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Abstract: This research paper investigates a novel triangular honeycomb thermochemical energy
storage reactor for low- and medium-temperature applications in buildings, emphasizing its potential
to enhance sustainable heating. Using a validated 3D numerical model, the reactor’s performance
is analyzed in depth across various configurations, focusing on key parameters such as energy
storage density, pressure drop, internal air flow distribution, and round-trip efficiency. Results
show that the reactor achieved an energy storage density of 872 kJ/kg and a round-trip thermal
efficiency of 41.51% under optimal conditions. Additionally, the triangular honeycomb reactor
(30◦, 60, and 90◦) configuration achieved the highest temperature lift of 48.7 ◦C. In a feasibility
analysis for residential heating in northern China, the reactor with 30◦, 60◦, and 90◦ angles required
24.91% less volume to meet daily heating demands compared to other configurations. This study
contributes valuable insights for the development of efficient, low-carbon heating solutions for low-
and medium-temperature applications in buildings, offering interesting advancements in the field of
thermochemical energy storage technology.

Keywords: thermochemical energy storage; reactor; parameter study; low- and medium-temperature
application

1. Introduction
1.1. The Need to Use Sustainable Measures in Medium- and Low-Temperature Heating

Low-carbon heating in the medium- and low-temperature range, with a flow tempera-
ture range of 30 ◦C to 65 ◦C, is critical for the decarbonization of the operational carbon
emissions of buildings. A viable strategy is to effectively utilize and store low-carbon
renewable energy, such as solar energy, off-peak renewable electricity, and industrial waste
heat, to meet space heating demands as required, especially during winter or cold nights.
But the intermittent nature of renewable energy sources, including solar energy, off-peak
electricity, and industrial waste heat, poses significant challenges to their widespread adop-
tion [1]. However, the emergence of thermal energy storage technology offers a promising
solution to address the temporal mismatch between energy supply and residential heat-
ing demands in building applications [2]. Several solutions are currently commercially
available, including thermal storage cylinders integrated with immersion heaters, heat
pumps, or solar thermal modules, as well as the utilization of battery storage for residential,
commercial, and utility purposes. Despite the availability of these promising solutions,
attention should also be directed towards emerging technologies still in the developmental
stage, such as adsorption-based thermochemical energy storage.

Among various thermal energy storage technologies, adsorption-based thermochem-
ical energy storage stands out as particularly promising due to its high energy storage
density and minimal heat loss during long-term seasonal storage periods. In this process,
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thermal energy is captured and stored as adsorption potential during the charging phase,
as the adsorbates are desorbed from the adsorbent. Subsequently, during the discharging
phase, the adsorbent reabsorbs the adsorbates, releasing the stored energy in the form of
adsorption heat. This released energy can then be utilized to provide space heating and hot
tap water in residential building environments [3].

When compared to battery storage, adsorption-based technology presents a distinct advan-
tage by not requiring the environment to be maintained at a temperature suitable for battery
operations. This is particularly beneficial, given that battery performance in winter tends to
diminish and relies heavily on ideal external conditions for long-term durability and optimal
performance. In contrast to sensible energy storage methods like thermal storage cylinders,
adsorption-based energy storage offers significantly higher energy density, typically ranging
from 2 to 10 times greater. This heightened energy density stems from the chemical potential
inherent in adsorption processes, allowing for more energy to be stored within the same volume.
Furthermore, during storage, adsorption-based systems experience minimal energy loss, as the
stored energy is bound within the chemical bonds of the adsorbent material. Unlike sensible
storage, which requires the maintenance of specific temperatures, adsorption-based systems
operate based on the principles of adsorption and desorption reactions, eliminating the need for
temperature control of the storage material.

While the principle of adsorption-based thermochemical energy storage appears promising,
significant advancements are required, particularly concerning the energy storage reactor. This
reactor plays a crucial role in facilitating the interaction between flowing air and thermochemical
materials, which is pivotal for the effective operation of the system.

1.2. Review of Recent Thermochemical Reactor Developments for Medium- and Low-Temperature Heating

Adsorption-based thermochemical energy storage systems for medium- and low-
temperature heating primarily revolve around solid-gas reactive adsorbent–adsorbate
working pairs, encompassing pure salt hydrates, porous matrices, and composites com-
posed of salt hydrates and porous matrices [4,5]. Within this context, zeolites, which are
renowned for their porous nature, are frequently employed as matrices due to their rapid
adsorption capabilities, favorable reaction kinetics, low cost, and high thermal stability [6,7].

In addition to the materials, a surge of thermochemical reactor studies has been con-
ducted with the aim of improving reactor energy storage performance in either charging or
discharging processes. Existing thermochemical reactor designs can be classified as stack-
ing [8–10], packing [11–13], modularity [14–16], or heat exchanger modification [17–19]
schemes. In order to achieve a satisfactory performance, the targets of reactor studies are
(1) an increased contact area between reactants (usually represented by air and a solid
thermochemical material) achieved through perforated duct or heat exchanger modifica-
tions; (2) a promising theoretical energy storage density achieved by increasing the mass
of thermochemical material through stacking and packing configurations, in addition to
trials of new materials; and (3) flexible charging and discharging controls achieved by a
modularity configuration to allow for charging and discharging control groups.

With respect to the modularity and stacking configurations, Tatsidjodoung et al. [15] tested
the thermal performance of a zeolite-based open reactor and achieved an average temperature lift
of 38 ◦C for 40 kg of zeolites during an 8-hour discharging process under an inlet air temperature
of 20 ◦C, specific inlet air humidity of 10 g/kg, and an air flow rate of 180 m3/h. Johannes
et al. [20] designed an energy-dense zeolite thermochemical reactor using two storage units,
and the obtained thermal efficiency ranged from 34% to 55.1%. Alebeek et al. [16] studied the
characteristics of an open, fully packed zeolite/water adsorption heat storage system consisting
of four separate segments with 62.5 L of zeolite each, and the maximum output thermal power
was 4.4 kW, with a maximum temperature step of 24 ◦C achieved during the tests. Modularity
and stacking can contribute to an energy-dense reactor and flexibility in controlling the charging
or discharging sequence. However, there is a list of challenges to be addressed, including slow
local diffusion of water molecules, poor air flow uniformity due to the distribution of zeolite
particles, increased air resistance, and increased air pressure drop.
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On the other hand, other researchers have been working on variations of reactor packing
methods to enhance the reaction kinetic performance and airflow uniformity. For example,
Zhang et al. [11] investigated the thermal performance of a zeolite 13X-based net-packed
thermochemical reactor. The results indicated that a maximum air temperature lift of 38.6 ◦C
was achieved by the copper mesh method, and an energy storage density of 784.4 kJ/kg, along
with a thermal efficiency of 38.2%, was also obtained. In addition, the pressure drop was reduced
by 28.1% compared with the non-packed method. Ji et al. [12] introduced a multiple-metal
mesh-packed method to enhance reactor performance. The cube-shaped mesh configuration
achieved an energy storage density of 712.2 kJ/kg and a thermal efficiency of 26.8%. While the
packing method demonstrated commendable thermal performance across the entirety of the
reactor, the occurrence of non-reaction zones within the particles and inadequate heat–mass
transfer rates across each mesh net diminished both the energy storage density and thermal
efficiency, which are crucial for energy storage.

1.3. Innovations and Contributions of This Study

While previous studies have made significant strides in improving reactor performance
through the use of various reactor configurations and materials, it is necessary to evaluate
and identify novel reactor configurations with a balance in terms of reactant–air contact, high
theoretical energy density, and flexible charging/discharging control capability. Very few
researchers have proposed relevant studies, and additional in-depth work is needed. The
authors of [21] proposed a triangular honeycomb zeolite reactor that they compared with a
conventional particle-based reactor; the proposed reactor achieved a pressure drop of 235 Pa/m
and a 21.93% increase in thermal efficiency. However, the reactor design itself has not been
studied in depth, and a list of questions remains to be answered, including with respect to the
variations of configurations and the corresponding thermal efficiency under various operating
conditions. Therefore, this study presents the following two significant innovations:

(1) In-depth investigations of an innovative triangular honeycomb reactor;
(2) Extensive parametric analysis based on reactor configuration studies.

The data presented in this study can provide significant contributions to thermal
energy storage studies and applications, listed as follows.

(1) In-depth studies on a novel triangular honeycomb reactor, with a 140% improvement
in air–reactant contact area compared to conventional designs, enhancing energy
storage and efficiency;

(2) A detailed critical parametric performance study, including comprehensive analysis
of reactor parameters, including energy density, pressure drop, air distribution, and
round-trip efficiency, providing new insights into optimal reactor configurations for
thermochemical energy storage;

(3) Optimized energy control, offering valuable data to improve flexible charging and
discharging controls, ensuring effective energy storage and release;

(4) Contribution to low-carbon heating, including the evaluation of the reactor’s feasibil-
ity for residential heating applications in cold regions and calculation of the required
reactor volume for real-world heating demands.

2. The Energy Storage Process and Descriptions of the Novel Honeycomb Reactor
2.1. Thermochemical Energy Storage Process

The entire thermochemical energy storage system comprises both charging and dis-
charging processes, as illustrated in Figure 1. During the charging phase, ambient air
first undergoes preheating in a heat exchanger before passing through an energy source,
such as an electric heater powered by off-peak electricity or solar energy, to produce high-
temperature hot air. This heated air then travels through the thermochemical reactor, where
it causes water molecules to desorb from the honeycomb storage materials, effectively
storing heat energy within the thermochemical substances. The energy storage duration
can be days or months, as long as the thermochemical material remains separate from the
moisture source. Conversely, during the discharging phase, ambient air is humidified using
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a moisture source like a humidifier to provide moisture for the energy release reaction. This
humidified air is then directed into the honeycomb reactor, where the materials adsorb
water molecules from the air, subsequently releasing the stored heat energy. This liberated
heat energy is readily available for residential building space-heating applications.
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2.2. Details on the Triangular Honeycomb Reactor

A schematic representation of the triangular honeycomb reactor is detailed in [21]. In short,
it comes with a list of innovations. First, its configuration comprising numerous channels signif-
icantly enhances heat and mass transfer rates, thereby reducing reaction times due to the large
size of the heat–mass exchange area. Compared to a conventional packed-bed thermochemical
reactor with 3–5 mm pellets, at the macroscopic level, this honeycomb shows an increase in the
air–reactant contact area of about 140% compared to the conventional setting. Secondly, the
increased air–reactant contact helps to reduce the non-reactive zones within the reactor, which
effectively boosts achievable energy storage density and thermal efficiency. Additionally, the
reduction of pressure loss in the reactor results in decreased electrical consumption by the fan,
thereby enhancing overall system efficiency.

A list of structural variations can be applied to the triangular honeycomb reactor. With
the aim of increasing the theoretical energy density under a constant reactor volume, three
different triangular honeycomb structures are proposed in Table 1.



Buildings 2024, 14, 3192 5 of 21

Table 1. Details of the three different triangular honeycomb channels proposed for space heating.

Triangular honeycomb
structure
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3. Numerical Model Establishment
3.1. Numerical Model Description

The triangular honeycomb reactor, composed of multiple channels, assumes uniform
heat and mass transfer performance, so a single channel is selected as the calculation do-
main. A single triangular honeycomb channel with a length of L is chosen as the compu-
tation domain, as shown in Figure 2.
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3. Numerical Model Establishment
3.1. Numerical Model Description

The triangular honeycomb reactor, composed of multiple channels, assumes uniform
heat and mass transfer performance, so a single channel is selected as the calculation
domain. A single triangular honeycomb channel with a length of L is chosen as the
computation domain, as shown in Figure 2.
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The triangular honeycomb reactor consists of multiple small honeycomb channels,
and for the purposes of numerical analysis, the following assumptions are made:

• All triangular honeycomb channels are assumed to have the same heat and mass
transfer performance. This assumption simplifies the calculation of the reactor’s
thermal performance by treating each channel equivalently [22].

• The fluid inside the air channel is regarded as an ideal gas. This assumption is widely
used in thermochemical modeling to streamline analysis, especially when dealing
with air flow at moderate temperatures and pressures [23].

• Heat conduction and mass diffusion are considered within the triangular honeycomb
channels, with the thermal conductivity, specific heat, and density of both air and
zeolite 13X taken as functions of water vapor content. This enables the model to
account for heat and mass transport processes during adsorption and desorption [24].

• It is assumed that the adsorption/desorption heat is sufficiently absorbed or diffused by
the reactant layer, allowing for efficient energy storage and release within the reactor [25].

• Radiative heat transfer inside the reactor is considered negligible. This assumption
is made to simplify the model, as the impact of radiation is minimal compared to
convection and conduction at the temperature levels being studied.

These assumptions are made to focus on macroscopic phenomena, measuring per-
formance at the scale of meters or millimeters rather than at the molecular level. The key
benefits of these assumptions include reducing computational complexity, increasing com-
putational efficiency, and decreasing overall simulation time. However, a drawback is that
the model does not fully replicate the microscopic interactions or the detailed molecular
dynamics that occur within each channel.

3.2. Descriptions of Heat and Mass Transfer
3.2.1. Heat Transfer and Energy Balance

Equations (1) and (2) depict heat transfer in flowing air and thermochemical material.

ρhacp,ha
∂T
∂t

+ ρhacp,hav∇T +∇·(−kha∇T) = 0 (1)

ρtotcp,tot
∂T
∂t

= ∇·(ktot∇T) + Mw

(
(1 − ε)

∂Cz

∂t
−∇·(Ds,eff∇Cz)

)
·∆H (2)

Here, ρha is the humid air density
(
kg/m3),cp,ha is the specific heat of humid air (J/(kg·K)),

and kha is the thermal conductivity of humid air (W/(m·K) . ρtot is the density of the
entire adsorbent layer

(
kg/m3), including adsorbed water and porous adsorbents;cp,tot

is the specific heat of adsorbent layer (J/(kg·K)); and ktot is the thermal conductivity of
the adsorbent layer (W/(m·K))—all of which are functions of water vapor, as shown in
Table 2. v is velocity (m/s), Mw is the molar mass of the water vapor (kg/mol), Ds,eff is the
effective surface diffusivity

(
m2/s

)
, Cz is the water concentration in the matrix of zeolites(

mol/m3), ε is the porosity of zeolites, and ∆H is the heat of adsorption (J/kg).
The heat of adsorption (∆H(J/kg)) is related to the water uptake (w) of zeolite 13X [26],

which can be calculated by Equation (3).

∆H =
(

7 × 107w6 − 7 × 107w5 + 3 × 107w4 − 7 × 106w3 + 89, 9951w2 − 69, 983w + 6491.3
)
× 1000 (3)

3.2.2. Mass Transfer and Mass Balance

Moisture in flowing air during the discharging process is adsorbed by the thermochemical
material, which includes dry air and water vapor. The moisture is also adsorbed by the zeolites,
then diffuses into the pores and matrix of the zeolite 13X [23]. Therefore, the moisture diffused
in the air and zeolite 13X can be depicted by Equations (4) and (5), respectively.
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∂Ca

∂t
+ v∇Ca +∇·(−Dv,a∇Ca) = 0 (4)

ε
∂Cp

∂t
+ (1 − ε)

∂Cz

∂t
= ∇·

(
Dp,eff∇Cp

)
+∇·(Ds,eff∇Cz) (5)

Here, Ca is the water concentration within the air
(
mol/m3), Dv,a is the molecular

diffusivity of water in air
(
m2/s

)
, Cp is the concentration of water in the adsorbent pores(

mol/m3), and Dp,eff is the effective pore diffusivity
(
m2/s

)
inside the porous zeolite.

The initial thermo-physical parameters of air, water vapor, liquid water, and zeolite
13X, along with other calculation parameters required for the whole reaction process, are
presented in Table 2 and Ref. [21].

Table 2. Thermo-physical parameters of humid air and humid zeolite 13X.

Air

ρha = ρa(1 + w1)

w1 = CaRTa Mw
P0 Ma−CaRTa Ma

cp,ha =
ρacp,a+w1ρacp,v

ρha

kha =
ρaka+w1ρakv

ρha

Zeolite
13X

ρtot = ερzp + (1 − ε)ρzm
ρzp = ρa(1 + w2)
ρzm = ρz(1 + w)

w2 =
CpRTa Mw

P0 Ma−CpRTa Ma

w = Cz Mw
ρz

cp,zp =
ρacp,a+w2ρacp,v

ρzp

cp,zm =
ρzcp,z+wρzcp,l

ρzm

cp,tot =
(1−ε)ρzmcp,zm+ερzpcp,zp

ρtot

kzm =
ρzkz+wρzkl

ρzm

kzp =
ρaka+w2ρakv

ρzp

ktot =
(1−ε)ρzmkzm+ερzpkzp

ρtot

3.2.3. Adsorption Kinetics

A Linear Driving Force (LDF) model to describe diffusion-controlled kinetics was
proposed by Glueckauf [27], as depicted by Equation (6).

∂w
∂t

= kLDF
(
weq − w

)
(6)

where ∂w
∂t denotes the adsorption reaction rate (kg/(kg·s)) and weq is the equilibrium water

concentration
(
kgwater/kgzeolite

)
. The effective rate coefficient (kLDF (1/s)) is calculated by

Glueckauf approximation [28] and based on the properties of zeolites [29].
The equilibrium adsorption of water vapor in zeolite 13X is expressed by an adsorption

curve [30,31]. The maximum amount of moisture that zeolite 13X can adsorb is a function
of relative humidity (∅z), which can be calculated using Equation (7).

weq =

(
185.2

14.87∅z

1 + 14.87∅z
+ 9.067∅z + 3.608

∅z

1 − ∅z

)
/ρz (7)

where weq is the equilibrium among of moisture adsorption by the adsorbent (kg/kg) and
∅z is the relative humidity of zeolite (%).
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3.2.4. Initial and Boundary Conditions

The initial state and boundary conditions for the charging and discharging processes
in the modeling simulation are shown in Table 3.

Table 3. Initial and boundary conditions for charging and discharging processes.

Initial Conditions Inlet Air Conditions

Charging
∅z,ini = 90%, 93%, 95%, 97%

.
mchar,in = 129 kg/h

Tamb = 25
◦
C ∅char,in = 0

Tz,ini = 25
◦
C Tchar,in = 25–180

◦
C

Discharging
∅z,ini = 10%, 7%, 5%, 3%

.
mdis,in = 46 kg/h

Tamb = 25
◦
C ∅dis,in = 70%, 98%

Tz,ini = 25
◦
C Tdis,in = 25

◦
C

Outlet air conditions [22]

Outlet atmospheric air pressure
[
−PI + µ

(
∇u + (∇u)T

)]
n = −P̂0n

All variables have zero normal gradients at the outlet. −n·Dv,a∇Ca = 0
−n·(−k ha∇T) = 0

Interface boundary conditions [22]

Boundary conditions at the air–adsorbent interface layer are derived from mass and energy balances as follows:

−ρaDp,eff
∂Cp
∂n − ρzDs,eff

∂Cz
∂n = −ρaDv,a

∂Ca
∂n

−ktot
∂T
∂n = −kha

∂T
∂n − MwDs,eff

∂Cz
∂n ∆H

Wall boundary conditions

There is no heat flux for the adsorbent layer.

3.3. Performance Indicators of the Proposed Thermochemical Reactor

In the adsorption heat storage system, energy storage density and thermal efficiency
are key indicators for the assessment of the system’s feasibility [11], as depicted in the
Table 4. The energy storage density reflects the ratio of thermal energy cumulated during
the discharging process to the mass of zeolites, while thermal efficiency is the ratio of
cumulative thermal energy for the discharging process to the cumulative thermal energy
for the charging process. During the charging process, instantaneous heat transfer to
the adsorbents and the thermal energy cumulated over the charging reaction time are
represented by Equations (8) and (9), respectively. The instantaneous heat released from
the adsorbents and the thermal energy cumulated during the discharging reaction time
are described by Equations (10) and (11), respectively. The energy storage density and
thermal efficiency are determined by the thermal energy cumulated during the charging
and discharging processes, as shown in Equations (12) and (13).

Table 4. Equations of reactor performance during the charging and discharging processes.

Description Unit Equation

Charging

Instantaneous heat transfer
to adsorbents W

.
Qchar,tr =

.
hchar,in −

.
hchar,out (8)

Cumulation of thermal energy
by adsorbents J Qchar,cum =

∫ tchar
0

( .
hchar,in −

.
hchar,out

)
dt (9)

Discharging

Instantaneous heat release
from adsorbents W

.
Qdis,re =

.
hdis,out −

.
hdis,in (10)

Release of cumulated thermal
energy by adsorbents J Qdis,cum =

∫ tdis
0

( .
hdis,out −

.
hdis,in

)
dt (11)

Energy storage density J/kg ESD =
Qdis,cum
mzeolite

(12)

Reactor thermal efficiency % η =
Qdis,cum
Qchar,cum

× 100% (13)
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The specific enthalpy of humid air is calculated using Equation (14), while the absolute
humidity of air (w1) is determined by Equations (15) and (16) [21].

h = cp,a·(Ta − 273) + w1·
(
2501 + cp,v·(Ta − 273)

)
(14)

w1 =
0.622ϕPsat

P0 − ϕPsat
(15)

Psat = exp
(

23.196 − 3816.44
Ta − 46.13

)
(16)

3.4. Model Validations

The equations were solved using COMSOL Multiphysics, employing the finite differ-
ence method with a time step of 30 s. This approach ensured accurate and stable simulations
of the heat and mass transfer processes within the triangular honeycomb reactor. The nu-
merical model shows an accurate representation of both reactor charging and discharging
process with data on air temperature and humidity.

Table 5 depicts the mean sum of the percent error (MSOPE) between experimental
tests and simulation results during the charging and discharging processes. Two sets of
experimental tests were conducted under the same settings for charging and discharging
processes to obtain sufficient test data on the changes in air temperature and the relative
humidity of air. Details of the experimental setup can be found in [32]. According to analysis
of the results of experimental tests and simulation, the MSOPE matches well between
experimental data and simulation data. Due to the slight differences in air temperature and
air relative humidity during the experimental test due to effects of the external environment,
like weather, the experimental data present a minor variation in the input data (for instance,
the inlet air temperature during discharging), leading to MSOPE variations.

In our previously published work [21], which involved another experimental test, the
mean sum of deviations in percentage errors between simulation results and experimental
tests for outlet air temperature were 0.6% and 4.1%, respectively, during the charging
process. The mean sum of deviations in percentage error between simulation results and
experimental tests for outlet air temperature and the outlet relative humidity of air during
the discharging process (using discharging test data from Exp. 2 reported in [32]) were
8.91% and 7.32% for temperature and 7.96% and 8.66% for relative humidity, respectively.
Using the average values of the inlet air temperature and inlet relative humidity of air
during the charging and discharging processes, simulation 3 was conducted to investigate
the influence of average inlet air temperature and the average inlet relative humidity
of air during the two experimental tests of the heat and mass transfer model. For the
charging process, the average inlet air temperature improved MSOPE values between
Exp.1 and Sim.3 and between Exp.2 and Sim.3. The average inlet air temperature of 29 ◦C
obviously decreased the deviations between Exp.1 and Sim.3 and between Exp.2 and Sim.3.
Additionally, the average inlet relative humidity of air in Exp.1 and Exp.2 slightly reduced
the MSOPE value between Exp.1 and Sim.3. However, the average inlet relative humidity
of air in Exp.1 and Exp.2 resulted in the highest MSOPE value of 10.29% between Exp.2
and Sim.3. According to the literature, an average deviation of less than 12% can yield
an accurate modeling result [13,33–35].Therefore, the proposed heat and mass transfer
model is validated and can accurately predict the heat and mass transfer performance
between flowing air and triangular honeycomb channels. The validated model was used to
investigate and analyze the heat and mass transfer performance of three different triangular
reactors in this study.
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Table 5. Analysis of the mean sum of the percentage errors between experimental tests and simulation
results during the charging and discharging processes.

Charging Process
(Tchar,in = 25–180

◦
C,

.
mchar,in = 129 kg/h)
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MSOPE2 =
100
n ∑n
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Exp.2
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MSOPE3 =
100
n ∑n
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MSOPE4 = 100
n ∑n

i=1

∣∣∣ Sim.3−Exp.2
Exp.2

∣∣∣ = 6.9%

Discharging process
(Tdis,in = 30

◦
C and Tavg,in = 29

◦
C,

.
mdis,in = 46 kg/h)
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4. Results and Evaluations of the Proposed Reactor Configurations
4.1. Air Velocity Distribution

Figure 3 illustrates the distribution of air velocity within a single triangular honeycomb
channel under identical air velocity conditions. During the charging phase, the triangular
honeycomb channel with angles of 60◦, 60◦, and 60◦ exhibits a more uniform air velocity
distribution than the other two triangular honeycomb channels. This variation is attributed
to differences in honeycomb shape and the hydraulic diameter of the channels. Additionally,
the triangular honeycomb channel with angles of 45◦, 45◦, and 90◦ displays slightly higher
air velocity distribution than the channel with angles of 30◦, 60◦, and 90◦. Specifically,
the maximum air velocity reaches 3.48 m/s and 1.40 m/s at the center of the triangular
honeycomb channel during the charging and discharging processes, respectively.
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4.2. Air Temperature during the Charging Process

The outlet air temperature value for three different triangular honeycomb reactors
with the same initial relative humidity of zeolites during the charging process basically
has the same increasing trend, as shown in Figure 4. A higher initial relative humidity
of zeolites results in higher absolute outlet air humidity; the highest absolute outlet air
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humidity is up to 0.019 kg/kg for the triangular honeycomb reactor with angles of 30◦,
60◦, and 90◦ under an initial relative humidity of 97%. This is attributed to the increased
adsorption of water molecules by zeolite during the discharging process, leading to higher
initial relative humidity and subsequently elevated absolute outlet air humidity during
the charging phase. Additionally, due to the different triangular honeycomb shapes and
air velocity distributions in the channel, the triangular honeycomb reactor with angles of
60◦, 60◦, and 60◦ presents the lowest absolute outlet air humidity under the same initial
conditions, and the triangular honeycomb reactor with angles of 30◦, 60◦, and 90◦ exhibits
the highest absolute outlet air humidity among three triangular honeycomb reactors.
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4.3. Air Temperature Lift in Discharging

Air temperature lift between the outlet air temperature and inlet air temperature
during the discharging process is used to evaluate the key parameter of the thermal
performance of the reactor. Figure 5 illustrates the impact of the initial relative humidity
of zeolites and the relative humidity of inlet air on air temperature lift. A lower initial
relative humidity of zeolites results in more heat energy stored inside the reactor, which
contributes to a higher air temperature lift. A higher relative humidity of inlet air also helps
to increase air temperature lift. The highest air temperature lift among the three different
reactors is achieved at 48.7 ◦C by the triangular honeycomb reactor with angles of 30◦, 60◦,
and 90◦ under an initial relative humidity of zeolites of 3% and a relative humidity of inlet
air of 98%. Compared with the other two triangular honeycomb reactors with angles of
45◦, 45◦, and 90◦ and 30◦, 60◦, and 90◦, the triangular honeycomb reactor with angles of
60◦, 60◦, and 60◦ presents the lowest air temperature lift and the highest absolute outlet
air humidity due to it having the largest heat-exchange area, which accelerates the heat
and mass transfer rate between flowing air and zeolite 13X. The triangular honeycomb
reactor with angles of 30◦, 60◦, and 90◦ achieves the highest air temperature lift and the
lowest absolute outlet air humidity under the same initial conditions, including the same
relative humidity of inlet air, during the discharging process. It has the lowest air velocity
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distribution among the three different triangular honeycomb channels and the smallest
heat–mass exchange areas, which slows down the heat and mass transfer rate, leading to
an increase in air temperature lift and a decrease in the absolute humidity of outlet air.
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Based on the discussions presented above, Table 6 presents a comparison of the rate of
peak air temperature lift of the triangular honeycomb reactor with angles of 60◦, 60◦, and 60◦

during the charging and discharging processes. During the charging process, compared with the
triangular honeycomb reactor with angles of 60◦, 60◦, and 60◦, the maximum increment rates of
air temperature lift are 28.93% for the triangular honeycomb reactor with angles of 45◦, 45◦, and
90◦ and 40.86% for the triangular honeycomb reactor with angles of 30◦, 60◦, and 90◦ under an
initial relative humidity of zeolites of 93% and 97%, respectively. For the discharging process, a
lower initial relative humidity of zeolites results in a lower increment rate of air temperature lift.
The increment rate of air temperature lift for the triangular honeycomb reactor with angles of 30◦,
60◦, and 90◦ is obviously higher than that for the triangular honeycomb reactor with angles of 45◦,
45◦, and 90◦, which results from multiple factors, for example, air velocity distribution, heat–mass
exchange area, triangular honeycomb shape, and hydraulic diameter. The maximum increment
rates of air temperature lift are 25.77% for the triangular honeycomb reactor with angles of 45◦,
45◦, and 90◦ and 30.95% for the triangular honeycomb reactor with angles of 30◦, 60◦, and 90◦

under the same conditions of an initial relative humidity of zeolites of 10% and a relative humidity
of inlet air of 70%.

Table 6. Increment rate of peak air temperature lift compared with a triangular honeycomb reactor
with angles of 60◦, 60◦, and 60◦.

Reactor Process Operating Conditions
Increment Rate of Peak Air Temperature Lift

Compared with Triangular Honeycomb Reactor
with Angles of 60◦, 60◦, and 60◦

Triangular
honeycomb reactor
with angles of 45◦ ,

45◦ , and 90◦

Charging

∅ini,z = 90% 24.82%
∅ini,z = 93% 28.93%
∅ini,z = 95% 20.71%
∅ini,z = 97% 25.22%

Discharging

∅ini,z = 10%, RH = 70% 25.77%
∅ini,z = 10%, RH = 98% 21.08%
∅ini,z = 7%, RH = 70% 13.24%
∅ini,z = 7%, RH = 98% 15.81%

∅ini,z = 5%, RH = 70% 11.16%

∅ini,z = 5%, RH=98% 10.54%
∅ini,z = 3%, RH = 70% 7.65%
∅ini,z = 3%, RH = 98% 7.97%

Triangular
honeycomb reactor
with angles of 30◦ ,

60◦ , and 90◦

Charging

∅ini,z = 90% 39.32%
∅ini,z = 93% 39.12%
∅ini,z = 95% 38.94%
∅ini,z = 97% 40.86%

Discharging

∅ini,z = 10%, RH = 70% 30.95%
∅ini,z = 10%, RH = 98% 28.54%
∅ini,z = 7%, RH = 70% 15.99%
∅ini,z = 7%, RH = 98% 22.22%
∅ini,z = 5%, RH=70% 14.07%
∅ini,z = 5%, RH = 98% 12.83%
∅ini,z = 3%, RH = 70% 9.98%
∅ini,z = 3%, RH = 98% 9.93%

4.4. Pressure Drop during the Discharging Process

Pressure loss is a key parameter for the evaluation of a reactor’s thermal performance
during the discharging process. Changes in pressure drop are also related to the air
flow direction, the dynamic viscosity coefficient of air, the air flow rate, particles size,
and the porosity of the reactor [11]. Figure 6 shows a comparative analysis of the three
different triangular honeycomb reactors under the same operating conditions. Obviously,
the triangular honeycomb reactor with angles of 60◦, 60◦, and 60◦ presents the lowest the
pressure drop value of 226.12 Pa/m. Compared with the triangular honeycomb reactor
with angles of 60◦, 60◦, and 60◦, the pressure drop values for the triangular honeycomb
reactor with angles of 45◦, 45◦, and 90◦ and the triangular honeycomb reactor with angles
of 30◦, 60◦, and 90◦ increase by 204.43 Pa/m and 296.77 Pa/m, respectively, with the highest
pressure drop improvement rate of 131.24%.
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4.5. Energy Storage Density for Triangular Honeycomb Zeolite 13X Reactors

Figure 7 illustrates the effects of the initial relative humidity of zeolites on the energy
storage density for different triangular honeycomb zeolite 13X configurations. A lower
initial relative humidity of zeolites indicates drier zeolites during the charging process,
resulting in greater stored heat energy. Consequently, this facilitates the release of more
thermal energy and extends the discharging reaction time.
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For the same initial relative humidity of triangular honeycomb zeolite 13X, a higher
relative humidity of inlet air improves the energy storage density, particularly for the
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triangular honeycomb reactor with angles of 60◦, 60◦, and 60◦. The highest energy storage
density of triangular honeycomb zeolite 13X is 872 kJ/kg under conditions of 3% initial
relative humidity and 98% relative humidity of inlet air. However, at 10% initial relative
humidity, the energy storage density for the triangular honeycomb reactor with angles of
60◦, 60◦, and 60◦ is slightly higher than at 7%, as the cumulative thermal energy is lower
during the first hour of discharging but increases during the last hour as the adsorption
reaction progresses. Additionally, the energy storage density of the triangular honeycomb
reactor with angles of 30◦, 60◦, and 90◦ is generally higher than that of the triangular
honeycomb reactor with angles of 45◦, 45◦, and 90◦.

4.6. Reactor Round-Trip Thermal Efficiency

Thermal efficiency is a crucial parameter the evaluation of the feasibility of an entire
thermochemical energy storage system, considering both the charging and discharging
processes. Figure 8 shows the thermal efficiency of three different triangular honeycomb
reactors under varying conditions of initial relative humidity of zeolites and relative
humidity of inlet air. The thermal energy cumulated during the charging process shows
minimal variation across reactors under different conditions of initial relative humidity.
However, the thermal energy cumulated during the discharging process significantly
impacts the thermal efficiency. The triangular honeycomb reactor with angles of 30◦, 60◦,
and 90◦ achieves the highest thermal efficiency of 41.51% under conditions of 3% initial
relative humidity and 98% relative humidity of inlet air.
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The higher relative humidity of inlet air also basically results in higher thermal effi-
ciency for the triangular honeycomb reactor with angles of 60◦, 60◦, and 60◦ than that of
the triangular honeycomb reactor with angles of 45◦, 45◦, and 90◦.
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4.7. The Feasibility of the Novel Reactor for a Typical Home in Northern China

This section provides insights with respect to the application of the proposed reactor in
the context of residential heating. China, which is renowned for its vast population density,
is confronted with significant challenges regarding energy consumption and greenhouse
gas emissions, particularly in the realm of residential space heating in the northern regions.
The magnitude of this issue underscores the urgent need for effective solutions to mitigate
the strain on existing energy resources. The residential heating demand exceeds 963 million
tons of standard coal equivalents (tce), accounting for 21% of the country’s total energy
consumption. These statistics highlight the urgent requirement for sustainable measures to
reduce reliance on non-renewable energy sources. Low-carbon heating is also being widely
studied and applied in many regions globally. Therefore, the high-level feasibility study
presented in this section can also be adapted and applied to other regions.

With respect to a standard residential home in northern China, which typically has
a gross internal floor area of 100 m2, the focus is on the spatial efficiency of the reactor’s
volume dedicated to space heating. Referring to [36], Figure 9a presents the total heating
energy requirement for a typical home throughout the heating season, which spans 150 days
in representative northern Chinese cities. With these data, this study calculates the daily
heating load for an example home and determines the required storage volume for the
three triangular honeycomb reactor configurations, as shown in Figure 9b,c.
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As established in Section 4.5, the triangular honeycomb zeolite 13X variant exhibits
superior energy storage density at a starting material humidity of 3%. This finding aligns
with the volumetric energy storage performance of the triangular honeycomb reactor
design. The analysis also reveals that the storage capacity of the triangular honeycomb
reactor with 60◦ angles peaks at 5.46 m3, assuming a relative humidity of inlet air of 70%.
This capacity significantly exceeds that of reactors with angle configurations of 45◦, 45◦,
and 90◦ and 30◦, 60◦, and 90◦. Moreover, when compared with the reactor with angles of
60◦, 60◦, and 60◦, the reactor with angles of 30◦, 60◦, and 90◦ has a 24.91% smaller required
storage volume. This comparative study underscores the potential to optimize reactor
design for enhanced energy storage in residential heating applications.

5. Conclusions

This study investigates a novel triangular honeycomb thermochemical energy storage
reactor for medium- and low-temperature heating applications in buildings. The key
findings of this research are summarized as follows:

• The triangular honeycomb reactor with angles of 60◦, 60◦, and 60◦ achieves an energy
storage density of 872 kJ/kg and thermal efficiency of 39.91%.

• The reactor with angles of 30◦, 60◦, and 90◦ achieves a maximum air temperature
lift of 48.7 ◦C during the discharging process, underlining its superior discharging
capabilities, which are essential for efficient low-carbon building heating. Meanwhile,
the configuration obtained the highest thermal efficiency of 41.51%.

• Pressure loss is a critical parameter in evaluating the thermal performance of a reactor.
Pressure drop analysis showed that the reactor with angles of 60◦, 60◦, and 60◦ achieves
the lowest pressure drop of 226.12 Pa/m, while the reactors with angles of 45◦, 45◦,
and 90◦ and 30◦, 60◦, and 90◦ experience higher pressure drops of 430.55 Pa/m and
522.89 Pa/m, respectively.

• A feasibility study for residential heating in northern China demonstrated that the
reactor with angles of 30◦, 60◦, and 90◦ requires 24.91% less volume to meet daily
heating demands compared to the other designs, showcasing its compact and efficient
energy storage potential.

• This study provides valuable insights into the optimization of reactors for flexible
energy management, allowing for integration with renewable energy sources like solar
power and off-peak electricity.
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Nomenclature

e Side length (mm) ρ Density
(
kg/m3)

C Water concentration
(
mol/m3) ∅ Relative humidity (%)

cp Specific heat (J/(kg·K)) δ Channel thickness (mm)
Dp,eff Effective pore diffusion

(
m2/s

)
η Thermal efficiency (%)

Ds,eff Effective surface diffusion
(
m2/s

)
Subscripts

Dv,a Water vapor diffusivity in air
(
m2/s

)
a Air

∆H Heat of adsorption (J/kg) amb Ambient
h Specific enthalpy (J/kg) char Charging
.
h Thermal power (W) cum Cumulative
k Thermal conductivity (W/(m·K) dis Discharging
kLDF Effective rate coefficient (1/s) eff Effective
L Channel length (mm) eq Equilibrium
M Molar mass (kg/mol) exp Experimental
m Mass (kg) ha Humid air
.

m Air mass velocity (kg/h) in/out Inlet/outlet of the air channel
n Vector (/) ini Initial
P Pressure (Pa) l Liquid water
P0 Atmospheric pressure (Pa) p Pores of zeolite
Psat Saturation pressure (Pa) s Surface
Q Energy (J) sim Simulation

R Universal gas constant (J/(mol·K)) tot
Entire adsorbent layer, including pores, the solid part, and
adsorbed water vapor)

t Time (s, h) v Water vapor
T Temperature (K, ◦C) w Water
v Velocity (m/s) z Zeolite matrix (exclude pores and adsorbed water vapor)
w1 Water vapor content in the air (kg/kg) zm Matrix of zeolite (excluding zeolite pores)
w2 Water vapor content in the pores of zeolite (kg/kg) zp Pores of zeolite (excluding zeolite matrix)
w

Water vapor content in the matrix of the adsorbent,
(kgwater/kgzeolite)

weq Equilibrium adsorption amount (kgwater/kgzeolite)
Abbreviation
ESD Energy storage density

Greek symbols MSOPE Mean sum of the percentage errors
ε Porosity RH Relative humidity
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