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Abstract

Exploration of dynamic human activity gives significant insights into understanding the

urban environment and can help to reinforce scientific urban management strategies. Lots

of studies are arising regarding the significant human activity changes in global metropolises

and regions affected by COVID-19 containment policies. However, the variations of human

activity dynamics amid different phases divided by the non-pharmaceutical intervention poli-

cies (e.g., stay-at-home, lockdown) have not been investigated across urban areas in space

and time and discussed with the urban characteristic determinants. In this study, we aim to

explore the influence of different restriction phases on dynamic human activity through sens-

ing human activity zones (HAZs) and their dominated urban characteristics. Herein, we pro-

posed an explainable analysis framework to explore the HAZ variations consisting of three

parts, i.e., footfall detection, HAZs delineation and the identification of relationships between

urban characteristics and HAZs. In our study area of Greater London, United Kingdom, we

first utilised the footfall detection method to extract human activity metrics (footfalls) counted

by visits/stays at space and time from the anonymous mobile phone GPS trajectories. Then,

we characterised HAZs based on the homogeneity of daily human footfalls at census output

areas (OAs) during the predefined restriction phases in the UK. Lastly, we examined the fea-

ture importance of explanatory variables as the metric of the relationship between human

activity and urban characteristics using machine learning classifiers. The results show that

dynamic human activity exhibits statistically significant differences in terms of the HAZ distri-

butions across restriction phases and is strongly associated with urban characteristics (e.g.,

specific land use types) during the COVID-19 pandemic. These findings can improve the

understanding of the variation of human activity patterns during the pandemic and offer

insights into city management resource allocation in urban areas concerning dynamic

human activity.
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Introduction

City is a complex system reflecting human beings’ activities intertwined with natural environ-

ment [1–3]. Exploration of the dynamic human activity in urban areas can directly and com-

prehensively portray the social and economic activity units in space and time. As an

indispensable population dynamic information in urban areas, it supports urban resource allo-

cation in residence relocation, city planning, and public health emergency [4–8]. With the

rapid development of ubiquitous location awareness technologies, massive amounts of geo-

tagged big data (e.g., mobile phone GPS data, WiFi probe data and social media data) can be

collected efficiently and continuously as real-time snapshots of individuals’ activity patterns.

Then, such large volumes of human activity data regarding the spatio-temporal footprints tied

with places and urban areas can provide the data-driven perspective to reveal the urban com-

plex dynamics [9, 10].

The geo-tagged big data incorporating spatial and temporal information from citizen sen-

sors provide a variety of approaches to characterising dynamic urban space with near-nature

human activity patterns. In this regard, research focusing on sensing the urban zones with dis-

tinctive functions have utilised human activity to reveal the socioeconomic and urban geo-

graphical features [11, 12]. In parallel to the functional zones that urban space with specific

functions constraining human being activities [11, 13, 14], human activity zone (HAZ) refers

to a clustered area consisting of a combination of geospatial units exhibiting a certain similar-

ity characterised by the human activity patterns [15]. As the representative of human activity

dynamic in the urban areas, HAZ has been associated with amounts of identified urban func-

tions to reveal the urban movements and structures [16–18], such as the intensity and evolu-

tion of urban space [19], the discrimination in the centre or sub-centre of urban areas [20] and

identification and classification of function zones and land use areas [11, 12, 21, 22].

As COVID-19 and its variants continue to spread around the global cities, urban citizens’

lives have been changed significantly due to the pandemic containment policies (e.g., national

lockdowns, stay-at-home orders) [23–25]. The widespread utilisation of geo-tagged big data

from mobile phones has been involved in evaluating the tremendous human mobility shifting

associated with social and public policies during the COVID-19 pandemic. Related works have

addressed human mobility/activity pattern shiftings in cities, regions and countries by analys-

ing aggregated mobility data sets (e.g., Google and Apple mobility data) [26–29]. In addition,

the human activity shifting patterns captured by geo-tagged big data has been widely utilised

for the evaluation of restriction policy effectiveness in contaminating COVID spreading [30–

32], the socioeconomic impacts of the population mobility affected by restriction policies [33–

36], and the social inequality in human mobility during the COVID-19 pandemic [37–41].

Previous studies exploring and interpreting human mobility pattern changes have concerned

large geospatial districts in space and time. However, they neglect to disentangle the human

activity variations in urban areas driven by different significant restriction policies and inter-

pret such complex dynamics using urban characteristics during the pandemic.

Since citizens’ activity rhythms are heterogeneously distributed in urban places and areas, it

is of great significance for investigating and characterising the human activity dynamic which

can help to inform the re-opening measures of city management [38]. As many previous stud-

ies focus on the influence of restriction policies on the human activity dynamic at the very

beginning periods since the pandemic outbreaks, they ignore the evaluation of the ongoing

restriction or relaxation policies’ effects on the human activity restrictions. Considering differ-

ent restriction policies imposed on the human activity dynamics across urban areas during the

COVID-19 pandemic, the topic that HAZs variations and their relationship with urban char-

acteristics need to be examined and discussed in detail. Accordingly, we focus on addressing
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the following questions: How do HAZs change and evolve across urban areas driven by different
restriction phases? Further, what are the main urban characteristics dominating the formulation
of HAZs due to the different restriction phases? To resolve these research questions, we propose

an analysis framework to classify the variations of human activity patterns in urban geospatial

areas approached by HAZs delineation, and identify the determinants by modelling the urban

characteristics with HAZs in machine learning classifiers across the restriction phases.

In this study, we implemented our proposed analysis framework on the mobile phone GPS

dataset during the eight spotlighted observation periods from Jan 1, 2020 to Feb 27, 2021 in

Greater London, UK. We first utilised anonymous mobile phone GPS trajectory data to extract

stays and aggregated them to footfalls at UK census output areas (OAs) as the representation

of urban area units with human activity. Then, we portrayed the HAZs based on the homoge-

neity of human activity dynamic at the OA level for eight restriction phases, UK. At last, we

examined the relationships between urban characteristics and human activity by identifying

the feature importance in the machine learning classifiers. Our results demonstrate the delin-

eation of significant HAZ variations in space and time, and the examination of relationships

between generated HAZs and urban features impacted by the different pandemic restriction

policies.

The remainder of this paper is organised as follows. The methods section introduces the

research analysis framework and relevant human activity metrics in detail. The case study sec-

tion presents the experiments implemented in our study area and the case study results. The

discussion section reveals the implication and inspiration of empirical findings. Finally, the

conclusions section concludes the contributions and shows the research limitations.

Methods

Analysis framework

Fig 1 illustrates the three main processes in our analysis framework incorporating (1) footfall

detection, (2) human activity zone (HAZ) delineation, and (3) Identifying relationships

between static urban characteristics and dynamic HAZs. First, in the footfall detection part, a

stay detection algorithm is used to retrieve stay points or stationary from a user’s position tra-

jectory recorded as irregular GPS points. Next, footfall as a proxy of the human activity metric

is calculated by aggregating detected stays coupled with geospatial unit information to enable

us to evaluate the geospatial area with the human activity patterns. Second, in the process of

delineating HAZ for the different observation periods, an agglomerative clustering algorithm

is implemented to generate the HAZs, considering the homogeneity of temporal human activ-

ity patterns across various geospatial units. Lastly, identifying relationships between static

urban characteristics and dynamic HAZs is approached by the feature importance determina-

tion in the machine learning classifiers.

Footfall detection

As a metric of human activities in urban areas, footfall can be extracted from mobile phone

GPS trajectory data [11, 42]. However, raw mobile phone trajectory data incorporating the

sequential position records with temporal information cannot provide human activity seman-

tic patterns (e.g., working, visiting or stay-at-home). Herein, the footfall detection process

incorporates two steps: stay detection and aggregated counting.

Potential human activity can be described as a stay (i.e., stay points) that a single user

spends some time in one place, i.e., the consecutive records of the user are at the same location

during a time period [43–45]. Specifically, for one user’s position records, the sequence of GPS
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points P can be denoted as:

P ¼ p0 !
Dd0 ;Dt0p1 !

Dd1 ;Dt1
. . . pk !

Ddk;Dtk
. . . pm� 1 !

Ddm� 1 ;Dtm� 1pm; k ¼ 0; 1; 2 � � �m ð1Þ

where the Δdk and Δtk denote the Euclidean distance and time intervals between two GPS

points (pk and pk + 1). Then, using the stay detection algorithm, stays set S can be detected

from the sequence of GPS records P:

S ¼ fs0; s1 � � � sk � � � sn� 1; sng; k ¼ 0; 1; 2 � � � n; n < m ð2Þ

In this framework, the stay detection algorithm [46, 47] needs two preset parameters for

input trajectory data, i.e., dmax (the maximum distance that records a user’s movement around

from a point location to count as a stay) and tmin (the minimum duration time period that the

records stay within time distance to qualify as a stay at the location). Hence, a stay can be

detected while the Δd is under dmax and the Δt is above tmin between the first point and the last

point of the GPS trajectory points.

Second, once the implementation of stay detection for each GPS trajectory of a single user

in the data sets, we aggregate the counts of stays to footfalls as the proxy of human activity met-

ric for a defined geospatial unit (e.g., census block, community) and temporal units (e.g.,

hourly, daily), respectively.

Fig 1. Analysis framework.

https://doi.org/10.1371/journal.pone.0277913.g001
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Delineation of human activity zones for different observation periods

In relation to function zoning, a clustering method to retrieve urban function zones (a set of

basic area clusters) with land use type information or specific social functions for citizens. We

use HAZs to describe the clustering results that area clusters characterised by the similarity of

footfalls (temporal human activity pattern) in the geospatial units. Briefly, the generation of

HAZ is to extract n numbers of HAZs based on the footfall dynamic representing human activ-

ity temporal pattern from the m geospatial units (n<m).

A clustering strategy for achieving the HAZ generation across geospatial units and observa-

tion periods can be organised as follows. First, for a defined observation period OPk, suppose

we obtain an aggregated footfall dataset in space and time, incorporating m geospatial units

(e.g., grids, census blocks) with an observation period with t temporal units (e.g., hourly, daily,

weekly). Then, a footfall matrix A with m rows and t columns can be organised from such spa-

tio-temporal data sets. So, human activity (footfall volumes) Ai, j at i th geospatial unit and j th

temporal unit can be denoted as:

Ai;j; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; t ð3Þ

Second, for the HAZ extraction considering the human activity pattern, we utilise a row-

based standardisation process, i.e., performing the standardisation at the i th geospatial unit’s

temporal footfall Ai,:. For example, as one geospatial area unit (i), we calculate the mean μi and

variance σi from Ai,: which can be denotes as:

mi ¼
1

t

Xt

j¼1

Ai;j

� �
; si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

t

Xt

j¼1

ðAi;j � miÞ
2

v
u
u
t ; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; t ð4Þ

After repeatedly standardised implementation at m geospatial units, we can get standard-

ised footfall Bi, j at the i th geospatial unit (row) and j temporal unit (column) which can be

denoted as:

Bi;j ¼
Ai;j � mi

si
; i ¼ 1; 2; :::;m; j ¼ 1; 2; :::; t ð5Þ

Here, the standardised footfall matrix B output from matrix A with m rows (geospatial

units) and t columns (temporal units) is completed based on the row-based standardisation

process.

Next, we utilise agglomerative clustering algorithm [48] at standardised footfall matrix B to

retrieve n types of HAZs based on the human activity temporal pattern from m geospatial

units. In this step, the distances across footfalls are represented by the classical Euclidean dis-

tance between time series vectors, and silhouette coefficient as a clustering optimisation metric

(the highest/best value is 1 and the lowest/worst value is -1) [49] is used for the evaluation of

pattern variation similarity across m geospatial areas’ footfall patterns at t temporal units.

Then, we maximise the silhouette coefficient to discriminate across clusters and determine

the optimised number of clusters (HAZs) n (n<m). At last, we repeatedly implement the

above procedures to generate the HAZs in k observation periods.

Identifying the relationships between static urban characteristics and

dynamic HAZs

To identify the relationships between static urban characteristics and dynamic HAZs in each

observation period OPk, the static urban characteristics as explanatory variables are utilised to

PLOS ONE Human activity zones during the COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0277913 January 20, 2023 5 / 21

https://doi.org/10.1371/journal.pone.0277913


classify the dynamic human activity represented by HAZ labels (n) in the random forest (RF)

classifier. First, we select the best RF classifier using the optimisation of accuracy as the model

performance metric by the strategy of grid search and k-fold cross-validation. Second, the

accuracy metric and feature importance indicator are outputted by this RF classifier. By exe-

cuting previous steps on k time periods, we get k RF classifiers with accuracy representing a

global relationship between urban features and HAZs, and feature importance representing a

local relationship between each urban feature and HAZs, respectively.

The calculation of feature importance in the RF classifier is introduced as follows. By ran-

domly selecting the subset of input variables, RF classifier as an ensemble of decision trees has

received vast attention due to the reliable classification performance on high-dimension data

and fast processing speed [50–52]. In this analysis, a general feature relevance indicator named

Gini importance (IG) as a by-product from the RF classifier based on each urban characteristic

variable (e.g., v1 as an input feature vector in Fig 1) can be calculated from the inherent imple-

mentation of RF classifier.

In detail, each decision tree (e.g., Tree 1 of RF in Fig 1) as a basic classifier seeks an optimi-

sation of splitting on a randomly selected subset of urban characteristic variables according to

the Gini impurity as a splitting metric. While the decision trees are aggregated to the fitted RF

classifier, the sum of Gini impurity criteria of feature variables in all splits is generally scaled to

Gini importance [53–55]. The Gini importance IG for an urban variable/feature v can be

denoted as:

IGðvÞ ¼
X

T

X

t

Divðt;TÞ ð6Þ

where Δiv(τ, T) is the decreased value of Gini impurity within the optimal split at node τ and

tree T, respectively. Thus, IG(v) indicate the frequency/possibility of a feature θ is selected for

splitting and the extent of discrimination in the HAZ labels (n types). So, the sum of all input

variables IG is equal to 1.

Case study

Data source and study area

The restriction phases during the COVID-19 pandemic in Greater London. With

COVID-19 spreading in global cities, Greater London continues to undergo the diffusion of

the viruses and variants as the metropolis with the highest number of confirmed cases in the

UK. As an emergency response to the pandemic, the first national lockdown announced by

the government started on Mar 23, 2020, following a series of restricted measures in the urban

society, such as stay-at-home, and non-essential business closures. Our interest observation

periods are eight policy restriction phases (422 days in total) discriminated by different

national or local restriction laws [56] or policies [57] in Greater London from Jan 1, 2020 to

Feb 27, 2021. In detail, Table 1 lists the key information of eight restriction phases.

Then, this study focuses on Greater London at the output area (OA) level, i.e., Greater Lon-

don’s 25,053 OAs that the geospatial areas the daily human activity patterns (footfalls) gener-

ate. The UK census output areas from small to large are ordered by UK postcode (PC), census

output areas (OA), lower super output areas (LSOA), middle layer super output area (MSOA)

and local authority (LA).

Mobile phone GPS trajectory data. The human activity metric in terms of the footfalls

(stays) is calculated from millions of anonymous users’ mobile phone GPS trajectory data pro-

vided by Location Sciences under GDPR compliance [58]. As the users are involved in broadly

mobility-related apps (e.g., navigation, route planning, outdoor sports), this dataset is reliable
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for representing the human activity categories in the metropolis area. In general, there are

1153,637 users in Greater London as the main part (41.6%) of 2770,060 users in the whole UK

data in our observation days (422 days). Considering the diverse applications of GPS data col-

lection apps and a promised proportion in Greater London, our dataset can provide a good

representation for exploring human activity patterns. Map A in Fig 2 shows a sample user’s

GPS trajectory in our study without the starting and ending records as privacy protection. In

addition, some interest areas’ boundaries are plotted as green parks, city centres and transpor-

tation facilities.

Urban characteristic data. In this study, we select the land use and socio-demographic

data to represent urban static characteristics for analysis. First, land use data (Sep 2021 version)

provided by Digimap [59] were downloaded from the ‘UKLand’ part in the ‘Verisk’ section.

The dataset provides detailed land use information including the land use area with types

across Greater London (map B in Fig 2). To clarify, the land use types are aggregated into ten

main types for describing the London land use breakdowns: high-density residential with retail

and commercial sites, urban centres—mainly commercial/retail with residential pockets,

medium density residential with high streets and amenities, low-density residential with ame-

nities (suburbs and small villages/hamlets), large complex buildings various use (travel/ recrea-

tion/ retail), principle transport, green space and recreational land, industrial areas,

agriculture, water. Considering the OAs as the unit of analysis in this study, we calculate each

type of land use area for every OA in Greater London so that each OA can be characterised as

10 different land use acreage (km2).

Second, the latest London OAs socio-demographic classification data are provided by

Office for National Statistics [60]. It depicts the grouped characteristics of socio-demographic

variables at OAs (2011 census) and obtains three-level classifications (i.e., 8 super groups, 24

groups and 67 subgroups). In this study, we select eight super groups for analysis, including

rural residents, cosmopolitans, ethnic mix, blue collar neighbourhoods, multicultural metro-

politan, suburbanites, hard-pressed households, and urbanites. The OA classification map

(eight super groups) is shown as map C in Fig 2.

Human activity changes in Greater London during restriction phases

To enable the footfall as a proxy of human activity at each OA in Greater London, we define

the stay (stationary) as a user spending at least 5 mins within a distance of 50 meters spatial

radius from a given GPS trajectory. Specifically, these two parameters are consistent with the

previous stay detection work [61], which allows us to find some users’ significant visiting

behaviours at places. Next, the detected stays are aggregated to the footfalls at OA and daily

levels in space and time, respectively. Then, the generation of HAZs is employed on the

Table 1. The eight policy restriction phases.

Restriction phases Start date End date Days

Before lockdown 2020-01-01 2020-03-22 82

First national lockdown 2020-03-23 2020-07-03 103

Minimal lockdown restrictions 2020-07-04 2020-09-13 72

Reimposing restrictions 2020-09-14 2020-10-13 30

Three-tire restrictions 2020-10-14 2020-11-04 22

Second national lockdown 2020-11-05 2020-12-02 28

Four-tier restrictions 2020-12-03 2021-01-05 34

Third national lockdown 2021-01-06 2021-02-27 51

https://doi.org/10.1371/journal.pone.0277913.t001
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spatio-temporal matrix with daily human footfalls on each OA in London (25,053 OAs � 422

days in total).

In order to assess the human activity recovery in Greater London, we calculate the recovery

index of footfalls by comparing it with the benchmark of the daily average footfall volume

from Jan 1, 2020 to Feb 29, 2020 (60 days). From a global point of view, Fig 3 depicts the daily

footfall recovery index by comparing the daily footfall volumes (from Jan 1, 2020 to Feb 27,

Fig 2. The mobile phone GPS trajectory sample and urban characteristic distribution at OA-level in Greater London. Map A shows a sample user’s GPS trajectory

without the start and end points; Map B shows the distribution of OAs’ land use in ten types (we plot each OA in one land use represented by the maximum land use

acreage in ten types). Map C shows the eight supergroups of OA socio-demographic classification. (Geographical boundary data source: Office for National Statistics

licensed under the Open Government Licence v.3.0. Contains OS data © Crown copyright and database right 2022. Contains National Statistics data © Crown copyright

and database right 2022.).

https://doi.org/10.1371/journal.pone.0277913.g002

PLOS ONE Human activity zones during the COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0277913 January 20, 2023 8 / 21

https://doi.org/10.1371/journal.pone.0277913.g002
https://doi.org/10.1371/journal.pone.0277913


2021) with the benchmark of whole Greater London areas (i.e., the accumulation of footfall

volumes of all OAs). In general, the footfall recovery index of Greater London obtains various

levels during the eight policy restriction periods. Specifically, we observe the footfall level of

Greater London experienced a tremendous reduction of about 65% after the first national

lockdown (Mar 23, 2020) with a series of restricted measures, such as closures of non-essential

business, entertainment, public infrastructures and stay-at-home order.

In addition, a minor increase is observed at the end of the minimal lockdown restrictions,

followed by a distinct decline at the start of reimposing restrictions (2020-09-14) with a ‘rule of

six’ coming into force. Next, another similar footfall change with a sharp decline is found dur-

ing the four-tier restrictions that overlapped with the Christmas holidays. At last, the overall

daily trend of Greater London during all restriction phases has not returned to the normal

level (i.e., 100%) since the first national lockdown (Mar 23, 2020) imposed on the whole

country.

Dynamic HAZ delineations in Greater London during the COVID-19

pandemic

To generally understand the influences of restriction policies on the spatial distribution and

corresponding temporal footfall dynamics of HAZs during the pandemic, we delineate the

HAZs during all observation periods and the eight restriction phases, respectively. The first

part describes the distribution of HAZs and their footfall pattern during all observation peri-

ods. The second part examines the dynamic HAZs and related footfall patterns affected by

eight distinctive restriction phases.

Fig 3. Daily footfall recovery index in Greater London from 2020-01-01 to 2021-02-07. Daily and 7-day rolling window observations are shown as light blue and dark

blue lines, respectively. The eight policy restriction phases are distinctively separated by vertical lines labelled with the start/end date.

https://doi.org/10.1371/journal.pone.0277913.g003
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For visualisation consistency in HAZ maps, the HAZ indices in each map are ranked by the

daily average footfall volumes of HAZs from high-level to low-level and following a constant

colour palette shown in Fig 4. Under such defined rules, different coloured HAZs indicate the

relatively ‘busier areas’ and ‘less busy areas’ in terms of footfall volumes. Additionally, each

HAZ footfall temporal pattern is represented by the mean of the standardised footfall pattern

of all corresponding clustered OAs. In addition, the footfall temporal pattern of each HAZ is

plotted as the same colour as the correspondent HAZ under the maps.

HAZs during all observation periods from 2020-01-01 to 2021-02-27. To delineate the

HAZs during all observation periods from 2020-01-01 to 2021-02-27, we performed the pro-

posed function zoning (footfall clustering) based on the footfall patterns at OAs to generate

HAZs in Greater London. First, we get the optimised cluster numbers (6) by maximising the

silhouette coefficient. The OAs with homogeneous standardised footfall patterns are labelled

as the same cluster and grouped as a HAZ in the agglomerative clustering step. The HAZs and

corresponding clustered footfall patterns of Greater London during all periods are depicted in

Fig 5. Here, the HAZs (from HAZ 0 to HAZ 5) are ordered by the daily average footfall of

HAZ, i.e., 71.6, 35.7, 22.8, 20.3, 17.4 and 15.1, respectively. Then, the temporal dynamic of

each HAZ is characterised by the mean of all OAs’ footfalls.

To illustrate, the spatial distributions of HAZs of Greater London during all observation

periods generally match the distinctive urban structures in terms of human activity discrimi-

nation. For example, as the busiest areas, the urban areas in HAZ 0 (red) are mainly narrowed

in the city centre (the areas around City of London), the clustered areas on the west of London

(Heathrow Airport area) and linear shape areas diffusing from urban centre to urban suburb

(the main road network of London). In the temporal examination, all footfall volumes of

HAZs obtained reductions sharply after the announced first national lockdown (2020-02-23),

but HAZ 4 is observed with a relatively slight decline affected by the policy compared to other

HAZs.

Additionally, unlike the majority of HAZs (HAZ 0, HAZ 1, HAZ 3 and HAZ 4) with ongo-

ing low-level footfall volumes after the first national lockdown (2020-03-23), HAZ 2 (green)

and HAZ 5 (light blue) are observed that human activity ‘recovered’ during some observation

periods (e.g., from 2020-09-14 to 2020-10-14). In detail, human activity recovery in HAZ 2 is

found at the end of the first national lockdown phase (July 4, 2020) and the end of the minimal

lockdown restrictions phase (Sep 14, 2020). Several urban green spaces are involved in HAZ 2,

e.g., Richmond Park, Regent’s Park, Hampstead Heath and Victoria Park, highlighted in map

A of Fig 2. On the contrary, the recovery of human activity in HAZ 5 as the low-level footfall

volume areas started on Sep 14, 2020 and lasted until the middle of the four-tier restrictions.

Dynamic HAZs influenced by the eight different restriction phases. To portray the var-

iations of HAZs in response to the eight different restriction phase, we get the optimised HAZ

numbers (i.e., 6, 7, 7, 8, 6, 5, 5, 5) for the before lockdown phase, the first national lockdown

Fig 4. The colour palette used in HAZ delineation maps.

https://doi.org/10.1371/journal.pone.0277913.g004
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Fig 5. HAZs (top) and corresponding footfall patterns (bottom) of Greater London during all observation

periods. The HAZs are ranked by the daily average footfall volumes from high level to low level. The temporal footfall

variations for each HAZ are represented by the mean of all related OAs’ footfalls. (Geographical boundary data source:

Office for National Statistics licensed under the Open Government Licence v.3.0. Contains OS data © Crown

copyright and database right 2022. Contains National Statistics data © Crown copyright and database right 2022.).

https://doi.org/10.1371/journal.pone.0277913.g005
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phase, the minimal lockdown restrictions phase, the reimposing restrictions phase, the three-

tire restrictions phase, the second national lockdown phase, the four-tier restrictions phase

and the third national lockdown phase, respectively. The HAZs and corresponding clustered

human activity patterns of Greater London during eight policy restriction periods are denoted

in Fig 6. And Table 2 shows the daily average footfall volumes and OA numbers of HAZs in

each restriction phase. Like Fig 5, we use the same palette rule shown as Fig 4 to describe

HAZs and their footfall patterns.

As we can observe in Fig 6, the impact of COVID-19 response restriction measures signifi-

cantly and heterogeneously affect human activities across urban areas in Greater London.

Overall, human activity patterns at different restriction periods are substantially discriminated

in spatial distribution. We can distinctively observe all HAZs obtaining informative heteroge-

neous regionalisation in the Greater London map. In the sub-figure of the before lockdown

phase, we can find six types of HAZs distributed in Greater London. The distribution of HAZ

0 (red) is quite similar to the HAZ 0 in Fig 5 that the busiest urban areas are distinctly nar-

rowed by linear shape from the city centre to the fringe, while the other HAZs have not been

observed following this pattern in the morphology. Though the human activity volume levels

are different across HAZs, substantial weekly trends in temporal footfall patterns can be found

in HAZ 0 and HAZ 1 on busy weekdays.

Then, the dynamic HAZ classifications imply a complex set of typologies in terms of the

changes in human activity patterns across the pandemic restrictions phases. In the first lock-

down phase, we observe the distribution of HAZs has been reconstructed with the busiest

areas changing to a non-consecutive shape compared to the HAZs map of the before lockdown

phase. Regarding the footfall patterns of HAZs, the busy-weekday areas (HAZ 0 plotted as red)

still obtain the highest footfall volume levels and concentrate on the urban centres. Then, HAZ

1 (pinks) is observed that a slightly increasing trend started at the middle stage of this phase

(the end of May 2020). The related government’s amendments to the regulations and new

rules have effects from May 31, 2020 are that allowing people to meet outside in groups of up

to six and phased re-opening of schools [62].

In the next three restriction phases, we find a sustained similarity of human activity patterns

in space between the reimposing restrictions and the three-tier restrictions. Though globally

the human activity volumes are observed declines in the two time period denoted by Fig 3, the

distributions of HAZs in the two maps resemble each other in terms of our classification. In

the second national lockdown phase, it is obvious that the hottest areas (HAZ 0) have not con-

centrated on the city centre but are dispersed in several areas with a busy-weekend pattern in

the metropolis. Next, in the four-tier restrictions phase, we observe a steady decrease in the

footfall level in HAZ 0 with a busy-weekday pattern, but a slight increase in the footfall level in

HAZ 1 with a busy-weekend trend during the Christmas holidays. At last, we observe that

HAZ 0 and HAZ 1 as the top two busy areas, obtain distinctly converse weekly patterns in the

third national lockdown phase. In particular, the busiest areas (each HAZ 0) stay clustered in

the city centre both before and during the pandemic with a significant weekly pattern in foot-

falls. Here, though the city centre has not portrayed in the busiest areas (HAZ 0) in the second

national lockdown phase, it remains the second-busiest area as a part of HAZ 1, and obtaining

a similar footfall pattern with former phases (i.e., busy-weekday trend).

As the dynamic HAZs amid the different restriction phases, we tested the difference

between HAZ types in eight restriction phases using Pearson’s Contingency Coefficient and

the results are shown in Fig 7. Significantly, the HAZ classification in the before lockdown

phase and the first national lockdown obtain high associations with the HAZs during the mini-

mal lockdown restrictions.
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Fig 6. HAZs of Greater London in eight distinctive policy restriction phases. For each phase, the HAZs are extracted

from footfall patterns, and the HAZ numbers are 6, 7, 7, 8, 6, 5, 5, 5, respectively. The vertical lines in the temporal footfall

figures denote weekends. (Geographical boundary data source: Office for National Statistics licensed under the Open

Government Licence v.3.0. Contains OS data © Crown copyright and database right 2022. Contains National Statistics data

© Crown copyright and database right 2022.).

https://doi.org/10.1371/journal.pone.0277913.g006
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The relationships between static urban characteristics and the

discrimination of HAZs during the pandemic

To assess the relationships between static urban characteristics and human activity represented

by HAZs in different restriction phases, we trained the RF classifiers based on HAZ labels and

selected urban features (OA supergroups and land use areas) as input variables. To be specific,

the input urban characteristic matrix (X) consist of 25,053 rows (OA numbers) and 11 col-

umns (OA supergroups categories and 10 types of land use acreage values). In the hyper-

parameter procedure, the grid search and k-fold cross-validation (k was 10 and with 15

Table 2. The Daily average footfall volumes and OA numbers of HAZs in eight policy restriction phases.

Restriction phases HAZ 0 HAZ 1 HAZ 2 HAZ 3 HAZ 4 HAZ 5 HAZ 6 HAZ 7

Before lockdown 174.0(1872) 62.1(8064) 47.1(4303) 34.6(4214) 27.2(4079) 26.6(2539) – –

First national lockdown 57.2(2136) 28.1(4956) 22.1(1272) 21.4(5621) 19.0(4756) 18.9(2677) 18.4(3635) –

Minimal lockdown restrictions 61.5(3440) 34.7(1631) 32.7(3929) 26.5(4848) 20.3(3996) 20.0(3001) 18.9(4208) –

Reimposing restrictions 46.0(7565) 43.4(3452) 39.9(889) 23.8(4594) 22.5(2709) 19.0(2953) 18.5(1442) 17.7(1449)

Three-tire restrictions 41.8(7120) 26.7(3937) 24.9(1692) 22.9(4793) 21.2(5386) 19.9(2125) – –

Second national lockdown 39.6(817) 32.8(8959) 18.8(2539) 18.8(4222) 16.9(8516) – – –

Four-tier restrictions 30.2(8622) 16.8(2192) 16.3(5744) 14.9(5228) 12.3(3267) – – –

Third national lockdown 24.4(4520) 22.3(4082) 11.0(7513) 10.2(3204) 10.1(5734) – – –

https://doi.org/10.1371/journal.pone.0277913.t002

Fig 7. The difference between the HAZs from eight restriction phases.

https://doi.org/10.1371/journal.pone.0277913.g007
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iterations) are used to select the optimised RF classifier with outputting accuracy and feature

importance for each restriction phase. Then, the results of multi-classification accuracy values

and corresponding feature importance values of RF classifiers at eight restriction phases are

shown in Fig 8.

Globally, the accuracy values (left) of RF classifiers have not shown the promised perfor-

mances in discriminating dynamic HAZs as all the values are below 0.5. Additionally, the pre-

diction accuracy of the second national lockdown model (classifier 5) reaches the highest at

0.44 and the minimal lockdown restrictions model reaches the lowest at 0.27 (classifier 2),

respectively. Locally, the right part denotes the feature importance of each RF classifier from

every observation period. We observe several relatively high feature importance values of the

urban features from different observation periods. The highest value (above 0.1) of each urban

characteristic in different observation phases is highlighted as pink cells. Significantly, it

denotes that the principle transports variable contributes to the significant effects on the dis-

crimination in HAZs from the classifiers, and the importance value reaches the highest level at

the four-tier restrictions (Classifier 6). In addition, the feature importance of green space in

the third national lockdown (Classifier 7) is the highest value compared to other classifiers of

restriction phases.

Discussion

This study has aimed to investigate the variations of human activities across urban areas using

geo-tagged big data in Greater London during the COVID-19 pandemic. Our analytic frame-

work has demonstrated significant changes in human activity patterns represented by the

HAZs in space and time. Following our proposed analysis framework, footfalls as the human

activity metrics can be aggregated on stays detected from raw mobile GPS data leveraged by

the stop detection algorithm, and HAZs can be efficiently generated based upon the OAs’ foot-

falls using the agglomerative clustering algorithm. Then, our classification of HAZs in urban

geospatial areas can be an effective way of exploring the relationship between human activity

Fig 8. The accuracy values (left) and feature importance values of urban characteristics (right) in RF classifiers of different restriction phases. There are ‘Before

lockdown’ (Classifier 0), ‘First national lockdown’ (Classifier 1), ‘Minimal lockdown restrictions’ (Classifier 2), ‘Reimposing restrictions’ (Classifier 3), ‘Three-tire

restrictions’ (Classifier 4), ‘Second national lockdown’ (Classifier 5), ‘Four-tier restrictions’ (Classifier 6), and ‘Third national lockdown’ (Classifier 7).

https://doi.org/10.1371/journal.pone.0277913.g008
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patterns and urban characteristic variables from the RF classifiers. The results facilitate our

understanding of how different containment policies influence human activity patterns in

space and time across urban areas.

Our findings have demonstrated that human activity changes in urban areas obtain a

roughly general decrease or increase in terms of footfall volumes but also the heterogeneous

spatial patterns of HAZs affected by the different restriction policies. Inherently, the variations

in human activity patterns represented by HAZs are associated with specific land use types

across the urban areas in Greater London. In terms of the urban centre examination, we plot

several places and their footfall patterns (standardised) in the before lockdown and second

national lockdown phases within the urban centre areas in Fig 9. The busiest areas around the

City of London in the before lockdown phase had shifted to the surrounding parks in the sec-

ond national lockdown phase. Obviously, such busy area displacements are strongly connected

to the restriction policies, i.e., the closure of non-essential high street businesses, and citizens

can meet one person from outside their ‘support bubble’ outdoors rather than inside the home

in the second national lockdown phase.

Though the COVID-19 pandemic has caused spatial displacements in HAZs across urban

areas, the results also show that the connections between human activity and land use remain

stable in terms of the footfall temporal patterns rather than footfall volumes influenced by the

restriction policies. For example, the human activities in the urban centre areas in the first or

second national lockdown phase have tremendously decreased compared to the normal phase,

the footfall temporal pattern of these areas remains the busy-weekday trend as the workplace

function effect contributing to the classification of HAZs (e.g., the two footfall patterns of City

of London, Victoria Park or Regent’s Park area shown in Fig 9). An alternative explanation is

that dynamic populations still obtain high requirements for visiting or working across the

urban leisure/workplace areas during the pandemic, so the sensed human activity dynamics

with similar commuting behaviour patterns are captured as a classification in terms of the

footfall patterns. Besides, the human activity patterns in relation to land use functionality at

some specific type of place can be affected by restriction policies. For example, the busy-week-

day footfall patterns in the Hyder Park area during the before lockdown phase are found to

change to a busy-weekend trend in the second national lockdown phase. It is highlighted that

workplace-related human behaviours (e.g., communing) in these places have reduced during

the second national lockdown.

Considering other urban characteristics, the principle of transport and green space with a

higher level of feature importance than other urban features during different restriction phases

denote these land use types dominate the HAZ formulation affected by the restriction policies.

In other words, the influences in the human activity of these land use obtain a higher level

than others and such variations have been captured by the HAZs discrimination. On the con-

trary, the weak effect of socio-demographic features (OA classification data) and other land

use types on the discrimination in the HAZs denotes that static urban characteristics cannot

explain the dynamic human activity either before the pandemic or during the pandemic.

Disaggregating some of the results presented here could identify the types of HAZs that are

significantly associated with human behaviours shifting in relation to urban function varia-

tions during the pandemic crisis. Considering the human activity patterns in urban areas

affected by restriction policies not only can help to strengthen the policy evaluation but also

might provide evidence for further developing tailored recommendations in several city man-

agement topics. For instance, city management resources (e.g., policing patrolling) might be

more efficiently used if considering some specific types of areas obtaining the distinctively

human activity changes, while our previous work has proved the strong connections between

HAZ and crime change during the pandemic [15]. Additionally, further public health-related
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Fig 9. The HAZs within the urban centre’s buffer area (6 km) in the before lockdown phase and the second national lockdown phase. Geographical boundary data

source: Office for National Statistics licensed under the Open Government Licence v.3.0. Contains OS data © Crown copyright and database right 2022. Contains

National Statistics data © Crown copyright and database right 2022.

https://doi.org/10.1371/journal.pone.0277913.g009
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social measures in restriction or relaxation in the city (e.g., mobility restriction, work-from-

home suggestions) can be allocated to specific urban areas while evaluating the dynamic urban

areas associated with human activities.

Conclusions

In conclusion, this research analysed human activity variations in space and time in small

urban areas and explored the associations between human activity and static urban character-

istics in Greater London during several pandemic restriction phases from 2020-01-01 to 2021-

02-27. The results enhance our understanding of how human activity patterns could be influ-

enced by different policies and affect the discriminant spatio-temporal patterns across urban

areas. The exploration of spatio-temporal variations of human activity intertwined with urban

land use can be adopted as an approach to disentangle some of the urban complexity.

The findings strengthen our knowledge concerning dynamic human activities in urban

areas amid different restriction phases and give insight into that the spatial-temporal changes

of human activity are related (obviously not limited) to urban characteristic variables. So,

pubic-related strategies could be developed considering the combination of human activity-

related variables and urban features.

One limitation of this study is that footfall as a proxy of human activity cannot reflect the

information on travelling across the urban areas, which cannot portray human activity and

further discuss other inequality of characteristics during the pandemic in a comprehensive

way. In this initial exploration, it has not been possible to examine human activity patterns

considering an hourly reflection of a city’s daily phenomena (e.g., commuting, traffic peaks).

Additionally, a combination of human activity and other interesting urban variables needs to

be generally considered in future research.

Acknowledgments

Valuable suggestions from the editors and reviewers are gratefully acknowledged.

Author Contributions

Conceptualization: Tongxin Chen.

Data curation: Tongxin Chen, Xiaowei Gao.

Formal analysis: Tongxin Chen.

Funding acquisition: Tao Cheng.

Investigation: Di Zhu, Huanfa Chen.

Methodology: Tongxin Chen, Di Zhu.

Resources: Tao Cheng.

Software: Tongxin Chen, Xiaowei Gao.

Supervision: Tao Cheng.

Validation: Tao Cheng, Huanfa Chen.

Visualization: Tongxin Chen, Di Zhu, Xiaowei Gao.

Writing – original draft: Tongxin Chen.

Writing – review & editing: Tongxin Chen, Di Zhu, Tao Cheng.

PLOS ONE Human activity zones during the COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0277913 January 20, 2023 18 / 21

https://doi.org/10.1371/journal.pone.0277913


References
1. Batty M. The size, scale, and shape of cities. science. 2008; 319(5864):769–771. https://doi.org/10.

1126/science.1151419 PMID: 18258906

2. Batty M. The pulse of the city; 2010.

3. Goodchild MF. Citizens as sensors: the world of volunteered geography. GeoJournal. 2007; 69(4):211–

221. https://doi.org/10.1007/s10708-007-9111-y

4. Du S, Du S, Liu B, Zhang X. Mapping large-scale and fine-grained urban functional zones from VHR

images using a multi-scale semantic segmentation network and object based approach. Remote Sens-

ing of Environment. 2021; 261:112480. https://doi.org/10.1016/j.rse.2021.112480

5. Song J, Lin T, Li X, Prishchepov AV. Mapping urban functional zones by integrating very high spatial

resolution remote sensing imagery and points of interest: A case study of Xiamen, China. Remote Sens-

ing. 2018; 10(11):1737. https://doi.org/10.3390/rs10111737

6. Shin HB. Residential redevelopment and the entrepreneurial local state: The implications of Beijing’s

shifting emphasis on urban redevelopment policies. Urban Studies. 2009; 46(13):2815–2839. https://

doi.org/10.1177/0042098009345540

7. Jiang S, Alves A, Rodrigues F, Ferreira J Jr, Pereira FC. Mining point-of-interest data from social net-

works for urban land use classification and disaggregation. Computers, Environment and Urban Sys-

tems. 2015; 53:36–46. https://doi.org/10.1016/j.compenvurbsys.2014.12.001

8. Grantz KH, Meredith HR, Cummings DA, Metcalf CJE, Grenfell BT, Giles JR, et al. The use of mobile

phone data to inform analysis of COVID-19 pandemic epidemiology. Nature communications. 2020; 11

(1):1–8. https://doi.org/10.1038/s41467-020-18190-5 PMID: 32999287
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