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Abstract
This paper presents a robust ABAQUS® plug-in called Virtual Data Generator (VDGen) for generating virtual data for 
identifying the uncertain material properties in unidirectional lamina through artificial neural networks (ANNs). The plug-in 
supports the 3D finite element models of unit cells with square and hexagonal fibre arrays, uses Latin-Hypercube sampling 
methods and robustly imposes periodic boundary conditions. Using the data generated from the plug-in, ANN is demonstrated 
to explicitly and accurately parameterise the relationship between fibre mechanical properties and fibre/matrix interphase 
parameters at microscale and the mechanical properties of a UD lamina at macroscale. The plug-in tool is applicable to 
general unidirectional lamina and enables easy establishment of high-fidelity micromechanical finite element models with 
identified material properties.

Keywords Plug-in · Unidirectional lamina · Artificial neural networks · Periodic boundary conditions · Finite element 
modelling

1 Introduction

Fibre-reinforced polymer (FRP) composite laminates have 
been widely used in aerospace, automotive, and wind energy 
industry due to their excellent material properties such as 
high stiffness-to-mass ratio, high strength, and light weight. 
Applications of FRP composite laminates to create engi-
neering structure models fundamentally require mechanical 
properties as inputs. Experimental tests are ideal solutions 
to evaluate the mechanical properties of a composite lam-
ina. However, it must be repeated whenever the constitu-
ents (fibre and matrix) and/or microstructure characteristics 
(fibre volume fraction) are altered. This procedure may, 
for instance, costs millions of dollars and lasts for years to 

generate the experimental data of mechanical properties for 
the design of aircraft structures [32].

To overcome the aforementioned drawbacks associ-
ated with experimental tests, various micromechanical 
approaches have been proposed to establish a closed-form 
relationship between elastic properties at the lamina scale 
and the elastic properties at the constituent scale. These 
methods fall generally into two categories, i.e., analytical 
and numerical methods. Analytical methods, such as the 
Rule of Mixture method [6], the Halpin–Tsai semi-empirical 
method [10], the Mori–Tanaka method [19], and the Chamis 
method [5], facilitate the calculation of elastic properties by 
a direct mathematical, empirical expression between con-
stituent properties and elastic properties of the lamina. How-
ever, these methods have an inherent limitation in describing 
the stress and strain fields at microstructural scale mainly 
due to neglecting fibre interaction.

With the development of computing capacities, numeri-
cal methods, in particular the finite element method (FEM), 
have become widely used tools for studying the behaviour 
of composites, including inverse analysis [8, 15, 26], elas-
tic moduli [27], failure of composite lamina [29, 33, 34], 
and the effective coefficients of thermal expansion [13]. 
Inverse analysis has been used to identify fibre mechani-
cal properties and fibre thermal expansion coefficient, and 
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evaluate the factors of analytical methods, and so on. [26] 
determined the elastic and thermal properties of graphite 
fibre using inverse analysis. [3] predicted fibre properties 
using finite element analysis of hexagonal and random rep-
resentative volume element (RVE) through inverse analysis. 
Similarly, [14] conducted an inverse analysis to predict fibre 
mechanical properties. However, they used quasi-analytical 
gradients derived from analytical models such as Chamis or 
Halpin–Tsai to reduce the computational cost. [15] utilised 
an inverse method to identify the mechanical properties of 
T300 carbon fibre as well as the interphase region param-
eters based on a computational homogenisation approach 
together with experimental results and Kriging metamodel-
ling. [8] carried out an inverse analysis in the framework 
of FEM to estimate the reinforcement parameter ξ of the 
Halpin–Tsai models which is used to calculate transverse 
stiffness E2. A total number of 67 FE models of 2D square, 
2D hexagonal, and 3D random fibre distributions were used 
to obtain a new value of ξ with a high level of confidence.

Regardless of the inverse methods used or the purpose 
they are used for, a large number of FE analyses are required 
for converged solutions. However, constructing a microme-
chanical FE model is not a straightforward task and requires 
special treatments to impose boundary conditions, and gen-
erate microstructures including fibre distribution and fibre/
matrix interphase, and extract outputs, etc. These complexi-
ties impose a barrier of using inverse analysis by engineers 
and researchers. Recently, several ABAQUS plug-ins have 
been developed for the ease of creating micromechanical 
FE models. These plug-ins were developed either by the 
functions available in ABAQUS or by external software. 
An ABAQUS plug-in named MultiMech was developed to 
perform multi-scale finite-element analysis (FEA) with the 
capability of simulating nonlinear behaviours of composites 
[16]. Another ABAQUS plug-in for multilevel modelling 
of linear and nonlinear behaviour of composite structures 
[7, 28]. The plug-in developed using Python scripts for 
analysing an RVE at microscopic level to obtain macro-
scopic parameters for structural analysis by user-defined 
FORTRAN subroutines in ABAQUS. Composite Micro-
Mechanics (COMM) toolbox was developed in Matlab for 
micromechanical analysis of composites [17]. The toolbox 
creates an input file that can be read by ABAQUS which 
performs the FEA. Recently, EasyPBC plug-in was devel-
oped for ABAQUS to estimate effective elastic properties of 
a pre-prepared and meshed RVE [21]. While, the ABAQUS 
plug-in proposed by [24] is capable of generating an RVE 
with random fibre distribution using Random Sequential 
Adsorption (RSA) technique.

The aforementioned plug-ins have shown outstanding 
benefits and capabilities to create and simulate complex 
RVEs of unidirectional (UD) FRP composite lamina. How-
ever, they are designed to generate and analyse a single 

model. Therefore, this paper aims to develop an open-source 
ABAQUS plug-in named Virtual Data Generator (VDGen) 
that automates the time-consuming manual task requires to 
create a large number of virtual data for inverse analysis. The 
plug-in uses Latin-Hypercube (LH) sampling methods and 
supports the unit cell of square and hexagonal fibre arrays. In 
addition, the plug-in incorporates Artificial Neural Networks 
(ANN) to explicitly parameterise the relationship between 
fibre mechanical properties and fibre/matrix interphase 
parameters and the mechanical properties of a UD lamina. 
The data required here were created in advance by the plug-
in and used to train the ANN model.

2  Main plug‑in GUI

The concept of the plug-in arises from the need for a tool 
that helps to perform a large number of micromechanical FE 
simulations in a few simple steps. ABAQUS has different 
ways to increase its capabilities such as subroutines and/or 
adding new plug-ins. ABAQUS/CAE plug-in is one of the 
most powerful tools that can be used to perform pre- and 
post-processing via functions written in Python program-
ming language in the kernel. The current plug-in operates 
through a series of user-friendly GUI commands send to 
the kernel to carry out tasks. The plug-in interface is shown 
in Fig. 1. It consists of six tab items that allow the user to 
navigate between them to edit input and output commands. 
For computational micromechanics modelling, the plug-in 
supports square and hexagonal unit cell fibre arrays. Despite 
fibres are usually randomly distributed in the matrix, it has 
been concluded by [31] that micromechanical modelling of 
the unit cell is accurate enough to predict the elastic proper-
ties of a UD lamina, while an RVE with randomly distrib-
uted fibres is essential to compute the local failure.

Figure 2 shows a typical 3D unit cell of square and hex-
agonal fibre arrays of the fibre reinforced composite that the 
plug-in supports. The mechanical properties of each con-
stituent, i.e., fibre, matrix and interphase, can be modified in 
the material section. There are two ways to input the value 
of constituent properties, either by a single value or using a 
domain of lower and upper bounds (lower–upper). A mate-
rial property assigned with a single value remains unchanged 
throughout simulations. While for others, a random value in 
the range of (lower–upper) is generated at each training point 
using Latin-Hypercube sampling technique.

The fibres and matrix are meshed using eight-node 
brick element with reduced integration (C3D8R). There 
were also a relatively small amount of six-node linear 
triangular prism elements (C3D6) due to the free mesh-
ing technique used. The interphase region is meshed with 
eight-node cohesive elements (COH3D8). To maintain 
matched meshes between the cohesive elements and the 
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fibres and matrix elements, a suitable number of nodes 
are seeded to the interphase and its neighbours. The elas-
tic behaviour of the cohesive elements is written in terms 
of a stiffness matrix that relates the nominal stresses to 
the nominal strains across the interphase. The nominal 
traction stress vector t consists of three components, tn, 
ts, tt, which represent the normal and two shear tractions, 
respectively. The corresponding separations are denoted 
by δn, δs, and δt, and the original thickness of the cohesive 

element is denoted by T. Then, the nominal strains can be 
defined as

Therefore, the elastic behaviour of the cohesive ele-
ment can be written in Eq. (1). For simplicity of computa-
tion, uncoupled behaviour between the normal and shear 

(1)�n =
�n

T
, �s =

�s

T
, �t =

�t

T
.

Fig. 1  The graphical user interface (GUI) of the plug-in
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components is desired, so the off-diagonal terms in the 
elasticity matrix are set to be zero and the stiffness in the 
two shear directions are assumed to be equal [1, 33]

The plug-in imposes Periodic Boundary Conditions (PBC) 
on the corresponding surfaces of the unit cell to ensure the 
compatibility of strain and stress at the macroscale level. These 
consist of a series of constraints in which the deformation of 
each pair of nodes on the opposite surfaces of the unit cell is 
subject to the same amount of displacements. The PBCs are 
expressed in terms of the displacement vectors ��⃗U1 , ��⃗U2 , and 
��⃗U3 that are related to the displacements between the opposite 
surfaces by

(2)t =

⎧
⎪⎨⎪⎩

tn
ts
tt

⎫
⎪⎬⎪⎭
=

⎡⎢⎢⎣

Knn Kns Knt

Kns Kss Kst

Knt Kst Ktt

⎤⎥⎥⎦
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�n

�s

�t

⎫
⎪⎬⎪⎭
= K�. where L1, L2, and L3 are the lengths of the unit cell along 

with three orthogonal directions, respectively. PBC requires 
matching nodes on opposite sides of the unit cell. Hence, 
elements of equal size are assigned to the edges of the unit 
cell to ensure periodic mesh required for PBC.

The Output tab allows the user to select appropriate results 
that suit the work. The macroscopic normal and shear strain 
components are calculated by

(3)
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Fig. 2  3D unit cell models of regular fibre arrays: a Square and b Hexagonal
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The macroscopic stress is calculated as

where Fi is the resultant force on the ith surface which rep-
resents the reaction force at a reference point where the dis-
placement is applied, and A is the area of the surface. There-
fore, Young’s modulus, Poisson’s ratio, and shear modulus 
are, respectively, calculated from Eqs. (7), (8), and (9)

The flowchart of the pre- and post-processing procedure 
of the plug-in is described in Fig. 3. The user is to define 
the analysis of data and the required outputs, as given in 
Fig. 3. When the ‘OK’ or ‘Apply’ button is clicked, the 
plug-in creates three files to be called in the subsequent 
steps. ExperimentNAME.dat file contains all input com-
mands which are given by the user in the GUI interface. 
These commands are vital to creating the FE model. Also, 
this file provides an opportunity to modify the input com-
mands using exact plug-in keywords in the file. ~ Temp.txt 
is dedicated to storing the experiment name the user wants 
to run. Material properties values created by Latin-hyper-
cube sampling are stored in a tabular format in Experi-
mentNAME.csv file, which makes them easier to read and 
process by external software. Once these files are created, 

(5)𝜀ij =
��⃗Ui

Lj
+

��⃗Uj

Li
(i ≠ j) (shear strain).

(6)�ij =

∑
Fi

Aj

,

(7)Eii =
�ii

�ii

(8)Gij =
�ij

�ij

(9)�ij = −
�ij

�ii
.

the Python script (Execute.py) can be submitted for anal-
ysis from ABAQUS command environment using either 
dos (‘abaqus cae script = Execute.py’) or dos (‘abaqus 
cae noGUI = Execute.py’) command. It is strongly recom-
mended to execute it using the latter in which ABAQUS/
CAE runs commands in Execute.py without the added 
expense of running a GUI display. Whichever option 
adopted to perform the analysis, the plug-in continuously 
provides the user with useful information, e.g., number of 
jobs done, number of jobs remain and approximate time to 
complete. Upon running, the plug-in instantly creates two 
files to store outputs after completion of each job and to 
record errors that occurred during the analysis.

3  Numerical example: prediction 
of effective elastic properties

To validate the newly developed plug-in, the effective elastic 
properties of carbon fibre/epoxy (T300/PR-319) and glass 
fibre/epoxy (E-Glass/MY750) were determined and com-
pared with EasyPBC plug-in developed by [21] as well as 
the experimental data [12]. The mechanical properties of the 
fibre, matrix, and interphase are given in Table1. Since T300 
carbon fibre is classified as a transversely isotropic material, 
the elastic properties highlighted by an asterisk * symbol in 
the table are obtained by applying the following relations:

The E-glass is considered as isotropic material. It is 
important to note that the input data for the interphase 
region are not accurately known as they are difficult to 
measure from simple laboratory experiments. However, 
an initial stiffness Ki of  105 GPa/mm is used in [2, 18, 25, 
30] to simulate the elastic behaviour of the RVE model. 
In this paper, the elastic parameters from [15] are used to 
for the interphase as an approximation.

Table 2 shows the comparison of the predicted effec-
tive elastic properties determined by VDGen and EasyPBC 
plug-ins. It is noted among the prediction results that 
VDGen provides reliable results that are identical to those 
from EasyPBC. However, an obvious discrepancy exists 
between experimental results and those predicted by the 
two plug-ins. This is mainly due to the inaccurate param-
eters used for the interphase region.

Figure 4a shows the stress contours of a loaded unit 
cell under transverse and Fig. 4b shows the stress contours 
for in-plane shear loading conditions. It can be seen the 
periodic stress contours distribution which is additional 
verification of the PBC.

(10)Gf12 = Gf13,Gf23 =
Ef2

2(1 + �f23)
.
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Fig. 3  Flowchart of the plug-in



4328 Engineering with Computers (2022) 38:4323–4335

1 3

4  Application: identifying fibre 
and interphase parameters using ANN

4.1  Background

In this section, a machine learning (ML) technique Artifi-
cial Neural Network (ANN) is used to construct a relation-
ship between fibres and interphase parameters and effec-
tive elastic properties of the lamina. It is inspired by the 
animal brain’s structure and function, which learns from 
former examples. ANN consists of three main layers: an 
input layer, one or more hidden layers, and an output layer. 
Each layer has several neurons which are responsible for 

transmitting weight and biases (equivalent to chemical and 
electric signals in the animal brain) between two layers. 
Figure 5 illustrates a typical structure of single neurons 
where each input (x) comes from the previous layer mul-
tiplied with its individual weight of the connection (wi) 
and then summed up with biases [23]. Then, this sum is 
composed with activation function (f), resulting in another 
vector (a) as

Another key step of ANN is a defined objective function 
that is to be minimised during the training process. Mean 
Squared Error (MSE) and Sum Squared Error (SSE) among 

(11)a = f
(
xi.wi + b

)
.

Table 1  Elastic properties of fibre, matrix [12] and interphase [15]

f stands for fibre, m stands for matrix

Fibre elastic property T300 carbo fibre E-Glass fibre

Longitudinal modulus, Ef1 (GPa) 231 74
Transverse modulus, Ef2 (GPa) 15 74
Through-thickness modulus, Ef3 (GPa) 15 74
In-plane Poisson’s ratio, νf12 0.2 0.2
Major transverse Poisson’s ratio. νf13 0.2 0.2
Through-thickness Poisson’s ratio, νf23 0.07143* 0.2
In-plane shear modulus, Gf12 (GPa) 15 30.8
Transverse shear modulus, Gf13 (GPa) 15* 30.8
Through-thickness shear modulus, Gf23 (GPa) 7 30.8

Matrix elastic property PR-319 MY750 matrix

Elastic modulus, Em (GPa) 4.0 3.35
Poisson’s ratio, vm 0.35 0.35

Interphase region parameters Interphase Interphase

Thickness, T (µm) 0.139 0.139
Normal stiffness, Knn (GPa/mm) 846.8 846.8
Tangent stiffness, Kss (GPa/mm) 535.6 535.6

Table 2  Comparison of 
predicted effective elastic 
properties determined by 
VDGen, EasyPBC and 
experimental data [12, 15]

Elastic property T300/PR-319 E-Glass/MY750

VDGen EasyPBC Experimental 
data

VDGen EasyPBC Experi-
mental 
data

E11 (GPa) 127.54 127.54 138 42.11 42.11 45.6
E22 (GPa) 3.97 3.97 11 14.86 14.86 16.2
E33 (GPa) 3.98 3.98 11 14.87 14.87 16.2
ν12 0.24 0.24 0.28 0.24 0.24 0.278
ν13 0.24 0.24 0.28 0.24 0.24 0.278
ν23 0.25 0.25 0.4 0.25 0.25 0.4
G12 (GPa) 1.36 1.36 5.5 4.52 4.52 5.83
G13 (GPa) 1.36 1.36 5.5 4.52 4.52 5.83
G23 (GPa) 0.89 0.89 3.21 3.21 5.7
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others are examples of functions used to assess the network’s 
behaviour by measuring the errors between the output and 
the target. The errors are reduced through tuning the values 
of the weight and biases by the so-called back-propagation. 
Back-propagation is widely recognised as a powerful tool for 
the training of ANN very efficiently. Several algorithms have 
been proposed to address the slow convergence associated 
with the back-propagation. However, it is quite difficult to 
decide which algorithm is more computationally efficient as 
it depends on many factors. Readers may refer to a compara-
tive study carried out by researchers to evaluate accuracy 
and convergence time for different algorithms [4, 9].

4.2  ANN model to identify micro‑parameters

ANN model is developed to identify the micro-parameters, 
e.g., fibre and fibre/matrix interphase parameters. The rela-
tionship between micro- and macro-properties in UD lamina 

is fairly complex and nonlinear. Moreover, the number of 
micro-parameters to be identified is usually more than the 
number of macro-properties, which makes the ANN a com-
plicated task. Therefore, to ease the training process, the 
micro-parameters are set to be the input layer of the neural 
networks model and the macro-properties are of the output 
layer. However, the calculation of optimal micro-parameters 
becomes difficult when they are in the input layer as it is not 
possible to obtain an analytical inverse response solution 
with the ANN model that has multiple neurons in the hidden 
layer. This issue is overcome using trained ANN to enlarge 
the dataset. Details of model building are explained in the 
following section.

4.2.1  Model building

The whole procedure of the fibre and interphase parameters 
identification using ANN is illustrated in Fig. 6. Firstly, a 
total of n = 500 FE models were created by VDGen using 
the procedure outlined in Sect. 3. In each model, a random 
value of the parameters to be identified is created by LH 
sampling within the range given in Table 3. The remaining 
fibre properties were obtained by applying the transversely 
isotropic material relationships  

 Ef1 remained unchanged in all samples and its value was 
230GPa. For all samples, the fibre volume fraction is 60% 
and matrix properties are given in Table1. By the end of 

(12)

Ef3 = Ef2, vf13 = v12f ,Gf13 = Gf12,Gf23
=

Ef2

2(1 + �f23)
.

(a) σ 22 (b) τ121

3
2

Fig. 4  Stress contour plot of the unit cell under a Transverse loading and b In-plane shear loading
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this phase (Step 1), a dataset of 500 samples containing 
the inputs (x = [Ef2, νf12, νf23, Gf12, Ti, Knn, Kss]) and the tar-
gets (t = [E11, E22, ν12, ν23, G12]) required to train ANN is 
obtained (Fig. 7).

In Step 2, the ANN was built and trained using the data-
set created in the previous step. The training, testing, and 
validation of the ANN model were conducted by MATLAB 
R2015a software. By MATLAB default, 70%, 15%, and 15% 
of the original dataset were used for training, validation, and 
testing, respectively. Nonlinear tangent sigmoid and linear 
functions were employed as the activation functions in the 
hidden layers and the output layer, respectively.

Selecting a best representative ANN structure plays an 
important role in output prediction. In this study, two hid-
den layers were used and the number of neurons in each 
hidden layer was changed until the best possible predic-
tion was obtained. Initially, the number of neurons in the 
first hidden layer (nh1) was set to 20 then increased by one, 
whereas the total number of neurons in both hidden layers 
(nh) was retained at 100. Usually, the data are randomly 
divided into three subsets (training, validation, and testing), 
and different initial weight and bias values are used in each 
time the neural networks are trained. As a result, different 
neural networks trained for the same problem may give dif-
ferent outputs for the same inputs. In this study, therefore, 
20 runs were performed on each ANN architecture to ensure 
inclusion of different data for each subset. MSE, which is 
the average squared difference between the output (y) vectors 
and the target (t) vectors, was used to compute the difference 
and back-propagated though the networks to update weights 
and biases

Levenberg–Marquardt (LM) back-propagation algorithm 
was adopted in this study. This function uses back-propa-
gation scheme to update weights and biases according to 
Levenberg–Marquardt optimization algorithm, which can 
accurately achieve results with fewer data comparing with 
its counterparts.

To decide which is the best ANN taking into account the 
fact of dividing the input data into three main subsets (train-
ing, validation, and testing) during the training process, the 
sum of correlation coefficient (R-value) between the target 
and the output of the entire dataset was used to attain the 
optimal ANN structure

where RE11
v

,RE22
v

,Rv12
v

,Rv23
v

, andRG12
v

 are the regressions 
of the dataset of E11, E22, ν12, ν23, and G12, respectively. 
The optimal ANN was then used to extend the dataset and 

(13)

f (x) = 2∕
(
1 + e−2x

)
− 1 tansig(tangent sigmoid activation function)

f (x) = x purelin(linear activation function).

(14)MSE =
1

n

n∑
i=1

(y − t)2.

(15)maxR(x) = RE11
v

+ RE22
v

+ Rv12
v

+ Rv23
v

+ RG12
v

,

Randomly divide dataset into 
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Use VDGen to calculate effect elastic 
properties based on identified parameters
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Fig. 6  Fibre and interphase parameters identification through ANN

Table 3  Ranges of fibre and interphase elastic properties

Elastic property T300 carbon fibre

Ef2 (GPa) 1–100
vf12 0.01–0.45
vf23 0.01–0.45

Interphase

T (µm) 0.009–0.2
Knn (GPa/mm) 1–1000
Kss (GPa/mm) 1–1000
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creating new N samples required to accurately identify fibre 
and interphase parameters. This was conducted using LHS 
to create N random samples of the inputs within the range 
given in Table 3. These samples are then passed through 
the trained ANN to obtain the output. LH sampling method 
is appropriate for this work as it ensured a full coverage of 
the input sample space. A denser space is constructed by 
selection more points, which results in more reliable results. 
The optimum carbon fibre and interphase parameters were 
selected based on the smallest value obtained from Eq. (16)

where Et
11
,E

t

22
, vt

12
, vt

23
and Gt

12
 are the experimen-

tal effective elastic properties given in Table  2. 

(16)

minF(x) =

|||Et

11
− E

ANN
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Finally, the identified parameters were used to calculate 

the effective elastic properties using the plug-in (Step 3) and 
results were compared with experimental data.

4.3  Results and discussion

The ANN which can predict fibre and fibre/matrix interphase 
parameters from micromechanical FE modelling dataset is 
designed. The number of total samples created by microme-
chanical FE modelling to train the ANN is 500. 350 of them 
is randomly assigned for training, 75 for validation set and 
the rest used for testing. The ANN is built and validated as 
explained in Sect. 4.2.1.

Table 4 presents some architecture samples used to verify 
the performance of the ANN in terms of R-value. Since 20 

Fig. 7  ANN scheme for fibre 
and interphase parameters 
identification

Table 4  Verification cases of 
the ANN architecture in terms 
of R-value for each output 
element

ANN architecture R
E11

v
R
E22

v
R
v12

v
R
v23

v
R
G12

v
ƩR (Eq. 15)

7-38-52-5 0.998 0.948 0.995 0.933 0.815 4.689
7-39-51-5 0.998 0.961 0.997 0.957 0.688 4.601
7-40-50-5 0.994 0.949 0.997 0.942 0.740 4.623
7-41-49-5 0.998 0.932 0.997 0.931 0.768 4.626
7-42-48-5 0.997 0.958 0.996 0.954 0.865 4.771
7-43-47-5 0.998 0.944 0.997 0.955 0.723 4.617
7-44-46-5 0.980 0.923 0.979 0.946 0.796 4.624
7-45-45-5 0.998 0.933 0.996 0.929 0.727 4.584
7-46-44-5 0.999 0.964 0.998 0.954 0.690 4.605
7-47-43-5 0.998 0.943 0.995 0.918 0.751 4.605
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runs are performed within each ANN structure to ensure 
the use of different data for each subset and due to the space 
restrictions of the paper, the table shows only the best per-
formance run from the 20 runs. It can be seen from the table 
that the maximum R-value is attained when 42 neurons at 
the first hidden layer and 48 neurons at the second hidden 
layer are used.

Figure 8 shows the regression graphs for the target and 
the output of the verification data set only. This figure shows 
the closeness among the output data predicted by the ANN 
and the target data obtained from FEM. The dashed line in 
each subfigure represents the perfect results when the out-
puts equal targets. It can be seen that E11, E22, ν12 and ν23 are 
well predicted by ANN with an R-value between 0.91 and 
0.99 and a regression slope (m) between 0.81 and 0.96. G12 
is slightly less well predicted comparing to other effective 
elastic properties with an R-value and a regression slope 
of 0.86 and 1.08, respectively. Hence, the selected ANN is 
capable of providing a good correlation between the target 
and the output.

After training the ANN, the selected model with the high-
est R-value is used to generate N samples. It is found that 
10,000 samples of the random input parameters generated 
by the LH sampling method are sufficient to produce a dense 
space. These new input data (Ef2, νf12, νf23, Gf12, Ti, Knn and 
Kss) are then processed by the ANN to obtain and the outputs 
(E11, E22, ν12, ν23, and G12). The closest point of the new 
output to the experimental data is found through Eq. (16). 
The corresponding carbon fibre and interphase parameters 
of the closest point are given in Table 5.

Finally, the identified fibre and interphase parameters 
(micro-parameters) obtained from the ANN are used as input 
for the FE model to predict the effective properties of the UD 
lamina, i.e., macroscale level properties. The effective elastic 
properties calculated by the FE model using the identified 
parameters are given in Table 6 (second column). The table 
also shows a comparison between these properties and those 
predicted by the ANN and the experimental data. It can be 
seen that the effective elastic properties agree well with the 
experimental data with a maximum error of about 6%. This 

error is mainly due to the using fixed value for E11 in the 
training of ANN.

5  Conclusions and future improvement

An ABAQUS® plug-in (VDGen) has been developed for 
generating virtual data for identifying the uncertain mate-
rials’ properties in unidirectional (UD) lamina. In com-
bination with artificial neural networks (ANNs), the data 
generated from the plug-in enable the determination of the 
relationship between fibre mechanical properties and fibre/
matrix interphase parameters at microscale and the mechani-
cal properties of a UD lamina at macroscale. Application of 
the plug-in to a T300/PR-319 UD lamina has shown very 
good agreement between the predictions and the experimen-
tal data when using the identified constituent properties.

A few improvements of the plug-in should be consid-
ered in the future. The current plug-in is designed to sup-
port the square and hexagonal unit cell fibre arrays. Micro-
mechanical FE modelling of randomly distributed fibres 
in the matrix is essential when studying the failure of the 
composite lamina. However, using random fibre distribu-
tion causes arbitrary meshing condition on opposite RVE 
edges [20, 35]. Further development of the plug-in to sup-
port RVEs with randomly fibre distribution and capable of 
generating periodic mesh on the opposite edges is under 
investigation by the authors.

At this stage, the plug-in is only designed to calculate the 
effective elastic properties of a lamina. We aim to develop 
it further, so that it will be capable of conducting failure 
analysis under uniaxial, biaxial, and multiaxial loading 
conditions.

The effect of fibre shape has recently been subjected to 
intensive studies by means of computational micromechan-
ics [11, 22]. The current core Python scripts of the plug-in 
will be developed further, so that RVEs with different fibre 
shapes can be automatically generated.



4333Engineering with Computers (2022) 38:4323–4335 

1 3

Fig. 8  ANN predictions versus FEM results for a E11, b E22, c ν12, d ν23, and e G12
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