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Abstract  

Diseases of the cardiovascular system have been the biggest cause of mortality for 

the majority of the last century, currently contributing to almost a third of deaths every 

year globally. Ageing associates with changes to the structure and function of the heart 

and vascular system that progressively increase the incidence of abnormalities, 

morbidity, and cardiovascular disease. The burden of ageing and its relationship to 

cardiovascular disease risk highlights the need for more research into the underlying 

mechanisms involved and how they may be treated and/or prevented. Factors 

influencing adrenergic dysfunction may explain a significant part of the age-related 

deterioration in health and responsiveness of the cardiovascular system. Increased 

sympathetic activity in old age overstimulates adrenergic receptors and causes 

detrimental changes within the associated signalling mechanisms including a 

reduction in receptor number and downstream effector efficiency. Pharmacological 

agents such as metformin, resveratrol, beta-blockers, and angiotensin converting 

enzyme (ACE) inhibitors have been identified as potential anti-ageing therapies with 

cardiovascular effects, which may be beneficial in treating the decline in 

cardiovascular function with old age. Regular exercise has also shown promise in the 

prevention and treatment of harmful age-related effects on the cardiovascular system. 

This review will investigate age-associated vascular and cardiac remodelling, and the 

link between adrenergic dysfunction and vascular and cardiac control. This review will 

also consider whether pharmacological or non-pharmacological therapies are most 

effective, or indeed complimentary to potentially optimise ageing of the cardiovascular 

system and improve quality of life in the elderly. 
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Article Highlights 

 Progressive reductions in vascular and cardiac function are observed during 

ageing.  

 Adrenergic dysfunction in the control of both the heart and vasculature in old 

age is a key mechanism in the age-related loss of physical capacity.  

 To reduce the detrimental effects of an aged cardiovascular system, potential 

anti-ageing pharmacological therapies are compared with exercise training.  

 Exercise training may reverse detrimental age-related remodelling, particularly 

in the context of adrenergic control, and may be complimentary or superior to 

pharmacological therapies. 
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1.0 Introduction  

An “ageing crisis” due to the expansion of the population that is over 65 years old is a 

current and prospective concern for many countries. Off the back of improvements in 

science, availability of medicine, improved nutrition, and access to information over 

the past 2 centuries, society has enjoyed a predominantly upward trajectory in life 

expectancy, with life expectancy in the 21st century almost twice that of the 19th century 

[3-6]. While ever increasing longevity should be considered a great achievement, this 

has simultaneously led to the realisation of the need to match growth in lifespan with 

growth in health span. Currently, there is some suggestion of a limit to lifespan for 

humans of approximately 120-150 years [7], though this remains a topic of some 

controversy. Absolute lifespan is not necessarily a key goal though since with 

advancing age comes an increasing risk of morbidity and poor health. For example, in 

the UK in 2016, data show that if one lived to the age of average life expectancy (81 

years), any individual would expect to spend approximately 20-23% of their life in poor 

health [8, 9]. Disparity in lifespan:health span could mean the general population 

spends a greater portion of their lives in poor health [3, 4, 10]. In the absence of 

therapeutic strategies that can delay specific biological processes contributing to age-

associated degradation of physiological systems, attention must be concomitantly 

directed to alternative strategies to prevent further disparity in the lifespan: health span 

ratio and ensure individuals arrive at old age (>65 years) healthier [11-15] and can 

preserve this health for longer. An increasing elderly population will present a greater 

demand on already strained healthcare resources, which is very costly and may 

ultimately lead to a decline in the quality of care received. Most importantly, this could 

lead to a reduction in the quality of life of this growing elderly population. 

Typically, as an individual ages, a plethora of adaptations occur normally resulting in 

the poorer and less efficient function of several physiological systems which culminate 

in increased vulnerability and likelihood of disease and abnormality [3, 16-19]. Age-



related physiological changes tend to go unnoticed by individuals as cellular 

remodelling is continuous after biological maturity is reached and often delivers only 

very gradual change [3, 18, 19]. Notably, elderly individuals are susceptible to 

neurodegeneration, altered catecholamine regulation, chronic inflammation, reduced 

ability for repair, immunosenescence, and reduced ability to respond to stress [16, 20-

22]. There are many theories to explain these age-related changes as well as the 

general ageing process [23-26].  

Age is the greatest single independent risk factor for the development of 

cardiovascular diseases (CVDs) [16]. CVD is the leading killer globally, with data 

suggesting CVD-related deaths are responsible for almost a third of all deaths each 

year [5, 6]. Despite a gradual decline in prevalence in recent years, CVD rates are still 

very high and some have predicted a future surge as a result of high rates of obesity, 

drug use, inactivity, and poor diet in young adults currently [27, 28]. Added to this, with 

advancing age being the single greatest risk factor for CVD and the increase of the 

aged population, attempting to ameliorate the age-related increase in CVD becomes 

an important clinical and societal issue. The question remains though just how 

modifiable as a risk factor for CVD is the ageing process? 

 

2.0 Age-Related Remodelling in the Heart and Vasculature  

Age-related remodelling of the heart and vascular system associates with a broad 

range of changes [4]. Identifying the key ones and dealing with the marked 

heterogeneity that can be seen in terms of ageing both between individuals and organs 

presents a significant challenge to developing therapeutic targets and solutions. 

2.1 Hypertrophy 

Age-related cardiac hypertrophy is characterised at the cellular level by a loss in 

myocyte number and an increase in myocyte size (figure 1) [29, 30]. Different 

signalling pathways exist instigating these morphological changes, yet the main 

triggers are mechanical stress or neurohormonal activation. Changes in the vascular 

system with age lead to increases in systolic blood pressure (BP) (approximately 0.9 

to 9 mmHg per decade) [31, 32] subsequently triggering cardiac hypertrophy [33, 34]. 



Increased involvement of calcium/calmodulin-dependent protein kinase (CAMKII) due 

to catecholamine overstimulation and reduced efficiency of intracellular calcium (Ca2+) 

handling in old age is also associated with hypertrophy through activation of the renin 

angiotensin aldosterone system (RAAS) pathway [35, 36]. Activation of CaMKII 

through downstream beta-adrenergic receptor (βAR) stimulatory signalling coupled 

with a direct increase in stimulation of the RAAS, augments this hypertrophy [3, 37, 

38]. Catecholamine overstimulation can also contribute to hypertrophy through the 

phospholipase-C (PLC)/calcineurin/Nuclear factor of activated T-cells (NFAT) 

pathway. In the calcineurin/NFAT pathway, βAR are stimulated by both 

catecholamines and angiotensin 2, activating PLC, leading to the activation of 

calcineurin and Ca2+ release, culminating in the dephosphorylation of NFAT [38-40]. 

The hypertrophy (48-89% increase in left ventricular mass; 12-47% increase in wall 

thickness) [41-44] linked with advancing age (>65 years) may contribute to the 

reduction of cardiac reserve and exercise capacity due to the association with impaired 

diastolic and contractile function. 

2.2 Prolonged Contraction 

A prolongation in myocardial contraction with increasing age occurs as a 

compensatory measure for the development of diastolic dysfunction generated 

through remodelling of the vascular system, cardiac tissue and ventricular ion 

channels [45-47]. Age-associated cardiac hypertrophy also associates with slowed 

Ca2+ kinetics and a prolonged ventricular action potential (AP). Slowed relaxation 

kinetics can also limit ventricular filling, especially at higher heart rates (HR) [47]. At 

the cellular level, the elderly heart demonstrates a pattern of reduced sarcoplasmic 

reticulum (SR) Ca2+ release magnitude (of around 5%) coupled with reduced Ca2+ 

transient duration (by ~6%) and increased frequency (91%) of spontaneous SR 

release, reflective of the known age-related increase in ryanodine type 2 receptor 

(RyR2) leak [47, 48]. An age-related decline in SR loading (of ~30-50%) as a result, 

in part, of unfavourable alterations in the sarco/endoplasmic reticulum Ca2+ ATPase 

(SERCA2a): phospholamban (PLN) ratio contributes to slowed Ca2+ kinetics and a 

reduced calcium transient amplitude with ultimately a reduced contractile response in 

myocytes [47-50]. This age-related impairment in Ca2+ cycling, combined with the 

dysfunction in factors contributing to efficient excitation such as the slowed kinetics of 



AP (figure 1), repolarisation driven by sustained Ca2+ entry and reduced repolarising 

potassium (K+) channel function as well as an increase in fibrosis poses a problem for 

maintaining efficient cardiac function during high HR such as under stress or during 

physical activity [45, 51-56]. Indeed, the age-associated reduction in maximum HR 

may actually be required to cope with the reduced ability of the heart to work efficiently 

at high HRs in advanced age. 

Similarly, in the vascular system, changes in Ca2+ handling are involved in the age-

related impairment of vascular contractility [57]. A reduction in Ca2+ entry due to a 

reduction in L-type Ca2+ channel expression and associated current density in smooth 

muscle in old age, contributes to the decline in contractility and overall efficient 

functioning of the vascular system, compounded by vessel stiffening and deterioration 

of sympathoadrenal signalling, impacting the control of BP and blood flow as well as 

potentiating a mismatch in arterial and ventricular load [57, 58]. In addition, endothelial 

dysfunction has been associated with old age [59] characterised by the loss of 

endothelial-dependent vasodilation, which has been shown to reduce by 

approximately 0.21% per year in the brachial artery of humans >40 years old [60].  

Other work has even reported much greater differences in vasodilatory response to 

agonist stimulation (acetylcholine), where old humans (>60 years) displayed a 4.5-fold 

reduction compared with young adults (<30 years old) [61]. The age-related reduction 

in endothelial function is largely a result of a reduction in nitric oxide (NO) synthase 

and an increase in oxidative stress [59, 62]. Together, these changes harm the ability 

to cope with modulations in cardiorespiratory demand, increase vascular 

inflammation, and elevate CVD risk. 



 

2.3 Diastolic Dysfunction 

Diastolic dysfunction is one of the most prominent age-related changes and has 

acquired attention due to the similarity to heart failure with preserved ejection fraction 

(HFpEF), a debilitating condition with currently few effective treatment options [63]. 

Diastolic dysfunction in the aged heart is contributed to by changes in ventricular wall 

thickness as well as fibrosis and is characterised by poorer diastolic filling efficiency, 

where filling pressure is increased without concomitant increases in filling volume 

alongside a requirement for greater functional involvement of the atria [45, 64]. Early 

diastolic filling is typically greatly reduced (approximately 60% in humans >70 years 

vs 20-29 years) [45], and the heart becomes reliant on increased late diastolic filling, 

reducing the early-to-late-filling (E:A) ratio [45, 64]. These changes are supported by 

maintained or improved end-diastolic volume (EDV) and end-systolic volume (ESV) 

and contribute to prolonged contractions [45, 64].  

Figure 1. Depiction of some adaptations observed in age-related cardiac 

remodelling. Image created with BioRender.  



2.4 Reduced Automaticity 

Age-related impairments in automaticity result from a reduction in intrinsic HR control 

and a shift in autonomic nervous system (ANS) modulation and reactivity of the 

sympathetic and parasympathetic nervous systems (SNS; PNS), whereby PNS 

control during basal conditions declines and SNS control compensates, contributing 

to the reduction in maximum attainable HR [65, 66]. The shift in ANS control may 

contribute to the deterioration of the ability to function at high HR alongside changes 

in adrenergic signalling efficiency. The declining function of the sinoatrial node with 

old age is characterised by losses in sinoatrial node (SAN) cell number, 

hyperpolarisation-activated cyclic nucleotide-gated cation channel (HCN) expression 

(underlying the funny current (If)) and RyR2, L-type Ca2+ channel and SERCA2a 

expression, all contributing to a reduction in intrinsic pacemaker function [51, 67-70]. 

Losses in SAN cell number, coupled with changes in the extracellular matrix (ECM) 

and overall cardiac hypertrophy also collectively impede electrical connectivity with the 

rest of the heart, impairing impulse propagation, increasing pacemaker instability and 

subsequently increasing arrhythmia risk as well as potentially limiting maximal rate of 

operation [68, 71, 72]. 

2.5 Increased Fibrosis 

The fibrotic changes identified with advancing age widely impact on overall myocardial 

efficiency [73, 74]. An increase in fibrosis has been observed in almost all tissues and 

is a prominent factor in ageing. The changes that occur with fibrosis in the heart are 

known to manifest as alterations in ECM, elastin breakdown and collagen deposition 

[1, 73]. Fibrotic processes are required to maintain adequate myocardial structure for 

correct cardiac functioning and for repair and rejuvenation after injury or insult as well 

as supporting efficient electrical conduction and ventricular loading [73]. Ageing can 

stimulate pathological (interstitial) fibrotic processes leading to an increased 

remodelling of ECM and accumulation of fibroblasts [73, 74]. This results in structural  

changes that can impair function and damage the ability to efficiently perform 

reparative processes as well as the overall mechanical and electrical function of the 

heart [73, 75]. Increased deposition of type 1 collagen and the remodelling of gap 

junctions impede impulse transduction and propagation, leading to an increased risk 

of arrhythmias and the blunting of contraction magnitude [71, 76]. Meanwhile, the 



overall loss of elasticity and increase in stiffening negatively influences the chamber 

filling and contraction efficiency [73, 75]. Together, these changes influence the 

generation of cardiac output (CO) and the narrowing of cardiac reserve, reducing the 

ability of the elderly heart to cope with increases in demand. 

In old age, the arterial stiffening caused by similarly increased fibrosis (figure 2) is 

further compounded by elevated levels of inflammation, through the upregulation of 

atherosclerotic deposits and loss of efficiency in the electron transport chain [46, 77]. 

Together, this creates an environment whereby reactive oxygen species (ROS) 

production and subsequent oxidative activity become more prevalent, triggering the 

accumulation of pro-inflammatory cytokines [46]. Over a chronic period, the associated 

chronic inflammation leads to endothelial dysfunction (figure 2) and can impede blood 

flow via suppression of NO availability [46, 78, 79]. Sustained exposure to low-level 

inflammation, such as in old age, has been repeatedly implicated in the increased risk 

of disease development and further fibrosis and stiffening [78, 79]. 



 

 

 

Figure 2. The vascular phenotype in aging and hypertension. With aging and during 

the development of hypertension, the endothelium, vascular wall, and adventitia 

undergo functional and structural changes. Endothelial function is impaired, and 

the vascular media is thickened. The adventitial extracellular matrix undergoes 

remodelling, with increased collagen deposition, reduced elastin content, and 

increased proinflammatory cells. These processes contribute to vascular fibrosis 

and stiffening.  

ECM, extracellular matrix; MMP, matrix metalloproteinases; TIMPs, tissue 

inhibitory metalloproteinases; VSMC, vascular smooth muscle cell [1]. Figure 

reprinted from “Vascular Fibrosis in Aging and Hypertension: Molecular 

Mechanisms and Clinical Implications” by A. Harvey, A. Montezano, R.A. Lopes, F. 

Rios and R.M. Touyz. (2016). Canadian Journal of Cardiology, 32, (5), p. 659-68 

[1]. Copyright © (2016) by Harvey, Montezano, Lopes, Rios and Touyz. Reprinted 

in accordance with the CC-BY license and Elsevier’s open access policy. 



2.6 Arterial and Ventricular load 

Increased collagen deposition and the breakdown of elastin by elastase facilitates age-

related arterial stiffening, which is further exacerbated by hypertrophy of the intimal 

vessel wall which increases the risk of CVD-related events such as stroke or 

myocardial infarction [46, 80, 81].  An increase in arterial stiffness causes increased 

arterial systolic and pulse pressure [46, 81]. Reductions in arterial compliance of 40-

43%, increase in stiffness index of 111-132%, and increase in pulse wave velocity of 

50-58% have been reported in old (60-74 years) compared with young adults (18-29 

years) [82]. This leads to greater pressure exerted on the ventricles and cardiac work 

[83]. Continued higher wall tension fuels a perpetual cycle of increased pressure and 

hypertrophy of both the heart and the vasculature, along with a deterioration in 

diastolic function [33, 84]. Greater wall thickness in the ventricles and vasculature 

facilitates the normalisation of wall stress or tension, preventing a deleterious effect 

on CO generation by preserving the ejection fraction (EF) and enlarging atrial cavities, 

advancing atrial filling and increasing EDV [80, 85, 86]. However, preserving EF is at 

the expense of early diastolic filling rate, as a prolongation of contraction time occurs 

[86] reducing contraction velocity and efficiency. Such remodelling creates a mismatch 

in arterial and ventricular load, which becomes problematic during exercise as arterial 

and ventricular loads become unbalanced, contributing to poorer exercise tolerance 

and cardiac reserve in old age [83, 87, 88]. During the performance of exercise in old 

age, there is a blunting of the normal reduction in cardiac afterload observed in young 

adults, which contributes to poorer cardiac performance during physical activity and a 

narrowing of cardiac reserve [83, 89]. A continuous increase in arterial stiffening 

increases afterload resistance to cardiac function as well as higher wall pressure in 

the vasculature, further increasing vulnerability to CVD or CVD-related injury. This 

remodelling in aged populations may explain in part, the associated loss of physical 

capacity and increasing risk of CVD [85]. 

2.7 Impeded Response to Physical Exertion 

Age-related reduction of the response to physical activity and reduced cardiac reserve 

are also considered a result of a loss in adrenergic signalling efficiency [3, 80]. 

Reduction in β-1 adrenergic receptor (β1AR) expression and activity alongside further 

detrimental remodelling of early and downstream signalling components and effectors, 



caused by chronic catecholamine overstimulation, significantly impairs the response 

in cardiac rate and contractility at the onset of physical activity [72, 90-99]. A cascade 

of associated components accumulate to significantly limit cardiac reserve and 

physical capacity in old age, impairing the ability to perform activities of daily living that 

require physical exertion and the upregulation of cardiovascular function [72]. 

 

3.0 Adrenergic Dysfunction with Age as a Key Problem 

The age-related development of adrenergic dysfunction is a prominent factor 

contributing to some of the most important detriments to quality of life, through 

diminishing physical capacity leading to increased morbidity and ultimately mortality. 

The age-related degradation of the adrenergic response in the heart primarily 

concerns changes in the β1AR signalling pathway. Key age-related alterations of this 

pathway have been previously described [3, 18, 45, 70, 72, 86, 100]. However, in the 

vasculature, alterations in the adrenergic response through alpha 1, alpha 2 and beta 

2 adrenergic receptors (ɑ1AR; ɑ2AR; β2AR) signalling alterations as well as 

baroreceptor control have been comparatively less studied [33, 101]. The remodelling 

of adrenergic control in the vascular system with ageing and its subsequent impact on 

the ageing heart is important due to the intertwining nature of cardiovascular function 

physical capacity, and CVD risk. Increased sympathetic activity associated with ageing 

causes sustained elevated stimulation of both ɑAR and βAR, though overstimulation 

of β1AR appears to be the most prominent and detrimental to cardiovascular function 

[20, 21, 35]. Interestingly, a link between hypertension, a common comorbidity during 

the ageing process, and chronic overstimulation of adrenergic receptors has also been 

suggested as a result of the associated increase in sympathetic tone, whereby the 

onset of hypertension may amplify age-related degradation in processes related to the 

adrenergic response [35, 101]. This could mean that anti-ageing treatments or 

preventive strategies may benefit from treating or preventing high BP initially if the end 

goal is to correct the overstimulation of adrenergic receptors and progressive age-

related deterioration in cardiovascular function. 

Alpha 1 adrenergic receptors are prominent in the smooth muscle of the vascular 

system and utilise the PLC/inositol triphosphate (IP3)/protein kinase C (PKC) signalling 



pathway to mediate vasoconstriction [102]. Alpha 1 receptors also have a role in 

myocardial contractility and hypertrophy [103, 104]. Increases in catecholamine 

circulation stimulate ɑ1AR which then activates the PLC/IP3/PKC pathway [105]. 

Activation of this pathway triggers increased intracellular Ca2+ entry through 

phosphorylation of Ca2+ channels by PKC alongside concomitant SR Ca2+ release, 

triggering vasoconstriction and in turn increasing peripheral resistance and raised BP 

[105]. During exercise, the action of ɑ1AR stimulation enables the redirection of blood 

flow away from the digestive system and areas with low aerobic demands, facilitating 

an increase in blood flow within active tissues, supporting efficient cardiovascular 

function [106].  

In the heart and associated vasculature, a maintenance or increase in ɑ1AR signalling 

occurs with ageing, as a compensatory mechanism for declining β1AR signalling [57, 

101, 106-108]. A key potential role of ɑ1AR signalling in the aged heart may be to offer 

cardioprotection as well as facilitate physiological hypertrophy [109]. However, a 

blunting of the ɑ1AR signalling-induced contractile response (of ~50%) has been 

reported alongside reductions in PKC activity and associated anchoring proteins in old 

aged rat hearts [110]. It should be noted that ɑ1AR signalling modulates contractility in 

the human heart to a lesser extent than in rodents [106]. An age-related increase (or 

maintenance) in ɑ1AR response, when combined with the known loss of arterial 

baroreceptor control, may explain, at least in part, the exaggerated BP response to 

exercise reported in old individuals, as the vasoconstrictive impact of the described 

ɑ1AR hyperactivity is not modulated and subsequently blunted to the same extent as 

in youth [33, 57, 101, 111]. 

Alpha 2 receptors are primarily located on postganglionic sympathetic neurons and 

smooth muscle and are responsible for modulating the influence of catecholamines 

through inhibition of adenylyl cyclase (AC) also moderating HR and BP [112]. Alpha 2 

stimulation inhibits AC and in turn cyclic adenosine ‘3 ‘5 monophosphate (cAMP) and 

causes alterations in outward K+ and inward Ca2+ currents inhibiting neuronal firing 

[112]. This generates a cycle that blunts catecholamine release and subsequent 

adrenergic signalling, and offers protection from excess catecholamine 

overstimulation [112]. Alpha 2 stimulation causes a reduction in vascular resistance, 

BP, HR and CO [112]. 



The response to ɑ2AR signalling may become altered or impaired with age [101, 113]. 

Although relatively little evidence exists in the context of cardiovascular function and 

the data shows a mixed response to ageing, though this is possibly due to the broad 

range of conditions and samples investigated thus far [101]. A poorer response to 

ɑ2AR stimulation/signalling would reduce catecholamine control and may have a role 

in age-related overstimulation of adrenergic receptors contributing to the age-related 

alterations in BP response to stress through the previously mentioned remodelling of 

ɑ1AR and baroreceptor sensitivity [33, 57, 101, 111].  

Beta 2 receptors are situated in the heart and smooth muscle and have a relationship 

with both stimulatory and inhibitory G proteins unlike the other adrenergic receptors 

[3, 114]. Beta 2 receptors utilise AC/cAMP/protein kinase A (PKA) pathway to aid 

smooth muscle relaxation, cell survival, and cardiac contractility [3, 115, 116].  

With ageing, β2ARs become less sensitive in the cardiovascular system [17, 33, 101, 

107, 117]. The balance of effects of adrenergic receptors alters since the reduced 

β1AR response reduces contractile chronotropic effects on the heart, while vascular 

effects promote increased afterload and BP elevation. An age-related reduction in 

β2AR response impacts the efficiency of BP control and cardiovascular function as the 

vasodilatory response is weakened against the competing vasoconstriction brought 

on by ɑAR stimulation during adrenergic signalling [17, 107]. A link between β2AR 

downregulation and hypertension and further inflammation exists, which may 

exacerbate the decline in overall cardiovascular function [17]. 

 

4.0 Therapeutic Strategies Combatting the Age-Related Decline 

Interest in combatting the debilitating effects of ageing has led to the identification and 

implementation of an array of therapeutic strategies which may help restore 

cardiovascular function or at least blunt the age-related degradation of the 

cardiovascular system [118]. The overwhelming majority of strategies are 

pharmacological using agents such as metformin, resveratrol, angiotensin-converting-

enzyme (ACE) inhibitors and beta(β)-blockers [118].  

4.1 Metformin 



Metformin is used for the treatment of type 2 diabetes and facilitates greater utilisation 

of glucose and a reduction in its production (figure 3) [119, 120]. Metformin reduces 

glucose production in the liver through pathways involving alterations in AMP-activated 

protein kinase (AMPK), cAMP production, the electron transport chain, and lactate 

metabolism (figure 3) [119, 120]. The mechanism of increased glucose utilisation in 

the gut with metformin is currently unclear [119].  

The beneficial effects of metformin on ageing are likely related to the associated 

reductions in non-communicable disease (NCD) risk [120]. Metformin has been 

associated with reduced risk of CVD, cancer, obesity, and neurodegenerative 

diseases [120]. Given age is a vital risk factor in the majority of these NCDs, metformin 

has been implicated as a potential anti-ageing treatment [120, 121]. Studies in mice 

and Caenorhabditis elegans (C. elegans) support this and have reported extensions 

in average lifespan of between 4 and 40% [120, 122-124]. Greater blood glucose 

control and an improved blood lipid profile as a result of metformin ingestion could help 

facilitate a reduction in the age-related increment of ROS production alongside 

subsequent oxidative damage, inflammation and vascular decline which would help 

ameliorate ageing-associated effects on vascular function, BP, and cardiac function 

[120]. This is supported by evidence of metformin induced reductions in cardiac 

hypertrophy (6% reduction in left ventricular mass index), BP (3-4% reduction in 

systolic BP) and oxidative stress (9-11% reduction in measured lipid peroxidation 

products) in old individuals with coronary artery disease (CAD) [125]. Metformin has 

also been found to reduce overall mortality and cardiovascular events in humans [126]. 

In addition, metformin treatment has been shown to slow the progression of HF in rats 

by increasing EF (~35%) and end-diastolic diameter (6%) and end-systolic diameter 

(7%) and was associated with increases in AMPK and endothelial NO synthase 

phosphorylation [127]. However, a recent study in mice reported that metformin did 

not provide the expected improvements in life expectancy and cardiac function [128]. 

Human trials of anti-ageing and preventive effects of metformin are in progress. 

Another drug class used in the treatment of type 2 diabetes, sodium-glucose co-

transporter-2 (SGLT2) inhibitors have also been suggested as a potential therapeutic 

strategy for restoring or slowing the age-related degradation of cardiovascular function 

[129]. The increasing interest in SGLT2 inhibitors as a potential anti-ageing strategy 

is a result of findings demonstrating the attenuation of inflammation and oxidative 



stress, as well as the prevention of age-related endothelial dysfunction [129]. Though 

more research is required to assess the long-term consequences of use in healthy 

individuals.  

Finerenone, a drug used in the treatment of kidney disease and type 2 diabetes, has 

also been suggested to be of value in acting against age-related dysfunction [130]. 

Finerenone has been shown to reduce the incidence of cardiovascular events and 

death in patients with kidney disease and type 2 diabetes [131]. A key mechanism of 

action is reduction of myocardial fibrosis which is a key hallmark of cardiac ageing 

[132]. This would be expected to potentially improve vascular and cardiac compliance 

perhaps reversing the normal trend of age-related reduction in this key parameter. In 

addition, finerenone can improve ventricular contractility during chronic adrenergic 

(over)stimulation [130-132]. As such there is good potential for this agent but more 

research is required to validate and assess the magnitude of beneficial effects in the 

absence of complicating pathophysiology.  

 

 

 



 

Figure 3. Mitochondrial mechanisms of action of metformin. After cellular uptake, 

mainly through organic cation transporter 1 (OCT1) in hepatocytes, the 

mitochondria is the primary target of metformin which exerts specific inhibition on 

the respiratory-chain complex 1, presumably through direct interaction with the 

NADH dehydrogenase 3 (ND3) core subunit, and on mitochondrial 

glycerophosphate dehydrogenase (mGPDH). The inhibition of complex 1 decreases 

nicotinamide adenine dinucleotide (NADH) oxidation, proton pumping across the 

inner mitochondrial membrane and oxygen consumption rate, resulting in lower 

proton gradient (Δψ) and reduction of proton-driven adenosine tri-phosphate (ATP) 

synthesis from adenosine di-phosphate (ADP) and inorganic phosphate (Pi). The 

inhibition of mGPDH modulates cytosolic and mitochondrial redox state resulting in 

increased cytosolic NADH. (FBP1 = fructose-1,6-bisphosphatase-1; AC = 

adenylate cyclase; FADH = flavin adenine dinucleotide; AMPK = 5' adenosine 

monophosphate-activated protein kinase). 

Figure reprinted from “Role of Mitochondria in the Mechanism(s) of Action of 

Metformin” by G. Vial, D. Detaille and B. Guigas. (2019). Frontiers in Endocrinology, 

10, p. 294 [2]. Copyright © (2019) by Vial, Detaille and Guigas. Reprinted in 

accordance with the CC-BY license and Frontiers in Endocrinology’s open access 

policy.  



4.2 Resveratrol 

Resveratrol is a polyphenol found in plants and common foods [133]. Resveratrol has 

been suggested to have potential anti-ageing benefits through associated increased 

reparative capacity, reduced inflammation, and increased mitochondrial biogenesis 

[134]. In fact, studies have shown resveratrol increases the lifespan of C elegans, fruit 

flies and bees by 10-~40% [134-138]. In rats, resveratrol has been shown to improve 

vascular function and aerobic capacity [134, 139]. The benefits of resveratrol have 

been found to be mediated primarily through changes in pathways involving sirtuins 

[133] which are believed to be involved in both the normal ageing process and 

response to physical activity as well as the development of pathological age-related 

changes which in turn negatively impact responses to physical activity [140-142]. 

Sirtuin’s (SIRT’s) are a family of proteins that depend on nicotinamide adenine 

dinucleotide (NAD) and are specifically activated by high NAD levels as found in low 

energy states [100]. Sirtuin’s  1, 3, 6, and 7 are the most prominent when investigating 

cardiac function and are responsible for a role in signalling related to cell mortality and  

metabolically associated ROS synthesis [143]. SIRT1, when activated by increased 

NAD levels or resveratrol, increases mitochondrial activity, cell survival or death, 

apoptosis, atrophy, DNA repair, and ROS synthesis through a number of molecular 

reactions involving the stimulation of transcription factors and inhibition of the Akt 

pathway [100, 133]. Sirtuin3 also has a role in the modulation of hypertrophic 

myocardial remodelling following a similar signalling pathway, however, concluding in 

the activation of different proteins and protein kinases [100]. Much like βAR’s, SIRT’s 

decline in activity and expression during the ageing process and play a role in age-

associated cardiomyocyte hypertrophy. In aged rats, SIRT1 has been reported to 

downregulate and translocate/compartmentalise [140]. However, when subject to 

pressure overload, the associated transient alterations in SIRT1 are controversial, with 

some studies showing increases in activity while others do not [140]. Age-related 

reductions in SIRT1 expression and activity have been suggested to increase 

endothelial senescence and atherosclerosis as a result of its impaired function and 

associated increases in endothelial inflammation [141, 142]. Such modifications to 

SIRT1 function with age, which increase senescence in particular, may also contribute 

to premature ageing through associated increases in vascular fibrosis, contractile 

dysfunction, oxidative damage, and decreases in NO synthesis [140, 144].  



Clinical trials have shown that resveratrol treatment (3 months) improves endothelial 

function in patients with metabolic syndrome (4-5% increase in flow-mediated dilation); 

improves glycaemic control and reduces systolic BP (by ~4%) and arterial stiffness 

(5% reduction in cardio-ankle vascular index) in type 2 diabetes [145-147]. Shorter 

treatment periods (4-6 weeks) have also been shown to improve endothelial function 

(23% increase in endothelial-dependent dilation) as well as glucose control (4% 

reduction in blood glucose concentration) and systolic BP (-4%) in obese patients [148, 

149]. Longer term resveratrol treatment (1 year) has been found to reduce 

inflammation, through a reduction in proinflammatory cytokines (9 and 13% reductions 

in tumour necrosis factor-ɑ and interleukin-6) in patients with CAD and type 2 

diabetes[150]. Despite the wide range of benefits reported to occur from resveratrol 

treatment such as: improved diastolic function in HF, reduced arterial stiffness, systolic 

BP, pro-inflammatory cytokines and improved endothelial-dependent dilation and 

blood lipid regulation in CAD and improved blood glucose control in diabetes, some 

contradicting clinical studies exist due to variations in study methodology [151-156]. 

Future studies are required to better understand the benefits of resveratrol in clinical 

and healthy control groups. 

4.3 ACE inhibitors 

ACE inhibitors are commonly used for patients with  HF or hypertension [157]. By 

inhibiting the production of angiotensin 2 and bradykinin, they facilitate significant 

reductions in BP as well as CO [157]. Studies in rodents have shown that ACE 

inhibitors have potential anti-ageing benefits, increasing lifespan by 9-30% [158-161]. 

The anti-ageing benefits of ACE inhibitors have been shown to reduce the risk of CVD 

and may have a protective effect on the ageing cardiovascular system by reducing 

vasoconstriction, BP and cardiac hypertrophy [158]. Reducing vasoconstriction and 

hypertrophy in the ageing heart and vasculature reduces the risk of vascular insults 

such as stroke [162] and blunts the age-related alterations in mitochondria and 

vascular wall thickness [163]. This may facilitate a reduction in cardiac stress and 

alleviate the development of diastolic dysfunction in old age. In hypertensive rats 

treatment with an ACE inhibitor has been shown to prevent the deterioration of 

diastolic function into HF and blunt the progression of myocardial fibrosis and 

hypertrophy [164]. In humans, ACE inhibition (38 weeks) improved diastolic function 



in patients with hypertension and existing diastolic dysfunction, evidenced by improved 

myocardial relaxation (6% reduction in isovolumetric relaxation time), reduced septal 

wall thickness (2%) and left ventricular mass (6%), and reduced EDV (2%) and ESV 

(5%), with a concomitant improvement in EF (2%) [165]. This improvement in cardiac 

function was interpreted to be, at least in part, a result of the improved BP (8-9% 

reduction in diastolic and systolic BP, respectively) control under ACE inhibition [165]. 

Long term ACE inhibitor treatment has also been found to reduce the occurrence of 

myocardial insult and mortality in HF and patients with diastolic dysfunction [166]. 

However, RAAS inhibition has been associated with renal impairment and may lead 

to a worse prognosis in patients particularly with HFpEF [167]. Moreover, in HFpEF 

patients, ACE inhibitors may improve EF and in turn systolic function but not measures 

of diastolic function [168]. Though it was speculated that improvements in systolic 

function may have resulted from associated reductions in BP and thus afterload along 

with the vasodilatory effects from RAAS inhibition [168]. Further research into the use 

of ACE inhibitors or RAAS inhibition during ageing of the heart and in the elderly is 

required. 

4.4 Beta-blockers 

Beta-blockers are a common medication used to treat hypertension and cardiac 

arrhythmias [18] by blocking receptor – catecholamine binding or through the re-

sensitisation of the β1AR signalling mechanism [18]. Beta-blockers cause a reduction 

in HR, contractility, and BP [169] and indirectly protect diastolic filling, cardiac 

efficiency and reduce hypertrophy and susceptibility to arrhythmia [169]. Studies have 

shown the use of β-blocker treatment in cases of acute coronary syndrome yields 

lower mortality [170]. Similarly, patients receiving percutaneous coronary intervention 

after myocardial infarction have been suggested to display reduced mortality with β-

blocker treatment [171]. Such findings of reduced mortality with β-blocker treatment 

post myocardial infarction and for those with HF have been well documented in clinical 

studies [172-174]. Though, β-blocker treatment after myocardial infarction in patients 

without HF or systolic dysfunction or those with HFpEF has been shown to yield no 

reduction in mortality [174, 175]. The decreased mortality afforded by β-blocker 

administration during HF as well as normal ageing (increased median lifespan in mice 

and Drosophila is 10 and 23%, respectively) alongside some evidence of the blunting 



of the development of HF in young rats after aortic constriction, has generated interest 

in β-blockers as a potential therapy for the age-related degradation of the heart and 

vasculature [118, 176-178]. The blunting of the development of HF with β-blocker 

treatment has been proposed to be a direct result of reducing cardiac hypertrophy and 

upregulation of NO production [118, 176]. One study in middle-aged hypertensive men 

(39-55 years) recorded reductions in HR (16%), systolic BP (6-7%), and diastolic BP 

(10-11%) and elevations in EF (6%) and stroke volume (11%) with β-blocker treatment  

for just 3 weeks [179]. Such an approach applied to an elderly population may be 

beneficial in combatting age-related decrements in cardiovascular function. However, 

conclusive evidence of such potential benefits is lacking currently in humans, although 

one study has reported the use of β-blockers in old subjects lead to some restoration 

of cardiac reserve through restoration of β1AR signalling [3, 180].  

4.5 Exercise Training  

Comparatively, participation in exercise training might prove more favourable for long-

term adherence than pharmacological strategies due to the accessibility, lower cost, 

and limited potential for side effects [72, 181]. Despite the existence of clearly 

promising potential pharmacological interventions that may eventually be used to treat 

age-related organ decline, it should be debated whether drug therapy treatment is the 

most effective way forward. The use of non-drug-related therapies, such as exercise 

training, may provide equal or greater promise in treating or even preventing the 

diminishing influence of old age, particularly when concerning cardiovascular function. 

Although the preferred direction of such anti-ageing or preventive therapies to protect 

cardiovascular function may be more intricate and depend on the patient’s current 

quality of life. For example, where quality of life has already been considerably 

impacted or where prescriptive exercise is not possible, drug therapy may be the 

preferred option.  

It has been suggested that exercise type and intensity may be particularly important 

to make exercise training a therapeutic strategy countering negative impacts of ageing 

[182]. Low intensity exercise is likely not enough to stimulate desired adaptations, 

whilst very high intensity may generate levels of inflammation and oxidative stress not 

conducive for beneficial adaptation [182]. Moderate intensity aerobic-based exercise 

appears to be associated with the most beneficial adaptations and subsequent 



improvement in cardiovascular health, although a role for strength straining also exists 

due to individual and complimentary beneficial effects on BP and overall 

cardiovascular function [182]. 

Exercise training is well documented to lower the risk of CVD and has been suggested 

to potentially suppress the rate of decline with ageing or attenuate some age-

associated decrements [183-187]. Existing literature focusing on the use of moderate 

to vigorous exercise training to restore the adrenergic response in old age has focused 

predominantly on attempting to rejuvenate components of the β1AR signalling 

mechanisms [70, 72, 188-191]. Exercise training has been demonstrated to lead to 

maintenance or improvement in the overall adrenergic response, cardiac diastolic 

function and contractility by improving or maintaining β1AR and SERCA2a expression 

as well as improving AC and cAMP responses, whilst effector components further 

downstream are either yet to be investigated or demonstrate apparently weak potential 

for adrenergic signalling restoration [70, 72, 189, 191-197]. 

Benefits of exercise training on adrenergic control of the vasculature have received 

comparatively far less attention. Exercise training is widely acknowledged to improve 

overall vascular health through improved BP control and thus cardiac load [198], 

improved arterial compliance [186, 199, 200], NO bioavailability [182, 201], control of 

vasoconstriction and vasorelaxation modulation [182, 202, 203] and endothelial 

function [182, 202, 203], decreasing overall disease risk in old age. Exercise training 

has been demonstrated in the elderly to lead to a decrease in diastolic BP, without 

changes in systolic BP, although some studies have shown systolic changes [198, 

204, 205]. Cross-sectional studies have shown that trained populations exhibit greater 

arterial compliance than non-trained counterparts [186, 199]. In fact, research has 

indicated that committing to even just mild physical activity such as regular walking 

exercise (brisk walking, 25-45 min, 3-6 days/week) is enough to facilitate the 

restoration of arterial compliance impaired with advancing age countering the apparent 

impact of increased sympathetic activity [199, 200, 206].  

Exercise training in the long term has been shown to be associated with the 

amelioration of the decline in endothelial function induced by ageing, however, much 

of the information available has been generated through cross-sectional studies as 

opposed to interventional studies [207]. This has led some to suggest that there is 



currently not enough evidence to unequivocally state that exercise training enhances 

endothelial vascular function in old untrained subjects [207]. However, some studies 

have reported that exercise training reduces endothelin-1 vasoconstrictor tone, which 

is normally increased with advancing age [182, 202, 203]. While others show 

increased endothelial dependent relaxation in trained populations related to an 

increase in gene expression for proteins involved in NO production [186, 208-210]. 

Exercise trained old populations have also been shown to exhibit reduced benefits 

with anti-inflammatory interventions (such as vitamin C), which may be indicative of 

an existing reduction in oxidative stress [186, 211, 212]. Despite the demonstration of 

functional vascular changes with exercise training, evidence of structural benefits is 

lacking, with some suggesting that exercise training does not lead to the reversal of 

age-related vascular remodelling. Despite this, the overall changes in response to 

exercise provided by regular training are enough to give vital benefits to overall 

cardiovascular health and physical capacity [186, 213, 214]. 

Exercise training has also been found to counter the age-related increase in 

vasoconstriction by ameliorating the increase in ɑAR signalling activity [215]. This 

reduction of enhanced endothelial vasoconstriction occurs through increasing NO 

synthesis through ɑAR signalling pathways [215]. However, some research also 

suggests that exercise training can actually increase the vasoconstrictor response to 

ɑAR stimulation in old age, evidenced through an elevated systolic BP response to 

alpha agonists [216]. Exercise training has also been shown to reduce baroreflex 

sensitivity. It has been suggested that the potential adverse effects associated with 

this, such as a heightened risk of syncope – which is also an age-related issue of BP 

control - may be compensated for by the identified increase in vasoconstrictor 

response [216]. Contrasting data for exercise training-induced changes in ɑAR 

sensitivity perhaps reflects the specific tissues tested and the variability of the age-

related remodelling of sensitivity of all other adrenergic receptor types and responses 

to exercise training.  

Data is more unanimous regarding the age-related and exercise-induced remodelling 

of β2AR [217]. Exercise training increases β2AR mediated relaxation in old populations 

giving an improved vasodilatory response in part facilitated by a reduction in G-protein 

receptor kinase-2 (GRK2) activity which has an important pathogenic role in age-



related βAR remodelling in the vasculature, but not so much in cardiac settings [17, 

185, 215, 218]. 

4.6 Combined Exercise Training and Drug Therapy 

Due to the benefits described above in relation to both drug and non-drug (exercise 

training) therapies on the reduction of mortality, improvement in overall health, and 

condition management, there is an interest in investigating the effects of combined 

therapeutic approaches in terms of polypharmacy but of increasing interest the co-

influencing impact of exercise training. 

A study in insulin-resistant humans found that combined exercise training and 

metformin treatment improved left ventricular function (yielding a 68% increase in 

global longitudinal strain and 42% improvement in longitudinal strain rate) [219]. While 

another study in a similar population found exercise training and combined exercise 

training and metformin treatment (12 weeks) improved exercise capacity (18 vs 12% 

increase in oxygen uptake (VO2) and 10-19% increase in maximum work completed 

during a cardiopulmonary exercise test), yet metformin treatment alone actually had a 

negative impact on exercise capacity (6% reduction in VO2 with a  4% reduction in 

maximum work completed during a cardiopulmonary exercise test) indicating exercise 

training when receiving metformin treatment may be recommended to combat a 

negative impact on physical capacity [220]. A further study in humans with 

prediabetes, however, found metformin and combined metformin and exercise training 

therapy improved insulin clearance (24 vs 21%), while exercise training alone (12 

weeks) had no effect [221]. 

In contrast, a study in rats with type 2 diabetes found exercise training had a greater 

beneficial impact on glycaemic control than metformin treatment, and found when 

combined, metformin may even impair beneficial exercise training-induced 

remodelling of mitochondrial components in the liver [222]. Similarly, a study in 

humans with impaired glucose tolerance found despite the benefits of metformin and 

exercise training on cardiovascular function and CVD risk factors when performed 

separately (6-7% reduction in systolic BP; 4-8% reduction in diastolic BP; 2-7% 

reduction in low-density-lipoprotein cholesterol; 8-13% increase in high-density-

lipoprotein cholesterol; 20-27% reduction in C-reactive protein), combined therapy 



provided no additive benefits [223]. In elderly humans (62 years), one study found 

combined metformin and exercise training therapy in fact ameliorated the benefits of 

exercise training only on insulin sensitivity (~0 vs ~20-30% improvement in whole-

body insulin sensitivity) and exercise capacity (~50% reduction in exercise training-

induced increase in VO2) [224]. Similar findings were reported elsewhere which 

additionally suggests that combined metformin and exercise training treatment blunts 

reductions in markers of inflammation and cardiometabolic disease risk as well as 

improvements in insulin sensitivity [225]. 

Considering interactions with resveratrol use in aged humans (>65 years), a study 

found that combined resveratrol and exercise training blunted the improvements in 

cardiovascular function observed with exercise training alone (8 weeks) [226]. This 

study reported combined therapy reduced improvements provided by exercise training 

alone in VO2max (13 vs 19% increase), MAP (3 vs 5% reduction), resting HR (3 vs 

8% reduction) and low-density-lipoprotein cholesterol (6 vs 9%) [226]. This is 

supported by further work which has found resveratrol treatment combined with 

exercise training does not provide additive improvement to exercise-induced 

increases in cardiovascular function and may even result in impairment in aged 

humans [227]. The potentially negative impact of combined therapy compared with 

exercise in old humans (60-72 years) is also supported by a study which reported a 

reduction in exercise training-induced metabolic and anti-inflammatory benefits with 

additive resveratrol treatment compared with exercise training alone [153]. Combined 

therapy may also limit exercise-induced (8 weeks exercise training) muscular 

angiogenesis in old humans (>65 years) [228]. Although some argue, the extent of 

potential negative effects of combined therapy may not be clinically relevant [229, 

230]. In contrast, a study in rats found resveratrol provided additive cardiovascular 

benefits when combined with exercise training (12 weeks) compared with exercise 

training alone (18 vs 9% increase in fractional shortening; 4-fold vs 3-fold increase in 

time to exhaustion during exercise testing; 18-58% greater increase in leg skeletal 

muscle strength; ~17 vs ~5% increase in EF; ~55 vs ~30% increase in E:A ratio) [231]. 

A study in middle-aged mice (16 months) supports the above findings and similarly 

reported an additive benefit with combined therapy compared with exercise training 

alone in muscle strength and aerobic exercise performance [232]. Such more positive 

results for combined approaches are not unique to animal models though. Combined 



therapy of resveratrol and exercise training has also been shown to yield greater 

increases in the density of mitochondria volume, peak muscle power, and endurance 

compared to exercise training alone (12 weeks) in old humans (65-80 years) [233]. 

Combined therapy is has been shown to activate cellular protective pathways (PI3K-

Akt / FOXO3) combatting potential damage from oxidative stress [234]. A study in old 

mice (18 months) also reported anti-ageing benefits of combined resveratrol and 

exercise training therapy through the restoration of exercise capacity (2.5 fold increase 

in time to exhaustion during exercise testing) and components associated with 

mitochondrial biogenesis in skeletal muscle (3-fold increase in PGC-1α expression) 

[235]. 

Combined ACE inhibitor and exercise training therapy has been shown to provide 

greater improvements in left ventricular function than those exhibited by individual 

ACE inhibitor or exercise training therapy (10 weeks) in young rats (3 months) [236]. 

In addition, greater reductions in insulin concentration (54-56%), insulin resistance, 

and BP (9-11% reduction in systolic BP; 8-9% reduction in diastolic BP) have been 

reported with combined ACE inhibitor and exercise training therapy compared with the 

use of ACE inhibitors alone (34% reduction in insulin concentration; 7% reduction in 

systolic BP; 5% reduction in diastolic BP) and exercise training (43% reduction in 

insulin concentration; 4% reduction in systolic BP; 2% reduction in diastolic BP) in 

hypertensive humans [237]. In rats, combined therapy has also been shown to 

improve exercise-induced myocardial angiogenesis compared with individual 

therapies (65% increase in capillary surface area density in combined therapy vs 26% 

and 38% in ACE inhibitor and exercise training, respectively) [238]. Combined therapy 

also improves to a greater extent, glucose tolerance and insulin action in obese rats 

and better preserves cardiac function in rats post myocardial infarction [239, 240]. 

However, some contradicting studies have found that combined ACE inhibitor and 

exercise training therapy stimulates no additive benefits over exercise training alone 

in old humans (>65 years) and little to no additive effects on exercise capacity or 

exercise-induced skeletal muscle remodelling in rats [241, 242]. 

Lastly, studies investigating combined β-blocker and exercise training suggest 

improvements in exercise capacity in humans with HF or post myocardial infarction 

[243, 244]. In mice with HF, combined beta-blocker and exercise training therapy (4 

weeks) provided additive improvements to cardiovascular function compared with 



individual therapy through reduced HR (17 vs 16 vs 7%), increased stroke volume (71 

vs 25 vs 34%) and increased EF (41 vs 34 vs 13%) in combined vs beta-blocker only 

vs exercise training only, respectively [245]. In support, another study in mice (5-7 

months) with HF found combined therapy improved exercise tolerance, reduced 

mortality, and improved ventricular contractility [246]. Meanwhile, in hypertensive rats, 

a study found combined beta-blocker and exercise training therapy provided similar 

improvements in baroreflex function and reductions in HR compared with each  

treatment individually [247]. 

 

5.0 Summary and Conclusion 

The heart and associated vasculature undergo wide-scale remodelling with advancing 

age. This age-related remodelling contributes to the loss of physical capacity and an 

increased risk for disease with progressive deterioration of physiological function. So 

far, a single factor or adaptation has not been demonstrated to trigger this cascade, 

instead the degradation of the ageing cardiovascular system is a result of diverse 

remodelling of several systems and signalling cascades. However, a key component 

of the age-related loss of cardiac reserve and in turn physical capacity is a loss of 

adrenergic signalling efficiency and sensitivity. Age-related losses in β1AR signalling 

have dominated interest and mounting evidence supports a link between this and the 

age-related loss of cardiac reserve. Research interest, thus far, has predominantly 

focused on cardiac-specific changes, however, vascular remodelling plays an 

important role in the changes in overall cardiovascular function, also heavily influenced 

by changing adrenergic control with advancing age. A decline in adrenergic control of 

both the heart and vasculature increases disease risk as well as impacting CO and 

BP responses to physical activity.  

There is no shortage of potential therapeutic strategies and the benefits of non-

pharmacological strategies such as exercise training or combined exercise training 

and drug therapy should be seriously considered. Combined therapies display 

evidence of effectiveness for improving the management of CVD and age-associated 

degradation of the cardiovascular system, although evidence is more mixed regarding 

effects on exercise capacity, despite displaying some promise in aged subjects. 



Exercise training has been shown to facilitate a level of restoration of adrenergic 

signalling as well as other age-related decrements leading to some apparent 

rejuvenation of cardiac and vascular function. More investigation is required to fully 

elucidate the range of benefits in terms of specific signalling and influence on the 

overall efficiency of adrenergic function and integrated control in its entirety, although 

evidence so far is positive for the reduction of disease risk and the improvement in the 

control of HR, contractility, and BP. 

In conclusion, an ageing population triggers considerable issues for modern society 

and endangers quality of life for the large fraction of the population projected to be >65 

years in the future. Due to the association with increased CVD risk, one of the biggest 

global killers and causes of morbidity, as well as the ramifications on quality of life, 

tackling factors influencing the deteriorating cardiovascular function in the elderly an 

effective strategy and therapeutic approach is required for preserving and improving 

quality of life. The normal focus on pharmacological therapy may be more effective 

when combined with the complimentary effects of exercise training. 
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