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Abstract

We are merging a large participatory science effort with machine learning to enhance the Hobby–Eberly Telescope Dark
Energy Experiment (HETDEX). Our overall goal is to remove false positives, allowing us to use lower signal-to-noise data
and sources with low goodness-of-fit. With six million classifications through Dark Energy Explorers, we can confidently
determine if a source is not real at over 94% confidence level when classified by at least 10 individuals; this confidence
level increases for higher signal-to-noise sources. To date, we have only been able to apply this direct analysis to 190,000
sources. The full sample of HETDEX will contain around 2–3 million sources, including nearby galaxies ([O II] emitters),
distant galaxies (Lyα emitters or LAEs), false positives, and contamination from instrument issues. We can accommodate
this tenfold increase by using machine learning with visually vetted samples from Dark Energy Explorers. We have
already increased by over tenfold the number of sources that have been visually vetted from our previous pilot study where
we only had 14,000 visually vetted LAE candidates. This paper expands on the previous work by increasing the visually
vetted sample from 14,000 to 190,000. In addition, using our currently visually vetted sample, we generate a real or false
positive classification for the full candidate sample of 1.2 million LAEs. We currently have approximately 17,000
volunteers from 159 countries around the world. Thus, we are applying participatory or citizen scientist analysis to our full
HETDEX data set, creating a free educational opportunity that requires no prior technical knowledge.

Unified Astronomy Thesaurus concepts: Cosmological constant (334); Dark energy (351); Cosmological
parameters (339); Cosmological parameters from large-scale structure (340); Astronomy education (2165); Lyα
galaxies (978); Baryon acoustic oscillations (138)

1. Introduction

The continually increasing size of the astronomical data sets
requires new analysis techniques to be leveraged in order to
handle these efficiently and extract robust scientific results. While
the use of machine learning (ML) has been available for decades,
its use is now an essential component within the field (C. J. Fluke
& C. Jacobs 2020). ML is a subfield of artificial intelligence
where algorithms are used to recognize patterns, make predictions,
and even apply these results to new applications (C. J. Torney
et al. 2019; O. Zawacki-Richter et al. 2019).

One of the primary issues with ML is determining the accuracy
for a given application and interpreting the results. There are
multiple ways to assign accuracy, including visual vetting on a
subset of the sample. Human visual vetting, even for verification,
quickly becomes intractable as the data sets increase in size. In
fact, many of the data samples have surpassed the ability to use
visual vetting within a given collaboration due to the limited
number of eyes available.

Many large astronomical experiments have already paved the
way in using human classification to reach science goals. The

collaboration between scientists and the public is known as
participatory science, also called citizen science (A. H. Kimura &
A. Kinchy 2016; B. Strasser et al. 2019). There are multiple ways
to include these participants within the various pipelines. Large
surveys that have done so are the Cosmic Assembly Near-infrared
Deep Extragalactic Legacy Survey (CANDELS) and the
complementary Galaxy Zoo participatory science project
(B. D. Simmons et al. 2016; K. L. Masters & Galaxy Zoo
Team 2020). In addition, the Laser Interferometer Gravitational
Wave Observatory (LIGO) utilizes the Gravity Spy participatory
science project (M. Zevin et al. 2024).
The Hobby–Eberly Telescope Dark Energy Experiment

(HETDEX) is designed to study the expansion rate of the
universe at 1.9< z< 3.5 with an accuracy comparable to even the
best low-z experiments (K. Gebhardt et al. 2021; G. J. Hill et al.
2021). To date, this multiyear program has already generated
nearly one billion spectra, and one trillion resolution elements.
The sheer size of this data set necessitates robust statistical
techniques to identify false positives, [O II] contamination, and
artifacts. Even with the most detailed analysis, we have not yet
reached our design specifications for false positive rate
(E. Mentuch Cooper et al. 2023). Therefore, we have created
and used the participatory science project Dark Energy Explorers8

to improve HETDEX with ML techniques.
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In L. R. House et al. (2023), we provide the first use of ML
to the HETDEX database. There, we find that the Dark Energy
Explorers results are accurate to over 95% with the ability to
find false positives. This work only considered 10% of the full
HETDEX database. Given the success we had in using ML and
Dark Energy Explorers, our goal is to apply to the full database,
where we need to classify about 10 million spectra.

The current database for HETDEX has about 1.2 million
Lyα emitters (LAEs) and about 1 million OII emitting
galaxies. These numbers come from a down selection of
spectra based on the signal-to-noise (SN) and goodness-of-fit
of the emission line. The initial sample is about 10 million
spectra. We realize that our selection, as it is, fails to exclude
all false positives and fails to include all true positives. When
we can robustly identify more sources, our cosmological
constraints on the expansion of the universe will increase by
about the square root of the numbers (A. S. Leung et al. 2017;
D. J. Farrow et al. 2021; K. Gebhardt et al. 2021; D. Davis
et al. 2023; E. Mentuch Cooper et al. 2023). Similarly, the
false positive rate makes our accuracy worse. Therefore, the
larger the total number of LAE sources and the less false
positives due to noise (FP) and [O II] contamination will
allow us to more accurately measure the expansion rate of the
universe.

HETDEX is a untargeted survey, which refers to observa-
tions that are conducted without a specific predetermined focus
on particular objects, eliminating selection bias, yet creating
difficulties when classifying. In this paper we discuss an
innovative approach to a data pipeline which will allow
accurate and efficient labeling. HETDEX uses the LAEs as a
cosmological tracer. Thus, our objects of interest are the LAE
galaxies, which must be sorted and selected from the whole
sample of objects collected. Just as important in selecting these
galaxies is the removal of artifacts, false positives, [O II]
emitting galaxies, meteor trails, and other emission-like
features. LAEs have been detected over an extensive redshift
range and their redshifted 1215.67Å line can easily be detected
using low-resolution spectroscopy or narrow-band imaging
(C. Gronwall et al. 2007). The large-scale clustering of the
LAEs will allow us to see the effects of dark energy on the
universe and yield the cosmological parameters of scientific
interest.

We must differentiate between false positives and galaxy
misclassifications since these two errors affect the HETDEX
correlation analysis differently. For false positives, we are
referring to noise or pixel defects that are confused as an
apparent emission line. The misidentification of galaxies is a
larger issue, especially when [O II] emitters are designated as
LAEs. In this case, the clustering signal of the [O II] galaxies
will leave an imprint on the clustering of the LAEs. Therefore,
this demonstrates the importance of a robust, clean catalog and
will showcase how Dark Energy Explorers and ML are
powerful techniques for addressing this issue. Here, we
establish a method of how visual vetting has the ability to
significantly improve on the HETDEX algorithms.

Zooniverse,9 the world’s largest participatory science plat-
form, allows us to make progress on visually vetting a large
subset of the HETDEX data set that can be applied to the full
sample. Classifying the whole HETDEX catalog, with many
millions of sources labeled, would enable significant

improvements toward the measurements of the HETDEX
cosmological parameters (L. R. House et al. 2023).
We show here how to use participatory science and ML to

classify 1.2 million HETDEX sources. In Section 2, we discuss
participatory science and the success of Dark Energy Explorers
to explore various HETDEX regimes and the statistics we use
for the classification. Section 3 focuses on the ML algorithm
and how we incorporate millions of sources with visually
vetted sources. Finally, section 4 shows how we utilize the
algorithm and Dark Energy Explorers in the creation of a data
pipeline for the current HETDEX sample.

2. Dark Energy Explorers: A Participatory Science
Campaign

Participatory science has continued to grow with organiza-
tions such as Zooniverse, SciStarter,10 and CitizenScience.
gov.11 To date, Zooniverse alone has garnered millions of
participants and has launched close to 500 projects. This
demonstrates the clear demand for visual classification in
research and shows that combining human and machine
classifications can efficiently produce results superior to those
of either one alone (L. Trouille et al. 2019). This combination
of techniques is what we aim to accomplish with Dark Energy
Explorers.

2.1. Developing Dark Energy Explorers

We launched Dark Energy Explorers in 2021 February and
the project has had an impact of roughly six million
classifications in the projectʼs lifetime so far. Zooniverse is a
host platform that has cultivated a participatory science
community and has launched hundreds of projects. Once on
Zooniverse, either app or website, participants must login or
create a new account to save their classifications. As an official
NASA participatory science project, we can also be found
under the Citizen Science Section of NASA.gov.12 Once on the
Dark Energy Explorers home page, choose the active work-
flow, “Fishing for Signal in a Sea of Noise,” which will prompt
a tutorial if you are a new visitor. The tutorial demonstrates
how to classify the HETDEX data (discussed in more detail in
L. R. House et al. 2023).
When creating this tool to be used by the general public, it

was essential to simplify the classification process into
digestible, jargon-free tasks. The tutorial and field guide serve
as the mechanism to do just that. The tutorial walks participants
through what to look for in the HETDEX data in just a few
easy-to-understand steps. The primary criteria users consider
have not changed from the prior work in L. R. House et al.
(2023). As a reminder, for the “Fishing for Signal in a Sea of
Noise” the workflow participants classify sources based on:

1. The quality of the data collected,
2. The strength of the emission line, and
3. The appearance of the emission line in at least one or

more of the fiber spectrum.

Once trained, the participants are provided deidentified,
processed data in the form of user-friendly imaging. The
volunteers must select between two options: Keep this Galaxy

9 https://www.zooniverse.org

10 https://scistarter.org/
11 https://www.citizenscience.gov/
12 https://science.nasa.gov/citizen-science/dark-energy-explorers/
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or Throwback. The field guide is a shortened tutorial that
allows quick access to classification reminders. See Figure 1 for
a comparison. Figure 1 shows an example of three sources and
what they would look like to the participants on Dark Energy
Explorers. In brief, these show a combination of the various
types of data we collect with the HET, i.e., fiber cutouts,
imaging, flux map, and emission line. See L. R. House et al.
(2023) for a detailed description of each Dark Energy Explorers
input image. On the left is an example of a real galaxy or LAE;
in the middle is a source that is an artifact; and on the right is a
source that is possibly real is a possibility to be real, but the
HETDEX team would need to explore more information to
decide. This is one of the key advantages of Dark Energy
Explorers because it allows for a triage of sources that lie in this
unclear regime and the team can quickly identify areas that
need a closer look; rather than sifting through all the sources
ourselves, this technique creates a smaller, more manageable
small subset.

From K. Gebhardt et al. (2021), D. Davis et al. (2023),
E. Mentuch Cooper et al. (2023), and L. R. House et al. (2023)
it is essential to explore lower SN regimes to maximize the
number of LAE candidates that will lead to a more precise
HETDEX cosmology. The previous work began with SN> 6
sources when using Dark Energy Explorers, but this work has
shown we can progress to lower SN regimes while still
retaining accuracy with visual vetting. So far, ≈190,000 LAE
candidates have been classified by the Dark Energy Explorers
down to a SN ratio of 4.8. This includes HETDEX Data
Release 2, 3, 4, and the COSMOS field.

2.2. Using Dark Energy Explorers as an Education and Public
Engagement Tool

The research results and improvements to HETDEX would
not be possible without the classifications from our Dark
Energy Explorers participants. While the primary goal of Dark
Energy Explorers is to improve the accuracy of the HETDEX
cosmology, it has quickly demonstrated the impact it has as an

extraordinary educational tool. Collaboration with McDonald
Observatory, where the Hobby–Eberly Telescope (HET) is
based, has allowed us to grow our volunteer base of Dark
Energy Explorers while also allowing unique opportunities at
the Observatory. We currently have an exhibit at the HET
visitors center, which allows a rare experience of visiting a
telescope and then being able to classify the data as an amateur
researcher. In addition, McDonald Observatory has assisted in
developing worksheets and videos for educators to use in
traditional classrooms, libraries, and museums. We have
continued engagement with our volunteers through Teleconfer-
encing/Zoom nights, our Dark Energy Explorers YouTube
Channel,13 design competitions, and blog posts. The following
section discusses the overall results of implementing these
public engagement efforts, and we hope it continues to be a
rewarding educational outlet for our dedicated participants.

2.3. Results and Impact of Dark Energy Explorers

Our overall goal is to vet all HETDEX sources visually. By
the end of HETDEX, we will have nearly 10 million sources;
this is effectively impossible to do within the team. The only
possibility is to include many participatory scientists in
classifying the sources. We have been doing this through the
Dark Energy Explorers since 2021 February. Dark Energy
Explorers has already proven incredibly successful at accom-
plishing this goal, with roughly six million classifications in the
project’s lifetime. For the current workflow, that is approxi-
mately 190,000 unique spectra that are identified by a
minimum of 10 individuals. Figure 2 shows our classifications
as a function of time, where the purple line demonstrates the
total number of classifications each month since Dark Energy
Explorers launched with the first workflow, “Nearby versus
Distant,” which has since been retired (L. R. House et al.
2023).

Figure 1. Examples of the “mini’s” from Dark Energy Explorers “Fishing for Signal in a Sea of Noise” workflow. From left to right: keep (real galaxy/emission line),
throwback (bad detection), and a tricky case that might need more information.

13 https://www.youtube.com/@DarkEnergyExplorers
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The current workflow “Fishing for Galaxies in a Sea of
Noise” has 2.1 million classifications resulting in 190,000
completed LAE candidates, which are vetted by at least 10
different participants, giving us the confidence to rely on this
average (L. R. House et al. 2023). Figure 2 represents the
current workflow in orange and the total classifications since its
launch in September of 2021. These millions of classifications
have been done by approximately 17,000 volunteers that
represent over 159 countries all over the world, with the top
three being in the United States, United Kingdom, and India.
The Dark Energy Explorers average 153,000 classifications per
month and we hope to increase this through outreach and
engagement efforts to reach our goal of the entire HETDEX
catalog being classified.

3. Visualization in Machine Learning

While ML has been shown to be effective, many aspects of
research are still met with obstacles that require human
verification (S. Amershi et al. 2014). This combination of
machines and humans, we argue, is a good way to make a large
problem more efficient and accurate. In particular, it provides
necessary insight to the interpretation of the data, in the case of
HETDEX the high-dimensional spectral elements (K. Crows-
ton et al. 2017; C. J. Torney et al. 2019). Other participatory
science projects have led the way in imaging classification with
both ML and human vetting, yet we discuss how this can be
done with spectroscopic inputs (B. D. Simmons et al. 2016;
K. L. Masters & Galaxy Zoo Team 2020).

For the Dark Energy Explorers project utilizing ML has
proven to be most useful for identifying artifacts. We have
done this through the “Fishing for Signal in a Sea of Noise”
workflow discussed in Section 2. Using the same DEE_prob-
ability from prior work, we assign each classification a value of
1.0 meaning an object is a real LAE detection or a 0.0 which
identifies a false positive or artifact. Aggregating over a
minimum of 10 Dark Energy Explorers participants, the values
are then averaged to generate a DEE_probability. Once those
labels have been acquired and the DEE_probability determined
for each visually vetted source, we can apply an ML algorithm.

3.1. Algorithm: t-SNE

The ML algorithm discussed and used in this work is known
as t-distributed stochastic neighbor embedding (or t-SNE).
t-SNE serves as a statistical method for visualizing high-
dimensional data by giving each data point a location in a
two or three-dimensional map (L. van der Maaten &
G. Hinton 2008; L. van der Maaten 2015). For the plethora
of high-dimensional data that we get from HETDEX, there will
be millions of elements with 1036 dimensions, this will result
in billions of spectral elements that t-SNE can handle
exceptionally well.
Using unsupervised ML, specifically t-SNE, for large data

sets has proven effective when the parameters are optimized
accordingly (A. C. Belkina et al. 2019). t-SNE has a cost
function that with different initializations, such as the
HETDEX spectra and algorithm parameters, we can get
different results. The results depend on the random seed, the
data input, and the hyperparameters chosen. Despite this,
t-SNE visualizations can be effective in grouping together
sources with similar spectra, especially artifacts (e.g.,
L. R. House et al. 2023).
The results are not reproducible but when using tuned

hyperparameters it will keep the global aspects of the data, and
in the case of cleaning the catalog of artifacts, such as in
HETDEX, this works well. t-SNE and many dimensionality
reduction algorithms can be tricky to interpret (L. van der
Maaten & G. Hinton 2008) and the data from Dark Energy
Explorers provides context to interpret this data in a
scientifically meaningful way. First, we set the dimensionality
reduction to reduce from 50 to 2. Importantly, the perplexity
parameter has been shown to give the best results with values
of 5–50 (L. van der Maaten 2015). Therefore, the perplexity
was found to be optimized at 30 and combining this with an
initial iteration parameter of 1000 ensured that the algorithm
reached a stable configuration. Utilizing the scikit-learn
Python package, the left-hand side of Figure 3 displays the
results of HETDEX LAE candidates in black after using t-SNE
(F. Pedregosa et al. 2012).

3.2. Input Selection Criteria

To better differentiate our sources of interest, i.e., the Lyα
emitting galaxies, we select for the Lyα emission line in our

Figure 2. The total classifications, where each source is classified by a minimum of 10 volunteers, collected on Dark Energy Explorers since launch. The orange line
represents the current active workflow classifications “Fishing for a Signal in a Sea of Noise” and the purple represents the total classifications by month.
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HETDEX catalog. The spectral elements of these LAE
candidates are then used to cut around the emission line of
the one-dimensional spectra. We select for 50Å on either side
of the Lyα emission. This results in a 100Å cut, in which

HETDEX captures flux in 2Å bins, resulting in 50 dimensions
used for the t-SNE input for each LAE candidate. We further
distribute into two sub-samples by SN ratio to downsize our
sample of 1.2 million sources. The result of the t-SNE runs can

Figure 3. The results of the t-SNE ML algorithm, each with the same hyperparameters and each row has the same t-SNE projection. On the left-hand side, the plots
shown in black are ;1.2 million HETDEX LAE candidates. On the right-hand side, the colored plots shown are a result of the ;190,000 LAE candidates that have
been labeled by Dark Energy Explorers and assigned a DEE_probability. The top two plots show the LAE candidates above SN ratio � 5.1 and the two bottom plots
show the LAE candidates with 4.8 < SN < 5.1. Note: The orientation of the t-SNE axes relative to the data points has no inherent meaning or significance beyond the
visualization itself. This is simply a characteristic of the dimensionality reduction algorithm.
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be shown in Figure 3. Shown at the top of Figure 3 is the SN
ratio range� 5.1 with ∼600,000 sources. Similarly, shown at
the bottom of Figure 3 is the range of 5.1> SN> 4.8 with
another ∼600,000 sources for a total of 1.2M LAE candidate
detections. Our labels from Dark Energy Explorers that are fed
into t-SNE include the low-SN sources (6> SN> 4.8) to
ensure the algorithm can train on a similar low-SN sample and
eliminate bias. The full SN range from Dark Energy Explorers
is then visualized in color, labeled, and shown in Figure 3 for
each SN bin, respectively.

4. Incorporating the Dark Energy Explorers Results with
Machine Learning

As large astronomical surveys grow, so do the artifacts and
contamination. These artifacts are either found manually
(E. Mentuch Cooper et al. 2023) or with artificial intelligence
(K. Gebhardt et al. 2021). While artificial intelligence can be
useful, the elements from HETDEX are better originally
identified by visual vetting. Here we discuss how we analyze
the visual classifications from the participants of Dark Energy
Explorers and then use the classifications to expand to the full
1.2 million LAE candidates.

4.1. Analysis of Visual Vetting Statistics

Following the original work, we focus on the false positives.
Using the same methods from prior work, a DEE_probability
of 1.0 means that an object is a real LAE detection, and a
probability of 0.0 identifies a false positive or artifact.
Therefore, every source is identified by a minimum of 10
Dark Energy Explorers participants and averaged together to
get a DEE_probability.

Previously, in L. R. House et al. (2023) a DEE_probability
�0.3 results in 92% accuracy across SN. In addition, L. R. House
et al. (2023), demonstrated a Dark Energy Explorers probability of
below 0.1 gave 98% agreement, which allowed for very efficient
and accurate identification of false positives. All of these sources
from the pilot sample were cross-examined by members of the
HETDEX team, which resulted in the development of the
DEE_probability accuracy. Given this high accuracy for identify-
ing false positives, we could confidently move forward with
applying these results to a broader full sample with ML. Those are
the results explained here.

4.2. Application to the Full HETDEX LAE Catalog using
Nearest Neighbors Technique

Following the visual vetting analysis, our next goal is to apply
this approach to the full HETDEX LAE catalog as opposed to just
a subset. Figure 3 shows the distribution in t-SNE space for the
full sample and for those classified by Dark Energy Explorers.
The top left-hand panel shows ∼600,000 sources for S/N> 5.1.
The bottom left-hand panel shows the∼600,000 sources that have
4.8< SN<5.1. The right-hand panels are the corresponding
t-SNE distributions for those sources that have a DEE_probability,
with the points colored by their probability.

For each source in the panels on the left-hand side, we find
the 50 nearest sources in t-SNE space that have a DEE_prob-
ability. The average of these 50 is then applied to each of the
sources, which we call the DEE_mean. Following the same
logic as the DEE_probability, the DEE_mean ranges from 0 to
1.0, from lowest to highest probability of being a real galaxy

detection. The DEE_mean becomes an additional statistical
method for interpreting the t-SNE analysis.
Figure 4 shows the same t-SNE distribution as in Figure 3,

except we now color the points by their DEE_mean, generated
from the nearest neighbors method. It is clear that there is
strong clustering for both sources with high and low
probabilities of being real. As stated, we find that the Dark

Figure 4. The results of the t-SNE ML algorithm, each with the same
hyperparameters. The colors represent the DEE_mean which was developed
using the nearest neighbors method. Note: The orientation of the t-SNE axes
relative to the data points has no inherent meaning or significance beyond the
visualization itself. This is simply a characteristic of the dimensionality
reduction algorithm.
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Energy Explorers are best at identifying false positive due to
instrumental and reduction artifacts, and we use the DEE_mean
to further remove these sources. Thus, the red points in
Figure 4 are considered false detections and will be removed
from subsequent analysis. We find that a cut of DEE_mean
<0.2 provides an adequate cut.

5. Overall Implications to HETDEX and the Cosmology

Similar to L. R. House et al. (2023), we rely on visually
vetting from the HETDEX team in order to determine accuracy
for both DEE_probability and DEE_mean. We previously
determined an accuracy of 92% for DEE_probability <0.3,
implying that when 7 out of 10 Dark Energy Explorers call a
source false, they are correct 92% of the time.

For DEE_mean, the HETDEX team visually vets about 300
sources at random, and we find that for DEE_mean <0.1 we
agree 94% of the time and DEE_mean <0.2 we agree 91% of
the time. We use this cut as a further technique to remove false
positives from the HETDEX data set. In this way, we are able
to use the participatory scientists for the full sample.
Eventually, we plan to visually vet all sources, without having
to use a nearest neighbor approach.

For the current data set of 1.2 million sources, we have
62,000 with DEE_mean <0.2. These will be removed from the
sample. While they only represented 5%, they may have certain
aspects that could bias the cosmological analysis and therefore
their removal is essential. The most obvious concern is shown
in Figure 5. In this figure, we show the histogram of the full
sample and a scaled (roughly 20-fold) histogram of the sources
that we remove based on the DEE_mean. There is clearly a bias
toward low redshifts for the sources that are being removed.
The point is that there appears to be an increase in the
contamination rate as a function of redshift. The overall
contamination remains small, and we will study whether this
bias could have implications for the cosmology in future work.

An important aspect is that we do not necessarily know the
truth. For example, the HETDEX team, while having the
deepest understanding of the data set, can make misclassifica-
tions. It is possible that having multiple individuals, as we do in
Dark Energy Explorers, provides a more robust result.
Additionally, using a nearest neighbor approach could be more
robust than the individual measures because it relies on
averaging within t-SNE space. In the end, HETDEX will use
multiple measures of the source classification to understand the
influence on the cosmological analysis. The DEE_prob and
DEE_mean values and recommendations will be included in
the future HETDEX Data Release 3 (HDR3) catalog.
Dark Energy Explorers has had an extremely positive impact

on our informal science community and on our overall goal to
improve the accuracy of HETDEX. In our future work we aim
to continue both of these efforts to reach a HETDEX catalog
that has been completely visually classified. This will be
roughly a factor of 10 more than what we have now, and we
will continue to pave the way for a successful method to use
ML and participatory science.
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