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prediction of the failure of unidirectional
composite lamina subjected to transverse
and in-plane shear stress states

Lei Wan1,2, Yaser Ismail3, Chao Zhu4, Ping Zhu4 ,
Yong Sheng5, Jie Liu6 and Dongmin Yang1,2

Abstract

This paper presents a micromechanics-based 3D finite element model for predicting the damage initiation, propagation,

and failure strength of TC33/Epoxy carbon fiber reinforced polymer (CFRP) unidirectional lamina under biaxial loadings.

The finite element model is generated by introducing representative volume element (RVE) with a random distribution of

fibers and a non-zero thickness, numerically identified interface phase via cohesive elements. In the finite element model,

the carbon fibers are considered as elastic, while the elasto-plastic behavior and damage of the matrix are governed by

extended Drucker–Prager plastic yielding model and ductile damage criterion. By imposing periodic boundary conditions

to the RVEs, various cases subjected to uniaxial and biaxial loading conditions are carried out. During the combined

transverse and in-plane shear stress states, a failure transition from compression- or tension-dominated to shear-

dominated is captured, and the effects of the interfacial strength on the transition damage mechanisms are discussed.

The corresponding failure locus is compared with the upper bound and lower bound predictions of three phenomeno-

logical failure criteria (Hashin, Tasi–Wu, and Puck failure criteria) for composites. It was found that in the interface-

dominated failure of a CFRP lamina with a weak interface, the Hashin failure criterion performs best among the currently

popular failure criteria. However, in the matrix-dominated failure with a strong interface, the Puck failure criterion

performs best. Comparing these three criteria, it can be seen the Tsai–Wu may be generally better than both of others

as it presents more neutral predictions in both of the examined cases.
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Introduction

Carbon fiber reinforced polymer (CFRP) composites
have been widely used in aerospace and mechanical
industries for several decades due to their outstanding
specific stiffness and strength. Moreover, the composite
laminates with desired modulus and strength in differ-
ent directions can be achieved by proper design and
optimization of an individual lamina. However, in
most cases, composite components are usually over-
designed considering the safety factors, resulting in
the larger and heavier parts. This is mainly due to
lack of reliable predictive models and theories to fully
understand the mechanical response and failure/
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damage mechanisms of the composites under various
loading conditions.1 Unlike most homogeneous mater-
ials, CFRP composite materials, with heterogeneous
nature between different phases, tend to present mul-
tiple damage modes depending on the loading condi-
tions, stress states, and possible manufacturing defects.2

The coexistence of these various damage modes in
CFRP composites implies the necessity of the combin-
ation of different failure criteria depending on the load-
ing mode. Besides, a failure locus is usually formed by
the intersection of various smooth surfaces in the stress
space, and each one represents the critical condition for
a given fracture.3 Therefore, it is still challenging to
accurately predict failure envelopes of CFRP compos-
ites subjected to multi-axial stress states.

Over the last several decades, a large number of fail-
ure criteria have been proposed to predict the failure
envelopes of the composite materials from limited
experimental data, and some of them have been suc-
cessfully applied to design and calculate the safety fac-
tors for the composite structures. They include but not
limited to strain-based,4 strain-energy-based,5 stress-
based,6–9 and phenomenological failure criteria.10–15

Although many failure criteria have been proposed
and the modification of some criteria is still ongoing,
the validation of these criteria remains challenging.
That is due to the inability of these criteria regarding
the accurate prediction of the progressive failure pro-
cess in composites. An objective assessment of the cur-
rently available failure criteria for fiber-reinforced
composites was conducted under complex 3D stress
state to predict the failure strength and to describe
the failure envelop in a series of three World Wide
Failure Exercises.16–22 The Second World Wide
Failure Exercise (WWFE-II), of assessing some existing
failure criteria for FRP composite laminates, has shown
the satisfactory performance of each criterion to vari-
ous degrees. However, there still exist considerable vari-
ations in the accuracy of the predictions by these
criteria. More recently, the third World Wide Failure
Exercise (WWFE-III) was conducted to highlight the
degree of maturity of 12 internationally recognized
approaches (some of them are different from the criteria
mentioned in WWFE-II) considering their capabilities
of detecting the various damages within the composite
materials when subjected to multi-axial loading.20–22 It
was found that any two models cannot give identical
predictions for any of the 13 test cases. In a few cases,
the ratio between the highest and lowest strength pre-
dictions can even reach a factor of 20. In addition, the
monitoring and visualization of in-situ damage pro-
gression during mechanical tests is no doubt challen-
ging and expensive, especially for the multi-axial stress
states. Therefore, precise conclusions have not been
reached regarding which criterion can best reproduce

the physical failure mechanisms and the mechanical
strength because of the scarcity of the experimental
data, especially under multi-axial stress states. Thus,
many criteria have still not been validated for the pre-
diction of the strength of the fiber-reinforced compos-
ites. Meanwhile, the input parameters of these
aforementioned models were obtained through costly
and time-consuming experiments for different material
system. However, the results obtained from a given uni-
directional (UD) composite material system cannot be
extrapolated to other configurations with different fiber
volume fraction or constituent properties, leading to a
huge amount of investment in their physical
characterization.23

Thanks to the increasing computation power, many
of these difficulties can be overcome by taking advan-
tage of computational micromechanics. Computational
micromechanics offers a novel approach for a better
understanding of the deformation and damage mech-
anisms by employing the representative volume element
(RVE) modeling. Compared to the classic homogeniza-
tion techniques, computational micromechanics pre-
sents two main advantages. On the one hand, this
method takes the influences of the geometry and spatial
distribution of the three phases into consideration. For
example, the size of fiber, the fiber clustering, and the
interface connectivity between fiber and matrix are
included. On the other hand, the details of the stress
and strain distribution under different loading condi-
tions can be captured, leading to more accurate estima-
tion of the onset and progressive process of damage,
and the final failure strength.24 Recently, computa-
tional analysis was successfully employed to investigate
the mechanical response of the different material sys-
tems for the fiber-reinforced composite lamina sub-
jected to the different combined loading conditions,
such as transverse tension and out-of-plane shear,3

transverse compression and out-of-plane shear,25 trans-
verse compression and in-plane shear,23,26 transverse
tension and in-plane shear,23 and transverse compres-
sion and axial tension.27 Interface modeling is a crucial
part of RVE modeling with the finite element method
(FEM), and usually, a cohesive crack model is imple-
mented to simulate the mechanical response of the
interface between the fiber and matrix. In the linear
behavior before the onset of damage, an initial stiffness
Ki (10

5GPa/mm) is used in most research26–32 to simu-
late the elastic behavior of the RVE model. The choice
of this parameter is based on that it should be large
enough to ensure the displacement continuity at the
interface and to avoid any modification of the stress
fields around the fiber before damage.26 However, it
was found that the average Young’s modulus and the
strength of the interphase are around five and nine
times larger than those of the bulk resin matrix.32
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Therefore, the interphase was modeled as a separate
zone with the same constitutive and damage models
of matrix, which makes the model more complicated.
The parameter identification of the interphase of the
carbon fiber reinforced composite was conducted by
the inverse strategy based on the experimental data,
microstructural modeling method, and Kriging meta-
model, including the identification of thickness,
normal stiffness, and tangent stiffness.33 This set of par-
ameters was applied to predict the elastic and strength
properties of carbon FRP composite yarn, and good
agreement was found with other regular simulation
models.34 In order to obtain accurate results from FE
simulations, the constitutive model used for the matrix
material modeling plays an important role. There are
several constitutive models proposed for modeling
matrix behavior, namely Mohr–Coulomb model (M–
C), Drucker–Prager model (D–P), and a new model
proposed by Melro et al.,35 which are widely used to
conduct failure analysis of composite materials within
the framework of micromechanics, see Canal et al.,3

Gonźalez and LLorca,24 Totry et al.,26 Melro et al.,29

Tan et al.,31 and Sun et al.32

In this paper, a micromechanics-based FE model
employing RVE modeling is developed for the investi-
gation of the failure/damage mechanisms and assess-
ment of the failure envelopes of UD CFRP
composites subjected to transverse and in-plane shear
stress states. A novel approach for generating random
fiber distributions is applied using the discrete element
method (DEM) with high volume fractions and any
specified inter-fiber distances.36 Five RVE models
with different random fiber distributions and the same
volume fraction are built for the investigation of the
effects of the different fiber distributions on the mech-
anical response of the composite. The linear extended
D–P model and the ductile damage model are adopted
in the modeling of plastic behavior and damage of the
matrix, the damage mode transition, and associated
change of stress-based yielding law in the D–P model
are discussed. In addition, the cohesive crack model is
adopted for simulating the mechanical behavior of the
interface with the identified elastic parameters from Lu
et al. and Zhu et al.33,34 The predictions with upper and
lower bounds from three popular failure criteria are
compared with the numerical results in terms of a
weak and a strong interface for the evaluation of
these criteria under different transverse and in-plane
shear stress states.

Computational micromechanics modeling

Computational micromechanics modeling is performed
on the RVEs of the UD CFRP subjected to homoge-
neous stress states, such as tension, compression, and

shear. A total number of around 50 fibers is enough to
capture adequately the essential features of the micro-
structure of the material24 while maintaining reason-
able computing efforts. In addition, the average
radius value and average volume fraction are obtained
experimentally to be 3.115mm and 65.12% in Zhu
et al.,34 respectively. The microstructure of each RVE
is idealized as the dispersion of 50 circular fibers with
an average radius of 3.2mm randomly embedded in the
matrix, making a volume fraction of 65%. The size of
RVEs is chosen to be 50 mm� 50 mm� 6 mm, consider-
ing the insignificant effects of depth on the transverse
properties. The novel approach for generating the 2D
random fiber distribution to overcome the jamming
limit is adopted from the previous study,36 and
extruded along the fiber direction to achieve the final
RVE configuration of the UD composite material.
FEM models are generated in ABAQUS/Explicit to
overcome the convergence difficulty of numerical ana-
lysis. The fibers and matrix are meshed using six-node
linear triangular prism elements (C3D6) with hourglass
control, and the interface is meshed with eight-node
cohesive elements (COH3D8). Typically, around
52,000 elements are adopted in each RVE to capture
the large stress gradients between neighboring fibers;
see Figure 1 for an illustration of the RVE model
with random fiber distribution. In order to accelerate
the simulation process, mass scaling is normally utilized
in the ABAQUS/Explicit to artificially increase the
mass of elements, resulting in an increase of the time
increment. However, this technique can influence the

Figure 1. 3D RVE FE model with random fiber distribution and

its microstructure distribution.

RVE: representative volume element.
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results largely, especially during an analysis of dynamic
study where the inertia effects become dominant. A
common way to check the influences of the mass scaling
on the numerical results is to compare the kinetic
energy with the internal energy, and a ratio below
10% can be regarded as an insignificant effect.37,38

Therefore, the stable time increment for the mass scal-
ing is selected as 6� 10�6 s to ensure a negligible influ-
ence on the results. The initial time step is around
5.37� 10�12 s, and the cost of simulation time is 6–
8 h, depending on the loading conditions and the fiber
spatial distribution within RVE, with the 8-core Intel
E5-2670 (2.6GHz) processors and 16 GB memory on
ARC2 HPC operating system provided by the
University of Leeds.

The response of the UD composite subjected to
various loading conditions can be obtained from
the homogenized stress �ij and the homogenized
strain "ij. While the simulated results obtained from
the microscale model are only local stress and strain
distributions within the RVE, the homogenized
stress can be calculated at each timestep from the equa-
tion below

�ij ¼
1

V

Z
V

ð�locij ÞdV ð1Þ

where �locij is the local stress tensor and V is the volume
of the RVE. Besides, within the frame of the first-order
computational homogenization, the homogenized
strain is equal to the macro-strain of the dummy
node. It is worth noting that the nonlinear displace-
ments within the RVE, such as the interface debonding
when it fails, are taken into consideration within the
macro-strain or homogenized strain. Meanwhile, it is
important to note that the application of periodic
boundary conditions (PBCs) introduces some con-
straints and limitations regarding the periodicity of
the results, which means the damage created within
the RVE represents a periodic damage instead of a
local defect.39

Constitutive laws of fiber and matrix

Carbon fibers are modeled as linear, elastic, and trans-
versely isotropic solids, and their anisotropies are taken
into consideration by defining five independent elastic
constants, which are given in Table 1. While for the
isotropic epoxy resin matrix in this study, it was
assumed to behave as an elastic perfectly plastic solid.
Since the behavior of polymers is found to be sensitive
to the hydrostatic stress,40 the extended linear D–P
yield criterion is adopted in conjunction with the ductile
damage criterion to simulate the plastic deformation
and capture the damage process of the polymer

matrix. The extended linear D–P criterion can be
expressed as below41

F ¼ t� p tan�� d ¼ 0, t ¼
1

2
q 1þ

1

k
� 1�

1

k

� �
r

q

� �3
" #

ð2Þ

where p is the equivalent pressure stress, � is the slope
of the linear yield surface in the p–t plane (also referred
to as the friction angle of the material in the D–P cri-
terion), d is the cohesion of the material and related to
the yielding stress when the yielding behavior is defined
by the uniaxial compression, tension, and shear, q is the
Mises equivalent stress, k is the ratio of the yield stress
in triaxial tension to the yield stress in triaxial compres-
sion and controls the difference in yielding behavior
between tension and compression. According to the
M–C model and the relation between M–C and D–P
models, the internal friction angle � and cohesion of the
matrix are 18:5� and 62.4MPa, respectively. The matrix
is assumed as perfect plasticity, and no hardening is
considered in this study. The plastic flow of the material
is controlled by the flow potential G, and is expressed as

G ¼ t� p tan ð3Þ

where  is the dilation angle in the p–t plane.
Experimental findings42 showed that the use of the
associated flow rule for polymers overestimates the
extent of plastic dilatancy, thus a non-associated flow
rule is utilized to compute the direction of the
plastic flow.

After the yielding process of the polymeric material,
an additional criterion is needed for the prediction of
the onset of damage. Experimental findings43 show that
the polymer exhibits a rather brittle fracture behavior
under the uniaxial tension while a large plastic deform-
ation under uniaxial compression and pure shear. This
behavior can be governed by the ductile criterion,

Table 1. Mechanical properties of the fiber and matrix.23,34

Mechanical properties

TC33

fibers

Epoxy resin

matrix

Longitudinal modulus E1 (GPa) 230 3.08

Transverse modulus E2¼ E3 (GPa) 106 –

In-plane shear modulus G12 (GPa) 20.5 –

Major Poisson’s ratio �12 0.255 0.35

Transverse Poisson’s ratio �23 0.405 –

Tensile strength (MPa) – 60.96

Compressive strength (MPa) – 90.54

Critical fracture energy (J=m2) – 100
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which assumes that the equivalent plastic strain at the
onset of damage �"plD is a function of stress triaxiality �
and strain rate _�"pl, where � ¼ �p=q. The criterion for
damage initiation (!D) is met when the following con-
dition is satisfied

!D ¼

Z
d �"pl

�"plDð�,
_�"plÞ
¼ 1 ð4Þ

Once the ductile damage initiation criterion is met,
the following damage propagation is controlled by a
damage evolution law, and the whole process from elas-
tic behavior until final failure is illustrated in Figure 2.
The solid curve represents the damaged stress–strain
response, which manifests in two different forms:
softening of the bold yielding stress and degradation
of the elasticity, while the dashed curve is the material
response in the absence of damage. When material
damage occurs, the stress–strain relationship can no
longer represent the material behavior accurately.
That is because the stress–strain relationship can intro-
duce a strong mesh dependency based on strain local-
ization, in which the energy dissipation decreases with a
finer mesh. Therefore, the softening response after
damage initiation is characterized by a stress-displace-
ment response rather than a stress–strain response to
alleviate mesh dependency of the results. This can be
achieved in the FE model by introducing the critical
fracture energy, defined as the energy required to
open a unit area of crack, and a characteristic length
L. The fracture energy can be expressed as

Gf ¼

Z �"pl
f

�"pl
0

L�yd �"plf ¼

Z �u
pl

f

0

�yd �upl ð5Þ

The characteristic length is calculated based on the
element geometry. For 3D geometry, the length is equal
to the cube root of the integration point volume for
solid elements. The initial plastic strain for the onset
of damage is chosen as 0.05 for tension and 0.5 for
compression and shear considering their experimental
mechanical performances.44 �y0 is the yield stress and
same as the strength in the uniaxial loading conditions.
�"pl0 is the equivalent plastic strain at the onset of the
damage and capable of controlling the behavior of
the polymer matrix after yielding, and �"plf is the equiva-
lent plastic strain at the failure when the overall damage
variable D¼ 1. The equivalent plastic displacement at
failure is defined as �u

pl
f ¼ 2Gf=�y0. The overall damage

variable can capture the combined effect of all active
mechanisms and is computed from the individual scalar
damage variables di, which are modeled for the degrad-
ation of the stiffness associated with each active damage

mechanism. Hence, at a given time, the stress tensor in
the material can be calculated as �y ¼ ð1�DÞ ��. More
details about the damage model and the numerical
implementation can be found in Abaqus Users
Manual, Version 6.1341 and Yang et al.,44 and the
matrix properties can be found in Table 1.

Cohesive element model of interface

The fiber–matrix interface is modeled using cohesive
element, which is controlled by the bilinear traction-
separation law. The elastic behavior is written in terms
of an elastic constitutive matrix that relates the nominal
stresses to the nominal strains across the interface. The
nominal traction stress vector t consists of three compo-
nents, tn, ts, tt, which represent the normal and two shear
tractions, respectively. The corresponding separations
are denoted by �n, �s, and �t, and the original thickness
of the cohesive element is denoted by T0. Then the nom-
inal strains can be defined as

"n ¼
�n
T0

, "s ¼
�s
T0

, "t ¼
�t
T0

ð6Þ

Therefore, the elastic behavior for the cohesive elem-
ent can be written in equation (7). For simplicity of
computation, uncoupled behavior between the normal
and shear components is desired, so the off-
diagonal terms in the elasticity matrix are set to be
zero and the stiffness in two shear directions is assumed
to be equal

t ¼

tn

ts

tt

8><
>:

9>=
>; ¼

Knn Kns Knt

Kns Kss Kst

Knt Kst Ktt

2
64

3
75

�n

�s

�t

8><
>:

9>=
>; ¼ K" ð7Þ

Figure 2. Stress–strain curve of the polymeric matrix with

progressive damage.

Wan et al. 3641



Damage is initiated when a quadratic interaction
function involving the nominal stress ratios reaches a
value of one. This criterion can be represented as

htni

t0n

� �2

þ
ts
t0s

� �2

þ
tt
t0t

� �2

¼ 1 ð8Þ

where hi is the Macaulay brackets, which return the
argument if positive and zero otherwise, and the
bracket is also used to signify that a pure compressive
deformation or stress state does not initiate damage.
t0n, t

0
s , t

0
t represent the peak values of the nominal

stress when the deformation is purely normal to the
interface and purely in the first and second shear direc-
tions, respectively. Damage evolution is defined based
on the dissipated fracture energy during the damage
propagation. Once the damage initiates, the traction
stress t0 is reduced depending on the interfacial
damage parameter, which monotonically evolves from
0 (in the absence of damage �0) to 1 (at the final failure
�f), as shown in Figure 3. The energy-based
Benzeggagh–Kenane (BK law) damage propagation
criterion45 is adopted during the damage evolution of
the cohesive elements, which is illustrated as below

GC
n þ ðG

C
s � GC

n Þ
GS

GT

� ��
¼ GC, GS ¼ Gs

þ Gt, GT ¼ Gn þ Gs

ð9Þ

where GC
n , G

C
s , and GC

t refer to the critical fracture
energies required to cause failure in the normal, the
first, and the second shear directions, respectively.
Here GC

s ¼ GC
t is set and GC is the critical total inter-

facial fracture energy and the � is a cohesive property
parameter. The properties of the interface are shown in
Table 2, where the elastic properties are obtained from
the parameter identification.

Periodic boundary conditions

PBC is imposed on the corresponding surfaces of the
RVE by means of introducing the equations between
the periodic nodes, in order to guarantee the periodicity
of the displacement and traction fields as well as to
ensure the continuity between the neighboring RVEs.
The unified PBCs are expressed in terms of the displace-
ment vectors ~U1, ~U2, and ~U3 which are related to the
displacements between the opposite surfaces

~uð0,x2, x3Þ � ~uðL1, x2, x3Þ ¼ ~U1

~uðx1, 0, x3Þ � ~uðx1,L2, x3Þ ¼ ~U2

~uðx1, x2, 0Þ � ~uðx1, x2,L3Þ ¼ ~U3

8><
>: ð10Þ

where L1, L2, and L3 are the lengths of the RVE along
with three orthogonal directions, respectively. The
absolute formation is used to impose the linear con-
straint functions on the nodes at parallel opposite
pairs of faces, and the edges and the vertices are
extracted from the face which they belong to for the
equations. The dummy nodes are introduced as refer-
ence points to apply the load in three directions, and
then different loading conditions can be achieved by
applying the displacement loads on the dummy nodes.
When a displacement component of the dummy node is
set free, this displacement can be computed by the FE
solver under stress-free conditions. Therefore, the
Poisson effect is permitted in a specific direction. For
the uniaxial loading conditions, the load is applied to
the axial direction, and then the axial components
in the other two directions are set free for the consid-
eration of the Poisson effects. While for combined uni-
axial transverse loading perpendicular to the fiber
direction and in-plane shear along the fiber, the loading
is imposed with ~U2 ¼ ð�s, ��, 0Þ, where the �� and �s
represent the transverse tension/compression and shear
displacements, respectively. Same as the uniaxial load-
ing conditions, the axial components in the other two

Figure 3. Traction-separation law of the interface.

Table 2. Mechanical properties of the interface.23,34

Mechanical properties Value

Thickness T0 (mm) 0.139

Normal stiffness Knn (GPa/mm) 846.8

Shear stiffness Kss (Ktt) (GPa/mm) 535.6

Normal strength t0n (MPa) 27.5

Shear strength t0s (t0t ) (MPa) 45.0

Normal critical fracture energy GC
n (J=m2) 5

Shear critical fracture energy GC
s (GC

t ) (J=m2) 100
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directions are set free. More details about the implica-
tion of the PBC on the RVE is found in Garoz et al.39

Assessment of the mechanical response of
the RVE under uniaxial loading conditions

Before the prediction of the damage mode and envelop
of the UD RVE under biaxial stress states is conducted,
an assessment of the RVE model, with a reasonable fine
mesh, appropriate boundary condition and material
properties, is required. In order to retain the accuracy
of the numerical results with a reasonable computa-
tional cost, five RVE models with different fiber distri-
butions are generated with around 52,000 elements, and
the primary results are summarized in Table 3. It is
worth noting that the transverse modulus was obtained
by averaging Young’s modulus from transverse tension
and compression cases, and the average value is almost
identical with the value obtained from the idealized
single fiber model.34 All of the predicted properties
are in good agreement with the single fiber model
within a difference of 7%. The details of the stress–
strain curve and ductile damage distribution of RVE1
can be found in Figure 4, where all the simulations were
practically superposed in the elastic regime, divergences
arose at the onset of matrix plastic deformation and
interface debonding, then increased/decreased when
the composite strength reached its plateau.

During the pure transverse tension loading condi-
tion, the damage process is mainly dominated by the
interface debonding. Non-linearity of normal stress
appeared in the stress–strain curve when it meets the
interface strength, which is shown in Figure 4(a) (left)
and the mechanism of deformation and damage in ten-
sion is observed in Figure 4(a) (right), which shows the
contour plot of the ductile damage distribution in
matrix. The crack always starts at the interface close
to fiber cluster, where the fibers are more closer to each

other, resulting in the stress concentration in these
regions. The damage in the interface initiates firstly
by the nucleation of interface cracks, responsible for
the non-linearity behavior at small strains, and grows
along the interfaces. After damage initiates from
the interface, the matrix experiences severe plastic
deformation due to the stress concentrations at the
interface crack tip. Then the damage propagates
along the weakest path at the relatively matrix poor
region determined by the spatial distribution of inter-
face cracks, perpendicular to the loading direction.
Final failure occurs by linking up the interface cracks
through the RVE.

During the pure transverse compression, the damage
initiates from the interface in the form of debonding,
then the matrix bears the load afterward. After the
damage initiation, matrix plastic damage starts to
develop at the vicinity of the debonding positions,
and the curves in Figure 4(b) (left) become stable,
which indicate that the compressive strength is domi-
nated by the matrix. Finally, the matrix cracks at dif-
ferent locations are linked together to form the main
shear band passing through the interface cracks with an
orientation of 52� relative to the loading direction,
which is very close to the published findings24,44 and
is shown in Figure 4(b) (right). All of the five simula-
tions under transverse compression are superposed in
the elastic regime and started to diverge at the onset of
the matrix plastic deformation. The largest strength
among the five RVE models is found in RVE4, which
is probably due to boundary effects and the rotation of
the fiber as one fiber was divided into a same part at
four corners of the RVE model.

During the pure in-plane shear loading, the damage
of the UD composite lamina is dominated by interfacial
decohesion or by matrix yielding, depending on the
interface strength.46 Here in this study, the interface
strength is smaller than the matrix shear limit, thus,

Table 3. Comparison of predicted elastic and plastic properties of five random RVE models with the idealized single fiber model.34

RVE1 RVE2 RVE3 RVE4 RVE5 Average Single fiber model34

Transverse modulus

E22 ðGPaÞ 9.322 10.1 9.765 9.51 9.741 9.688 9.68

In-plane shear modulus

G12 ðGPaÞ 4.365 4.6 4.44 4.3 4.34 4.41 4.18

Transverse tensile

strength YT ðMPaÞ 38.6 38.5 37.5 39.3 37.75 38.33 41.14

Transverse compressive

strength YC ðMPaÞ 169.4 176.4 177.7 191.4 181 179.18 169.87

In-plane shear strength

S12 ðMPaÞ 49.2 46 47.8 46.1 47.3 47.28 51.12

RVE: representative volume element.

Wan et al. 3643



the crack initiates from the interface in a form of inter-
facial debonding and then the matrix holds the shear
loads in the most time. Therefore, the damage starts
from the interface and propagates as a result of the

interactions between the interfacial debonding and the
matrix plastic deformation by linking them together.
Several different damage surfaces, passing through the
RVE perpendicular to the loading condition, can be

Figure 4. Predicted stress–strain curve of five RVE models with different fiber distributions (left) and predicted damage variable

contour of RVE1 (right) under different uniaxial loading conditions: (a) transverse tension; (b) transverse compression; (c) in-plane

shear.
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found in the RVE at different locations, which is shown
in Figure 4(c) (right).

FEM prediction of the damage initiation
and propagation and failure strength
under transverse and in-plane shear
loadings

Once the validation of the RVE model is completed, it
could be used to predict damage modes and failure
envelop of the UD composite materials subjected to
biaxial loading conditions. The topics about the transi-
tion damage modes between transverse and in-plane
shear stresses, and the failure loci for the whole range
of this combined stress state are covered. The scheme of
the combined transverse tension/compression and in-
plane shear stress state is depicted in Figure 5. Two
different loading paths can be applied to the RVE for
the combined stress state: the first is to apply a trans-
verse load up to a prescribed stress state and then a
shear load is applied until the final failure while the
total transverse load acting on the RVE is held con-
stant; the second is to apply the transverse and shear
displacement simultaneously to the RVE by a propor-
tional amount, which is designated as radial loading
path. It is worth noting that no significant influence
of the loading path on the failure loci was found
from the biaxial experimental results47,48 and the com-
bined transverse compression and shear numerical
simulations.47,49 Therefore, here in this study, the
radial loading path was applied to the RVE for the
combined transverse tension/compression and in-
plane shear stress states.

Transition of the damage mechanism

One of the most interesting phenomena in the investi-
gation of progressive damage of composite lamina
under transverse and in-plane shear is the finding of
transverse point. Two different damage modes exist at
the same time around the transition point, and only one
damage mode can be observed when it is far away from
the transition point. Here in this study, six different
loading cases were selected to reveal the transition
modes and transition of damage mechanisms. The
mechanical behavior of the composite lamina under
different loading paths characterized by �12="22 is
shown in Figure 6 in the �22 � �12 stress space for a
lamina with a weak interface. Three points on the
curve for each case represent the progressive damage
process at different strain stages, and the corresponding
damage modes and mechanisms can be found in
Figures 7 and 8, which show the contour plots of the
plastic strain at different stages. It can be found in

Figure 6 that normal and shear stresses increase pro-
portionally during the elastic deformation, and this
proportionality disappeared with the onset damage in
the interface. During the transverse tension and in-
plane shear loadings, the normal or shear stress falls
very sharply, depending on if it is tension-dominated
or shear-dominated damage. While during the trans-
verse compression and in-plane shear, the curves
differ from each other and all of them experience a
slightly hardening in shear stress and then decrease
until failure.

Transition of the damage mechanism under transverse tension

and in-plane shear loadings. At the low ratio
(�12="22 ¼ 0:83), the damage is dominated by the inter-
face cracks due to tension traction, and the damage
surface is formed by linking up the interface cracks at
the relatively matrix poor regions. And the damage
plane is always generated perpendicular to the loading
direction, which is very similar to the pure transverse
tension case. However, when the ratio increases to a
moderate value (�12="22 ¼ 12:5), the shear load starts
to play a role in the combined stress state. In this
case, more cracks can be found at the interface near
the neighboring fibers (Figure 7(b1)) and as the
damage propagated, large plastic strain accumulation
was detected near the interface crack (Figure 7(b2)). At
the final damage stage (Figure 7(b3)), two damage
planes were found existing at the same time, one is
same as the damage at low ratio (Figure 7(a3)) due to
the interfacial debonding, and the other one is almost
formed due to the shear stress. The same fracture plane
was also captured in the high ratio (Figure 7(c3)) where
the shear failure is dominant and the position of the
other fracture plane is also different from the one found
in the moderate ratio. In this case, the damage mode is
similar to the pure in-plane shear case where the shear

Figure 5. Schematic of the RVE of UD composite subjected to

combined in-plane shear and transverse stresses.
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band was formed by linking the interface cracks with
matrix plastic deformation regions together. At the
moderate ratio where two damage modes exist at the
same time, this point can be called as transition point

and near this point, two different damage modes can be
captured. It was found in this study that the transition
point is around �12="22 ¼ 12:5 when a lamina is sub-
jected to transverse tension and in-plane shear.

Figure 7. Contour plot of the accumulated plastic strain in the composites subjected to biaxial transverse tension and in-plane

shear: (a) �12="22 ¼ 0:83 ð"22 ¼ 1:2%, �12 ¼ 1%Þ, (b) �12="22 ¼ 12:5 ð"22 ¼ 0:8%, �12 ¼ 10%Þ, and (c) �12="22 ¼ 50 ð"22 ¼ 0:3%,

�12 ¼ 15%Þ.

Figure 6. Mechanical response of the composite lamina subjected to transverse and in-plane shear loadings in the �22 � �12 stress

space with a weak interface. The �12="22 for each curve represents the ratio of shear strain to the transverse tension/compression strain.
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Therefore, beyond this point, the perfect plastic defin-
ition of the Drucker–Prager for the matrix should be
changed from tension to shear.

Transition of the damage mechanism under transverse com-

pression and in-plane shear loadings. For the transverse
compression and in-plane shear cases, the simulation
results from the lower ratio (�12="22 ¼ �1:25) suggest
that the cracks initiated from the interface and propa-
gated by the formation of plastic shear band of matrix.
This can happen by linking up the interface cracks,
shown as Figure 8(a3), which is very similar to the
pure transverse compression cases. When the ratio
decreases to �12="22 ¼ �20, more cracks at the neigh-
boring fibers were captured from the onset of damage
(Figure 8(b1)), and shear band begins to vanish due to
the shear stress becoming a dominant factor controlling
the damage mode. However, the compression-domi-
nated and shear-dominated damage modes were
found existing at the same time, compared to the low
ratio case. Beyond this transition point, the perfect
plasticity definition for the matrix in the Drucker–
Prager should be switched to shear from compression.
The transition of fracture angle was found from 52�

(�12="22 ¼ �1:25) to 0� (�12="22 ¼ �20) which is in
agreement with the numerical findings23 considering
friction effects. In the high shear ratio
(�12="22 ¼ �200), the composite fails in shear-domi-
nated mode and the final fracture angle/shear plane is
similar to the pure in-plane shear.

Comparison between the classical failure criteria and
numerical results with a weak interface

Currently, there exist a large number of failure criteria
which are mostly stress-based, including fully inter-
active criteria such as Tsai and Wu10 and damage
mode based criteria like Hashin12 and Puck and
Schürmann.13,50 The Tsai and Wu10 criterion predicts
failure with a highly integrated equation involving all
stress components by combining different damage
mechanisms. Different from the Tsai and Wu criterion,
the Hashin criterion is capable of distinguishing the
fiber and matrix damage initiation in composite mater-
ials, and either one is further subdivided into two
damage mechanisms such as tensile and compressive
modes. Despite the capability of this criterion for pre-
dicting the damage in the lamina under uniaxial

Figure 8. Contour plot of the accumulated plastic strain in the composites subjected to biaxial transverse compression and in-plane

shear: (a) �12="22 ¼ �1:25 ð"22 ¼ �4%, �12 ¼ 5%Þ, (b) �12="22 ¼ �20 ð"22 ¼ �1:6%, �12 ¼ 32%Þ, and (c) �12="22 ¼ �200 ð"22 ¼

�0:16%, �12 ¼ 32%Þ.
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loading, numerous studies showed that it does not
always agree with the experiments accurately, especially
under the combined transverse compression and in-
plane shear. This disadvantage is due to neglecting
the shear hardening effects with the presence of trans-
verse compression.14 Hashin’s criterion has been fur-
ther developed by Puck and Schürmann13,50 by
addressing matrix compression failure with a model
based on Mohr–Coulomb hypothesis, which assumes
that damage is triggered due to the normal stress and
tangential stress, acting on the fracture plane with a
specific inclination angle to the material plane.

The predictions of those models are based on the
mechanical tests, which should provide the lamina
strength under transverse tension YT, transverse com-
pression YC, and in-plane shear S12. As there was no
experimental result available, these magnitudes were
obtained from the computational micromechanics
simulations,34 which is presented in Table 3. The failure
envelopes under transverse loads and in-plane shear
(�22 � �12) provided by these criteria are compared to
numerical simulations, as shown in Figure 9, which
indicates large variances among different criteria, espe-
cially under transverse compression range. For �22 4 0,
the predictions by these three criteria are almost iden-
tical to the computational results when the ratio
�12="22 5 8, which is tensile dominant damage triggered
by the interface decohesion. However, when
�12="22 4 12:5, the Puck criterion is always consistent
with the numerical results, when the plastic yielding
definition in Drucker–Prager is set to shear, while the
Hashin criterion overestimates. When the ratio is
beyond 10, the Puck criterion predicted the failure
strength accurately, with the matrix yielding setting to
shear; however, when it was set to tension yielding, all
of the criteria overestimated the failure strength. That is
because the shear failure in the interface is dominant in
the high shear load, while these models assume that the
main deformation is shear yielding of the matrix
instead of the interface decohesion which was found
in the numerical results.

For �22 5 0, there existed big differences between the
numerical results and the failure criteria, especially
when �12="22 5�5, while for �12="22 4�2:5, Hashin’s
criterion is consistent with the numerical results; how-
ever, the Puck and Tsai–Wu criteria slightly overesti-
mated the failure strength. Under compression-
dominant failure, the damage is caused by the nucle-
ation of interface cracks at the equator of the fibers,
which is perpendicular to the loading direction, and
continued by the plastic deformation of the matrix in
the form of the shear band which links up these cracks.
Shear failure is dominant when �12="22 5�20, when the
interface damage occurs rather than matrix shear yield-
ing. As the interface shear strength does not depend on

the compressive normal stress, thus the shear strength
of the composite under these loading conditions is inde-
pendent of compressive stress. Hence, the strength was
found to be practically constant in the range of
�12="22 5�20, no matter the hardening behavior of
matrix is set to compression or shear. Nevertheless,
the strength predicted by computational micromecha-
nics with shear hardening is slightly higher than the one
with compression hardening. In addition, the largest
difference between the failure criteria and the numerical
results starts from the transition point where
�12="22 ¼ �20 in the shear-dominated region, as criteria
predict an increase of the composite strength when the
compressive stress increases, which is not realistic for
the case of interface-dominated failure.26

Once the transition point subjected to the biaxial
loading was found, an appropriate yielding behavior
of the matrix described by the Drucker–Prager should
be chosen after the point. The lowest and highest
strengths of the lamina under different uniaxial load-
ings from Table 3 were selected as the lower bound
and upper bound to plot the failure envelopes from
the Puck, Tasi–Wu, and Hashin criteria. These enve-
lopes were compared to the numerical simulations
obtained from the five RVE models under biaxial
loadings, which can be found in Figures 10 to 12. It
was found that during the tensile dominant failure
period when �12="22 5 8, all of the theoretical predic-
tions are in good agreement with the results obtained
from numerical simulations. However, when it is
beyond the transition point (�12="22 ¼ 12:5) from ten-
sile dominant failure to shear one, the difference
occurred. Only the predictions of lower and upper
bounds by Hashin criteria can cover all the five
numerical simulation results, while the other two
slightly underestimate the strength beyond the transi-
tion point. When it comes to transverse compression
cases, large difference occurred around the transition
point. Shear hardening under moderate transverse
compressive stress was observed experimentally51 and
is predicted by Puck and Tsai–Wu criteria, as shown
in Figures 10 and 11. However, the prediction by the
Puck criteria is based on the assumption that the
matrix-dominated damage occurs through the surface
parallel to the fibers, and it is caused by the normal
and tangential stresses acting on the fracture plane,
which is not realistic in the case of interface-domi-
nated failure. The Hashin criterion compares well to
the numerical simulations when the effects of shear
hardening with the presence of transverse compression
is neglected, which is suitable for most cases of inter-
face-dominated failure. Below this transition point in
the transverse compression side, the prediction
by Hashin is better than the other two criteria in
most cases.
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Comparison between the classical failure criteria and
numerical results with a strong interface

As the interface strength can influence the damage
modes of UD composite largely subjected to biaxial
stress states, it is worth conducting another set of simu-
lations with a strong interface subjected to the same
biaxial stress states. The influences of the interface

strength was investigated in Canal et al. and Totry
et al.3,26 in the form of a weak and a strong interface
subjected to different loading conditions. It was found
that damage of composites is controlled by the matrix
with a strong interface, and controlled by the interface
with a weak interface under transverse compression
and longitudinal shear,26 as well as transverse tension
and out-of-plane shear.3 Here in this study, six different

Figure 10. Comparison of numerical simulations of UD composite and failure envelopes predicted by Puck criterion under com-

bined transverse and in-plane shear stress states. The numbers next to points represent the ratio of shear strain (�12) to transverse

strain ("22 for either tension or compression).

RVE: representative volume element.

Figure 9. Comparison of the predicted failure surface and Puck, Hashin, and Tsai–Wu failure criteria subjected to transverse load

and in-plane shear. The numbers next to points represent the ratio of shear strain (�12) to transverse strain ("22 for either tension or

compression).
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biaxial loading cases, covering the transition point from
compression-dominated failure to shear-dominated
shear, were conducted on the five RVE models with
different fiber distributions, and 112MPa was chosen

as the interface shear strength to represent a good fiber/
matrix bonding.26

The comparison of numerical results and different
failure criteria is shown in Figure 13, where the lower

Figure 12. Comparison of numerical simulations of UD composite and failure envelopes predicted by Hashin criterion under

combined transverse and in-plane shear stress states. The numbers next to points represent the ratio of shear strain (�12) to

transverse strain ("22 for either tension or compression).

RVE: representative volume element.

Figure 11. Comparison of numerical simulations of UD composite and failure envelopes predicted by Tasi–Wu criterion under

combined transverse and in-plane shear stress states. The numbers next to points represent the ratio of shear strain (�12) to

transverse strain ("22 for either tension or compression).

RVE: representative volume element.
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and upper bounds for plotting the failure envelopes
come from the minimum and maximum strength
values of five RVE models under uniaxial loadings. It
is worth noting that the numerical simulations can
explain the transition from shear failure to compressive
failure with different damage modes. The shear failure
is characterized by a linear increases of the shear
strength until the transition point �12="22 ¼ �20,
when the applied compressive stress increased. The
end of this regime occurred at the transition point,
beyond which the damage mode was changed to com-
pressive failure, resulting in a gentle reduction in the
maximum shear strength at failure. It should be noted
that the agreement is excellent between the numerical
results and the whole shape of the failure locus of the
Puck and Tasi–Wu failure criteria. Both of these cri-
teria can predict the transition point (�12="22 ¼ �20)

and the failure surface trend accurately, while Tasi–
Wu failure criterion slightly overestimated the shear
strength from �12="22 ¼ �40 and the Puck failure cri-
terion can give a better prediction in a higher ratio due
to its matrix-dominated damage mode assumption that
failure under transverse compression and in-plane shear
occurs through the surfaces parallel to the fibers and
the damage is triggered by the normal and tangential
stresses acting on the fracture plane. However, the
Hashin failure criterion always underestimated the
strength of UD composite subjected to transverse com-
pression and in-plane shear, and it cannot predict the
increase in shear strength in the presence of moderate
compressive stresses. This limitation is due to the fact
that the model only assumes a quadratic interaction
between the stress invariants instead of determining
the actual fracture plane.

Figure 13. Comparison of numerical results and failure envelopes of UD composite predicted by (a) Puck, (b) Tasi–Wu, and (c)

Hashin subjected to combined transverse compressive and in-plane shear stress states. The numbers next to points represent the

ratio of shear strain (�12) to transverse compression strain ("22).

RVE: representative volume element.
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Conclusions

In this study, a comprehensive set of RVE based on
computational micromechanics is developed in com-
mercial FEM software ABAQUS/Explicit to investi-
gate the failure/damage mechanisms and failure
envelopes of UD TC33 carbon fiber UD composite
lamina subjected to biaxial stress states. Random fiber
distributions are generated from 2D DEM models and
the RVEs are obtained in forms of three phases includ-
ing identified interface properties. Taking the statistic
into account, five RVEs are adopted for each case. The
transition from compression or tension to shear-domi-
nant damage and the orientation of the fracture plane
are adequately predicted by the FE simulations, and the
key findings are shown as below:

. The transition from compression-dominated failure
to shear-dominated failure arises when shear strain is
larger than 20 times the absolute compressive strain.
Thus, during the shear-dominated failure cases, the
hardening of matrix should be switched to shear in
the D–P model in ABAQUS/Explicit. This also
applies to the transition from tension to shear
when shear strain is larger than 12.5 times the ten-
sion strain.

. During the combined transverse tension and
in-plane shear loading conditions, the failure of com-
posites with a weak interface is controlled by nucle-
ation and growth of interface tensile cracks in the
tension-dominated damage mode. However, when it
is beyond the transition point, the failure is con-
trolled by the interface shear cracks in the shear-
dominated damage mode. During the transverse
compression and in-plane shear loading conditions,
the damage is controlled by the nucleation of the
interface crack and propagates by the formation of
shear band in the matrix under compression-domi-
nated failure. However, when it is beyond the tran-
sition point and enters into the shear-dominated
failure, the damage is controlled by the interface
shear fracture.

. The effects of the interface strength on the mechan-
ical response of the composite lamina are investi-
gated, and the upper bound and lower bound
predictions of the failure criteria are introduced to
eliminate their dependence on the uniaxial strength
data. The results clearly revealed that the Hashin
failure criterion provides a better estimation for the
failure locus of the UD lamina subjected to trans-
verse and in-plane shear loadings, when the mechan-
ical behavior of the composite with a weak interface
is controlled by the interface decohesion. However,
when it comes to matrix-dominated failure cases
where the interface strength is larger than the
matrix shear strength, the Puck failure criterion

can provide a better estimation for the failure locus
under the same biaxial loading conditions. It is hard
to say which one is better because in a specific situ-
ation, depending on the interface properties, differ-
ent failure criterion has its own strengths and
drawbacks. Comparing these three criteria, it can
be seen the Tsai–Wu may be generally better than
both of others as it presents more neutral predictions
in both of the examined cases. This could be due to
the fact that Tsai–Wu criterion is a generalized
stress-based criterion but this does not in any way
suggest that Tsai–Wu criterion is always more accur-
ate for other cases.

The FE modeling is useful for validation of current
composites failure criteria, especially for those loading
conditions where experiments are extremely difficult to
conduct. These results showed the potential of compu-
tational micromechanics simulations to assist the modi-
fication of existing failure criteria and the development
of new failure criteria for composites in general. With
the help of our current models, the complex loading
conditions such as combined longitudinal and shear
stress states and triaxial loading conditions will be con-
sidered. It is important to note that the friction condi-
tion between the fiber and matrix is not considered in
these cases, which is the next topic in our future work.
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50. Puck A and Schürmann H. Failure analysis of FRP lamin-

ates by means of physically based phenomenological
models. Compos Sci Technol 1998; 58(7): 1045–1067.

51. Koerber H, Xavier J and Camanho P. High strain rate

characterisation of unidirectional carbon-epoxy IM7-
8552 in transverse compression and in-plane shear using
digital image correlation. Mech Mater 2010; 42(11):

1004–1019.

3654 Journal of Composite Materials 54(24)


