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Abstract— Consumer electronics such as advanced GPS, 

vehicular sensors, inertial measurement units (IMUs), and 
wireless modules integrate vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) within internet of thing (IoT), enabling 
connected autonomous electric vehicles (CAEVs) to optimize 
energy optimization through eco-driving. In scenarios with traffic 
light intersections and partial wireless charging lanes (WCL), an 
eco-driving algorithm must consider net and gross energy 
consumption, safety, and traffic efficiency. We introduced a deep 
reinforcement learning (DRL) based eco-driving control 
approach, employing a twin-delayed deep deterministic policy 
gradient (TD3) agent for real-time acceleration planning. This 
approach uses reward functions for acceleration, velocity, safety, 
and efficiency, incorporating a dynamic velocity range model 
which not only enables the vehicle to smoothly pass the signalized 
intersections but also uses partial WCL efficiently and time-
adaptively while ensuring traffic efficiency in diverse traffic 
scenarios. Tested in Simulation of Urban Mobility (SUMO) across 
various intersections with partial WCL, our method significantly 
lowered net and gross energy consumption by up to 44.01% and 
17.19%, respectively, compared to conventional driving, while 
adhering to traffic and safety norms. 
 
Index Terms— Consumer electronics, vehicle-to-vehicle 
communications, vehicle-to-infrastructure communication, 
connected autonomous electric vehicles, autonomous electric 
vehicles, eco-driving, wireless charging lane, deep reinforcement 
learning 
 

NOMENCLATURE 
Symbols  
𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 Acceleration of the ego vehicle. 
𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼 Acceleration generated by the Intelligent 

Driving Model. 
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 Minimum acceleration. 
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 Maximum acceleration. 
𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒 Safe acceleration derived from the rule-based 

car-following model. 
𝑎𝑎𝑇𝑇𝐼𝐼3 Acceleration determined by the Twin Delayed 

Deep Deterministic (TD3) policy gradient 
agent. 
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𝑎𝑎(𝑚𝑚) Maximum possible acceleration in the IDM. 
𝑏𝑏 Action of agent in current state. 
𝑏𝑏(𝑚𝑚) Maximum possible deceleration in the IDM. 
𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4 Weighting factors in the reward function. 
𝐷𝐷𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 Distance to the leading vehicle. 
𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡 Distance to the upcoming traffic light. 
𝐷𝐷𝑊𝑊𝑊𝑊𝑊𝑊_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Remaining distance to traverse within the 

Wireless Charging Lane. 
𝐸𝐸𝐵𝐵𝑚𝑚𝑡𝑡 Energy stored in the vehicle's battery. 
∆𝐸𝐸𝐵𝐵𝑚𝑚𝑡𝑡 Net energy consumption of the battery pack 

at each time step. 
𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4 Indicator variables for phases or conditions in 

the dynamic velocity range model. 
𝑘𝑘 Delay cycle number. 
𝑃𝑃𝑡𝑡ℎ𝑙𝑙𝑒𝑒 Wireless charging power. 
𝑟𝑟𝑚𝑚𝑡𝑡𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚 Reward functions for acceleration. 
𝑟𝑟𝑣𝑣𝑒𝑒𝑙𝑙𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡𝑣𝑣 Reward functions for velocity. 
𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑡𝑡𝑣𝑣 Reward functions for safety. 
𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣  Reward functions for traffic efficiency. 
𝑠𝑠 Current state in the Markov Decision Process. 
𝑠𝑠∗,  𝑠𝑠0

(𝑚𝑚), 𝑠𝑠𝑚𝑚 Desired distance, minimum distance, and 
actual distance with leading vehicle in the 
IDM. 

𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒  Duration of the green phase of a traffic signal. 
𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒  Duration of the red phase of a traffic signal. 
𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Remaining time of the green phase. 
𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Remaining time of the red phase. 
𝑡𝑡 Current time step. 
𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊 Time spent within the WCL by the vehicle. 
𝑇𝑇𝑚𝑚 Constant time headway in the IDM. 
𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 Speed of the ego vehicle. 
𝑉𝑉𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 Speed of the leading vehicle. 
𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 Speed limit on the road. 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 Maximum and minimum speeds determined 

by the dynamic velocity range model for 
standard driving scenarios. 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤 ,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤 Maximum and minimum speeds determined 
by the dynamic velocity range model for 
driving scenarios with wireless charging lane. 

𝜈𝜈𝑚𝑚, 𝜈𝜈0
(𝑚𝑚),∆𝜈𝜈 Current speed, maximum possible speed, and 

speed variation in the IDM. 
𝛿𝛿 Acceleration exponent in the IDM model. 
𝜂𝜂𝑡𝑡ℎ𝑙𝑙𝑒𝑒 Efficiency of the wireless charging process. 
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𝛾𝛾 Discount factor in the reinforcement learning 

framework. 
𝑤𝑤1,𝑤𝑤2 Weighting coefficients in the multi-objective 

function of eco-driving. 
 

I. INTRODUCTION 
he adoption of the electric vehicles (EVs) industry is 

impeded primarily by the constrained driving range [1]. 
According to a study conducted by [2], it has been 

shown that the typical customer expectation for the driving 
range of passenger vehicles falls within the range of 300-400 
miles. However, in the United Kingdom, the average driving 
range of EVs sold in the year 2023 was recorded to be just 212 
miles [3]. Both industry and academics have devised many 
ways to address the issue of driving range anxiety. These 
options include enhancements in battery capacity [4], battery 
swapping [5], and plug-in fast charging technologies [6]. 
Although increasing battery capacity is the most direct solution 
to range anxiety, a typical new EV costs between £23,000 and 
£43,000 more than an equivalent petrol or diesel model [7], and 
batteries account for between 25% and 40% of the cost of an 
EV [8], making it less likely that consumers will be able to 
afford battery upgrades. Although the primary advantage of 
battery swapping is speed, brand compatibility and cross-
platform features may hinder the success of this technology, 
and battery degradation and the issue of battery ownership will 
be obstacles to its widespread adoption [5]. Although the plug-
in fast charging technology can significantly shorten the 
charging time, it has the following disadvantages: first, the 
plug-in fast charging technology will significantly reduce the 
battery life [9], and second, a short circuit or breakdown of the 
insulation of the charging wire due to factors such as high 
temperature, friction with the ground, or the charging device 
itself can result in a fatal electric shock [10]. 

By integrating consumer electronics such as advanced GPS 
systems, vehicular sensors, IMUs, and wireless communication 
modules, CAEVs are potential to save energy consumption up 
to 47.5% while ensuring traffic efficiency and safety by 
planning its speed trajectory [11], which is known as eco-
driving. These consumer electronics facilitate precise real-time 
data exchange, enabling vehicles to interact seamlessly with 
their environment. IMUs and vehicular sensors, for instance, 
provide accurate positional data and vehicle dynamics 
information, which are essential for maintaining safety and 
improving driving precision [12]. Wireless communication 
modules power V2V and V2I communications and ensure 
reliable connectivity between vehicles and infrastructure, 
allowing CEVs to obtain signal phase and timing (SPaT) 
information [13], which is crucial for planning speed trajectory 
and allows CAEVs to smoothly pass the signalized 
intersections so that avoid unnecessary energy consumption. 
Furthermore, these components support advanced vehicular 
functions such as cooperative sensing and secure data sharing 
[14], enhancing the overall functionality of eco-driving. 

At the same time, the wireless charging system (WCS) is now     

TABLE I 
A SUMMARY OF ECO-DRIVING ALGORITHMS 

 
Algori

thm 
Method
ology 

SPaT 
inform
ation 

Car-
follow

ing 

Wireless 
charging lane/ 

Timing-adaptive 

Real-
time 

[21] Mathem
atical 

Optimiz
ation 

√ − − − 

[22] Convex 
Optimiz

ation 

√ − − √ 

[23] MPC √ √ − √ 
[24] DRL √ √ − √ 
[25] Mathem

atical 
Optimiz

ation 

√ − √/− − 

Propo
sed 

DRL √ √ √/√ √ 

 
being extensively investigated as a possible solution to address 
range anxiety. Notably, [15] highlighted an adaptive technique 
poised to significantly improve the efficiency of magnetic 
resonance-based wireless power transfer systems. This 
innovation is particularly geared towards portable consumer 
electronics but holds profound implications for EV charging 
solutions, potentially transforming the existing landscape of 
electric mobility by optimizing energy transfer over distances. 
Compared to other solutions for addressing driving range, WCS 
has several benefits [16]. WCS is more user friendly as EVs can 
be charged while in motion, so they do not have to deal with 
issues associated with plug-in charging station, such as 
charging time, location within an EV’s range, potential traffic 
congestion, and waiting time at charging station [1]. Second, 
WCS charges the battery frequently but slowly, which is able 
to reduce battery size and increase battery life [17]. At the same 
time, WCS equipment can be concealed beneath the road, 
eliminating the danger of electric shock for road users. In 
addition, WCS emits even less radiation than mobile phones 
[18]. Moreover, compared to plug-in charging, WCS is more 
economical and more environmentally friendly. A survey was 
done by Brown [19] at the University of Michigan, using a 12-
year framework study, in order to assess the efficacy of plug-in 
and WCS. Two conclusions were reached. 1) WCS systems 
minimize battery use, reducing greenhouse gas (GHG) 
emissions and wireless charging energy needs. 2) Reducing 
battery size and weight may offset the additional costs of 
wireless system installation. 

The urban transport system is a potential application for 
wireless charging. Since many EVs will be halted or travelling 
slowly in front of the intersection, this will be an ideal time to 
charge these EVs. Mohrehkesh et al. [20] have demonstrated 
that wireless charging at traffic intersections extends the range 
of electric vehicles. In their work, stationary vehicles at red 
traffic signals were considered. However, to enhance traffic 
efficiency, EVs should avoid stopping at traffic lights and aim  
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    (a)                      (b) 

Fig. 1. (a) Extra time is given to allow EVs to spend more time 
within WCL. (b) No extra time is given to allow EVs to spend 
more time within WCL. 
 
to pass through them as swiftly as possible. Given cost 
considerations, a more practical approach is to install partial 
wireless charging lane (WCL) in specific sections, such as just 
before traffic lights, rather than laying them continuously 
throughout the area. Consequently, EVs face a balance between 
fully utilizing partial WCL and maintaining traffic efficiency. 
Developing a speed planning strategy for CAEVs that navigates 
this balance effectively represents a significant challenge. 

A summary of eco-driving algorithms is shown in Table I. 
Many eco-driving algorithms have been proposed for CAEVs 
to reduce gross energy consumption while guarantee safety and 
traffic efficiency, although the impact of WCL was not 
considered in these methods. (In this paper, Gross energy 
consumption refers to the total energy drawn from the battery. 
In contrast, net energy consumption is the difference between 
the energy used from the battery and the energy that has been 
recharged.) These algorithms can be evaluated from the 
considered scenarios and methodology. The basic eco-driving 
algorithm considered SPaT information based on the scenario 
[21,22]. By calculating a velocity range based on the phase 
duration and the distance to the traffic light, EVs can past the 
traffic light without halting. Subsequent studies [23, 24] 
progressively included SPaT information and integrated the 
car-following capability into the algorithm. This enhancement 
enabled CAEVs to optimize energy usage while driving in 
complex traffic scenarios. The implementation of eco-driving 
has gone through a series of methodological iterations, 
beginning with global mathematical optimization methods [21] 
and progressing to convex optimization [22], model predictive 
control (MPC) [23] and DRL [24]. Global optimization 
mathematical methodologies are capable of determining the 
global optimal solution, but their numerous calculation times 
prevent them from supporting autonomous driving decisions in 
real time. Conversely, convex optimization is able to 
significantly reduce computation time and MPC can achieve a 
near-optimal solution while further reducing the computational 
time for each eco-driving decision to less than 0.1 seconds. 
However, a computational time of 0.1 seconds still presents a 
significant safety risk for CAEVs. By incorporating neural  

 
Fig. 2. Illustration of proposed eco-driving algorithm at 
signalized intersections with partial WCL. 
 
networks to estimate the value function, DRL can reduce 
computational time by an order of magnitude compared to MPC 
for the same task, while maintaining similar performance levels 
[26]. Moreover, the advanced generalization capability of DRL 
enables it to handle complex scenarios effectively. 

As WCS becomes a hot research topic, Zhang et al. [25] 
proposed an eco-driving algorithm considering WCL while 
assuming the road is empty, which is not suitable to be used in 
realistic traffic scenarios. At the same time, this method lacks 
the capability of timing-adaptive. This may lead to controlled 
vehicles seeking excessive charging even when time is limited, 
resulting in compromised traffic efficiency. For example, as 
shown in Fig. 1 (a), assume that a road is 500m long, there is a 
WCL located between 200-300m, the road speed limit is 20m/s, 
and there are 35 seconds left at the red phase. If an EV drives at 
a speed of 20m/s, it will eventually stop in front of the traffic 
light. This means giving an EV extra time to stay in WCL for 
more time to increase its range without affecting traffic 
efficiency. However, if in the second case, as shown in Fig. 1 
(b), the red phase only has 25 seconds left, which means that an 
EV can directly pass the traffic light at a speed of 20m/s. In this 
case, the EV should not stay in the WCL for any additional time, 
while [25] does not balance this trade-off. 

Apart from accounting for Timing-adaptive, balancing the 
simultaneous consideration of SPaT information, car-following 
behaviors, wireless charging lane integration, and real-time 
responsiveness presents a notable challenge. On one hand, the 
extensive computational requirements preclude the application 
of global mathematical optimization techniques. Conversely, 
attempts to merge prior research efforts, which have explored 
diverse scenarios and factors, encounter difficulties due to 
fundamental differences in methodology. The varying 
processes of problem formulation and solution strategies 
employed in these methodology present significant disparities. 

Considering the above-mentioned factors, this paper 
proposes a DRL-based real-time eco-driving algorithm, to 
allow the controlled vehicle to utilize WCL efficiently and 
timing-adaptively while ensuring safety and maintaining traffic 
efficiency. This algorithm is illustrated in Fig. 2. The dynamic 
velocity range model generates a reference speed to allow the 
controlled vehicle to efficiently and adaptively utilize WCL  
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    (a)                      (b) 

Fig. 3. (a) The vehicle can pass the current green phase at speed 
limit. (b) The vehicle cannot pass the current green phase at 
speed limit. 
 
while maintaining traffic efficiency. The generated reference 
speed is then given to the TD3 agent as an input, which 
determines the acceleration for the controlled vehicle in real-
time to follow the reference speed while ensuring traffic safety. 
The contribution of this study is to highlight: 1) A dynamic 
velocity range model that enables the controlled vehicle to 
efficiently and adaptively utilize WCL while maintaining traffic 
efficiency, 2) A DRL-based eco-driving controller that 
determines real-time acceleration for the controlled vehicle to 
adhere to the reference speed and ensure traffic safety, 3) A 
novel eco-driving method that allows CAEVs to maximize the 
usage of partial WCL while ensure safety and traffic efficiency 
at signalized intersections with partial WCL. To the best of our 
knowledge, this is the first method to creatively address the 
challenge of integrating SPaT information, car-following, 
WCL, and real-time operation. In general, this study introduces 
a potentially effective eco-driving approach at signalized 
intersections with partial WCL, hence offering potential 
contributions towards the establishment of a transport system 
that is both sustainable and efficient. 

The remaining sections of this paper are organized as 
follows: Section II provides energy consumption models of the 
vehicle and wireless charging model and formulates the optimal 
control problem (OCP) for eco-driving. In Section III, the eco-
driving control is elaborated by considering the partial WCL. In 
Section IV, the simulation setup and benchmarks are 
introduced. In Section V, the simulation results used to validate 
the proposed method are presented. In Section VI, the major 
conclusions and future work are discussed. 

II. MODELLING AND PROBLEM STATEMENT 
In this section, the energy consumption models for the 

electric vehicle and wireless charging system are presented. In 
addition, this section formulates the OCP for eco-driving.   

A. Energy consumption model 
To enhance the precision of performance evaluation for the 

proposed model, it is crucial to select a highly accurate EV 
energy consumption model. In this work, the Electric Vehicle 
Emission Model (MMPEVEM) from the Mechatronics in 
Mobile Propulsion of RWTH Aachen University is employed, 
as it accounts for every component of the powertrain to provide 
an accurate estimation of power consumption. The model  

 
Fig. 4. Three phases at signalised intersection with partial 
WCL. 
 
achieves a root mean square error (RMSE) of only 4.99 kW 
when compared to chassis dynamometer measurements over 
the world vehicles test cycle (WLTC), where the tested battery 
power ranges from -40 kW to 50 kW. We kindly direct readers 
to refer to [27] for further details. 

B. Wireless charging model 
Several dynamic wireless charging systems have been 

developed in recent years [28, 29, 30]. The power electronics 
team at Oak Ridge National Laboratory (ORNL) developed the 
world’s first 22 kW dynamic wireless charging system for 
passenger cars with 90% efficiency [31], which is used in this 
study. In addition, ORNL aims to develop 50kW dynamic 
wireless charging system as well [32]. When WCL is widely 
used, its charging power may be between 22kW and 50kW, so 
this study will also explore the impact of different charging 
powers on the proposed model. If a vehicle moves or stops 
above or within a WCL region, its battery is charged according 
to (1), which contains charging power 𝑃𝑃𝑡𝑡ℎ𝑙𝑙𝑒𝑒 , charging 
efficiency η𝑡𝑡ℎ𝑙𝑙𝑒𝑒, and the duration Δ𝑡𝑡 between two discrete time 
steps 𝑡𝑡. 

𝐸𝐸𝐵𝐵𝑚𝑚𝑡𝑡(𝑡𝑡 + 1) = 𝐸𝐸𝐵𝐵𝑚𝑚𝑡𝑡(𝑡𝑡) + 𝑃𝑃𝑡𝑡ℎ𝑙𝑙𝑒𝑒 ⋅ 𝜂𝜂𝑡𝑡ℎ𝑙𝑙𝑒𝑒 ⋅ 𝛥𝛥𝑡𝑡 (1) 

C. Quantifying the optimal control problem for eco-driving 
This algorithm aims to minimize the net energy consumption 

of the vehicle while guarantee safety and traffic efficiency. 
Therefore, the multi-objective function could be quantified as 
follow: 

min
𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

𝐽𝐽 = 𝑤𝑤1�∆𝐸𝐸𝐵𝐵𝑚𝑚𝑡𝑡�𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡))�
𝑁𝑁

𝑚𝑚=0

−𝑤𝑤2�𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 �𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)�
2

𝑁𝑁

𝑚𝑚=0

(2)

 

𝑠𝑠. 𝑡𝑡.  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) < 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  
𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) < 𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒(𝑡𝑡) 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) < 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) < 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡),𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡) 
where ∆𝐸𝐸𝐵𝐵𝑚𝑚𝑡𝑡 is the net energy consumption of battery pack in 

each time step, 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 is the acceleration of ego vehicle and 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 
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is the speed of ego vehicle. Meanwhile, 𝑤𝑤1  and 𝑤𝑤2  are 
weighting coefficient. In addition, 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) must be within the 
range of maximum acceleration and deceleration, and it should 
be lower than 𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒(𝑡𝑡) to guarantee safety, where 𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒(𝑡𝑡) is 
the safe acceleration generated by rule-based car-following 
model, which will be explained in Section 3. Meanwhile, to 
allow for the ego vehicle to smoothly pass through the 
signalized intersections during green phase, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) should be 
within the velocity range [𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 ),  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)]  calculated by 
SPaT information. The eco-driving aims to minimize the multi-
objectives function 𝑓𝑓∗ = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐽𝐽) . Based on the established 
multi-objectives function of the eco-driving problem, the 
proposed DRL based strategy will be discussed in the next step. 

III. ECO-DRIVING CONTROL CONSIDERING PARTIAL WCL AT 
SIGNALIZED INTERSECTIONS 

For the purpose of solving the multi-objectives OCP of eco-
driving control at signalized intersections with partial WCL, 
DRL is used to plan the controlled vehicle’s velocity profiles. 
Fig. 2 depicts the proposed scheme, in which a hierarchical 
framework is implemented. In this study, the ego vehicle is 
assumed to be communicated with signalized intersections via 
V2I communication. Furthermore, if the leading vehicle is also 
a CV, the ego vehicle can establish V2V communication with 
it. If not, the ego vehicle can still perceive the state of the 
leading vehicle through onboard sensors such as cameras and 
LiDAR. Consequently, SPaT information, the state of the 
preceding vehicle, and the state of the ego vehicle itself can all 
be acquired in real time. Given the SPaT information and ego 
vehicle state, a dynamic velocity range model is devised to 
generate reference speed to direct an CAEV fully utilize WCL 
without impeding traffic. Moreover, a Twin Delayed Deep 
Deterministic policy gradient (TD3) agent was developed to 
derive control decisions for acceleration at multiple 
intersections with partial WCL by taken SPaT information, ego 
vehicle state and leading vehicle state as input. 

A. Dynamic velocity range model 
For general eco-driving, e.g., eco-driving that does not take 

WCL into account, the purpose of calculating the velocity range 
is to enable the vehicle to pass signalized intersections without 
halting while maintaining traffic efficiency. 
If the vehicle can pass through the green phase at the speed limit 
when the phase is green, as shown in Fig. 3 (a), the maximum 
speed should equal to the speed upper limit, and the minimum 
speed should exactly allow the vehicle to pass by the end of the 
green phase. If the vehicle cannot pass through the green phase 
at the speed limit, as shown in Fig. 3 (b), the maximum speed 
should exactly allow it to pass at the beginning of the next green 

phase, and the minimum speed should allow it to pass at the end 
of the next green phase. Therefore, the reference velocity range 
when phase is green could be formulated as Eq. (3), where 
𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡  is the road speed limit, 𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡  is the distance to 
traffic light,  
𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒  is the duration of green phase,  
𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒  is the duration of red phase,  
𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the remaining green time,  
𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the remaining red time and 𝑘𝑘 = 1,2, … ,∞ is the 
delay cycle. k = 0 if the vehicle can pass the current green 
phase, otherwise, the appropriate green phase could be chosen 
by adjusting k. 

Similarly, at a red phase, the reference velocity range can be 
defined as follows: 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  =  min{𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 ,𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡

÷ �𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑘𝑘�𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒 + 𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒��} 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡 ÷

�𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒 + 𝑘𝑘�𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒 + 𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒��(4) 

However, for eco-driving that takes partial WCL into 
account, the purpose of calculating the reference velocity range 
is not only to enable the vehicle to pass the traffic light 
efficiently while maximizing traffic efficiency, but also to 
maximize the vehicle’s utilization of WCL. There are 2 cases 
for eco-driving accounts for partial WCL. 1) When 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 , to maintain traffic efficiency the reference velocity range 
should follow the above mentioned one’s. 2) When 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 <
𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 , it means that there is extra time for a vehicle to spend 
within the WCL. In this case, as shown in Fig. 4, the maximum 
speed of reference velocity range 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤 could be divided into 
3 phases, e.g., 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤 = �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_1,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_2,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_3�. For phase 1 
and phase 3, the vehicle is within non-WCL region, it should be 
drive as fast as possible to maximize the time it spends within 
WCL region, therefore, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_1 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_3 could be formulated 
as follow: 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_1 = 𝑚𝑚𝑚𝑚𝑚𝑚{1.5 ∗ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡} 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_3 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (5) 

There is a certain speed difference between WCL area and  
non-WCL area. To avoid the discomfort caused by excessive  
jerk to passengers, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_1 is not directly set to 𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 , but is set 
to 1.5 times 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. 
    To calculate 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_2, it is necessary to estimate the remaining 
time the vehicle travels in the WCL area 𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊  first, which is 
equal to the difference between the time the vehicle travels to  
the signalized intersection and the time the vehicle travels in the 
non-WCL area. To ensure traffic efficiency, the former term is 
set as the distance from the vehicle to the signalized intersection  

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = �
                                                              𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡                                                                      , 𝑘𝑘 = 0

min �
𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡,

𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡 = 𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑘𝑘 − 1)�𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒 + 𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒�+ 𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒
� ,𝑘𝑘 = 1,2, … ,∞ 

                                                                                                                                                                                       (3) 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡 ÷ �𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑘𝑘�𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑚𝑚_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒 + 𝑡𝑡𝑙𝑙𝑒𝑒𝑙𝑙_𝑡𝑡𝑣𝑣𝑡𝑡𝑙𝑙𝑒𝑒�� 
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divided by the 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 . To allow the charging time as long as 
possible, it is therefore assumed that the vehicle is traveling at 
the 𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡  within the non-WCL area. Therefore, 𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊  can be 
formulated as follow: 

𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊 =
𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
−
𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡 − 𝐷𝐷𝑊𝑊𝑊𝑊𝑊𝑊_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡
(6) 

where 𝐷𝐷𝑊𝑊𝑊𝑊𝑊𝑊_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the remaining length of WCL, 
therefore, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_2 could be computed as follow: 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_2 =
𝐷𝐷𝑊𝑊𝑊𝑊𝑊𝑊_𝑙𝑙𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊
(7) 

Overall, the reference speed range �𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤�  for a 
vehicle in partial WCL scenario could be summarised as: 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤 =

⎩
⎨

⎧
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ,   𝐼𝐼1 = 0

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_1,   𝐼𝐼1 = 1 𝑎𝑎𝑚𝑚𝑎𝑎 𝐼𝐼2 = 1
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_2,   𝐼𝐼1 = 1 𝑎𝑎𝑚𝑚𝑎𝑎 𝐼𝐼3 = 1
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_3,   𝐼𝐼1 = 1 𝑎𝑎𝑚𝑚𝑎𝑎 𝐼𝐼4 = 1

(8) 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (9) 
where 𝐼𝐼1 is the indicator to indicate if the vehicle can pass the 

signalised intersection if it is drive in speed limit and 𝐼𝐼2, 𝐼𝐼3 and 
𝐼𝐼4 are the indicators to indicate if the vehicle is within phase 1 
or phase 2 or phase 3 respectively. 

B. Implementation of TD3 for eco-driving control 
Reinforcement learning techniques often use a simplification 

of the real-world environment known as the Markov decision 
process (MDP) [33]. In this framework, the probabilities of 
transitioning to distinct future states are only determined by the 
present state, s. The determination of action 𝑏𝑏 may be achieved 
by the use of a policy π, which represents a probability 
distribution encompassing the many actions available at the 
present state. The state transition probability after the execution 
of an action 𝑏𝑏𝑡𝑡 in state 𝑠𝑠𝑡𝑡 can be formally defined as: 

𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 , 𝑏𝑏𝑡𝑡)
=  𝑃𝑃𝑟𝑟 {𝑠𝑠_{𝑡𝑡 + 1} = 𝑠𝑠′|𝑠𝑠_𝑡𝑡 = 𝑠𝑠, 𝑏𝑏_𝑡𝑡 = 𝑏𝑏} (10) 

where the variable 𝑠𝑠′  represents the subsequent state. The 
current state and action are denoted by the variables 𝑠𝑠 and 𝑎𝑎, 
respectively. When the policy π is deterministic, the action-
state value (also known as the Q-value) can be inferred as the 
expected cumulative reward: 

𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 , 𝑏𝑏𝑡𝑡) = 𝐸𝐸𝑙𝑙𝑖𝑖≥𝑡𝑡,𝑠𝑠𝑖𝑖>𝑡𝑡∼𝐸𝐸 ��𝛾𝛾𝑚𝑚−𝑡𝑡
𝑇𝑇

𝑚𝑚=𝑡𝑡

𝑟𝑟𝑚𝑚(𝑠𝑠𝑚𝑚 , 𝑏𝑏𝑚𝑚)� (11) 

where the discounting factor γ ∈ [0,1] . The variable 𝑇𝑇 
represents the duration of the finite MDP. The notation 
𝑟𝑟𝑚𝑚(𝑠𝑠𝑚𝑚 , 𝑏𝑏𝑚𝑚) denotes the reward obtained after executing action 𝑏𝑏𝑚𝑚 
in state 𝑠𝑠𝑚𝑚. The set 𝐸𝐸 represents a collection of states. The MDP 
can be represented by a recursion relation, which can be 
expressed as follows: 
𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 , 𝑏𝑏𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡 , 𝑏𝑏𝑡𝑡) + 𝛾𝛾𝐸𝐸𝑙𝑙𝑡𝑡,𝑠𝑠𝑡𝑡+𝟙𝟙∼𝐸𝐸[𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡+1, 𝑏𝑏𝑡𝑡+1)] (12) 
Equation (15) is often referred to as the Bellman equation 

[34]. The objective of the reinforcement learning algorithm is 
to identify a policy π∗  that can maximise the expected 
cumulative reward. The TD3 method is a cutting-edge DRL 
technique that is capable of functioning inside continuous 
action spaces and mitigating the overestimation bias associated 
with action value estimation [35]. Hence, the TD3 algorithm is 

chosen as the solution for addressing the eco-driving control 
problem for ACEVs at signalized intersections with partial 
WCL. 

 

C. Transforming the multi-objectives function to reward 
function 

It is hard to directly set net energy consumption as reward 
function because the vehicle controlled by the agent tends to 
stop within WCL area and causes traffic congestion. Instead, 
the reward function of velocity range 𝑟𝑟𝑣𝑣𝑒𝑒𝑙𝑙𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡𝑣𝑣 is set to allow the 
vehicle to maximise the time spent in WCL by following the 
speed produced by dynamic velocity range model. Meanwhile, 
the reward function of acceleration 𝑟𝑟𝑚𝑚𝑡𝑡𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚  is set to reduce 
the vehicle’s acceleration in each time step so that minimizing 
the gross energy consumption indirectly. The second term of 
the multi-objectives function and the constraint of safety are 
separately converted into reward function of traffic efficiency 
𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣  and reward function of safety 𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑡𝑡𝑣𝑣. Therefore, the 
multi-objectives function is transformed to reward function 
directly as instantaneous cost as follow: 

𝑟𝑟(𝑠𝑠𝑡𝑡 , 𝑏𝑏𝑡𝑡) =
𝑐𝑐1𝑟𝑟𝑚𝑚𝑡𝑡𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚 + 𝑐𝑐2𝑟𝑟𝑣𝑣𝑒𝑒𝑙𝑙𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡𝑣𝑣 + 𝑐𝑐3𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑡𝑡𝑣𝑣 + 𝑐𝑐4𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣 (13) 

where 𝑐𝑐1 , 𝑐𝑐2 , 𝑐𝑐3  and 𝑐𝑐4  are weighting factors and 
𝑟𝑟𝑚𝑚𝑡𝑡𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚  is defined as: 

𝑟𝑟𝑚𝑚𝑡𝑡𝑡𝑡𝑒𝑒𝑙𝑙𝑒𝑒𝑙𝑙𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚 = −𝑎𝑎𝑇𝑇𝐼𝐼32 (14) 
To guarantee the vehicle to use the WCL efficiently and 

time-adaptively while avoid unnecessary stopping at signalized 
intersections, it is important to encourage it drives within 
reference velocity range, therefore, 𝑟𝑟𝑣𝑣𝑒𝑒𝑙𝑙𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡𝑣𝑣 is formulated as: 

𝑟𝑟𝑣𝑣𝑒𝑒𝑙𝑙𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡𝑣𝑣 = �
−�𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤�

2,   𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 > 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤

−�𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤�
2,   𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤

0, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤 < 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑤𝑤

(15) 

It is necessary to ensure that the acceleration generated by 
TD3 agent is secure in order to assure security. Intelligent 
Driving Model (IDM) is a rule-based car-following algorithm 
that simulates human drivers. The acceleration it produces is 
strictly secure, which is a nonlinear differential equation to 
describe vehicular acceleration: 

𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑎𝑎(𝑚𝑚) �1 − �
ν𝑚𝑚
ν0

(𝑚𝑚)�
δ

− �
𝑠𝑠∗(ν𝑚𝑚 ,Δν𝑚𝑚)

𝑠𝑠𝑚𝑚
�
2

� 

with s∗(ν𝑚𝑚 ,Δν𝑚𝑚) = 𝑠𝑠0
(𝑚𝑚) + 𝑇𝑇𝑚𝑚𝑣𝑣𝑚𝑚 +

𝑣𝑣𝑚𝑚Δν𝑚𝑚
2�𝑎𝑎(𝑚𝑚)𝑏𝑏(𝑚𝑚)

(16) 

where 𝑎𝑎(𝑚𝑚)  and ν0
(𝑚𝑚)  represent the maximum possible 

acceleration and speed; The acceleration exponent is δ; The 
desired distance and minimum safety distance are represented 
by 𝑠𝑠∗(ν𝑚𝑚,Δν𝑚𝑚) and 𝑠𝑠0

(𝑚𝑚); The actual gap and speed variation are 
𝑠𝑠𝑚𝑚 and Δν𝑚𝑚, respectively; The reaction time is denoted by 𝑇𝑇𝑚𝑚, 
and the desired deceleration is given by 𝑏𝑏(𝑚𝑚). In particular, the 
minimum safety distance refers to the baseline distance that 
should be maintained even at zero speed, while the reaction 
time accounts for the period it takes for the driver or the 
automated driving system to react to the behavior changes of  
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Fig. 5. The illustration of simulation traffic scenario in SUMO 
 
the preceding vehicle. During this time, the vehicle continues 
to travel at its current speed, which necessitates considering the 
distance traveled during this reaction period in the safety 
distance calculation. By incorporating minimum safe distance 
and reaction time, the IDM ensures safe acceleration. Therefore, 
setting the TD3-based eco-driving algorithm's acceleration 
lower than the IDM's enhances safety, providing a greater 
safety buffer. Therefore, 𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑡𝑡𝑣𝑣 is given as: 

𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑡𝑡𝑣𝑣 = �
−(𝑎𝑎𝑇𝑇𝐼𝐼3 − 𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼)2,   

𝑎𝑎𝑇𝑇𝐼𝐼3 > 𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼
0,   𝑎𝑎𝑇𝑇𝐼𝐼3 < 𝑎𝑎𝐼𝐼𝐼𝐼𝐼𝐼

(17) 

It is worth to mention that, setting the TD3 algorithm's 
acceleration to be lower than that of the IDM may seem to limit  
the optimization space, but it is crucial for maintaining driving 
safety in different conditions. This restriction helps prevent the 
vehicle from accelerating beyond safe limits, thus avoiding 
potential collision risks and ensuring driving stability. While 
this might slightly reduce the room for optimization, it provides 
a reliable safety baseline, allowing the TD3 algorithm to 
optimize in a safe and robust manner. Generally, the speed of 
the vehicle controlled by the eco-driving algorithm is lower 
than that of the leading vehicle to ensure a smooth passage 
through the signalized intersection. In this scenario, the actual 
gap between the ego-vehicle and the leading vehicle will be 
relatively large, allowing ample optimization space. Conversely, 
when the ego-vehicle approaches the leading vehicle at 
signalized intersections, its optimization space becomes limited 
to ensure safety. 

Although 𝑟𝑟𝑣𝑣𝑒𝑒𝑙𝑙𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡𝑣𝑣  ensures that vehicles pass signalized 
intersections without incident, vehicles may choose to pass 
signalized intersections when the green phase ends to save 
energy, which can easily lead to congestion. To maximize 
traffic efficiency, vehicles should travel at the maximum speed 
of the reference velocity range as possible. Thus, 𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣 can 
be described as follows: 

𝑟𝑟𝑒𝑒𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣 = 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒2 (18) 
 

D. TD3 agent state and action space selection 
The selection of state should include the situation of ego-

vehicle and traffic that affects the decision of agent. Therefore, 
the state variables of TD3 agent includes: 

𝑆𝑆𝑡𝑡 = �
𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 ,𝐷𝐷𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 ,𝑉𝑉𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 , 𝑎𝑎𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 ,𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡 ,

𝑉𝑉max_𝑤𝑤,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _𝑤𝑤, 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼4
� (19) 

In this paper, ego-vehicle’s longitudinal acceleration 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 is  
selected as action variable. 

 
Fig. 6. Convergence of training of proposed model and SOTA 
model. 
 

TABLE II 
THE BASIC PARAMETERS OF THE EGO-VEHICLE 

 
Parameter Value 

Actor network layer 4 
Critic network layer 4 
Hidden layer width 48 

Actor network learning rate 0.0001 
Critic network learning rate 0.005 

Hidden layer activation function ReLU 1 
Output layer activation function Tanh 2 

Batch size 512 
 Discount factor 0.999 

Gaussian exploration noise 0.1 
Target network update rate 0.005 

Range to clip target policy noise 0.5 
Critic update noise 0.5 

Frequency of delayed policy updates 2 
1 ReLU: ReLU is an activation function in neural networks represented as 
𝑓𝑓(𝑥𝑥) = max(0,𝑥𝑥). It outputs the input 𝑥𝑥 if positive, and zero otherwise. This 
function aids in overcoming the vanishing gradient issue during training of 
deep neural networks.  
2 Tanh: The hyperbolic tangent function is an activation function in neural 
networks defined as tanh(x) = ex − e−x ex + e−x⁄ . It smoothly maps input 
values to a range between -1 and 1, offering a symmetric, nonlinear 
transformation of data. 

 

IV. SIMULATION SETUP 

A. Simulation environment and benchmarks 
The simulation environment used for both training and case 

studies was implemented in the SUMO [36]. The simulation 
platform includes one lane, ego-vehicle, leading vehicles, 2 
WCLs and 2 traffic lights, as shown in Fig. 5. The length of the 
road is set to 600 meters, with two traffic lights positioned at 
300 meters and 600 meters, respectively. Each signal phase has 
a duration of 30 seconds for green and 15 seconds for red. In 
this study, the speed limit of the road is 20m/s. All surrounding 
vehicles in the case studies were modelled by IDM to simulate 
human driving vehicles without intelligent control. 

To rigorously assess the efficiency and time-adaptiveness of 
the proposed method for utilizing WCL, as well as its 
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performance in terms of energy saving, safety, and real-time 
capability, three case studies were conducted alongside three 
benchmark comparisons. The three case studies will be 
presented in the following subsections, and the three 
benchmarks include:  1) An IDM was employed to simulate 
human driving behaviors at signalized intersections with partial 
WCL, 2) Li’s DRL-based model adapted from [28], was used 
to simulate standard eco-driving method without focusing on 
maximizing WCL utilization, 3) Zhang’s optimization-based 
model from [30], which aims to efficiently utilize the WCL. 
The basic parameters of the IDM that apply to both benchmark 
and surrounding vehicles are as follows: The maximum 
possible speed is 20 m/s. The maximum possible acceleration 
is 3 m/s². The constant time headway is 3 seconds, referring to 
the consistent time gap maintained from the vehicle ahead for 
safety. The acceleration exponent is set at 4, a unitless factor 
that contributes to the calculation of the vehicle's acceleration. 
The desired deceleration is 1.6 m/s², representing the preferred 
rate at which the vehicle slows down. Lastly, the minimum 
distance kept from the vehicle in front is 3 meters, ensuring an 
adequate space cushion to react and stop if necessary. These 
parameters collectively define the behavior of vehicles within 
the IDM framework. 

The state, action, and reward function of Li’s model is 
basically similar as the proposed model. However, because this 
model does not consider the effect of WCL, the state of this 
model is constructed as follow: 

 

𝑆𝑆𝑡𝑡𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

�
𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 ,𝐷𝐷𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 ,𝑉𝑉𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 , 𝑎𝑎𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑒𝑒𝑙𝑙 ,𝐷𝐷𝑡𝑡𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑡𝑡 𝑙𝑙𝑚𝑚𝑒𝑒ℎ𝑡𝑡 ,

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
� (20) 

where 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum speed 
computed from normal eco-driving reference range. At the 
same time, the decision action of Li’s model is longitudinal 
acceleration as well. In terms of the reward function, it is the 
same as that of proposed model. Apart from that, the weight of 
reward function and the construction of neural network of the 
Li’s model are same as that of the proposed model. 

In terms of Zhang's model, it aims to minimize the net energy 
consumption while ensure traffic efficiency, thus its objective 
function is defined as follow: 

 
min
𝑚𝑚(𝑡𝑡)

𝐿𝐿 = 𝛼𝛼1�𝑡𝑡𝑠𝑠 −  𝑡𝑡0� +𝛼𝛼2�𝐸𝐸𝑁𝑁𝑊𝑊 −  𝐸𝐸𝑊𝑊ℎ𝑚𝑚𝑙𝑙𝑒𝑒𝑒𝑒� (21) 
 

where 𝑡𝑡𝑠𝑠 and  𝑡𝑡0  are the initial time and the finish time 
respectively, while 𝐸𝐸𝑁𝑁𝑊𝑊 and  𝐸𝐸𝑊𝑊ℎ𝑚𝑚𝑙𝑙𝑒𝑒𝑒𝑒  are the total consumed 
and charged energy respectively. 𝛼𝛼1 is the weight coefficient of 
time and 𝛼𝛼2  is the electricity price. More information about 
these parameters and the constraints of the above objective 
function can be found in [31]. The basic parameters of the ego-
vehicle are as follows: The mass is 1830 kg, the front area is 2.6 
m², and the air drag coefficient is 0.35. The rolling resistance 
coefficient is listed as 0.01, with an internal moment of inertia 
at 0.01 as well. The propulsion efficiency reaches 0.98, while 
the recuperation efficiency is slightly lower at 0.96. Finally, the 
maximum battery capacity is indicated as 64 kWh. 

  
(a) (b) 

Fig. 7. (a) Distance profile of 4 models and (b) speed profile of 4 models. 
TABLE III 

SIMULATION RESULTS UNDER DIFFERENT APPROACHES IN THE ZERO TRAFFIC SCENARIO. 
 

Model 

Net energy 
consumption (First 

signalized 
intersection) (kWh)  

Gross energy 
consumption (First 

signalized 
intersection) (kWh) 

Charging time (First 
signalized intersection) 

(s) 

Travel time 
(Total/First signalized 

intersection) (s) 

Algorithm 
execution time (s) 

IDM 74.63*10−3 101.32*10−3 4.99 49.9/32.0 0.0001 
Li’s model 9.85*10−3 61.65*10−3 9.69 47.5/31.5 0.0023 

Zhang’s model -9.87∗ 10−31 63.75*10−3 12.89 59.03/35.4 8.7348 
Proposed model -5.64∗ 10−31 69.75*10−3 14.09 48.3/31.6 0.0028 
1 Negative energy consumption means that the charging electricity for the vehicle is greater than the consuming electricity 
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B. DRL parameter prescription and training 
The principal DRL algorithm parameters are presented in 

Table II. The actor network and the critic network, each 
consisting of four hidden layers, are respectively designed to be 
constructed with one deep network. The comprehensive 
network is trained on an actor-critic structure, with the reward 
of each episode calculated using the (13). To train the TD3 
agent, a route with two traffic lights is chosen, and the total 
training episode is set to 245, while the simulation sample 
duration is set to 0.1 second. 

Three proposed models were trained separately with WCL 
located at 200-300m/500-600m (region A), 100-200m/400-
500m (region B) and 0-100m/300-400m (region C). This is 
because the model was hard to converged if the training 
environment included three locations of WCL at the same time. 
Solving this problem and training a general model will be the 
future work. For each training environment, several system 
parameters, such as the initial state of the ego-vehicle, leading 
vehicles and SPaT information, are randomized for each 
episode to train the agent to adapt for various driving scenarios. 
Meanwhile, the DRL-agent of Li’s model is trained in the same 
environment without WCL. 

The training outcome is depicted in Fig. 6. Overall, the 
converged accumulated reward of Li’s model is higher than that 
of the proposed models. This is because the reward function is 

highly related to the speed of the vehicle in each training time  
TABLE IV 

AVERAGE SIMULATION RESULTS UNDER DIFFERENT 
APPROACHES IN THREE WCL LOCATIONS. 

 

Model 
Net energy 
consumptio

n (kWh) 

Gross energy 
consumption 

(kWh) 

Charging 
time (s) 

Travel 
time 
(s) 

IDM 48.29*10−3 144.54*10−3 17.4 56.4 
Li’s 

model 
24.35*10−3

(-49.57%) 
123.35*𝟏𝟏𝟏𝟏−𝟑𝟑(-

14.46%) 
17.92 57 

Proposed 
model 

8.61*𝟏𝟏𝟏𝟏−𝟑𝟑(
-82.17%) 

127.04*10−3(-
12.10%) 

21.39 56.86 

 
step, while the reference velocity range models followed by 
proposed model and Li’s model are different. The average 
accumulative reward of three proposed models rises abruptly at 
the start of training and stabilizes primarily after approximately 
90 training episodes, however, the convergence of training of 
Li’s model is relatively earlier, at around 60 episodes because 
the state space of Li’s model is simpler than that of proposed 
model. It is important to note that each episode’s cumulative 
reward differs marginally after convergence due to the sporadic 
nature of initial conditions, resulting in various reference 
speeds. The cumulative reward varies depending on the speed 

 

 

 

   
(a) (b) (c) 

Fig. 7. (a) Distance profile of 3 models when WCL is located at 200-300m and 500-600m, (b) 100-200m and 400-500m, (c) 
0-100m and 300-400m. 

   
(a) (b) (c) 

Fig. 8. (a) Speed profile of 3 models when WCL is located at 200-300m and 500-600m, (b) 100-200m and 400-500m, (c) 0-
100m and 300-400m. 
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followed by the ego-vehicle. With such conditions considered, 
four DRL-based controllers for online execution were realized, 
in which the controllers can derive acceleration decisions 
directly based on the system’s state. 

V. CASE STUDIES AND DISCUSSION 

A. Analysis of energy savings and traffic efficiency of the 
proposed method in zero traffic scenario 

To evaluate the energy savings and traffic efficiency of the 
proposed method, a 600-meter road with two signalized 
intersections and two WCLs located between 100-200 meters 
and 400-500 meters was selected. The initial timings for the 
traffic lights were set to green for 21 seconds and red for 7 
seconds, respectively. Under these settings, a vehicle adhering 
to the speed limit would stop at the first intersection but pass 
through the second intersection without stopping. In this 
scenario, traffic was set to zero because Zhang's model does not 
handle car-following scenarios effectively. Key metrics such as  
net energy consumption, gross energy consumption, charging 
time, travel time, and algorithm execution time were recorded. 

Fig. 7 (a) and (b) show that the vehicle controlled by the IDM 
model stopped at the first signalized intersection and passed 
through the second without stopping, due to its strict adherence 
to the speed limit. The vehicle controlled by Li's model 
smoothly passed both intersections without stopping, although 
it did not optimize for WCL usage and did not spend additional 
time in the WCL area.  

In contrast, Zhang's model allowed the vehicle to accelerate 
in non-WCL areas and decelerate in the WCL area, passing the 
first intersection right after the light turned green. However, it 
slowed down in the WCL area near the second intersection and 
stopped before the light turned red, indicating a lack of time-
adaptiveness despite efficient WCL usage.  

The proposed method showed similar behavior to Zhang's 
model at the first intersection but optimized for traffic 
efficiency at the second intersection by passing the light before 
it turned red, thanks to the dynamic velocity model, which 
adjusts the reference speed to ensure efficient WCL usage only 
when there is extra time. 

Quantitative results in Table III show that the travel times at 
the first signalized intersection for all four methods are around 
32 seconds, but the vehicle controlled by Zhang's method had 
an overall travel time about 10 seconds longer than the others. 
Therefore, the energy and charging data presented focus on net 
energy consumption, gross energy consumption, and charging 
time at the first intersection to ensure meaningful comparison. 
The proposed method achieved net energy consumption similar 
to Zhang's model, but with slightly higher gross energy 
consumption compared to Li's model. Additionally, the 
proposed model's execution time was significantly faster, at 
0.0028s (The simulation was conducted on a PC equipped with  
an 11th Gen Intel® Core™ i7-11700 processor), highlighting 
its real-time capabilities and efficient, time-adaptive use of 
WCLs, while maintaining traffic efficiency. 

B. Analysis of energy savings, traffic efficiency, and safety of 
the proposed method in scenarios with traffic 

To assess the safety of the proposed model, in addition to its 
energy-saving capabilities and traffic efficiency, three driving 
scenarios with two signalized intersections and a 600-vehicle-
per-hour traffic volume were constructed to simulate and 
compare various eco-driving approaches. Meanwhile, the 
respective positions of WCL are 200-300m/500-600m, 100-
200m/400-500m, and 0-100m/300-400m. In this case study, the 
initial timings of the first and second traffic light were set as 
green at 8s and red at 7s respectively.  Under this timing 
configuration, a vehicle following the speed limit will be able 
to pass the first signalized intersection but will stop at the 

TABLE V 
AVERAGE SIMULATION RESULTS OF DIFFERENT APPROACHES AND TRAFFIC VOLUME IN THREE WCL LOCATIONS. 

 

Model 
Net energy 

consumption 
(kWh) 

Gross energy 
consumption (kWh) 

Charging time 
(s) 

Travel time (s) Traffic volume (vehicles/hour) 

IDM 108.24*10−3 193.01*10−3 15.38 50.08 1200 
Li’s 

model 
68.92*10−3 
(-36.32%) 

156.34*10−3(-18.99%) 15.83 50.56 1200 

Proposed 
model 

60.60*10−3 
(-44.01%) 

159.82*10−3(-17.19%) 17.98 50.65 1200 

      
IDM 108.66*10−3 187.46*10−3 14.20 46.61 600 
Li’s 

model 
76.66*10−3 
(-29.44%) 

155.44*10−3(-17.08%) 14.19 45.79 600 

Proposed 
model 

71.50*10−3 
(-34.19%) 

160.67*10−3(-14.29%) 16.16 45.93 600 

      
IDM 113.95*10−3 189.83*10−3 13.78 45.30 300 
Li’s 

model 
81.05*10−3 
(-28.87%) 

155.92*10−3(-17.86%) 13.55 43.87 300 

Proposed 
model 

76.95*10−3 
(-32.47%) 

161.84*10−3(-14.74%) 15.38 44.22 300 
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second intersection if it adheres to the speed limits. Notably, 
Zhang's method was excluded from this case study due to its 
inability to handle scenarios involving a leading vehicle. 

It can be observed from Fig. 9 that the vehicle controlled by 
the IDM model adhered to the speed limit, passing through the 
first signalized intersection but stopping at the second one. In 
contrast, the vehicle controlled by Li's method smoothly passed 
both traffic lights without any unnecessary idling. It is 
noteworthy that since neither of these methods takes the WCL 
into account, their distance profiles remain the same regardless 
of the WCL location. This consistency is also evident in their 
speed profiles, as shown in Fig. 10. In contrast, the vehicle 
controlled by the proposed method smoothly passed the first 
signalized intersection but slowed down in the WCL area before 
proceeding through the second signalized intersection. Notably, 
the dynamic velocity range model enabled the proposed method 
to dynamically adjust the vehicle's speed according to the 
different locations of the WCLs, as evidenced in Fig. 10. 

It can also be observed from both Fig. 9 and Fig. 10 that, 
unlike in Case Study A, in this case study involving leading 
vehicles, vehicles controlled by the three methods slowed down 
when approaching leading vehicles to maintain a minimum 
safety distance and avoid collisions. The IDM model achieved 
this by incorporating the difference between the actual gap and 
the minimum gap into its differential equation. In contrast, the 
proposed method and Li's method accomplished this by 
including the acceleration generated by the IDM model in their 
reward functions. 

The average simulation results for different approaches in 
WCL locations are presented in Table III. The travel times for 
vehicles controlled by the three models are similar, at around 
57 seconds. However, the charging time for the vehicle under 
the proposed method is approximately 3.5 seconds longer than 
those of the two benchmark models. The proposed method's net 
energy consumption is 82.17% lower than that of the IDM 
model and significantly lower than that of Li's model. 
Regarding gross energy consumption, Li's model performed the 
best, with a 14.46% reduction compared to the IDM model, 
while the proposed method was close, showing a 12.10% 
reduction. The extra acceleration when entering and leaving the 
WCL area contributed to the slightly higher gross energy 
consumption for the proposed model. Overall, the study 
concludes that the proposed model can substantially reduce net 
energy consumption in WCL areas while maintaining traffic 
efficiency and safety, despite a modest increase in gross energy 
consumption. 

C. Analysis of adaptability of the proposed method 
To assess the proposed eco-driving method's flexibility, three 

simulation sets based on varying traffic volumes (300, 600, and 
1200 vehicles per hour) and WCL positions (200-300m/500-
600m, 100-200m/400-500m, and 0-100m/300-400m) were 
conducted, each comprising 36 runs with different traffic signal 
patterns. The comprehensive simulations evaluated net and 
gross energy consumption, charging and travel times, as 
detailed in Table IV. 

The simulations revealed no collisions across scenarios. 
Higher traffic volumes resulted in longer travel and charging 
times. The IDM vehicle's gross energy consumption rose with 

traffic density due to its speed-oriented programming, which 
led to increased energy expenditure, especially at 1200 
vehicles/hour. Despite more time in the WCL at high volumes, 
the IDM's net energy use remained high. The Li’s model 
prioritized traffic efficiency and minimized gross energy use, 
outperforming the IDM in energy conservation but not 
optimizing WCL use, resulting in higher net energy 
consumption than the proposed method. The proposed model 
balanced charging time and travel efficiency, achieving the 
lowest net energy use despite slightly higher gross consumption 
due to acceleration changes. This was most notable at 1200 
vehicles/hour, where the proposed model's net energy use was 
44.01% less than the IDM's, confirming its superior WCL 
utilization and efficiency across varying traffic volumes.  

V. CONCLUSION 
This article proposes a DRL-based eco-driving strategy for 

CAEVs in a connected traffic environment featuring signalized 
intersections and a partial WCL. This innovative method 
addresses the challenge of simultaneously ensuring efficient 
and time-adaptive use of the WCL, maintaining traffic 
efficiency and safety, and achieving real-time algorithm 
performance. This method accomplishes this by integrating a 
novel dynamic velocity range model with a TD3 controller. The 
dynamic velocity range model dynamically computes reference 
speeds for the TD3 agent based on the varying locations of the 
WCL and different SPaT information. Meanwhile, the TD3 
agent continuously generates acceleration by considering the 
reference speed and safety information. Based on the simulation 
results, the proposed strategy exhibits a notably lower net 
energy consumption in comparison to both the manually driven 
vehicle and the benchmarks models at the premise of ensuring 
traffic efficiency and safety. Specifically, the energy 
consumption of the proposed model could reduce up to 44.01% 
compared with the manually driven vehicle when traffic 
volume reaches 1200. With three different traffic volume, the 
proposed method’s gross energy efficiency still holds compared 
to the other two benchmark models.  

For future work, obtaining a more general model, improving 
the reward function and state space of the model so that the 
training of environments with different WCL positions can be 
completed at one time will be a meaningful focus. Furthermore, 
WCL is a relatively new concept, and although many research 
institutions are actively studying this technology, the number of 
roads globally equipped with WCL is still quite limited. As a 
result, we are currently unable to access real-world data 
regarding WCL lengths. Additionally, since traffic light timings 
are controlled by local government agencies, relevant data is 
also unavailable at this stage. Nevertheless, we are keen to 
obtain real-world data on the length ratio between the road and 
WCL, and traffic light settings in the future, in order to further 
enhance our approach. 
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