
The Journal of Systems and Software 220 (2025) 112256

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Andromeda: A model-connected framework for safety assessment and
assurance✩

Athanasios Retouniotis a,∗, Yiannis Papadopoulos a, Ioannis Sorokos b

a Dependable Intelligent Systems Group, School of Computer Science, Cottingham Rd, Hull, HU67RX, East Riding of Yorkshire, UK
b Safety Engineering Department, Fraunhofer IESE, Fraunhofer-Platz 1, Kaiserslautern, 67663, Rheinland-Pfalz, Germany

A R T I C L E I N F O

Keywords:
Safety cases
Model-based assurance
Automation
Argument patterns

A B S T R A C T

Safety is a key factor in the development of critical systems, encompassing both conventional types, such
as aircraft, and modern technologies, such as autonomous vehicles. Failures during their operation can be
potentially far-reaching and impact people and the environment. To certify these systems and enable their
employment, regulatory bodies require, among others, a safety case. However, the growing complexity of
modern systems and iterative nature of development pose significant challenges to the traditional approaches
for creating safety cases that are still used in practice. Furthermore, safety cases are often generated in an
ad-hoc manner and remain disconnected from system models and related artefacts. Without these connections
it is difficult to construct the proper infrastructure for producing and maintaining safety cases in a structured
manner throughout the system lifecycle. This paper presents our innovative method, Andromeda, and its
underpinning metamodel, which establish connections between safety cases, system models, safety assessment
activities aligned with international safety standards, and argument patterns. Automation is applied across
various stages of the production of argument structures that support safety assurance and certification activities.
Andromeda is complemented by tool-support designed to facilitate its application, and we demonstrate our
work through a case study from the aviation industry.
1. Introduction

Technological systems are integral to the function of modern soci-
eties, shaping humanity through its ongoing evolution. Whether in the
domain of energy production, where machines oversee the generation
and dissemination of power, or in the transportation industries, such
as the railway, aviation and automotive, with sensors and mechanisms
that help control the behaviour of the vehicle, our reliance on this
infrastructure is clear.

This dependence has not gone unrecognised by governments and
regulatory bodies, which maintain regulations and standards to guide
the development and use of safety-critical systems in order to avert
potential societal hazards, acknowledging that failure of these systems
could lead to catastrophic consequences. Safety standards do not have
just an advisory role but they effectively constitute the basis of cer-
tification, which in turn ensures that a system meets the appropriate
compliance levels and is acceptably safe to operate under a given
context.

In the past, standards have been more prescriptive and assurance
was governed by a rules-based approach (Leveson, 2011a). However,

✩ Editor: Prof. Raffaela Mirandola.
∗ Corresponding author.
E-mail addresses: AthanasiosRetouniotis@outlook.com (A. Retouniotis), y.i.papadopoulos@hull.ac.uk (Y. Papadopoulos), ioannis.sorokos@iese.fraunhofer.de

(I. Sorokos).

this rendered the introduction of novel technologies and software en-
gineering techniques difficult since the respective authorities were not
able to formulate universally applicable rules for these innovations and
their fast-paced changes. In addition, due to the check-list mentality,
system developers would invest considerable effort into meeting the
specific requirements set by the standards and often overlook valu-
able contextual information, potentially diminishing the quality of the
assurance artifacts submitted to the authorities (Haddon-Cave, 2009).

Consequently, the mentality shifted to a goal-based approach, where
regulatory bodies set the certification goals and developers must pro-
vide explicit safety claims, a clear and comprehensive argument along
with the supporting evidence that collectively help to meet these goals.
This process, along with work products from other tasks such as re-
quirement specification, architectural designs, testing and simulations
results, are encapsulated in a series of documents known as the safety
case.

The concept of the safety case has been widely adopted in the
safety-critical sector, with industries such as the aviation, automotive
https://doi.org/10.1016/j.jss.2024.112256
Received 15 February 2024; Received in revised form 4 October 2024; Accepted 8
vailable online 15 October 2024
164-1212/© 2024 The Authors. Published by Elsevier Inc. This is an open access
c/4.0/).
October 2024

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:AthanasiosRetouniotis@outlook.com
mailto:y.i.papadopoulos@hull.ac.uk
mailto:ioannis.sorokos@iese.fraunhofer.de
https://doi.org/10.1016/j.jss.2024.112256
https://doi.org/10.1016/j.jss.2024.112256
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

A. Retouniotis et al.

‘
s

p

c

f
i
e
s

t

o

T
n
w

t

t
o
i
a
c

t

e

e

i
a

t
a
g

h
o
E
u
c

G

p
a
T
e
t
m
m

a
r
t
i

m

s

The Journal of Systems & Software 220 (2025) 112256
and nuclear leveraging their potential for over two decades. There are
variations of the definition of safety cases but the most prevalent is
found in Kelly et al. (1999)[p. 22], which describes it as a means to
‘communicate a clear, comprehensive and defensible argument that a
ystem is acceptably safe to operate in a particular context’’.

This argument of safety can be presented in a variety of ways
but practitioners tend to use graphical notations, such as the Goal
Structuring Notation (GSN) (Assurance Case Working Group, 2021),
to compact the information and aid in the construction and review
rocesses. These notations typically include a variety of elements that

represent all the essential entities necessary for an argument structure.
For example, GSN uses rectangular shapes to depict goals (i.e. claims)
or ellipsoids for assumptions and offers a set of different arrows to
onnect shapes and highlight their relationship. The practitioners are

able to use these elements and produce an argument structure, in the
orm of a tree diagram, that explains how a goal is broken down
nto sub-goals and ultimately provide a reference of the supporting
vidence. Note that notations typically provide rules to prevent illogical
tructures.

Moreover, to further facilitate the creation of argument structures,
inspired by the concept of software design patterns, safety engineers
have also incorporated the use of patterns. Specifically, they abstract
he details from previous successful arguments and re-employ their

structure in appropriate scenarios, with the intent to facilitate the
production of safety cases and improve argument consistency and
robustness.

Regulatory authorities advise towards a proactive approach, in
which safety activities are initiated at the earliest stages of the devel-
pment lifecycle, and heavily emphasise the continuous improvement

of the related processes. This helps identify and resolve any safety
issues and establish a good safety culture (Ministry of Defence, 1996,
p. 10) (International Organization for Standardization, 2018, p. 58).

o maintain these principles, safety cases must follow the evolutionary
ature of system development, requiring continuous updates that align
ith ongoing system changes.

Considering that the majority of evidence artifacts are generated
hrough safety analysis techniques and testing, coupled with the repet-

itive development process, it becomes evident that this is an arduous
ask, particularly when a substantial portion of the activities relies
n manual processes. Even in the instances where safety assessment
s handled by supporting-tools semi-automatically, there is consider-
ble manual work towards the assurance and evaluation of the safety
ase (Nair et al., 2015). For example, the safety argument needs to be

adjusted as changes occur, re-evaluated to ensure that its reasoning
remains consistent, re-assessed to validate and verify its supporting
safety artifacts, as well as analysed for valuable feedback from the
rest of the development teams (Hawkins et al., 2015). In addition, the
volume of a safety case scales accordingly as systems become more
complex and their architecture increases in size.

Thus, the construction and maintenance of safety cases is far from
trivial, and to avoid costs and effort, safety can sometimes be neglected
during certain stages of development (Leveson, 2011b). However, this
is inappropriate not only because safety standards recommend that
safety assurance should remain up-to-date at all times, but also because
as the system model evolves, our considerations and understanding of
its behaviour can potentially change. For example, with each design
iteration, our understanding of undesired events, their causes, and rel-
evance could change drastically. This suggests that particular evidence
artifacts might not be relevant anymore, invalidating the safety claims
they support. After all, part of the safety case depends on assumptions,
initial requirements and predictions, necessitating the reconstruction of
the safety argument if any such changes occur.

With the emergence of contemporary intelligent systems or au-
onomous vehicles the maintenance of safety cases requires even more

attention, not only during the production stages, but also during op-
ration (Denney et al., 2015). These systems often employ advanced
2
software and machine learning techniques that allow them to evolve
ither to improve their performance or to respond to changes happen-

ing in their environment. As a result, if the safety case remains static
t is more likely that there will be a mismatch between the initial
ssumptions and the evolving behaviour of the system. That would

effectively undermine the initial safety argument constructed during
the development lifecycle.

As already mentioned earlier, certification is governed by interna-
ional standards. For instance, ISO26262 is the major guideline for
chieving functional safety in the automotive domain. It provides a
eneral framework involving a series of tasks developers should follow

including the definition of safety goals, specification and allocation of
requirements, verification and validation processes, and specific safety
analysis techniques, such as Fault-Tree Analysis (FTA), they could
employ to assess their system.

Analysis techniques play a significant role across different stages
of the safety lifecycle. In the concept phase, engineers employ Hazard
Analysis and Risk Assessment (HARA) to identify and assess possible
azards at the earliest opportunity. In the phase of product devel-
pment at system level, techniques like FTA and Failure Mode and
ffects Analysis (FMEA) help evaluate the effects of system-level fail-
res. Furthermore, the ISO 26262 requires the creation of a safety
ase that gradually captures any outcomes generated during the safety

lifecycle (International Organization for Standardization, 2018, p. 51).
iven that safety analysis and assurance activities unfold iteratively

throughout the different stages, implementing systematic processes and
automation becomes essential for ensuring that safety tasks keep pace
with the development process, effectively addressing the aforemen-
tioned challenges, and improving the safety framework.

The introduction of the Model-Based Safety Analysis (MBSA)
aradigm empowered engineers to link system architectures with
ssessment-related activities and their outcomes (Joshi et al., 2006).
ypically, methods embracing the MBSA create an unambiguous model
nriched with elements from the system architecture, failure informa-
ion and formalised properties. This is achieved with advanced meta-
odeling that captures relationships between the nominal and other
odels. Furthermore, MBSA, by harnessing the power of software-tools

and combining it with (semi-)formal models, facilitated the adoption of
automation. Thus, alleviating inconsistencies between generated safety
products, induced by traditional or other manual analysis methods,
whilst staying in sync with the fast pace of modern development. Due to
these benefits, various approaches, including Andromeda, have utilised
and further expanded the concept of MBSA towards safety assessment
and assurance. In Section 5: Related Work, we will explore notable
examples of MBSA applications and highlight how Andromeda relates
to them highlighting areas where it advances the state-of-the-art.

As systems become increasingly complex to improve functionality,
ddressing the associated challenges stemming from this complexity
emains a persistent issue. This paper elaborates on our approach
o support the assessment and assurance process, with the goal of
ntegrating safety as a foundational element that drives system design.

Andromeda tackles the aforementioned challenges by identifying com-
on elements in safety standards and utilising them to guide safety

assurance, while incorporating automation into multiple stages of the
afety framework. Key contributions of the method entail:

1. Assurance Patterns: We elicited patterns that reflect common-
alities between emerging standards and use them for the con-
struction of safety arguments.

2. Automated Synthesis: We automated the synthesis of safety
arguments from system models, safety analysis artifacts and
assurance patterns via algorithms.

3. Metamodel: We designed and implemented an abstract struc-
ture that links system models with safety assessment and assur-
ance processes.

A. Retouniotis et al.

I

t

a

p
b
a

t

t
m
m
a
D
s
i
n

A

s
t

D
p
c
c
e
M
c

The Journal of Systems & Software 220 (2025) 112256
4. Cost-Optimal Requirement Allocation: We showcased how the
concept of abstract requirements, known within the standards
as Safety Integrity Levels (SILs), can be utilised as a means
to form argument structures. We also provide a way to cost-
optimally allocate them to subsystems and components using
metaheuristics.

Andromeda adheres to established safety standards, such as
ARP4754-A for the aviation and ISO 26262 for the automotive indus-
tries. It employs automated processes to generate safety artifacts, which
are then used for the automatic generation of argument structures via
argument pattern instantiation. This effectively incorporates safety con-
siderations into the system development process and produce essential
outputs required for system certification. The metamodel developed to
underpin our approach ensures that analysis results, requirements and
system architecture are interconnected.

1.1. Structure of the paper

Following this introduction, the rest of this paper unfolds as follows.
n Section 2, we present a brief summary of the essential elements

related to the guidelines used for our case study. In Section 3 we
outline an overview of Andromeda, its underpinning metamodel, and
he necessary inputs and generated outputs. These sections help the

reader familiarise themselves with our method and grasp the basic
spects before delving into the case study in Section 4. In Section 5, we

provide information on related work and explain how our approach sets
itself apart. Finally, in Section 6 we conclude and discuss Andromeda’s
limitations, evaluations, and potential avenues for future work.

2. Background

Andromeda is versatile and requires only moderate adjustments
to adapt to various safety-critical domains. However, the case study
resented later originates from the civil aviation industry. This section
riefly introduces the safety framework recommended by ARP4754-A,
 standard widely adopted in the sector.

Certification in civil aviation focuses on the safety of aircraft and
heir embedded systems, primarily overseen by the International Avia-

tion Organisation (ICAO), the Federal Aviation Administration (FAA) in
the United States, and the European Aviation Safety Agency (EASA) in
Europe. The differences between FAA and EASA standards are minor,
making the method applicable to either. The ARP comprises mainly two
documents, the ARP4754-A, which forms the basis for the development
of aircraft systems and their functions, and the ARP4761, which serves
as a process handbook explaining how these advised processes can be
performed. Additionally, there are other supporting documents, such as
the Document Objects (DO), with the most notable being the DO-178C
and DO-254 for the development of software and hardware compo-
nents, respectively. In this section, we discuss only the key elements
from the safety framework found in ARP; however, similar concepts
are integrated into guidelines in other industries.

The systems development lifecycle, in many safety-critical sectors,
ypically follows the V-model approach to help navigate development
ilestones. As shown on the left side of Fig. 1, the lifecycle has three
ain phases: (a) system design, (b) implementation and (c) integration

nd testing, before the system proceeds to production and deployment.
evelopment initiates with defining the concept, functionality, and

pecifying requirements. These requirements are gradually decomposed
nto lower levels before an informal architecture is designed. Following
umerous iterations of requirement refinement and decomposition, the

process advances to implementation, component integration, and test-
ing, before the system finally reaches the production and deployment
stages. As previously mentioned, it is crucial for the safety process to
align with development from the early stages. Therefore, the guidelines
provide a framework to integrate safety activities within each phase
3
Table 1
DAL allocation based on severity classification (Radio Technical Commission for
Aeronautics, 2011, p. 13).

DAL Severity Description of Effects

A Catastrophic Airplane Loss / High-Mortality Accident

B Hazardous Serious Injuries / Low-Mortality
Serious function/safety margins restriction

C Major Major physical discomfort
Significant function/safety margins restriction

D Minor Minor physical discomfort
Slight function/safety margins restriction

E No Safety Effect No Effects

of development. On the right side of Fig. 1, the distribution of safety-
related tasks across each phase is presented, in accordance with the

RP guidelines.
The validation processes determine whether all the identified re-

quirements are appropriate and suitable against the higher-level re-
quirements, ensuring that the system fulfils its intended purpose. In
contrast, verification tasks assist in understanding whether the system
implementation conforms to the specified requirements, confirming
that the system is built according to the design and specifications. These
tasks help build the confidence required that the system is reliable and
safe before moving into production.

The first key element from standards is the safety lifecycle, outlining
the sequence in which safety activities are performed for different
stages, often represented graphically using the V-model.

The second key point involves the concept of Safety Integrity Levels
(SILs), an abstract requirement that dictates the level of rigour required
for assessment activities. While these requirements share a similar
foundation as a concept, differences exist among standards regarding
the criteria that influence the decision-making of the allocation process.
For instance, in the civil aviation, SILs allocation is based on the
everity of the identified hazard and its probability of occurrence. In
he automotive sector, allocation is also influenced by exposure and

controllability traits. The former reflects the frequency of the vehicle’s
exposure to the hazard, whereas the latter focuses on system-user’s
ability to gain control of the hazardous situation.

Since our case study is drawn from the aviation industry, it is
important to note that the concept of SILs is known as Development
Assurance Levels (DALs). Even though SILs is the generic form of
abstract requirements which we still mention later, when appropriate,
we will refer to the concept of abstract requirements as DALs. The
standard defines five classes of DALs, ranging from E to A, with E
representing the least stringent requirements and A the most stringent.
For each identified hazard, the appropriate DAL should be appointed
based on the severity classification and the description of the effects,
as shown in Table 1:

The process of DAL allocation begins once the high-level functional
model has been constructed and analysed with Functional Hazard
Analysis (FHA). The results of this analysis include all hazards, also
referred to as the Failure Conditions (FCs) within the ARP, associated
with each function defined on that specific design cycle, and then the
appropriate DAL is assigned on each of the corresponding hazards for
every defined function.

Once the system architecture starts forming, developers can allocate
ALs to lower parts of the architecture in a top-down manner. For this
urpose, the standard utilises the Functional Failure Sets (FFSs), more
ommonly known as minimal cut sets. These represent the minimal
ombination of basic events that result in the occurrence of the top
vent, in this case, the hazard. The guidelines suggest to use FTA or
arkov Analysis to examine the system and identify all the FFSs that

an cause the top-level hazards.
To assist with the allocation of SILs, the guidelines provide a set

of rules, which also differ across industries. For instance, under the

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 1. The development lifecycle under the V-Model (SAE International, 2010).
ARP4754-A, if an FFS contains only a single member, then the DAL
assigned to that element is identical to the DAL allocated for the
hazard. In cases where the FFS contains two or more members, then
the developer can follow the rules prescribed by the guidelines (SAE
International, 2010, p. 44).

• One of the members of the FFS that contribute to the top-level
hazard is assigned the same DAL with the parent system, whereas
the rest of the members are assigned a DAL equal or up to two
levels lower than the parent-system.

• Two of the members of the FFS are assigned a DAL one level
lower than the parent system, whereas the remaining members
are assigned a DAL equal or up to two levels lower than the parent
system.

Both of these options plausible, and the decision is up to the
developers and specific implementation details. However, a challenge
arises as the system size increases, leading to numerous possible com-
binations that often result in combinatorial explosion. Additionally,
the repetitiveness of this process renders any manual approaches im-
practical. Consequently, substantial research, such as in Bieber et al.
(2011), Azevedo et al. (2013) (Sorokos et al., 2015), has been focused
on automating the SILs allocation process at the system architecture
level, whereas in Frigerio et al. (2019), the authors automated the
SILs decomposition and utilised it to modify the system architecture,
adjusting the redundancy of elements during system implementation.

As already mentioned, SILs represent the level of rigour assigned
to safety assessment activities, leading to increased effort and de-
velopmental costs. Therefore, engineers must examine the different
configurations of allocated SILs and, based on the cost of a system-wide
allocation, choose the most cost-efficient option.

Achieving this involves defining a basic cost value and assigning
each DAL a unique multiplier to calculate the overall cost. For example,
DAL A can have a multiplier of 10, DAL B a multiplier of 9, and
DAL C a multiplier of 5. This scaling helps understand that the effort
required between the different activities does not progress linearly
across different DAL classifications and that is reflected on the final
cost once the multiplier is applied.

Thus, considering the vast variety of configurations and the size
of the architecture, it becomes an intractable problem for manual ap-
proaches. Therefore, developers turned to optimisation methods where
the SILs’ allocation is viewed as a constrained optimisation problem.
The objective is to minimise the costs, the constraints are the decom-
position rules and the decision variables are the SIL values throughout
the architecture. Due to the strict timeframe of development, engineers
often opt for approximate methods like metaheuristics, known for
delivering relatively good results within a reasonable timeframe.

Overall, optimisation techniques provide an additional layer of
automation that benefits system development.
4
3. The approach

3.1. Overview of andromeda

This section presents Andromeda, our method for the safety as-
sessment and assurance of safety-critical systems. In formulating our
method, it was imperative to incorporate processes outlined by industry
guidelines. This not only demonstrates compliance but also instils
confidence, as guidelines comprise best practices that have evolved
over the years and are crucial for certification.

Additionally, recognising the significance of leveraging automation
was a key factor to alleviate the overall process and address some of
the challenges associated with traditional techniques and the iterative
development. Our investigation into functional standards, such as the
ARP4754-A, and various approaches that enable automation, including
the MBSA paradigm and argument patterns, guided the development of
Andromeda.

Fig. 2 provides in an illustrative way how Andromeda as a method
was conceptualised and eventually implemented from safety stan-
dards. The rectangles are abstract representations of information. The
coloured rectangles, represent the information encapsulated in different
guidelines (e.g. ISO).

Functional safety standards typically specify individual safety
frameworks; however, they share common elements and processes,
which if abstracted from specific details it can contribute to a generic
framework for safety. The grey rectangle, represents the framework
that Andromeda proposes for safety assessment and assurance which
was elicited from the common elements among these standards.

Expanding upon this concept, we enhanced it by incorporating
features from MBSA, argument structure notations (i.e. GSN) and ar-
gument patterns. The rest of the shapes represent the transition from
that framework to a metamodel (high-level design), which captures the
links between the assessment activities (of the framework), analyses
techniques (suggested by standards), argument pattern (that can be cre-
ated by the practitioner in Andromeda), system architecture, allocated
requirements, and the concrete argument itself.

The ‘‘Software Design‘‘ shape represents the implementation of the
metamodel in a software tool, describing the software architecture and
its corresponding data structures that capture system model and safety-
related artifacts. Note that, the software design block has three coloured
blocks attached that match the respective standards. This is to signify
that implementation details vary to account for standard differences
such as the requirement decomposition rules or the different criteria
during the initial SIL allocation.

Finally, the ‘‘System architecture’’ rectangle, is the potential system
architecture and the annotated information the user can create in the
software tool such as failure data, contextual information and evidence
artifacts. Lastly, there is an additional lower-level abstraction layer,

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 2. Transition from standards to the metamodel and tool.

not shown here, that represents potential raw data from manual anal-
yses, tests or stakeholder requirements. These can also be incorporated
within the system model and presented, upon demand, in the argument
structure.

3.2. The pattern

Safety standards consider safety as a system property that should
be controlled as early as possible and maintained throughout develop-
ment. Once the initial FHA is conducted, and the preliminary system
design is formulated, integrity requirements (i.e. DALs) suitable to fulfil
the higher-level requirements can be determined.

To further assist on that front, the guidelines have provided a
scheme for allocating requirements. In this context, by scheme, we
mean a systematic plan for allocating requirements. For example,
guidelines suggest a top-down approach for the allocation and they
provide a set of rules for the decomposition of those requirements from
high-level to lower-levels. Specifically, high-level DALs can then be
decomposed and allocated accordingly based on architectural depen-
dencies and failure propagation as shown on the left side of Fig. 3.

As the design matures, the whole process of analysis and require-
ment allocation are revisited. The cycle concludes upon completion of
development, with the establishment of an acceptably safe system sub-
stantiated by sufficient evidence, confirming the systematic mitigation
of all identified hazards via the appropriate allocation of subsystem and
component safety integrity requirements.

Andromeda utilises this scheme as a mechanism for providing struc-
ture to the safety argument following the logic mentioned in the right
side of the figure. Note that this process is applicable for both valida-
tion and verification activities, aligning with the V-model, as recom-
mended by the safety guidelines for the development of systems (SAE
International, 2010, p. 24).

3.3. Method integration

Andromeda is an integrated approach which incorporates methods
that our research group has been developing over the years. One of
the important facets of this integration is the automation capabilities,
which can be used to significantly facilitate the construction and main-
tenance of safety arguments. While the early phases still require manual
effort and input, such as functional design and high-level requirements
specification, the safety analysis of the architecture can be automated
using the embedded analysis techniques and algorithms. Andromeda
further extended on the assessment capabilities by adopting the differ-
ent activities, typically conducted in the aviation sector, such as the
Preliminary Aircraft Safety Assessment (PASA). The latter is useful for
establishing a list of failure conditions on the aircraft-level functions
and the appropriate requirements for addressing them.
5
Following the scheme explained earlier, we used that logic behind
the argument structure as a basis and combined it with the concept
of argument patterns. On this front, collaborative groups such as the
Assurance Case Working Group (ACWG) have extended graphical no-
tations to support argument patterns with concepts like element and
structural abstractions.

For example, GSN’s structural abstraction is achieved via the mul-
tiplicity and optionality extensions. The former generalises n-ary rela-
tionships between argument elements by iterating similar arguments
over them. The optionality extension captures alternative relationships
between argument elements, effectively allowing conditional connec-
tions and the creation of different paths based on varying circum-
stances.

Andromeda primarily employs GSN as the main graphical notation
to both build the pattern and present the concrete argument. GSN
was our first choice due to its extensions of modularity and structural
abstraction fitting the purpose, as well as its widespread acceptance in
the domain.

It is worth noting, however, that comparable results could be at-
tained using alternative notations such as the Claims Arguments Ev-
idence (CAE) notation or the Structured Assurance Case Metamodel
(SACM) (C.A.E. Framework, 2020; Object Management Group, 2018).

However, since GSN’s model-based support is limited, Andromeda
adjusted these entities in the metamodel with the necessary structures
to capture relationships between the system model, evidence artefacts
and argument patterns. This link between the pattern and the model in-
formation along with our implemented instantiation algorithm, allowed
us to automatically generate concrete argument structures.

3.4. The metamodel

Since Andromeda involves various steps, progressing from func-
tional design to safety argument structures, it is more suitable to
witness it in practice in the following section instead of explaining all
the steps here. However, before delving into practical applications, it
is useful to explore the metamodel, which makes all this possible.

The HiP-HOPS approach already comes with an extensive meta-
model that connects elements from system architectures, such as sub-
systems or components, ports acting as interfaces for information prop-
agation, and safety evidence artefacts such as minimal cut sets and
integrity requirements. Hence, we utilised it as a foundation for storing
system-related information in order to exploit the HiP-HOPS capabili-
ties.

As mentioned earlier, the metamodel is also enriched with elements
from the GSN standard as a means to incorporate argument and pattern
elements, structure rules and semantics. Moreover, the addition of an
extensive data structure, referred to as Model Connecting Storage Unit
(MCSU), helps store relevant information and interconnect all these
components. Fig. 4 depicts a high-level view of what the metamodel
entails.

Since standards provide the basic scheme for the argument struc-
ture, the requirement decomposition rules, and a guide for the ap-
propriate safety analysis activities, they are also connected with both
the MCSU structure and the system architecture. The connection with
the architecture is important to notify the analysis and decomposition
engine about specific details based on the corresponding system. For
example, if the system is from the automotive industry, the decomposi-
tion rules will differ compared to a system from the aviation industry.
In addition, the connection with the MCSU is important because, in
some industries, the outcomes of certain processes might be directly
usable as evidence artifacts in the final argument. For instance, under
aviation guidelines, an FHA table could be used as evidence to support
a claim arguing the correctness of DALs allocated to specific high-
level functions. The implemented instantiation algorithm draws all the
necessary information from the MCSU, and based on that and the
pattern, it generates the concrete structure.

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 3. DALs Allocation on a simple architecture that forms the basis for the argument structure.
Fig. 4. Overview of the Metamodel.
Below, Figs. 5 and 6 present a more detailed view of the metamodel
in Unified Modeling Language (UML) format. The first figure depicts
how details of the pattern, model and argument elements entities
are interconnected. The nodes are high-level nodes. For example, the
‘‘MCSU Element’’ node would be the equivalent of the SACM’s ‘‘Arti-
factElement’’. This is the base class for elements in our metamodel.
Essentially, all elements which extend the MCSUElement, are MCSU
entities. It is also a recursive container, meaning it can contain one or
more sub-containers.

The second figure showcases the adapted version of the HiP-HOPS
metamodel, which we utilise to store information about the system
during the modelling phase. This adapted metamodel serves as input
to the integrated HiP-HOPS algorithms, facilitating the initiation of
the analysis and requirement allocation phases. Together, these fig-
ures offer a deeper understanding of the structural foundations of our
approach and the interconnections between Andromeda’s embedded
elements.

The ‘‘Coordinator’’ entity serves as a manager class that oversees
a significant portion of the tool’s functionalities and is tasked with
creating and maintaining the MCSU structure during a project. The
MCSU encapsulates essential information about the argument, pattern
and model structures, which inherit basic attributes and access to
visitor classes from the ‘‘MCSUElement’’ entity.
6
Note, that the ‘‘MCSUElement’’ is developed using an adaptation of
the composite pattern found in Erich et al. (1994)[p. 183], allowing
elements to contain other elements; thus, forming a hierarchical struc-
ture where each element provides access to the nodes one level lower
in the architecture.

The ‘‘Visitor’’ class represents our basic implementation of the soft-
ware engineering pattern visitor, and supports each of the element
types with various capabilities without them including any additional
methods or members. Any required changes to the functionality can be
achieved through an update to the visitor class.

While the argument and pattern elements share similarities, they
also differ in the types of elements. For example, pattern elements have
special types such as ‘‘IfThen’’ or ‘‘ForEach’’ as well as expressions and
parameters to help follow the system architecture based on an abstract
structure.

The ‘‘ModelElement’’ class holds all the information about the sys-
tem architecture, the failure information and SIL requirements for each
component through the ‘‘SystemContextData’’ attribute. This data is
indispensable for the instantiation algorithm in order to properly build
the argument structure.

Note that all the elements discussed so far (and the ones that follow)
are represented within the tool as either object-oriented classes/objects

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 5. Model, Argument and Pattern Elements under the MCSU structure.
or C-style structures. The related information for these elements, such
as lists of comprising subsystems, properties, and descriptions, as well
as mechanisms to retrieve data, are included as member variables,
functions and properties. Base elements typically provide general char-
acteristics that are inherited by their derived classes. For example, the
MCSUElement in Fig. 5 is the base class for ModelElements and Patter-
nElements. It establishes a foundational set of information, including an
element name, description, and the accept method, which is commonly
included in the base class.

During the modelling phase, we store the model element informa-
tion in a separate structure through a model mapping process. This
structure serves as input for gaining direct access to the HiP-HOPS
engine, allowing us to generate minimal cut sets, FMEA tables and SILs.
The ‘‘MappingClass’’ entity is responsible for this mapping process, fa-
cilitating the transfer of system information between the MCSU and the
HiP-HOPS metamodel. Furthermore, we have implemented a reverse
mapping (i.e. from MCSU to HiP-HOPS) for potential future work that
could allow engineers to adjust the model information by manually
applying changes to the argument structure.

In Fig. 6, the ‘‘HiPModel’’ class serves as the top-level node of
the system, functioning as a container for the architecture. The ‘‘Per-
spective’’ helps distinguish the software from hardware aspects of
the architecture as well as between different implementations. The
‘‘HiPSystem’’ are higher-level system entities that have components
and lines to guide the connections between the various elements.
These components have ports that help them connect through lines
with other elements and enable behaviour propagation (both nominal
and failure). In addition, the components can have potentially more
than one implementation to account for components from different
manufacturers. Finally, the ‘‘FailureData’’ class stores all safety related
information such as basic events, output deviations and common cause
failures for each of the components. As previously mentioned, this
7
aspect of the metamodel is mainly utilised for the direct communication
with the HiP-HOPS engine and cannot be accessed by the instantiation
algorithm.

3.5. Inputs and outputs of andromeda

In this subsection, the inputs and outputs of Andromeda are outlined
below:

The process can initiate during the functional design, effectively
just before the FHA stage in the V-model as shown in Fig. 1 earlier.
The method requires substantial input before it proceeds with the
analysis of the system. Fig. 7 shows an annotation window dialog
from the Andromeda tool, which is used for both inputting relevant
data, including component failure rates and output deviations, as well
as accessing additional dialog windows. The output deviations are
the failures that can propagate throughout the architecture, such as
Omission, annotated as O in the dialogue parameter. As mentioned
earlier, all this input and output are stored within Andromeda in their
respective data structures.

1. Selection of industry (Tool-based parameter for the software to
be adjusted accordingly)

2. Function Identification and System Definition (Essentially the
functional model and system architecture)

3. Failure Behaviour Information (Hazards, risk, high-level DALs)

The automated analysis process generates the following outputs:

1. fault trees
2. FMEA tables
3. minimal cut sets

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 6. The integration of the HiP-HOPS metamodel.
Based on this information and the initial high-level requirements con-
verted into DALs, the tool can allocate the remaining requirements
hierarchically and cost-optimally. At this point, the user can create the
appropriate argument pattern for the industry in question within the
tool. Then, by utilising the interconnected models, the pattern, and the
instantiation algorithm, Andromeda generates the concrete argument
structure. Fig. 8 illustrates how an arbitrary argument structure appears
in the tool.

4. Case study

4.1. System details

This section explores the practical application of Andromeda
through a case study drawn from the aviation industry, focusing on
a brake system designed according to the principles employed in the
Boeing 787 Dreamliner. The choice of this example is deliberate, given
its contemporary technology and the widespread adoption of similar
mechanisms across various aircraft.
8
In particular, the brake system exemplifies a shift from traditional
hydraulic components to electronic counterparts and other character-
istics. For example, it uses a carbon disc sensor unit that can assess
the wear of the discs in real-time and also features its own data trans-
mission unit to the cockpit. More importantly, this shift significantly
reduces random failures which typically occur due to material degra-
dation and require statistical techniques to predict. Instead, the most
common faults of electric brakes are systematic, from either hardware
or software components, which can be addressed with process or design
measures via requirements (DALs) according to the guidelines (SAE
International, 2010).

Before applying the method, it is useful to highlight details related
to the system and its architecture. The brake unit is responsible for
decelerating the aircraft and preventing any motion during extended
periods on the ground. In some instances, it also contributes to steer-
ing through differential braking. Despite its seemingly straightforward
function, commercial aircraft incorporate additional mechanisms such
as spoilers, reverse thrust and other brake technologies like antiskid
to enhance braking efficiency. Normally, engineers would assess these
components both individually and collectively to ensure the safety
of the braking function. However, for the sake of simplicity in this

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 7. Example of Failure Annotation Dialogue in the tool.
Fig. 8. Example of an argument structure within tool.
example, our focus is narrowed down to the wheel-brake system and
relevant actuators and controllers.

The Boeing 787 Dreamliner was released in the early 2000s and
comes in different models which vary in size and capabilities (Boeing,
2023). Despite following a similar architecture, the components and
safety requirements might differ. For example, the difference in weight
between the models suggests many variations in the architecture in-
cluding potentially an alternative brake setup. In general, the aircraft
9
includes 8 separate braking assemblies, one per main wheel, and they
are a contemporary version of the multi-disc brake, known as the rotor-
disc brake. Each assembly has a stack of 5 rotors and stators. The
rotors are similar to discs, but they have small openings to allow water
and heat to escape whereas stators are immobile flat plates covered in
isolated blocks that have brake linings attached. When the brakes are
activated, the pistons in the assembly exert pressure through a major

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 9. Overview of High-level Functions.
plate which correspondingly imposes tension to the stack of rotors and
stators and creates the friction needed for heavy-duty braking.

With the transition from hydraulic into electromechanical brakes,
787 Dreamliner also introduced a modern actuation mechanism that
uses electricity to power the braking mechanism instead of fluids.
Manufacturers can choose system components from different vendors,
which changes the system drastically. Each configuration needs to be
carefully evaluated, as it can alter safety requirements substantially.

4.2. Andromeda core phases

4.2.1. Functional modelling
Development typically commences with the function modelling

stage, where a set of high-level functions is defined. As development
advances, this process is reiterated to define functions that support the
high-level functions and build a hierarchical functional model. This
activity is integral for both system development and safety assessment.

On one hand, the work products of this stage are utilised by the
engineers to design the initial system architecture. On the other hand,
knowledge of the system functionality enables the identification of
potential hazards and through the FHA it is possible to evaluate the
risk involved and assign integrity requirements.

For these reasons, Andromeda initiates with the functional mod-
elling stage. Naturally, the functional model would include several
low-level functions, but to avoid an unnecessary and extensive diagram
we only highlight an overview for demonstrative purposes in Fig. 9.

The first layer of this functional model includes only some of
the major high-level functions typically found in commercial aircraft.
In particular, the ‘‘ground deceleration’’ function involves all sub-
functions and systems related to the deceleration capabilities for this
aircraft.

The spoiler control and reverse thrust are linked with the ground de-
celeration function since they are mechanisms that assist that function;
however, in practice they are mostly used during the landing phase.
Thus, even though they are implied as sub-functions in this example to
highlight this connection, their implementation is part of the navigation
and engine systems respectively.

Normally, they would still be assessed for safety concerns when
examining the ground deceleration, but they are excluded from this
example as the focus is solely on the wheel brake system.

At this point, guided by a more mature functional model and accu-
mulated experience, an initial system architecture can be established.
The model for our example is shown in Fig. 10, followed by a brief
explanation.

As we see in the figure, each pilot has access to two brake pedals,
left and right, that send signals to the corresponding Brake System
Control Unit (BSCU). This aircraft uses two separate processing units
10
(BSCUs), one for each group of wheels, for the left and right sides
respectively. Their responsibilities are to process input from pedals,
send the commands to the Electric Brake Actuator Controllers (EBACs)
and receive feedback from the brake assembly sensors in order to notify
the cockpit or other automatic systems (e.g. autobrake).

The feedback is instrumental for the proper operation of brakes and
correct control since it provides information such lining wear, wheel
rotation rate and temperature. The EBACs main role is to interpret
the signals from BSCUs, control the brake rate and send essential data
for health monitoring. Each one of them comes with its unique power
supply, shown in the image above as Electric Brake Power Supply Unit
(EBPSU).

On each wheel there is a brake assembly that has four Electric Brake
Actuators (EBAs), which are engaged through the actuator controllers
(EBACs), and apply pressure on the stack of rotors and stators to
decelerate the wheel.

The software parts of the processing units are validated and verified
directly from the suppliers (e.g. Safran) as well as third-party compa-
nies. The methodologies used for the validation and verification activi-
ties were not specified, however it was clear that software development
was in line with functional specifications through tests that evaluated
the outcome based on specific inputs (black-box testing) (Nidhra and
Dondeti, 2012).

For the purposes of this example, we consider the software and
hardware parts as one unit and assess their interactions as a system.
Finally, Boeing has to extensively test all vital parts of the system under
both normal and irregular conditions. For example, part of the testing
phase examines the aircraft’s braking capabilities with overused brake
linings or with several brake assemblies disabled to ensure performance
is always within the required threshold.

Redundancy and autonomy are incorporated in many parts of the
system architecture and with the existence of auxiliary systems for
deceleration, such as the engine reverse thrust, supported separately
from other sub-systems decreases the likelihood of common errors
which indicates that functional independence is supported to an extent.

4.2.2. Risk assessment
The subsequent phase entails identifying hazards for each function,

estimating risk, assigning a classification, and a DAL requirement. The
results of the FHA activity for two specific functional failures are
outlined in Tables 2 and 3.

In Table 2, we examine the effects of losing control over the ability
of braking as a whole which could lead to a high-speed overrun
with potentially high number of casualties. As a result, the hazard is
classified as catastrophic, the acceptable likelihood of occurrence is
set to a very low probability and the DAL assigned is A, which is the
most stringent. Table 2 explores the possibility of losing the autobrake

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 10. Example Architecture based on Boeing 787 Dreamliner (Mare, 2017).
Table 2
Example Hazard Analysis and Risk Assessment Summary for Loss of Autobrake.

FHA Function FHA Boeing Aircraft Landing & Rejected
Name Dreamliner 787 Phase Take-off

Function Ground Hazard Catastrophic
Name Deceleration Classification

Hazard Loss of Deceleration DAL A
Name Capability

Hazard Unanticipated loss of System Likelihood occurrence
Description deceleration capability Reqs less than 1E-9

per flight hour

Hazard Pilots unable to stop Verification Aircraft
Effect the aircraft Method Fault Tree
Table 3
Example Hazard Analysis and Risk Assessment Summary for Loss of Autobrake.

FHA Function FHA Boeing Aircraft Landing & Rejected
Name Dreamliner 787 Phase Take-off

Function Ground Hazard Major
Name Deceleration Classification

Hazard Loss of Autobrake DAL C
Name

Hazard Unanticipated loss of System -
Description automatic brake Reqs

Hazard Automatic system fails to operate, Verification Software & Hardware
Effect and pilots switch to manual mode. Method Testing

Slow reaction time might lead to
overrun and minor injuries
function. In this case, the pilots are expected to take over and operate
the braking manually. Even assuming slow reaction time, the estimated
outcome of such an incident is only minor injuries and for this reason
the hazard is assigned only a DAL C.

4.2.3. Failure behaviour annotation
The next phase in Andromeda is to determine the failure behaviour

and annotate the system architecture. This process involves the mod-
elling of the architecture within our software tool and providing the
11
failure logic on each of the sub-systems and components. Hence in this
part, we convey that behaviour with the use of a fault tree for clarity as
depicted in Fig. 11. Note that in reality the system-level fault tree would
demonstrate the behaviour of the system as a whole. For example, the
top node could be the ‘‘Loss of Aircraft’’ which would be connected
with all the potential lower-level hazards that could lead to that.

Furthermore, each function could potentially have multiple hazards
and each of these hazards could have different facets. In our exam-
ple below, we examine the hazard ‘‘Loss of Deceleration Capability’’

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 11. Fault Tree for the Unanticipated loss of the wheel brake system.
from Table 3, but only for the failure condition ‘‘unanticipated loss
of deceleration capability’’. That same hazard could also manifest as
‘‘inadvertent deceleration after an attempt for landing’’ with the same
outcome of which is the loss of deceleration.

After careful evaluation, it is calculated that the ‘‘loss of wheel
braking failure’’ can occur from any of the following conditions:

• Loss of brake pedals

– Only possible if both pilots’ pedals fail

• Loss of EBACs

– Loss of both EBACs due to loss of power or internal hard-
ware or software failure

• Loss of BSCUs

– Failure of BSCU due to internal failure
– Both BSCU power supplies fail

• Loss of Wheel-Brake Assemblies

– Any combination of 3, or more, wheel assemblies fail or
suffer damage

The conditions in this case are slightly simplified to facilitate the
demonstration of the process, but we now have enough information to
annotate the system and initiate the automated activities.
12
4.2.4. System safety analysis
With all this information inside our tool, we can commence the

automatic analysis phase, which after a series of processes such as the
synthesis of the system-level tree from individual failure fault trees, it
produces valuable safety artifacts such as the system-level fault tree,
FMEA tables, and Common Cause Analysis (CCA) results. After further
qualitative analysis on the fault trees, we generate the minimal cut sets.

4.2.5. DALs decomposition and allocation
During this next phase, the algorithms provide the list of minimal

cut sets as input to the optimisation algorithm in order to cost-optimally
decompose and allocate the DALs throughout the architecture. The ba-
sic idea is that integrity requirements allocation to lower-level systems
is influenced by the contribution of sub-systems and components to
the system failure. The guidelines suggest FTA or Markov analysis as
suitable candidate techniques for determining that contribution and the
minimal cut sets is the key artifact exploited for this task. As already
discussed, the other significant part of the allocation process is the set of
rules provided by the standards when two or more sub-system failures
contribute to a higher-level failure. These key elements for the optimal
requirement allocation are also graphically depicted in Fig. 12 with the
use of a triangle.

In practice, the software tool uses a Tabu search optimisation tech-
nique, which is an extension of HiP-HOPS as described in Sorokos
et al. (2015)Sorokos et al. (2016), and an abstract cost catalogue. Each
candidate solution represents a specific set of allocated DALs and the

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 12. Integrity requirement allocation model.
Fig. 13. Optimisation Algorithm.
best candidate is considered the one with the lowest cost. First, the
algorithm creates a candidate solution at random which is used in
the next cycle to produce a new generation of candidates. After every
iteration, the available solutions are compared and the less costly is
selected. In addition, the algorithm also checks the short-term memory
(Tabu Tenure) for any recent occurrences of the current solution and
if an identical exists within the tenure, it gets discarded. However,
due to an ‘‘aspiration criterion’’ if the candidate in the tenure has the
overall lowest cost in memory, then the algorithm selects that candidate
regardless being in the tenure. The algorithm is provided as pseudocode
in Fig. 13.

For this particular example, we used the following cost values
shown in Table 4.

The generated DALs for the function ‘‘Deceleration Capability’’ have
been decomposed and allocated automatically as illustrated in a more
detailed system architecture in Fig. 14. Note that the initial DAL
assigned is A due to the fact that the hazard in Table 2 requires a
more stringent requirement compared to the hazard in Table 3 and
13
Table 4
DAL cost values.

DAL A B C D E

Cost 100 80 40 20 0

as the guidelines propose, the most stringent requirement per element
overrules lower values. As can be seen, in the case of the power supply
units (BSCU) there is redundancy and therefore the decomposition rules
are applicable. In addition, the DALs assigned on the wheel assem-
blies are to cover for the electronic parts and actuators rather than
mechanical parts since these require different methods for determining
requirements. Finally, there have been alternative allocations with
similar costs but here we present only one of the available options.

4.2.6. Pattern creation and instantiation
Once safety assessment is completed for this development cycle,
effort must be invested towards system safety assurance by creating

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 14. Cost-Optimal allocation of DALs on the wheel brake.
an argument structure. For this task, we employ the concept of ar-
guments patterns that mandate the argument structure, system model
information and an instantiation algorithm to produce the concrete
argument.

The general pattern we use for the aviation industry follows closely
the safety lifecycle from the ARP4754-A. Despite the pattern being
substantially smaller in size than the concrete argument, here we
present only certain parts of the pattern due to space limitations. Fig. 15
showcases an overview of the pattern at high-level.

The argument comprises of various subgraphs and their encapsu-
lated modules. The top-level module argues that the system in question
(i.e. the aircraft) is safe since the development followed all safety
guidelines and addressed all the functional failures identified during
the design stage. The following nodes argue that this has been achieved
by validation and verification activities as described with the use of the
V-model. This is important to ensure that all functional requirements
specified during the design stage are appropriate and correct and the
implemented architecture is correct according to those requirements.
The process is iterative and goes through the entire architecture starting
from functions and followed by systems that implement these functions
and their sub-systems.

The subgraph in Fig. 16 illustrates the claim that functional require-
ments address all the underlying hazards identified during the most
recent FHA. The justification of assurance is based on the guidelines
that suggest Preliminary Aircraft Safety Assessment (PASA), which
indicates that the process must continue until all hazards for all aircraft
functions have been addressed via the requirements. To notify the
algorithm to iterate over all hazards of every function in the system,
the pattern uses the GSN’s multiplicity extension. On the other hand,
we also use the optionality extension to create options based on the
current requirement. For example, if the requirement is a DAL, then the
claim is supported by the ‘‘DAL VAL module’’ whereas in any other case
it is supported with the ‘‘RValGoal’’ node, which is left undeveloped in
this case.

Finally, the ‘‘DAL Val Module’’ is expanded in Fig. 17. The top-level
node claims that the DAL allocated is suitable for addressing a specific
hazard (i.e. parameter ‘‘H’’) of the current function or system element.
The strategy utilises the Preliminary System Safety Assessment (PSSA)
to examine causes of failure that might lead to the hazard occurring.
This is further supported by nodes which claim that the DALs allocated
throughout the function’s supporting elements (i.e. systems or compo-
nents) are appropriate and optimal. The appropriateness is specified
14
through the ‘‘SupportingDalGoal’’ node that uses the multiplicity exten-
sion to go over all the elements within the architecture that implement
the ‘‘F’’ function. The optimality is argued via the ‘‘DALOptModule’’
within the ‘‘DALGoal’’ node and supported via evidence generated
through the Tabu search.

Similar to this validation subgraph, there is a part of the pattern that
handles arguments related to verification activities (ASA and SSA).

4.2.7. Pattern instantiation
Once the pattern is built within the tool, the engineer can em-

ploy the instantiation action, prompting the algorithm to produce the
corresponding concrete argument. In this process, the pattern serves
as a guiding structure, allowing the algorithm to traverse the system
architecture as needed. It replaces all parameters within the nodes with
actual information derived directly from the system model.

The algorithm responsible for the instantiation is implemented as
three parts within our tool. The initial functions, ‘‘Instantiate’’, initiates
the process, checks for the provision of essential user inputs -comprising
system model information and structure, assessment artifacts, and the
argument pattern- and performs basic model-checking to ensure ad-
herence to specific rules for both the system model and pattern. For
instance, it does not accept a pattern where a strategy node is connected
directly with an evidence element, as this is invalid based on the GSN
standard.

Assuming all the information is suitable, the program creates the
top-level element and calls the second function, ‘‘ParseandCreate’’. This
function is the core of our algorithm, utilising three inputs: the top-
nodes from the system model, the pattern and the concrete argument
to gather the information and structure and recursively construct the
argument. Specifically, through the parameterised expressions within
the pattern nodes, the algorithm mandates the type of information
needed from the system.

Our third function, ‘‘ParseForEach’’, is an auxiliary mechanism used
when the process meets special pattern elements such as ‘‘ForEach’’and
‘‘IfThen’’. The latter enables the system to traverse through the model
information according to user-defined expressions found in these spe-
cial nodes. The system model is utilised for both its encapsulated
information and structure, allowing the algorithm to identify which
parts of the pattern need to be repeated, and ensuring the argument
extents throughout the underlying architecture. Finally, the algorithm
returns to the ‘‘Instantiate’’ function, which passes through the gen-
erated argument structure and calls the tool’s editor to create the

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 15. Overview of the pattern.
graphical representation. The ‘‘ParseandCreate’’ function depicted in
Fig. 18 as pseudocode with all the language-related details omitted.

The automatically generated structure is depicted in Figs. 19 and 20.
Given the considerable size difference between the argument and the
pattern, only two segments are presented here. The first part constitutes
the concrete representation of the pattern structure shown earlier in
Fig. 15.

Showing compliance with the EASA’s guidelines is mandatory since
the aircraft operates within the European boundaries and this should be
reflected in the argument; however, due to similarities with the FAA,
it set as undeveloped in this example.

The second part of the concrete argument, Fig. 20, corresponds to
the argument derived from the pattern snippet in Fig. 17. It asserts that
the DALs allocated to the left-side BSCU and its underlying systems are
adequate to address the hazard examined in this example- namely, the
‘‘Unanticipated Loss of Deceleration Capability’’.
15
4.2.8. Handling changes
Last but not least, it is essential to discuss how Andromeda ac-

commodates changes to adapt to the continuous evolution of modern
development. Arguably, the most common type of change involves
alterations to the system model. During development, engineers may
determine that certain components are unsuitable for the intended
purpose, or issues may arise with suppliers, leading to the adoption of
alternative products with distinct architectural differences.

Additionally, authorities may request hardware or software modifi-
cations through directives to ensure compliance with the regulations.
For instance, in 2019, the FAA issued an Airworthiness Directive (AD)
suggesting all Boeing 787-8 and 787-9 aircraft to install a hydraulic
tubing and replace their flight control software (Federal Aviation Ad-
ministration, 2019). These design alterations are easily managed by
re-annotating the system model with new failure information, and the
remaining tasks are handled automatically by the algorithms. Other
types of changes, such as new guidelines or alterations to existing ones,

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 16. Function Validation Pattern.
can be accommodated by adjusting the argument pattern to align with
the new regime. Finally, changes may also involve the replacement of
analysis techniques with different approaches. These can be seamlessly
integrated into the tool, either through ad-hoc solutions and minor
adjustments to the metamodel and tool or by direct implementation
within software’s analysis engine.

4.3. Evaluation

Summarising our findings, we begin with a reflective evaluation,
which revealed that the integration of all the aforementioned processes
enabled a seamless generation of major work products such as integrity
requirements and argument structures. In combination with the sig-
nificant automation introduced in our method, this provides a strong
foundation for a scalable safety assurance solution, which is crucial for
modern development.

It is important to note that we applied this evaluative case study
with an aim to address the paper’s research questions and evaluate the
16
tool at its prototypical stage. In addition to our own experience using
the tool, we distributed it to industrial partners from EU projects and
others with HiP-HOPS licences (the proprietary part of Andromeda).
The group of users averaged 5–7 years of experience in reliability
engineering. Each user received the files necessary to install the tool
on their own machines and used it to run various examples. Once the
testing period concluded, we conducted informal interviews remotely
through collaborative apps (Microsoft Teams).

From our own experience as the authors, we found that the method
handles changes – whether architectural or knowledge-based - rea-
sonably well due to the adjustability of the argument pattern and
the automation, as discussed in Section 4. This capability enhances
user confidence and facilitates the maintainability of safety arguments.
The case study has provided insight into the following key evaluation
dimensions:

1. Scalability
2. Validation of Requirements and Traceability

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 17. DAL Validation Pattern.
3. Compliance with Industrial Practice
4. Usability

4.3.1. Scalability
Models and automation naturally simplify labour intensive and

error-prone processes. However, it is important to consider the scal-
ability of our algorithms and tool. First, we note that all the key
processes that are computationally expensive, such as the analysis and
design optimisation, are handled within the Andromeda using the HiP-
HOPS engine, a commercial tool used in industrial context, which
has been proven to be scalable (Aizpurua et al., 2018; Lampe et al.,
2018; da Silva Azevedo et al., 2013; Mian et al., 2019). Regarding the
overall application of the method, although the paper presents proof
of concept, our case study has been designed on a realistic system
architecture, having consulted engineers and a number of published
resources. This included not only the ‘‘Wheel Brake’’ system but also
other supporting systems of the ‘‘Ground Deceleration’’ function, such
as the ‘‘Spoiler Control’’ and ‘‘Thrust Reverser Control’’. Our system
is therefore of substantial complexity and size for the purposes of
demonstration, comprising over 152 system elements and resulting in
thousands of argument nodes. Manually creating such an argument
structure would require several person days of modelling, whereas with
the automated instantiation in our tool, it took only a few seconds.

The user group reported that, based on extrapolation, the examples
they worked with would scale to the typical model sizes they encounter
in their applications.
17
4.3.2. Validation of requirements and traceability
As a model-based method, Andromeda enables traceability from a

safety case to various engineering artifacts due to the interconnections
between the heterogeneous models established by its underpinning
metamodel. For industries like the aviation, traceability is essential for
the validation of requirements of sub-systems and items (SAE Interna-
tional, 2010, p. 62). Specifically, each requirement should be traceable
to a parent requirement or to the specific design decision that led
to its identification. The MCSU structure holds all the information at
any time between argument elements and model elements, which can
help to algorithmically, using the requirement decomposition rules as
a base, examine whether a low-level requirement satisfies the higher-
level requirement. In terms of other validation processes, we have
implemented analysis methods that are acceptable by the regulatory
authorities as means to assist in the validation of safety-related require-
ments, such as FHA and PSSA. Other validation activities include the
demonstration of results from special tests and simulations. To this end,
we do not currently offer direct support for such specialised processes,
but we have designed generic structures in the pattern to store test
results along with the mechanisms necessary to add them externally
from other sources.

Regarding this aspect, the users confirmed that the traces relevant
to their typical application usage were included.

4.3.3. Compliance with industrial practice
Despite the fact that this method is novel, we have put significant

effort into ensuring it is compliant with standards. Andromeda closely
follows what ISO26262 and ARP4754-A suggest as suitable processes at

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 18. Instantiation Algorithm.
each development stage and provides the appropriate safety artifacts as
outcomes. For example, hazard identification and mitigation measures,
requirements allocated across system architecture, and the generated
argument of safety.

Similarly to our own findings, user feedback reassured us that our
method adheres to the standard processes. However, we intend to
follow up on this qualitative evaluation with more detailed quantitative
studies assessing specific standard requirements coverage.

4.3.4. Usability
The selected user group provided substantial unstructured feedback

on usability improvements, and overall, reactions were positive for
a non-commercial tool. For example, users suggested implementing
version control to allow for concurrent development and the ability
to revert changes in case of errors. Another recommendation was to
transition from a standalone implementation to a web application to
enable collaborative work among multiple users.

This preliminary feedback has been prioritised, and some changes
were incorporated in the latest version of the tool. After addressing the
18
remaining recommendations, we plan to investigate means of releasing
a public version of the tool and distributing it to more industry experts
for further review and structured evaluation as part of our future work.

5. Related work

Several methods have built upon and refine the concept of MBSA
to either address obstacles associated with the manual nature of clas-
sical analysis techniques or to improve the design process through
automation and deliverables such as optimised architectural designs.

One approach found in Kaiser et al. (2003) introduced the idea of
Component Fault Trees (CFTs), a concept that extends the classical fault
trees by incorporating modularisation and elements from the system
architecture. Each component represents a system element with its
own modular fault tree and many components are connected through
input/output ports forming a network structured as directed acyclic
graphs, effectively creating a high-level system architecture. The failure
propagation applies through the output ports and is computed based
on the input received from the connected components and any inter-
nal (within that component) events. The modular structure of CFTs

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 19. Top-level Concrete Argument - Aircraft safety via compliance with guidelines.
enhances scalability and traceability, ensuring that all safety-critical
aspects can be linked directly to system requirements, which is a
significant benefit over classical fault trees.

A novel method that further extends on MBSA and promotes au-
tomation for the safety assessment presented in Munk et al. (2018)
and referred to as the Semi-Automatic Safety Analysis and Optimisation
(SASAO). This is a semi-automatic safety analysis approach that uses
a system model capable of encapsulating the cost of architectural
elements and error propagation information, represented as CFTs. The
outcome of this method includes both a functional and technical ar-
chitecture that remain consistent with other generated artifacts, such
as fault trees for each safety goal and the FMEA results. SASAO also
utilises optimisation techniques to aid in system design by selecting
the cost-optimal architecture whilst adhering to the safety requirements
(i.e., the probability of top events stays within the required threshold).

Another recent approach that incorporates automation for safety
analysis of systems is presented in Wei et al. (2022), known as De-
signing Critical Systems with automated IteratiVe safety analysis (DE-
CISIVE). This methodology facilitates the strategic planning and design
19
of a safety-centric system through a systematic five-step process that
is applicable with or without the model-based paradigm. In brief, the
engineers define the system and functional requirements and perform
hazard analysis and risk assessment. Then, the safety requirements
are defined and utilised for designing the architecture and, based on
component reliability data, they form the reliability model. After com-
pleting these stages, a safety analysis model is created using automated
FMEA and identification of safety-related components implemented
within the software tool-support. Following a refinement phase, the
acceptably safe architectural design is produced. Any safety-related
artifacts generated during this recurring process can later serve as
supporting evidence for the system’s assurance case.

As per DECISIVE, Andromeda also leverages the MBSA paradigm
to facilitate semi-automatic safety analysis of systems, producing fault
trees, FMEA tables, and minimal cut sets, which are essential evidence
artifacts for safety assurance. Additionally, like SASAO, Andromeda
features capabilities for architectural optimisation. Through the use
of multi-objective genetic algorithms (Parker, 2010), it is capable of

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Fig. 20. Argument over Left-side BSCU and supporting systems.
exploring a large design space with the goal of finding cost-efficient
and reliable system architectures. However, the key distinction of
Andromeda is that it extends beyond the safety assessment. Instead,
it utilises these work products to synthesise argument structures that
are directly applicable for certification purposes.

There are some approaches for producing assurance artifacts to-
wards a safety-driven architectural design that do not only focus on
automation.

For instance, methods such as in Denney et al. (2017) utilise bow-
tie diagrams to compose a safety architecture. Broadly, with the use
of bow-tie diagrams it is possible to link identified hazards with their
causes (using FTA) on one side and the consequences (using Event Tree
Analysis) on the other, which also capture the corresponding proba-
bilistic information. The authors strategically adopted this approach to
address practical considerations in safety case development of small
unmanned aircraft systems (sUAS). This includes maintaining consis-
tency across diverse safety artifacts and ensuring that any changes
20
to the architecture are well-justified allowing them to streamline the
decision-making process. This approach is novel, and based on the
authors, the safety case produced from the artifacts generated through
their method was approved by the corresponding regulatory authority.
Andromeda differs in a couple of ways. First, our framework uses
abstract requirements, making it more generic and adaptable to various
industries with only a few changes whereas their method focuses on the
sUAS. Secondly, the argument generated with our approach, which is
one of the key parts of a safety case, is generated semi-automatically,
whereas in Denney et al. (2017) there is no indication for automation
capabilities on that front and no instantiated argument is shown. This
means that a more complex system than a sUAS might pose significant
challenges during the assurance stage.

Below, we explore various approaches that utilise model-driven
development or MBSA to deliver substantial benefits to both the as-
sessment and assurance parts of the safety framework.

A. Retouniotis et al.

a
f
n
A
t
t
s
t
w
e
c
A
s
I
s
s
a
t
m
a

t
t

t
b
a
a
e
g
a
n
t
t

n

a
c
a
c
i
t
m
o
S
b
f
p
e
d
s
a
t
r
i

i
F
p

a
e

o

p

c
e
t
c
i
g
i

w

G
t

m
t
i
c
a

a
A
t

t
o

The Journal of Systems & Software 220 (2025) 112256
In Denney and Pai (2016), the authors presented their work in
rgument pattern composition. Specifically, they provided a formal
oundation for producing complex argument patterns by combining a
umber of simpler patterns or by abstracting established arguments.
dditionally, they implemented a pattern instantiation mechanism in

heir tool, AdvoCATE, which allowed them to create argument struc-
ures and effectively automate a significant part of the safety case
ynthesis. This method innovatively creates complex argument patterns
hat can be easily adapted for any industry and utilises tool-support
ith the appropriate algorithms to instantiate these patterns and gen-

rate argument structures. Consequently, the pattern can drastically
hange depending on the expertise of the safety engineers. In contrast,
ndromeda elicited a pattern from commonalities found in known
afety standards and uses that as a basis to form argument structures.
n addition, our method employs abstract requirements, generated from
ystem models and analysis, to provide the rationale for how sub-goals
upport higher-level goals, rather than using concrete requirements. As
 result, this allows for a high-level framework that can be adapted
o various contexts more easily, enabling broader application. Further-
ore, Andromeda also features manual creation of argument patterns,

llowing developers to adapt the patterns and gain flexibility.
The work proposed in Hawkins et al. (2015), known as the weaving

model, helps to establish interconnections between different informa-
ion models and GSN patterns via appropriate semantics. Adhering to
he model-based paradigm, this approach is equipped with automation

that facilitates safety case construction and is supported by a software
ool developed within the Eclipse framework. This method offers a ro-
ust foundation for interconnecting models with GSN pattern structures
nd instantiating argument structures given the concrete information
vailable. However, while model weaving allows for the automatic
xtraction of data from design and analysis models, it does not directly
enerate the appropriate evidence artifacts from the system. Addition-
lly, it lacks specific reasoning for constructing arguments and does
ot utilise SILs, which are essential in multiple industries. Nevertheless,
he weaving model is sufficiently generic to allow for adaptations, and
hese features could be implemented in principle.

Another notable methodology, the Assurance Case Centric Engi-
eering Safety-critical System (ACCESS), is presented in Wei et al.

(2024), along with its tool-support, the Assurance Case Management
Environment (ACME), for the development of systems and their assur-
nce cases. The authors explain the importance of assurance cases for
ertification, discuss the diverse engineering artifacts they comprise,
nd emphasise the impact of their evaluation on the overall assurance
ase. They highlight challenges such as the lack of model-based support
n traditional graphical notations. Additionally, they stress that with
he emergence of robotics and autonomous systems, assurance cases
ust adapt not only during system development but also during the

perational stage. To address the first challenge, ACCESS employs the
tructured Assurance Case Metamodel (SACM), which offers substantial
enefits over the graphical notations and robust model-based support
or creating and managing assurance case models. They have also im-
lemented formal verification capabilities that enhance assurance case
valuation by avoiding argumentation fallacies and increasing confi-
ence. ACCESS comprises five basic steps, starting with system function
pecification and concluding with system designs, an assurance case,
nd system verification and validation reports. Additionally, there are
wo optional steps that support the construction and evaluation of
untime assurance cases, with results recorded for continuous system
mprovement.

ACCESS is undoubtably a novel method offering significant ben-
efits, such as the integration of formal methods and the creation of
runtime assurance cases. Despite both ACCESS and Andromeda provid-
ng frameworks for safety assurance, there are substantial differences.
or instance, Andromeda is a fully integrated method that internally
rovides all the elements needed for the semi-automatic generation
of safety arguments, including safety analysis artifacts. In contrast, o

21
ACCESS focuses mainly on the automated evaluation of the generated
ssurance structure through the validation and verification of external
ngineering artifacts. Moreover, Andromeda uses the concept of SILs

and analysis techniques, as advised by safety standards, to construct
safety cases, while ACCESS primarily utilises formal methods, which
are essential in various applications like software development for
safety-critical systems. To conclude, these two methods are quite dis-
tinct, each with its own benefits and limitations, but could benefit from
incorporating features from each other. For example, Andromeda could
be adapted to use formal methods for software component verification,
whereas ACCESS could implement ASILs to align with guidelines such
as the ISO26262.

Finally, in Roback (2023), the author investigates numerous open
source and commercial tools for assurance cases and highlights his
concerns. The main criteria of this review were ease of use and cyberse-
curity. In terms of cybersecurity, most of the tools that are developed
r heavily utilise the Eclipse Framework found to introduce security

risks due to the conflicts between Eclipse IDE’s networking protocols
and national cybersecurity protocols (per USA standards). Other tools
were either web-based, which means they are not suitable for classified
rojects or found to use platforms that were compromised in the past.

The review indicates that the most robust tools found to be these
without any dependencies from specific platforms. Based on the second
riterion, most tools, with the exception of commercial tools, were
ither unavailable, had outdated documentation and required quite
he expertise to be installed or were outdated. There was a third
riterion, about the appropriate use of Model-Based System Engineering
n assurance cases, but the author was mostly reviewing tools that are
ood candidates for USA Department of Defence (DoD) use; therefore,
t is not appropriate to focus on it here.

Andromeda’s supporting tool was developed as a standalone ap-
plication using C++ under the Qt framework, making it compatible

ith a variety of operating systems. Qt offers a wide range of libraries
for rendering, user interface design, and peripheral management, and
does not involve any online usage once the application is compiled (Qt

roup, 2024). This design minimises security risks since the applica-
ion is usable offline without dependencies on third-party platforms.

Regarding ease of use, Andromeda’s tool requires no installation and
includes straightforward documentation.

Lastly, the idea behind Andromeda was first conceived and pro-
posed in a short conceptual paper in Retouniotis et al. (2017). In
that paper, we introduced the concept of building argument structures
with a rationale centred on SILs and a structure that follows the
system architecture. The reasoning was twofold. First, SILS are flexible
abstract requirements extensively used by functional safety standards,

aking the approach applicable across various industries and relevant
o certification authorities. Secondly, the model-based paradigm was
deal as it allows for automation, helping to keep up with the pace and
omplexity of modern systems development, and providing a top-down
pproach that enhances traceability, as stressed by regulations.

However, much progress has been achieved since. Our research
group has been developing MBSA tools which have become commercial
nd produce evidence artifacts that meet the requirements of standards.
ndromeda introduces a metamodeling infrastructure that enables in-

egration of such sophisticated tools. To connect them with assurance
structures, we extended our analysis tool metamodel by adding GSN
pattern and argument elements. This allowed us to extract information
from system architectural models into GSN pattern elements and in-
stantiate the latter to generate an argument structure. As an integrated
method, Andromeda absorbed some of these features, but both the
method and the tool have matured substantially since then.

Specifically, the initial pattern of safety was generic and trivial.
For example, practitioners would manually set the top-goal and all
he sub-goals for the argument structure without any considerations
f the specific industry. The instantiated argument lacked validation
r verification activities’ outcomes because there was no underlying

A. Retouniotis et al.

i
p
m

e
G
n
m
t
t
a
t
a
p
r
r
a

g
p
i
i

w
H
a
c
i
e
n

m

a
p

t
a
l
c
o
a
a
a
d
t
l
t
e

r

The Journal of Systems & Software 220 (2025) 112256
framework to guide the structure. Andromeda, on the other hand,
mplements a pattern elicited from commonalities among standards and
rovides a solid foundation that covers these activities, helping to build
ajor parts of the safety case.

Moreover, Andromeda’s metamodel has significantly evolved from
arlier work. Initially, the metamodel was externally connecting the
SN argument and pattern elements with the HiP-HOPS elements. It
ow effectively links all these under a single framework and imple-
ents them in the same tool, eliminating the need for artifacts in

he form of Extensible Markup Language (XML) files from different
ools and linking them in an ad-hoc manner. The primary benefits
re that any changes to the system architecture are now reflected in
he argument instantly during design iterations, increasing efficiency
nd traceability. Additionally, we expanded our metamodel by incor-
orating the different scheme and requirement decomposition rules
ecommended by the ISO26262. Consequently, our method now di-
ectly supports safety assurance activities for both the aviation and
utomotive industries and can be further adapted for other domains.

6. Conclusions and future work

In this paper, we described our work towards a largely automated
safety assessment and assurance framework for safety-critical systems.
Our approach, Andromeda, is applicable from the early stages of de-
velopment and follows the assessment activities in compliance with
safety standards to produce and maintain safety argument structures.
It integrates elements from various areas. Specifically, it facilitates
functional design and analysis, safety activities, requirement allocation
and assurance through automation and provides a solid foundation
for constructing safety cases that are essential for the certification of
modern systems. To achieve this, we designed an innovative metamodel
that links together model-based safety analysis, automated and cost-
optimal requirement decomposition and allocation via a sophisticated
optimisation algorithm, key common elements across various safety
standards and the concept of argument patterns accompanied by an
instantiation algorithm responsible for automatically constructing the
concrete argument. We developed a safety assessment and assurance
method that is adaptable, and supported by a software engineering tool,
which can be employed directly for practical use in safety assessment
and assurance. Furthermore, both the metamodel and the tool are easily
customisable and therefore usable as a foundation for future methods
that follow the model-based paradigm.

6.1. Limitations

Despite the strengths of Andromeda, it comes with certain limita-
tions. First and foremost, the approach is subject to the ‘‘garbage in,
arbage out’’ (GIGO) principle. This means the quality of the work
roducts generated by the method is dependent on the quality of the
nputs. For example, if the failure annotation by the safety engineer
s not appropriate, then the minimal cut sets and the abstract require-

ments will not be correct either. As a result, the produced argument
will not reflect the true safety state of the system since its evidence
is compromised. However, the arguments constructed in Andromeda
are explicit and subject to scrutiny. Typically, arguments undergo
evaluation, which is possible due to the traceability, and enhancements
before being delivered to regulatory bodies. As for the validity of the
allocation of requirements, these can be checked during development.
The failure model can be examined by experienced practitioners before
submission, and the fault trees generated in Andromeda, which form a
significant part of the evidence, can be assessed using mathematical
models within the tool. Requirement optimisation results can also be
manually tested for validity. Overall, it is much harder to scrutinise
an argument when it is written on paper rather than in a software tool
where most of the results are linked to system models and can be traced
back.
 I

22
Currently, Andromeda focuses mostly on product-based arguments,
hich address safety issues with functions, systems, and components.
owever, modern standards also examine other factors that indirectly
ffect system safety, such as organisational processes or practitioner
ompetency. These are known as process-based arguments, and their
mplementation could benefit Andromeda by bolstering confidence in
vidence artefacts and claims. For instance, an experienced safety engi-
eer is unlikely to introduce many errors when annotating the system

model with failure behaviour data compared to an inexperienced one.
Our tool allows the user to introduce such information. The argument
pattern can easily be extended manually, and there are appropriate
structures in place to capture this information. However, we have not
utilised it yet on any substantial examples or case studies.

Another limitation is that Andromeda does not incorporate formal
ethods and therefore lacks the ability to support mathematically

rigorous verification and validation techniques, which are useful for
various applications, including the development of software for safety-
critical systems. Finally, although Andromeda is generic, it still requires
modification to be usable in a new industry such as by adjusting the
nalysis methods used or by modifying the structure of the safety
attern.

Finally, we would like to discuss a practical limitation regarding
he argument structure itself. Currently, we provide justifications and
ssumptions that are fixed within the pattern. While the pattern al-
ows these elements to scale along with the system, thus maintaining
onsistency between high-level and lower-level arguments elements
f the same node type, it lacks dynamic behaviour. For instance, an
ssumption stating, ‘‘Hazards have been addressed during X process’’
pplies uniformly to all similar nodes in the hierarchy. This may be
cceptable in some cases, but it could also be unwanted behaviour
epending on the scenario. Furthermore, if there is an element lower in
he architecture requiring a justification that is not necessary at higher-
evels, the practitioner must manually extend the pattern to that level
o create the abstract element and supply the needed justifications or
vidence, such as simulation results or other specialised tests.

As part of our ongoing work, we have explored this issue in detail
and developed a solution. Each system element can be extended with
a list of justification and assumption expressions, allowing the safety
engineer to provide relevant context in the form of templates. This
feature enables the dynamic addition of assumptions and justifications
as text integrated with parameterised expressions at any time. During
the instantiation stage, if a system element has any assumptions or
justifications, these will be automatically included in the argument,
even if they are not present in the argument pattern. With the help
of parameterised expressions, we can dynamically extract relevant
information from the models and provide appropriate context and data.
This solution minimises the need to extend the pattern unnecessarily,
and it is currently in the implementation phase.

We do not claim that Andromeda produces a complete safety case,
meaning the argument is not directly usable for certification purposes.
It needs to be scrutinised and undergo enhancement and potentially
modification before handled to the authorities. In addition, there are
artifacts from simulations and specialised tests that might be necessary
for a safety case that are not produced by the tool. There are proper
entities in our framework to capture these in the argument, but the
artifacts have to be generated by external sources and imported later in
Andromeda. Despite these, the work products created are still valuable
and would be challenging to produce manually for large scale systems.

6.2. Future work

Currently, our focus has been on the generation of artifacts and
argument structures for safety cases. Despite our best efforts to make
our approach applicable across various industries, many assumptions
emain regarding the structure of the input for the case generator.
n that regard, we see great potential to further evolve Andromeda

A. Retouniotis et al.

s
A

c
i

a

The Journal of Systems & Software 220 (2025) 112256
by introducing a standardised and homogeneous language for spec-
ifying inputs across more domains. Therefore, we plan to integrate
other methods for systematising the nominal development process,
allowing our approach to leverage the yielded relationships between
requirements, architecture, V&V planning, testing results, and other
argument evidence. This will enable the programmatic construction of
the relevant assurance cases. Further benefits include enhanced capa-
bility for maintaining and updating the assurance case as the nominal
development model is modified, building on the already established
benefits of semi-automation, such as effort reduction, consistency, and
scalability.

In addition to the previous avenues for future work, we plan to
eek external validation from industry experts on the applicability of
ndromeda and receive user-experience feedback on the tool.

Data statement

The data used in this study cannot be shared publicly. The source
code and software components interact with HiP-HOPS, which is com-
mercial and imposes intellectual property restrictions. Additionally,
the questionnaires conducted with engineers, although informal, used
examples from personal projects and are therefore restricted due to
confidentiality agreements.

CRediT authorship contribution statement

Athanasios Retouniotis: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Methodology, In-
vestigation, Conceptualization. Yiannis Papadopoulos: Writing – re-
view & editing, Conceptualization. Ioannis Sorokos: Writing – re-
view & editing, Validation, Supervision, Methodology, Investigation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgements

This work was funded by the EU H2020 SESAME project (grant
greement 101017258).

Data availability

No data was used for the research described in the article.

References

Aizpurua, J.I., Papadopoulos, Y., Merle, G., 2018. Explicit modelling and treatment of
repair in prediction of dependability. IEEE Trans. Dependable Secure Comput. 17
(6), 1147–1162.

Assurance Case Working Group, 2021. Goal Structuring Notation Community Standard
Version 3. Technical Report, Safety-Critical Systems Club, Online at: https://scsc.
uk/r141C:1?t=1. (Last accessed on: 15 July 2024).

Azevedo, L.S., Parker, D., Walker, M., Papadopoulos, Y., Araujo, R.E., 2013. Automatic
decomposition of safety integrity levels: Optimization by tabu search. In: SAFE-
COMP 2013-Workshop CARS (2nd Workshop on Critical Automotive Applications:
Robustness & Safety) of the 32nd International Conference on Computer Safety,
Reliability and Security. p. NA.

Bieber, P., Delmas, R., Seguin, C., 2011. Dalculus–theory and tool for development
assurance level allocation. In: Computer Safety, Reliability, and Security: 30th
International Conference, SAFECOMP 2011, Naples, Italy, September 19-22, 2011.
Proceedings 30. Springer, pp. 43–56.

Boeing, 2023. 787 Airplane Characteristics for Airport Planning. Technical Report,
Boeing, Online at: https://www.boeing.com/content/dam/boeing/boeingdotcom/
commercial/airports/acaps/787.pdf. (Last Accessed 15 July 2024).
23
C.A.E. Framework, 2020. CAE Concepts. Claims Arguments Evidence. Technical Report,
CAE Framework, Online at: https://claimsargumentsevidence.org/notations/claims-
arguments-evidence-cae/. (Last accessed on 15 July 2024).

da Silva Azevedo, L., Parker, D., Walker, M., Papadopoulos, Y., Araújo, R.E., 2013.
Assisted assignment of automotive safety requirements. IEEE Software 31 (1),
62–68.

Denney, E., Pai, G., 2016. Composition of safety argument patterns. In: Computer
Safety, Reliability, and Security: 35th International Conference, SAFECOMP 2016,
Trondheim, Norway, September 21-23, 2016, Proceedings 35. Springer, pp. 51–63.

Denney, E., Pai, G., Habli, I., 2015. Dynamic safety cases for through-life safety
assurance. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2, IEEE, pp. 587–590.

Denney, E., Pai, G., Whiteside, I., 2017. Model-driven development of safety ar-
chitectures. In: 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems. MODELS, IEEE, pp. 156–166.

Erich, G., Richard, H., Ralph, J., Patterns, V.J.M.D., 1994. Elements of reusable
object-oriented software.

Federal Aviation Administration, 2019. 14 CFR part 39. Airworthiness directives;
the boeing company airplanes. Online at: https://www.federalregister.gov/d/2019-
22390. (Last accessed on: 15 July 2024).

Frigerio, A., Vermeulen, B., Goossens, K., 2019. Component-level ASIL decomposi-
tion for automotive architectures. In: 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops. DSN-W, IEEE, pp.
62–69.

Haddon-Cave, Q.C.C., 2009. The nimrod review. An Independent Review into the
Broader Issues Surrounding the Loss of the RAF Nimrod MR2 Aircraft XV230 in
Afghanistan in 2006.

Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T., 2015. Weaving an assurance case
from design: A model-based approach. In: 2015 IEEE 16th International Symposium
on High Assurance Systems Engineering. IEEE, pp. 110–117.

International Organization for Standardization, 2018. ISO 26262: Road vehicles –
functional safety. Parts 1-12.

Joshi, A., Heimdahl, M.P., Miller, S.P., Whalen, M.W., 2006. Model-Based Safety
Analysis. Technical Report, NASA, Online at: https://ntrs.nasa.gov/citations/
20060006673. (Last accessed on: 15 July 2024).

Kaiser, B., Liggesmeyer, P., Mäckel, O., 2003. A new component concept for fault
trees. In: Proceedings of the 8th Australian Workshop on Safety Critical Systems
and Software-Volume 33. pp. 37–46.

Kelly, T.P., et al., 1999. Arguing Safety: A Systematic Approach to Managing Safety
Cases (Ph.D. thesis). Citeseer.

Lampe, J., Rüde, E., Papadopoulos, Y., Kabir, S., 2018. Model-based assessment of
energy-efficiency, dependability, and cost-effectiveness of waste heat recovery
systems onboard ship. Ocean Eng. 157, 234–250.

Leveson, N.G., 2011a. Engineering a Safer World: Systems Thinking Applied to Safety
(Engineering Systems). MIT Press Cambridge.

Leveson, N.G., 2011b. The use of safety cases in certification and regulation.
Engineering Systems Division (ESD) Working Paper Series.

Mare, J.-C., 2017. Aerospace Actuators 2 - Signal by Wire and Power by Wire.
Wiley-ISTE, http://dx.doi.org/10.1002/9781119332442.

Mian, Z., Bottaci, L., Papadopoulos, Y., Mahmud, N., 2019. Model transformation for
analyzing dependability of AADL model by using HiP-HOPS. J. Syst. Softw. 151,
http://dx.doi.org/10.1016/j.jss.2019.02.019.

Ministry of Defence, 1996. 00-56 safety management requirements for defence systems.
MoD (1996a), UK.

Munk, P., Abele, A., Thaden, E., Nordmann, A., Amarnath, R., Schweizer, M., Burton, S.,
2018. Semi-automatic safety analysis and optimization. In: Proceedings of the 55th
Annual Design Automation Conference. pp. 1–6.

Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D., 2015. Evidence management
for compliance of critical systems with safety standards: A survey on the state of
practice. Inf. Softw. Technol. 60, 1–15.

Nidhra, S., Dondeti, J., 2012. Black box and white box testing techniques-A literature
review. Int. J. Embedded Syst. Appl. (IJESA) 2 (2), 29–50.

Object Management Group, 2018. Structured Assurance Case Metamodel (SACM).
Technical Report, Object Management Group, Online at: https://www.omg.org/
spec/SACM/2.0. (Last accessed on: 15 July 2024).

Parker, D.J., 2010. Multi-Objective Optimisation of Safety-Critical Hierarchical
Systems University of Hull, (Ph.D. thesis).

Qt Group, 2024. Quick start with qt for Python. URL https://doc.qt.io/qtforpython-
6/quickstart.html#quick-start. (Accessed: 2024-08-01).

Radio Technical Commission for Aeronautics, 2011. DO-178c: Software considerations
in airborne systems and equipment certification.

Retouniotis, A., Papadopoulos, Y., Sorokos, I., Parker, D., Matragkas, N., Sharvia, S.,
2017. Model-connected safety cases. In: Model-Based Safety and Assessment: 5th
International Symposium, IMBSA 2017, Trento, Italy, September 11–13, 2017,
Proceedings 5. Springer, pp. 50–63.

http://refhub.elsevier.com/S0164-1212(24)00300-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb1
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb1
https://scsc.uk/r141C:1?t=1
https://scsc.uk/r141C:1?t=1
https://scsc.uk/r141C:1?t=1
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb4
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb4
https://www.boeing.com/content/dam/boeing/boeingdotcom/commercial/airports/acaps/787.pdf
https://www.boeing.com/content/dam/boeing/boeingdotcom/commercial/airports/acaps/787.pdf
https://www.boeing.com/content/dam/boeing/boeingdotcom/commercial/airports/acaps/787.pdf
https://claimsargumentsevidence.org/notations/claims-arguments-evidence-cae/
https://claimsargumentsevidence.org/notations/claims-arguments-evidence-cae/
https://claimsargumentsevidence.org/notations/claims-arguments-evidence-cae/
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb7
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb8
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb9
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb10
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb11
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb11
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb11
https://www.federalregister.gov/d/2019-22390
https://www.federalregister.gov/d/2019-22390
https://www.federalregister.gov/d/2019-22390
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb13
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb14
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb14
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb14
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb14
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb14
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb15
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb16
https://ntrs.nasa.gov/citations/20060006673
https://ntrs.nasa.gov/citations/20060006673
https://ntrs.nasa.gov/citations/20060006673
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb18
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb20
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb20
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb20
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb20
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb20
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb21
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb22
http://dx.doi.org/10.1002/9781119332442
http://dx.doi.org/10.1016/j.jss.2019.02.019
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb25
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb26
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb27
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb28
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb28
https://www.omg.org/spec/SACM/2.0
https://www.omg.org/spec/SACM/2.0
https://www.omg.org/spec/SACM/2.0
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb30
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb30
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb30
https://doc.qt.io/qtforpython-6/quickstart.html#quick-start
https://doc.qt.io/qtforpython-6/quickstart.html#quick-start
https://doc.qt.io/qtforpython-6/quickstart.html#quick-start
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb32
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb33

A. Retouniotis et al. The Journal of Systems & Software 220 (2025) 112256
Roback, K.P., 2023. Review of Potential Assurance Case Tool Options for DoD. Technical
Report, Institute for Defense Analyses, Online at: https://apps.dtic.mil/sti/citations/
trecms/AD1211550. Last Accessed 15 July 2024.

SAE International, 2010. ARP4754-A: Guidelines for Development of Civil Aircraft and
Systems, Revision A SAE International, Warrendale, PA.

Sorokos, I., Papadopoulos, Y., Azevedo, L., Parker, D., Walker, M., 2015. Automat-
ing allocation of development assurance levels: An extension to HiP-HOPS.
IFAC-PapersOnLine 48 (7), 9–14.

Sorokos, I., Papadopoulos, Y., Walker, M., Azevedo, L., Parker, D., 2016. Driving
design refinement: How to optimize allocation of software development assurance
or integrity requirements. In: Software Quality Assurance. Elsevier, pp. 237–250.

Wei, R., Foster, S., Mei, H., Yan, F., Yang, R., Habli, I., O’Halloran, C., Tudor, N.,
Kelly, T., Nemouchi, Y., 2024. ACCESS: Assurance case centric engineering of
safety–critical systems. J. Syst. Softw. 213, 112034. http://dx.doi.org/10.1016/j.
jss.2024.112034.

Wei, R., Jiang, Z., Guo, X., Mei, H., Zolotas, A., Kelly, T., 2022. Designing critical
systems with iterative automated safety analysis. In: Proceedings of the 59th
ACM/IEEE Design Automation Conference. pp. 181–186.

Athanasios Retouniotis is a software developer with a
strong academic background and research experience in
model-based safety assurance. He completed a Ph.D. in
Model-Based Systems at the University of Hull, where he
also held a contract position as a Research Assistant within
the Dependable Intelligent Systems Group. During that time,
he participated in the Horizon Europe project DEIS and
worked on tool support for the group. In addition to his
doctoral studies, he holds a Master’s degree in Computer
Graphics and has keen interests in game development, web
technologies and computer vision.
24
Professor Yiannis Papadopoulos has pioneered work on
model-based dependability assessment and evolutionary
optimisation of complex engineering systems known as
Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS). He co-authored EAST-ADL, an emerg-
ing automotive architecture description language.

These technologies have gained wide academic recogni-
tion and have been successfully transferred to the automo-
tive, shipping and other industries, where they have been
commercialised and successfully deployed in design and
engineering processes. He is currently developing technolo-
gies for self-certification of cyberphysical and autonomous
systems.

More information about his academic and industrial
projects can be found on his personal website @ https:
//yipapadopoulos.wixsite.com/yiap.

Ioannis Sorokos is a senior researcher and project manager
at the Fraunhofer Institute for Experimental SoftwareEngi-
neering (IESE) in the department of Safety Engineering. He
received his Ph.D. from the University of Hull in a topic
related to model-based safety assurance. He has partici-
pated in and managed several industry and international
research projects, including the Horizon Europe projects
DEIS, BIECO and SESAME. He is a member of the WAISE
workshop program committee and an editor in the Frontiers
in Robotics and AI journal for AI Safety in safety-critical
systems. His research interests include model-based safety
assurance, safety-security co-engineering, ML uncertainty
and self-adaptive systems.

https://apps.dtic.mil/sti/citations/trecms/AD1211550
https://apps.dtic.mil/sti/citations/trecms/AD1211550
https://apps.dtic.mil/sti/citations/trecms/AD1211550
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb35
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb35
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb35
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb37
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb37
http://dx.doi.org/10.1016/j.jss.2024.112034
http://dx.doi.org/10.1016/j.jss.2024.112034
http://dx.doi.org/10.1016/j.jss.2024.112034
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb39
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb39
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb39
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb39
http://refhub.elsevier.com/S0164-1212(24)00300-5/sb39
https://yipapadopoulos.wixsite.com/yiap
https://yipapadopoulos.wixsite.com/yiap
https://yipapadopoulos.wixsite.com/yiap

	Andromeda: A model-connected framework for safety assessment and assurance
	Introduction
	Structure of the paper

	Background
	The approach
	Overview of Andromeda
	The Pattern
	Method Integration
	The Metamodel
	Inputs and Outputs of Andromeda

	Case Study
	System Details
	Andromeda Core Phases
	Functional Modelling
	Risk Assessment
	Failure Behaviour Annotation
	System Safety Analysis
	DALs Decomposition and Allocation
	Pattern Creation and Instantiation
	Pattern Instantiation
	Handling Changes

	Evaluation
	Scalability
	Validation of Requirements and Traceability
	Compliance with Industrial Practice
	Usability

	Related work
	Conclusions and Future Work
	Limitations
	Future Work

	Data Statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

