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ABSTRACT

Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art (SOTA) models e.g., Attention
Graph and Vision Transformer. When training, validation, and test sets overlap or share data, it introduces a
bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to
new examples. This paper presents an innovative disjoint sampling approach for training SOTA models for the
Hyperspectral Image Classification (HSIC). By separating training, validation, and test data without overlap, the
proposed method facilitates a fairer evaluation of how well a model can classify pixels it was not exposed to during
training or validation. Experiments demonstrate the approach significantly improves a model’s generalization
compared to alternatives that include training and validation data in test data (A trivial approach involves testing
the model on the entire Hyperspectral dataset to generate the ground truth maps. This approach produces higher
accuracy but ultimately results in low generalization performance). Disjoint sampling eliminates data leakage
between sets and provides reliable metrics for benchmarking progress in HSIC. Disjoint sampling is critical for
advancing SOTA models and their real-world application to large-scale land mapping with Hyperspectral sensors.
Opverall, with the disjoint test set, the performance of the deep models achieves 96.36% accuracy on Indian Pines
data, 99.73% on Pavia University data, 98.29% on University of Houston data, 99.43% on Botswana data, and 99.88%
on Salinas data.
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1 Introduction

Hyperspectral Imaging (HSI) plays a pivotal role in various domains such as remote sensing
[1], earth observation [2,3], urban planning [4], agriculture [5,6], forestry [7], target/object detection
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[,9], mineral exploration [10], environmental monitoring [! 1,12], climate change [ 3] food processing,
bakery products, bloodstain identification, and meat processing.

Hyperspectral (HS) remote sensing plays a crucial role in urban planning by providing detailed
insights and tools for efficient and informed decision-making [14]. HS remote sensors capture and
analyze high-resolution spectral data across numerous narrow and contiguous spectral bands, offering
comprehensive information on the composition and characteristics of urban environments [15]. HS
data enables precise identification and mapping of various urban land cover types, such as vegetation,
impervious surfaces, and soil [16]. Additionally, HS Imagining (HSI) facilitates the detection and
monitoring of changes in land use, vegetation health, and pollution levels within urban areas [17].
These capabilities enhance urban planners’ ability to assess the impact of urbanization, analyze urban
metabolism, and evaluate the effectiveness of sustainability measures. By covering the entire processing
chain, from data acquisition to analysis, HS remote sensing serves as a valuable tool for urban planners
seeking a deeper understanding of urban environments and their dynamics.

HSI presents both challenges and opportunities for effective classification [18,19]. In recent
years, Convolutional Neural Networks (CNNs) [20], Attention Graph [21,22], and Spatial-Spectral
Transformers [23,24] have demonstrated remarkable success in various tasks, prompting researchers
to explore their potential in HSI analysis [25]. However, achieving robust and reliable classification
results requires careful consideration of data sampling techniques [26]. Random sampling for data
splitting can lead to several issues. It can result in non-representative training, validation, and test sets,
causing models to overfit or underfit. Different random splits produce inconsistent results, making it
hard to draw meaningful conclusions [27]. Random sampling offers no control over data distribution,
introducing bias in imbalanced datasets [28]. It hinders the reproducibility of experimental results
and limits the exploration of data relationships. To address these challenges, disjoint sampling is
a crucial yet often overlooked consideration when evaluating spatial-spectral Hyperspectral Image
Classification (HSIC) models. As demonstrated by the works [1,22,29-33], traditional evaluations
using overlapping training and test samples can lead to biased results and unfair assessments of model
performance.

Even though several methodologies meticulously employ disjoint sets for training and testing
their models, there’s a notable inconsistency in their approach when it comes to generating land-cover
maps [22,30,32]. Specifically, many of these methods deviate from the disjoint sampling principle by
utilizing the entire dataset for HSIC (Thematic Maps). This practice introduces a conflict between
the reported accuracy and the methodology employed. To address this inconsistency, it is essential to
advocate for the use of a disjoint test set exclusively for generating land-cover maps. By doing so, the
evaluation process aligns more closely with the principles of unbiased model assessment. It ensures
that the model is confronted with truly unseen data during the map generation phase, fostering a more

accurate representation of its real-world performance.

Moreover, disjoint sampling is essential for training and evaluating deep models [34,35]. This
method involves carefully selecting diverse and representative samples from various regions, land
cover types, and environmental conditions to overcome biased or non-representative training data
limitations [36]. It ensures the model learns robust features, enhancing classification performance
and adaptability to unseen data. Additionally, disjoint sampling facilitates fair and accurate model
evaluation by keeping training, validation, and testing samples separate [37]. Furthermore, disjoint
sampling is crucial in training SOTA models for HSIC, notably for CNN and Spatial-Spectral
Transformer-based models. It enhances generalization, ensures fair evaluation, and enables result
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interpretability. The use of disjoint training, validation, and test samples is imperative in HSIC for
various reasons, such as:

Unbiased Evaluation: It is crucial to evaluate HSIC models using completely separate and disjoint
data for training, validation, and testing in order to properly assess a model’s true ability to generalize
to new unknown examples [1,29].

Preventing Data Leakage and Mitigating Overfitting: Maintaining disjoint samples for training,
validation, and testing is crucial to obtaining an accurate evaluation of a model’s true generalization
performance [22,37]. Employing disjoint subsets of the data at each stage of model development is
pivotal in augmenting generalization performance. Through iterative training on distinct partitions,
the model is compelled to infer underlying patterns shared across diverse examples, rather than being
influenced by potentially misleading idiosyncrasies within a single fixed training sample [38,39]. This
practice discourages the memorization of irrelevant characteristics specific to individual data samples.
Instead, it fosters the capability to effectively process a wider range of presentations, including both
seen and unseen examples.

Therefore, considering the above, this paper made the following contributions:

1. This paper presents a novel approach for disjoint train, validation, and test splits for HSIC.
Ensuring the disjoint splits eliminates data leakage between subsets, which can bias perfor-
mance evaluations. The proposed technique provides a practical implementation for creating
disjoint train, validation, and test splits from ground truth data. This allows researchers to
obtain unbiased performance evaluations and reliable comparisons between HSIC models.

2. By offering a standardized approach for creating evaluation splits, the proposed technique
enhances the reproducibility and transparency of HSIC research. It fosters a more rigorous and
standardized evaluation of classification models. The source code can be accessed at: https://
github.com/mahmad00/Disjoint-Sampling-for-Hyperspectral-Image-Classification (accessed
on 14 June 2024).

2 Mathematical Formulation

Let’s consider HSI composed of B spectral bands, each with a spatial resolution of H x W pixels.
The HSI data cube, denoted as X € R*"*?_is initially partitioned into overlapping 3D patches
[24,40]. Each patch is centered at a spatial location («, 8) and covers a spatial extent of PS = S x S
(PS = Patch size) pixels across all B bands. The total number of 3D patches (V) extracted from X (i.e.,

X e R®®P)is given by (H — S+ 1) x (W — S+ 1). A patch located at («, B) is represented as P, »
S—1 S—1 S—1
to o + in width and 8 — — to B+ in height. The

labeling of these patches is determined by the label assigned to the central pixel within each patch as
described in Algorithm 1.

and spans spatially from o —

Algorithm 1: Create 3D HSI Patches
Input: HSI, GT, Patch Size (PS)
1 H, W, B < dimensions of HSI;
2 margin < PS/2;
3 Pad < pad HSI with zeros on all sides;
4 Cubes <« create an array of size (H x W, PS, PS, B);
5 Labels « create an array of size (H x W);

(Continued)
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Algorithm 1 (continued)

6 patchIndex <« 0;

7 for hh < margin to hh + margin do

8 for ww < margin to ww 4+ margin do

9 cube <« select a sub-array from Pad Cubes[patchlndex, :, :, :] < cube;
10 Labels[patchIndex] <— GT[hh - margin, ww - margin];
11 patchIndex < patchIndex + 1;

12 return Cubes, Labels;

The 3D patches extracted from the HSI are used to generate separate training, validation, and test
sets using the proposed splitting algorithm. The key algorithm, titled “Disjoint Train, Validation, and
Test Split”, handles dividing the HSI data into the respective portions. It takes the Ground Truth (GT)
labels and ratios for the test and validation sets (teRatio and vrRatio) as inputs. The unique values in
the GT labels and their frequency counts are identified, excluding zeros (background pixel labels). An
iterative process is then used to create disjoint training, validation, and test sets based on these unique
values and their indices. The resulting indices are utilized to extract and organize the corresponding
Hyperspectral cubes and labels for each set. This ensures the subsets are separate while maintaining
the integrity of spectral classes during model training and evaluation. The algorithm outputs the
training, validation, and test samples along with their matching class labels. This partitioning approach
contributes to the robustness and reliability of the subsequent analysis.

Algorithm 2: Disjoint Train, Validation, and Test Split
Input: GT, p, m

1 flattened < GT.flatten();

2 unique <« np.unique(flattened);

3 nonzero_indices < np.where(unique # 0) [0];

4 unique < unique[nonzero_indices];

5 TrInd, Valnd, Telnd <[], [], [];

6 for value < unique do

7  C_ind <« np.where(flattened == value) [0];

8  Tr_ind, Te_ind <« train_test_split(C_ind, p);

9 Tr_ind, V_ind <« train_test_split(Tr_ind, m);

10 TrInd.extend(Tr_ind);

11 Valnd.extend(V_ind);

12 Telnd.extend(Te_ind);

Let us consider that n, m, and p represent the finite numbers of labeled training, validation, and
test samples, respectively, selected from patch data to form the training, validation, and test sets as
shown in Eqs. (1)—(3):

Dy = (xi’yi):lzl (1)
Dy = (x,, yi):‘il (2
Doy = (x;, p; Ll (3)

where n and m are the total number of training and validation samples. The remaining p samples
constitute the test set. It is important to note that the intersection of the training set, validation set,
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and test set is an empty set (¢), ensuring the distinctiveness of the samples in each set as shown in
Algorithm 2, Fig. | and Eq. (4).

DTRﬂDVﬂDTE=¢ (4)
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Figure 1: Initially, the HSI cube is divided into overlapping 3D patches, as detailed in Algorithm 1 and
Stage 1. Each patch is centered at a spatial point and spans a PS = S x S pixel extent across all spectral
bands. These patches are then utilized in Algorithm 2 to create disjoint training, validation, and test
splits based on the geographical locations of the HSI samples, as outlined in Stage 2. The selected
samples are fed into various models for feature learning and optimization. The processed features
are subsequently passed through a fully connected layer for classification, and the softmax function
is applied to generate class probability distributions. These distributions are used to create the final
ground truth maps for the disjoint validation, disjoint test, and full HSI test sets, as illustrated in Stage
3. The red dotted lines delineate the stages in the proposed workflow

As shown in Fig. 1, Stage 1: 3D Patch Extraction: The HSI cube is initially divided into
overlapping 3D patches. Each patch is centered at a spatial point and spans a PS = S x S pixel extent
across all spectral bands. This process is outlined in Algorithm 1. Stage 2: Data Splitting: The extracted
patches are used in Algorithm 2 to create disjoint training, validation, and test splits. This splitting is
based on the geographical locations of the HSI samples, ensuring that each set covers distinct areas.
Stage 3: Feature Learning and Classification: The samples from each split (training, validation, and
test) are fed into various models for feature learning and optimization. The learned features are passed
through a fully connected layer for classification. The softmax function is then applied to generate class
probability distributions. The class probability distributions are used to generate the final ground truth
maps for the disjoint validation set, disjoint test set, and the full HSI test set. Each of these stages is
marked with red dotted lines in Fig. 1, facilitating a clear and systematic replication of the workflow.

The above disjoint samples (as explained in Algorithm 2) are then processed by the baseline 2D,
3D CNN, and Spatial-Spectral Transformer models [41,42]. In a 2D CNN, the input data undergoes
convolution with a 2D kernel function, resulting in the computation of the dot product between the
input and the kernel function. The kernel is then applied in a strided manner over the input to cover the
entire spatial dimension. Subsequently, the convolved features are subjected to an activation function,
which introduces non-linearity into the model, aiding in the learning of non-linear features from the



508 CMC, 2024, vol.81, no.1

data. For 2D convolution, the activation value of the j” feature map at spatial location (x, y) in the i”
layer, denoted by v;;', can be expressed as shown in Eq. (5).

-1y
vy = (Z > Z Wi X VI 4 by ) (5)

=1 p=—y o=-4
where F represents the activation function, d,_, signifies the number of feature maps at the (/—1)" layer,
while the depth of the kernel w;; pertains to the j* feature map at the i layer. Additionally, b,; denotes
the bias parameter for the j” feature map at the i layer, with 2y + 1 and 20 + 1 representing the width
and height of the kernel, respectively. In contrast, the 3D convolutional process initially calculates
the sum of the dot product between input patches and the 3D kernel function, wherein the 3D input
patches undergo convolution with the 3D kernel function [40,43]. Subsequently, these feature maps
are subjected to an activation function to introduce non-linearity. The Hybrid model generates feature
maps of the 3D convolutional layer by applying the 3D kernel function across B spectral bands, which
are extracted post-dimensionality reduction, in the input layer. For the 3D convolutional process, the
activation value at spatial location (x, y, z) in the i layer and j* feature map can be expressed as in
Eq. (6):

d_1 v
\') _ .05k X+o.y+p,2+A
( E E E E wirt x v +b) (6)
=1 A=—v p=—y 0=—3§

where all the parameters are the same as defined in Eq. (5) except 2v + 1 which is the depth of the 3D
kernel along a spectral dimension.

For the Spatial-Spectral Transformer model [44-46], consider f;; € R"*” as the input tensor
fed into the Transformer, where N signifies the number of patches, and D denotes the dimension-
ality of each patch post convolutional processing. This encoding process is fused with the input
embeddings, enriching the model with spatial arrangement details. At the core of the Transformer
lies its foundational architecture, the encoder, which comprises multiple layers housing multimodal
attention mechanisms and a feed-forward network. The attention mechanism assumes a pivotal role
in facilitating the model’s ability to capture intricate relationships between diverse patches. More
specifically, for a given input v,;, each layer within the Transformer encoder encompasses layer
normalization, cross attention, and Multi-layer Perceptron (MLP).

Given a query matrix Q € R"*%, key matrix K € R"*%, value matrix V' € R"™*®_ and
mask matrix M € R"*"¥, where n,,n,n,, and d, represent the number of queries, keys, values, the
dimensionality of keys/queries, and the dimensionality of values, respectively. Lets define the weight
matrices for each head i as W? € Rénderl WK € Rémoder% and W' € Rénder* Apply linear
transformation as: O, = Q x W,-Q, K =K x W,.K and V; = V' x W/ Later compute the attention
scores for each head and apply the Softmax to compute the weighted sum of the values as shown in
Eq. (7).

0, x K

W+M)XV (7

Atten,, = Softmax(

Then calculate the concatenate the outputs from all heads as H = Concat(H,, H,, :, H,) and apply
a final linear transformation as 7 . Then given an input x € R, layer normalization is computed
as shown in Eq. (8).
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X—
AT ]
where u is the mean and v? is the variance of x, n is a small constant for numerical stability and y

and A are learnable parameters. Later the information is processed through MLP that consists of two
linear transformations with a ReLU activation function as shown in (9).

MLP(x) = ReLu(xW, + b)W, + b, ©)

where W, € Rl b e RY, W, € RU*‘modl and b, € R, The output of the multi-head
self-attention H'! is added to the input and normalized as presented in Eq. (10).

att

H', = Norm(H., & H'™") (10)

art

Norm(x) =

Y+ A @®)

Eq. (10) adds the attention output #!, to the previous layer’s output HY " and normalizes the
results.

H' = MLP(H' ) (11)

art

Eq. (11) computes the output of the attention mechanism in the I-th layer through an MLP. The
MLP consists of two linear layers with a ReLLU activation function applied between them. The output
of the MLP is added to the normalized attention output and normalized again as:

H' = Norm(H.,, ® ') (12)

Eq. (12) adds the output H',, , to the normalized attention output and then normalizes the result
once more. Afterward, H' is flattened into (H/, (b x h x w, 1)), where b, h, and w denote the batch size,
height, and width, respectively. Finally, a Softmax function is utilized to produce the GT maps.

3 Experimental Results and Discussion
3.1 Experimental Datasets

In order to highlight the importance and the proposed procedure of disjoint sampling in HSIC,
the following datasets are used.

The University of Houston: The University of Houston dataset consists of 144 spectral bands
spanning wavelengths from 380 to 1050 nm, the dataset encompasses an imaged spatial region
measuring 349 x 1905 pixels at a resolution of 2.5 meters per pixel. Additionally, the dataset annotates
15 labeled classes pertaining to urban land use and land cover types. The disjoint train, validation, and
test samples are presented in Table | and Fig. 2.

Table 1: University of Houston Dataset: Disjoint sets of training (Tr), validation (Va), and test (Te)
samples were chosen, with their geographical locations (Excluding background samples) illustrated in
Fig. 2, to train various SOTA models

Class Tr Va Te Class Tr Va Te

Healthy grass 75 300 876 Road 75 300 877
Stressed grass 75 301 878 Highway 73 295 859
Synthetic grass 41 168 488 Railway 74 296 865
Trees 74 299 871 Parkinglot1 73 296 864

(Continued)
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Table 1 (continued)

Class Tr Va Te Class Tr Va Te
Soil 74 298 870 Parking lot2 28 112 329
Water 19 78 228 Tennis court 25 103 300
Residential 76 304 888 Running track 39 159 462
Commercial 74 299 871 — - — —
TrueMap: 664845 Train: 895 Validation: 3608 Test: 10526

Figure 2: The University of Houston Dataset: Geographical locations of the disjoint train, validation,
and test samples presented in Table |

Indian Pines: The Indian Pines dataset was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) over an agricultural site in Northwestern Indiana. It consists of 145 x 145
pixels with spectral information across 224 narrow bands ranging from 0.4 to 2.5 micrometers. The
major land cover classes in the dataset included agricultural land, forest, highways, rail lines, low-
density housing, and built structures separated by smaller roads. Crops such as corn and soybeans
covered less than 5% of typical growing areas as the June image showed early stages of development.
Ground truths designate 16 non-mutually exclusive classes. The number of bands was reduced to 200
by removing wavelengths associated with water absorption. The disjoint train, validation, and test
samples are presented in Table 2 and Fig. 3.

Table 2: Indian Pines Dataset: Disjoint sets of training (Tr), validation (Va), and test (Te) samples
were chosen, with their geographical locations (Excluding background samples) illustrated in Fig. 3,
to train various SOTA models

Class Tr Va Te Class Tr Va Te
Alfalfa 6 7 33 Oats 3 3 14
Corn-notill 214 214 1000 Soybean-notill 145 146 681
Corn-mintill 124 125 581 Soybean-mintill 368 368 1719
Corn 35 36 166 Soybean-clean 88 89 416
Grass-pasture 72 72 339 Wheat 30 31 144
Grass-trees 109 110 511 Woods 189 190 886
Grass-mowed 4 4 20 Buildings 57 58 271
Hay-windrowed 71 72 335 Stone-Steel 13 14 66

Pavia University: The Pavia University dataset was captured using the Reflective Optics System
Imaging Spectrometer (ROSIS), this dataset consists of an image with 610 x 340 pixels and 115
spectral bands. It has 9 classes of urban materials-including asphalt, meadows, gravel, trees, metal
sheets, bare soil, bitumen, brick, and shadows-comprising 42,776 labeled samples in total. The disjoint
train, validation, and test samples are presented in Table 3 and Fig. 4.
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TrueMap: 21025 Train: 1528

Figure 3: Indian Pines: Geographical locations of the disjoint train, validation, and test samples
presented in Table 2

Table 3: Pavia University Dataset: Disjoint sets of training (Tr), validation (Va), and test (Te) samples
were chosen, with their geographical locations (Excluding background samples) illustrated in Fig. 4,
to train various SOTA models

Class Tr Va Te Class Tr Va Te
Asphalt 994 995 4642 Soil 754 754 3521
Meadows 2797 2797 13055 Bitumen 199 200 931
Gravel 314 315 1470 Bricks 552 552 2578
Trees 459 460 2145 Shadows 142 142 663
Painted 201 202 942 - - - -

TrueMap: 207400 Train: 6412 Validation: 6417 Test: 29947

Figure 4: Pavia University Dataset: Geographical locations of the disjoint train, validation, and test
samples presented in Table 3

Salinas: The Salinas dataset is collected using the 224-band AVIRIS sensor over Salinas Valley,
California, this dataset is characterized by high spatial resolution at 3.7 m per pixel. The study area
encompasses 512 lines by 217 samples after removing 20 bands obscured by water absorption. Land
cover types within the dataset include vegetables, bare soils, and vineyard fields. The Salinas ground
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truth annotates 16 classes. The disjoint train, validation, and test samples are presented in Table 4 and
Fig. 5.

Table 4: Salinas Dataset: Disjoint sets of training (Tr), validation (Va), and test (Te) samples were
chosen, with their geographical locations (Excluding background samples) illustrated in Fig. 5, to train
various SOTA models

Class Tr Va Te Class Tr Va Te
Weeds 1 301 301 1407 Soil vinyard develop 930 930 4343
Weeds 2 558 559 2609 Corn weeds 491 492 2295
Fallow 296 296 1384 Lettuce 4 wk 160 160 748
Fallow rough plow 209 209 976 Lettuce 5 wk 289 289 1349
Fallow smooth 401 402 1875 Lettuce 6 wk 137 137 642
Stubble 593 594 2772 Lettuce 7 wk 160 161 749
Celery 536 537 2506 Vinyard untrained 1090 1090 5088
Grapes untrained 1690 1691 7890 Vinyard trellis 271 271 1265
TrueMap: 111104 Train: 8112 Validation: 8119 Test: 37898

Figure 5: Salinas Dataset: Geographical locations of the disjoint train, validation, and test samples
presented in Table 4

Botswana: The NASA EO-1 satellite acquired Hyperspectral imagery of the Okavango Delta
region in Botswana from 2001-2004 using the Hyperion sensor to collect 30 m resolution data
across 242 bands from 400-2500 nm over a 7.7 km strip. The data analyzed from 31 May, 2001,
consisted of observations of 14 land cover classes representing seasonal swamps, occasional swamps,
and drier woodlands in the distal delta region after preprocessing removed uncalibrated and noisy
bands covering water absorption and retaining 145 bands. The disjoint train, validation, and test
samples are presented in Table 5 and Fig. 6.
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Table 5: Botswana Dataset: Disjoint sets of training (Tr), validation (Va), and test (Te) samples were
, to train

513

chosen, with their geographical locations (Excluding background samples) illustrated in

various SOTA models
Class Tr Va Te Class Tr Va Te
Water 40 41 189 Island interior 30 30 143
Hippo grass 15 15 71 Woodlands 47 47 220
Floodplain grasses 1 37 38 176 Acacia Shrublands 37 37 174
Floodplain grasses 2 32 32 151 Acacia Grasslands 45 46 214
Reeds 1 40 40 189 Short Mopane 27 27 127
Riparian 40 40 189 Mixed Mopane 40 40 188
Firescar 2 38 39 182 Exposed soils 14 14 67

TrueMap: 377856 Train: 482 Validation: 486 Test: 2280

Figure 6: Botswana Dataset: Geographical locations of the disjoint train, validation, and test samples

presented in
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3.2 Experimental Settings

This section presents comprehensive experimental settings for various deep learning models,
including 3D CNN [20], Hybrid Inception Net [47], 3D Inception Net [48], 2D Inception Net [49],
2D CNN [50], Hybrid CNN [51], Attention Graph CNN [22]. Spatial-spectral Transformer [24]. Prior
to training, 3D overlapped patches are extracted using an 8 x 8 window size, as outlined in Algorithm
1. All models in this study are trained using the Adam optimizer with a learning rate of 0.0001, a decay
rate of 1e-06, and a batch size of 56 for 50 epochs. The loss and accuracy trend is presented in Fig. 7
for all the competing methods.

Loss Accuracy
4 - o
S e T Y
-_’_,_’..J\fd""
31 m— CNNZD Train
= = CNNZD Val
= IN2D Train
== IN2D Val
— IN3D Train
2 - == IN3D Val
= HybIN Train
== HybIN Val
—— CNN3D Train
== CNN3D Val
1 HybCNN Train
HybCNN Val
AttentionGCN Train
AttentionGCN Val
0.2 1 — SSVT Train
0 1 = = SSVIT val
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 7: Loss and Accuracy trends for all the competing methods for Indian Pines dataset

All evaluations were conducted on a Google Colab, using a Jupyter Notebook. Colab works
on online resources and requires a fast and stable internet connection. Colab works on a Python 3
notebook with a graphic processing unit (GPU) for data analysis, offering 25 GB of random access
memory (RAM) and 358 GB of storage.

All the competing methods are tested with a patch size of 8 x 8, using the 15 most informative
bands selected through principal component analysis. The dataset is split into 70% test samples, with
the remaining 30% equally divided into training and validation sets (15% each). For effective learning,
all models are trained using the Adam optimizer with a learning rate of 0.0001 and a decay of 1e™
over 50 epochs, with a batch size of 56.

The 2D CNN model is trained using four convolutional layers with kernel sizes of (3 x 3 x
8,16,32,64) and the same padding with (8, 16, 32, 64) number of filters, respectively. Following the
convolutional layers, two dense layers are utilized with a dropout rate of 0.4%. Finally, a classification
layer with Softmax is added with the number of output units corresponding to the number of classes
in the dataset. The 3D CNN model is trained using four convolutional layers with kernel sizes of
(3x3x17,5,3,3) with (8, 16, 32, 64) number of filters, respectively. Following the convolutional layers,
two dense layers are utilized and finally, a classification layer with Softmax is added with the number of
output units corresponding to the number of classes in the dataset. The Hybrid CNN model is trained
using three 3D convolutional layers with kernel sizes of (3 x 3 x 7,5, 3), followed by a reshaped layer to
transform the features into 2D to learn spatial features using (3 x 3) kernel with 64 filters. Following the
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convolutional layers, two dense layers are utilized with a dropout rate of 0.4%. Finally, a classification
layer with Softmax is added with the number of output units corresponding to the number of classes
in the dataset.

The 2D Inception Net architecture consists of three blocks with the following configurations. In
the first block, three 2D convolutional layers are used. The first layer employs a (1 x 1) kernel with 30
filters, the second layer uses a (3 x 3) kernel with 20 filters, and the third layer utilizes a (1 x 1) kernel
with 10 filters. In the second block, three 2D convolutional layers are utilized. The first layer has a
(1 x 1) kernel with 40 filters, the second layer employs a (5 x 5) kernel with 20 filters, and the third
layer uses a (1 x 1) kernel with 10 filters. The third block begins with a 2D max pooling operation using
a (3 x 3) kernel and the same padding. This is followed by two 2D convolutional layers with (1 x 1)
kernels and the same padding. The filters for these layers are set to 20 and 10, respectively. Afterward,
the outputs from all three blocks are concatenated, and a convolutional layer with a (1 x 1) kernel
and 128 filters is applied. Following the convolutional layer, two dense layers are deployed. Finally,
a classification layer with Softmax is added with the number of output units corresponding to the
number of classes in the dataset.

The 3D Inception Net architecture consists of three blocks with the following configurations. In
the first block, three 3D convolutional layers are used. The first layer employs a (5 x 5 x 7) kernel
with 30 filters, the second layer uses a (3 x 3 x 5) kernel with 20 filters, and the third layer utilizes a
(3 x 3 x 3) kernel with 10 filters and the same padding in all three layers. In the second block, three 3D
convolutional layers are utilized. The first layer has a (5 x 5 x 7) kernel with 40 filters, the second layer
employs a (3 x 3 x 5) kernel with 20 filters, and the third layer uses a (3 x 3 x 3) kernel with 10 filters and
the same padding in all three layers. The third block begins with three 3D convolutional layers with
(5 x 5 x 7) kernel with 60 filters, the second layer uses a (3 x 3 x 5) kernel with 30 filters, and the third
layer utilizes a (3 x 3 x 3) kernel with 10 filters and the same padding in all three layers. Afterward,
the outputs from all three blocks are concatenated, and a convolutional layer with a (1 x 1 x 1) kernel
and 128 filters is applied. Following the convolutional layer, two dense layers are deployed with a 0.4%
dropout rate. Finally, a classification layer with Softmax is added with the number of output units
corresponding to the number of classes in the dataset.

The hybrid Inception Net architecture consists of three blocks with the following configurations.
In the first block, three 3D convolutional layers are used. The first layer has a (5 x 5 x 7) kernel with 30
filters, the second layer uses a (3 x 3 x 5) kernel with 20 filters, and the third layer employs a (3 x 3 x 3)
kernel with 10 filters. The same padding is applied in all three layers. Following the convolutional
layer, a reshaped layer is used to convert the features from 3D to 2D. Next, a 2D max-pooling layer
with a (3 x 3) filter is applied, followed by three 2D convolutional layers. Each of these layers uses a
(1 x 1) kernel with 16, 32, and 64 filters, respectively. The same padding is used for all three layers.
The same configuration is repeated for the second and third blocks, with the numbers of filters set to
40, 20, and 10 for the 3D convolutional layers, and 16, 32, and 64 for the 2D convolutional layers in
the second block, and 60, 30, and 10 for the 3D convolutional layers, and 16, 32, and 64 for the 2D
convolutional layers in the third block, respectively. Afterward, the outputs from all three blocks are
concatenated, and a convolutional layer with a (1 x 1 x 1) kernel and 128 filters is applied. Following
the convolutional layer, two dense layers are deployed with a 0.4% dropout rate. Finally, a classification
layer with Softmax is added with the number of output units corresponding to the number of classes
in the dataset.

The Attention Graph CNN [22] and Spatial-Spectral Transformer [24] models are trained
according to the settings specified in their respective papers. The Transformer model, in particular,
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is used without the wavelet transformation and consists of 4 layers with 8 heads to compute the final
maps. A dropout rate of 0.1 is applied to the classification layers. For more detailed information, please
refer to the original papers.

3.3 Qualitative and Quantitative Results and Discussion

This section provides a detailed exploration of experimental results in comparison to the state-
of-the-art (SOTA) works published in recent years. While many recent research endeavors present
extensive experimental outcomes to highlight the strengths and weaknesses of their approaches, it is
noteworthy that the experimental results in the literature may follow diverse protocols. For instance,
the selection of training, validation, and test samples might be randomly done, and the percentage
distribution may be identical. However, there could be variations in the geographical locations of
each model, as these models may have undergone training, validation, and testing at different times.
Comparative models may have been executed in multiple instances, either sequentially or in parallel,
introducing a new set of training, validation, and test samples with the same number or percentage.
Consequently, to ensure a fair comparison between the works proposed in the literature and the current
study, it is imperative to employ identical experimental settings and execute them with the same set of
training, validation, and test samples. This approach ensures a consistent and unbiased evaluation of
the proposed methodologies against existing benchmarks.

A prevalent concern in the majority of recent literature is the presence of overlapping training and
test samples. When training and validation samples are randomly selected, with or without considering
the point mentioned earlier, the data split often includes overlapping samples. This situation introduces
bias to the model, as overlapping implies the model has already encountered the training and validation
samples, leading to inflated accuracy metrics. To prevent this issue, this study ensures that, despite the
random selection of samples, the intersection between training, test, and validation samples remains
consistently empty for all competing methods. This measure aims to maintain the integrity of the
model evaluation process and uphold the reliability of accuracy assessments.

To ensure a robust and fair evaluation, the datasets are split into disjoint training, validation, and
test sets. Following the proposed method, we begin by dividing the HSI dataset into disjoint training,
validation, and test sets. Each model is then trained on the training set and tuned on the validation
set to optimize performance. Subsequently, the models are evaluated on the disjoint test set and the
complete HSI dataset to assess their generalization capabilities. The experimental results demonstrate
the effectiveness of the proposed method in improving the classification accuracy of HSIC as shown in
Tables 6-10 and Figs. 8-12. Among the deep learning models considered, 3D CNN [20] and Hybrid
Inception Net [47] achieve the highest classification accuracy, indicating their suitability for HSIC.
Additionally, the results highlight the importance of using a large and diverse training dataset to
achieve optimal performance.
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Figure 8: Indian Pines Dataset: Land cover maps for disjoint validation, test, and the entire HSI used
as a test set are provided. Comprehensive class-wise results can be found in Table 6
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Figure 9: (Continued)
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(g) GCN (h) Spatial-Spectral Transformer

Figure 9: Pavia University Dataset: Land cover maps for disjoint validation, test, and the entire HSI
used as a test set are provided. Comprehensive class-wise results can be found in
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(d) 2D IN

Figure 10: (Continued)
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Dis_Validation: 98.05% Dis_Test: 98.17% Complete HSI: 99.11%
(e} 3DIN
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(f) Hybrid IN
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(g) GCN
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(h) Spatial-Spectral Transformer

Figure 10: University Houston Dataset: Land cover maps for disjoint validation, test, and the entire
HSI used as a test set are provided. Comprehensive class-wise results can be found in
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Figure 11: (Continued)
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Figure 11: Botswana Dataset: Land cover maps for disjoint validation, test, and the entire HSI used
as a test set are provided. Comprehensive class-wise results can be found in Table 9
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Figure 12: (Continued)
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Dis_Validation: $4.63% Dis_Tost) 98,6% Complate HEI: 99.3%

(g) GCN (h) Spatial-Spectral Transformer

Figure 12: Salinas Dataset: Land cover maps for disjoint validation, test, and the entire HSI used as a
test set are provided. Comprehensive class-wise results can be found in Table 10

The comparative methods frequently misclassify samples with similar spatial structures, exem-
plified by the misclassification of Meadows and Bare Soil classes in the Pavia University dataset,
as illustrated in Fig. 9. Furthermore, the overall accuracy (OA) for the Grapes Untrained class is
lower compared to other classes due to the aforementioned reasons as shown in Table 7. In summary,
higher accuracy can be attained by employing a higher number of labeled samples (complete HSI
dataset as the test set), as depicted in Figs. 8—12 and Tables 6—10, nevertheless, the elevated accuracy
is accompanied by the drawbacks of bias, redundancy, and diminished generalization performance.
Tables 6-10 also illustrate the computational time required to process and evaluate the HSI datasets
used in this study. As depicted in the Tables, the time exhibits a gradual increase with the growing
number of samples, i.e., Disjoint validation, disjoint test, and complete HSI dataset as a test set.

4 Statistical Tests

Average, overall, and Kappa accuracy may not always be appropriate measures, especially when
there are significant differences in the number of samples in each class within a dataset. To clarify this
point, consider the following scenario. Suppose we have a dataset with 90 healthy (positive) individuals
and 10 not-healthy (negative) individuals. If a conventional model correctly predicts 90% of individuals
as healthy, it might still predict the not-healthy individuals as healthy. What would be the best accuracy
in this scenario?

In this setting, the model identifies 10 individuals as “False Negative”, 0 as “True Positive”,

0 as “False Positive”, and 90 as “True Negative”. Thus, the average accuracy would be 90%, i.c.,

90+ 0
% = 0.9. However, the model is highly biased since it predicts all the not-healthy individuals

as healthy. In such scenarios, overall and average accuracies can be misleading or misinterpreted,
indicating that these measures alone are not sufficient for evaluating a machine learning model.
Therefore, it is important to consider additional statistical measures to validate the model beyond
simple accuracy metrics.

Several statistical tests can be used to validate the results. For this work, we consider Recall (True
Positive Rate or Sensitivity), Precision (Positive Predictive Value, PPV), and F1 score (a harmonic
mean of precision and recall). In an ideal scenario, PPV should be 1, which occurs when the numerator
and denominator are equal, i.e., when True Positive (TP) equals TP + False Positive (FP), making FP
equal to 0. As FP increases, PPV decreases, leading to an inappropriate model. A similar trend can
be observed for Recall, where False Negative (FN) replaces FP. Recall and PPV can be computed as
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follows:
TP
Recall = ——— (13)
TP+ FN
TP
Precision = ——— (14)
TP+ FP

For a classification model to be effective, both Precision (Positive Predictive Value, PPV) and
Recall need to be high, which means that both False Positives (FP) and False Negatives (FN) must
be low. In addition to Recall and PPV, the F1 score should also be computed, as it combines both
Recall and PPV to provide a single metric that offers statistical significance and deeper insight into
the classifier’s generalization performance. The F1 score can be calculated as follows:

Precisi Recall
F1 score =2 x reCl_Sl_OH x frecd (15)
Precision + Recall

A model is considered effective if it achieves high values for PPV, Recall, and the F1 score. These
metrics provide a more comprehensive evaluation of the model’s performance compared to using
accuracy alone. The detailed statistical results are presented in Table 11.
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5 Conclusion

This paper introduced a novel technique for generating disjoint train, validation, and test splits
in Hyperspectral Image Classification (HSIC). By efficiently partitioning the ground truth data, the
proposed technique ensured unbiased performance evaluations and facilitated reliable comparisons
between classification models. It proved to be a valuable tool for creating disjoint splits, guaranteeing
that the subsets were representative of the entire dataset and that the classification results were
not skewed by data leakage. While the technique demonstrated significant advantages, limitations
were acknowledged, and opportunities for further improvement were identified. Future research
could investigate alternative data-splitting strategies that incorporate additional factors, such as class
imbalance or spatial coherence, to further enhance the representativeness and generalizability of the
subsets. Addressing these aspects could lead to the development of even more robust and effective
data-splitting techniques for HSIC.
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