracy of predictions and the support for the risk factors chosen,
the Carhart-based models seem much more attractive when ML methods are used. The
Carhart-based models generally perform better than the FF five-factor models which are
coming into prominence in the asset pricing literature.

5. Conclusions

We have evaluated whether machine learning methods can better model excess port-
folio returns compared to standard regression-based strategies from the econometric lit-
erature. We have examined 17 benchmark factor model specifications which are based
on well-known works in the finance literature. The factors are based on Expected Utility
Theory and Prospect Theory. We used a variety of machine learning methods and ranked
the best-performing algorithms. Our tests used 95 years of CRSP data from 1926 to 2021,
encompassing the price history of the broad US stock market. Our findings suggest that
machine learning methods provide more accurate models of stock returns based on risk
factors than standard regression-based methods of estimation. They also indicate that
certain risk factors and combinations of risk factors may be more attractive when more
appropriate account is taken of the non-linear properties of the underlying assets. We
believe our research has provided three fundamental contributions to the literature, which
are the following. First, asset pricing models are greatly improved when they encapsu-
late behavioural factors, supporting the research of (Gregoriou et al. 2019). Second, we
established that machine learning provides a superior fit of the data and should be used
to estimate asset pricing models in the future, instead of standard OLS. Finally, we wit-
nessed the power of Automated Machine Learning, where the optimal non-linear model is
determined empirically by the data.

Future work might usefully consider whether machine learning can be of assistance in
selecting possible new factors for use in asset pricing. Also, more empirical evidence for
different financial markets and over various portfolios would add value to the research in
this field.
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Notes
1 Gregoriou et al. (2019) was recently cited by (Saona et al. 2023; Le and Gregoriou 2022).
2 There has been modest use of artificial intelligence techniques in Finance mainly for prediction see, for example, (Manahov et al.

2019) for a summary of work using Genetic Programming.
3 https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html accessed on 21 August 2024.
4 https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html accessed on 21 August 2024.
5 For more information readers are referred to the following web resources http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/ftp/25_Portfolios_ME_Prior_12_2_CSV.zip accessed on 21 August 2024. http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/ftp/25_Portfolios_ME_Prior_12_2_Daily_CSV.zip accessed on 21 August 2024. http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/ftp/F-F_Momentum_Factor_CSV.zip accessed on 21 August 2024. http://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/ftp/F-F_Momentum_Factor_daily_CSV.zip accessed on 21 August 2024.
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