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Performance of Energy ETFs and Climate Risks 

 

 

Abstract 

We investigate whether green (brown) portfolios constructed from clean energy ETFs (fossil 

fuel ETFs) yield positive (negative) returns conditional on climate-related risks. While the 

green portfolios do not unconditionally outperform the brown ones, the outperformance of 

green portfolios is statistically significant under the conditional setting using non-parametric 

estimates with imposing inequality restrictions. Our conditional studies also show that brown 

portfolios are riskier than green ones with various measurements. We present the heterogeneity 

in the effect of climate information on the return and risk of green and brown portfolios. 

Furthermore, we document that fund flows for green assets are higher than those for brown 

ones during periods of high climate risks. Our findings are robust to alternative specifications. 
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1 Introduction 

        Investors are becoming more concerned about climate risk. Institutional investors feel that 

climate change has a significant impact on their portfolios and that the risks associated with 

climate laws have already started to materialize, according to a poll conducted by Krueger et 

al. in 2020. Climate hazards, in particular, exert pressure on the operations of fossil fuel and 
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high-emission companies, such as coal and oil companies, which are significant contributors 

to climate change. For instance, the US insurance Chubb has stated that it will not be making 

any further investments in coal, while the European Investment Bank has indicated that it 

would no longer be making loans for fossil fuel energy projects after 2021. The increasing 

issues brought about by climate change make it necessary for investment portfolios to manage 

climate risks. The decision between green and brown investments represents a pivotal decision 

that not only influences financial returns but also shapes environmental impact and resilience 

against climate risks. 

        While other studies focus on fixed-income markets (Goldsmith-Pinkham et al., 2019; 

Huynh & Xia, 2021), real estate markets (Giglio et al., 2021), and foreign exchange markets 

(Kapfhammer et al., 2020), A growing literature has explored the impact of environmental and 

climate-related risks on stock markets. 1  Studies (Barnett & Salomon, 2006; Sharfman & 

Fernando, 2008; El Ghoul et al., 2011; Guenster et al., 2011; Chava, 2014) have specifically 

looked at the connection between environmental or ESG scores and stock returns. According 

to environmental or ESG scores, several research has looked at how well long-short portfolios 

perform (Kempf & Osthoff, 2007; Statman & Glushkov, 2009; Trinks et al., 2018; Hsu et al., 

2020). The empirical data on whether green assets perform better than brown assets is 

conflicting, with the majority of the results being based on unconditional and ex-post fitted 

estimates. Especially, the positive green (brown) asset returns have not been sufficiently 

explained in existing literature for two main reasons. Most existing studies focus on comparing 

green asset returns to brown asset returns and they use the linear model to examine the 

relationship between climate-related variables and asset returns (Choi et al., 2020; Bolton & 

Kacperzyk, 2021; Ardia et al., 2022; Pastor et al., 2022). Therefore, while the positivity of 

green (brown) asset returns has important implications for investors seeking to hedge against 

climate risks, there is a lack of investigating whether green (brown) assets generate positive 

(negative) returns when climate risks materialize. This requires rigorous studies on the green 

and brown portfolio performance conditional on various climate-related risks. Indeed, 

identifying which assets are likely to do well or poorly during periods of high climate risks is 

essential for constructing hedging portfolios.  

         Therefore, we aim to bridge this gap by providing robust evidence on whether green 

assets outperform brown assets and whether green (brown) asset returns are positive (negative) 

 
1 Chava (2014), Hong, et al (2019)., Bolton & Kacperczyk (2020), Faccini et al (2021), Hsu et al., 2022 (2020), 

Ardia et al. (2022) and Pástor et al. (2022). 
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in the presence of various climate risks. This contributes to clarifying the reasons behind the 

outperformance of green assets relative to brown assets. Furthermore, our focus extends to 

investigating the state dependence of green and brown asset returns and risks. We study green 

and brown asset returns and risks conditional on quantified climate-related information. 

Whereas prior studies assume a linear relationship between climate information and returns, 

we explore heterogeneity in the effects, and we show that the effect becomes more pronounced 

when the upper quantile of climate-related information is used. 

 

        The energy sector is exposed to a range of climate hazards (van Benthem et al., 2022), 

and these risks have a significant impact on how investors allocate money and monitor energy 

companies. For these reasons, our research focuses on clean energy and fossil fuel ETFs. 

Moreover, the underlying assets of exchange-traded funds (ETFs) aid in identifying the climate 

risks associated with investments, and the flows of these funds offer distinct insights into the 

non-fundamental demand for assets (Brown et al., 2021). The inadequacy and opacity of ESG 

data, coupled with nonstructured methodology, is another reason we employ exchange-traded 

funds (ETFs) as stand-ins for green and brown assets rather than depending solely on ESG 

rankings. As pointed out by Avramov et al. (2021), there is an absence of a reliable measure of 

the true ESG performance, which turns out that ESG investors often confront a substantial 

amount of uncertainty about the true ESG profile. Therefore, we form green and brown 

portfolios by using clean energy and fossil fuel ETFs. We investigate whether the green 

portfolio outperforms the brown portfolio in a conditional setting in which climate-related 

information including natural disasters and climate policy uncertainty (CPU) is incorporated. 

In addition, we also study risk metrics of green and brown portfolios such as market beta, 

downside beta and idiosyncratic risk. Balancing financial returns and risks with environmental 

instrumental variables becomes the cornerstone of responsible investing in an era defined by 

climate risks. 

       We employ the conditional inequality test, which was suggested by Boudoukh et al. (1993) 

and Wolak (1987, 1989). Specifically, we use the nonparametric approach, which does not 

require structural models for conditional anticipated returns, to jointly assess inequality 

limitations on the return (risk) of the green and brown portfolios. By improving the accuracy 

and application of statistical analysis, this conditional inequality test helps us to extract more 

precise and complex insights from the data. We build tools pertaining to the CPU index and 

natural calamities to aid in the hypothesis testing. The instruments record the times when CPU 
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and natural calamities are higher than the median. These tools are economically straightforward 

and inspired by earlier research to record data impacting the moments of green and brown 

portfolios.  

        For the performances of the green and brown portfolios, we present the variations between 

the unconditional and conditional results. For example, we observe that the green portfolio's 

mean return, conditional on CPU, is 1.261%, whereas its unconditional mean return is -0.877%. 

Furthermore, we offer solid proof that, in conditional conditions, the green portfolio performs 

better than the brown portfolio. In particular, the conditional on natural catastrophes and CPU, 

the CAPM-adjusted return disparities (brown-minus-green) are -1.433% and -3.74%, 

respectively, which is much less than the unconditional mean return (-0.675%). It's interesting 

to note that, contrary to what unconditional tests indicate, our findings indicate that, when 

conditioning on climate information, the green portfolio produces positive expected returns. 

Furthermore, we discover that the brown portfolio produces negative returns in response to 

climate risks.  

For risk measurements, the unconditional results report that there is no difference in 

market beta between green and brown portfolios, but the brown portfolio has a higher market 

beta than the green portfolio after incorporating climate-related information. We further 

provide convincing findings when turning to downside semibeta 𝛽̂𝑡,𝑖
𝑁  -- the covariation between 

negative returns and negative market returns. We find that the brown portfolio has a 

significantly higher downside risk than the green one, specifically, the downside semibeta 

difference conditional on CPU is -0.104 which is far lower than the unconditional difference 

of -0.015.  

Using fund flows, we examine the market for green and brown assets in the wake of 

Brown et al. (2021) and Davies (2022). Pástor et al. (2021) specifically contend that the 

outperformance of green assets is a result of the high demand for green assets brought on by 

climatic shocks. When conditioning on high natural disasters and CPU included, we find that 

the non-fundamental demand for green ETFs is higher than that for brown ETFs. These 

findings provide an explanation for the green portfolio's superior performance in climate-risky 

areas.  

We use NBER-designated recession periods and cyclicality-adjusted real P/E (CAPE) 

ratios to investigate if our findings are driven by specific economic situations. We discover that 

green portfolios outperform brown portfolios when climate-related instruments are integrated 
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during recessionary periods, even though the results do not show that green portfolios 

outperform brown portfolios during economic recessions. Furthermore, our findings hold up 

well when we account for the four Carhart (1997) components, oil returns, and recreate 

alternative instruments.  

             The paper contributes to several strands of green investment literature. Firstly, 

we provide rigorous comparisons of the clean energy (green) and fossil fuel (brown) ETFs 

performances, and their evaluations are conducted based on conditional settings. The 

conditional inequality test is a nonparametric approach that does not depend on a structural 

model for expected returns under specific conditions. This approach is novel and allows us to 

understand why the green assets outperform the brown assets under the impact of climate-

related information, including natural disasters and uncertainties in climate policies. 

Importantly, our paper documents the positivity of green and brown asset returns, which 

contribute to emerging literature related to hedging against climate risks (Engle et al., 2020; 

Alekseev et al., 2022). 

In contrast to most existing literature which provides green and brown asset 

performances with unconditional comparisons, our study reports both conditional and 

unconditional results and separately explores the impact of physical risk and policy transition 

risk. We further investigate the performances of clean energy and fossil fuel ETFs conditional 

on the extreme climate-related risk by using the 75th percentile risk proxy. Our results diverge 

from previous studies, such as those by Ardia et al. (2022) and Pástor et al. (2022), which focus 

on the linear relationship between long-short green and brown portfolios. We find the disparity 

between green and brown portfolio returns are more pronounced conditional on severe 

environmental catastrophes and regulatory directives.  

The paper also contributes to climate finance literature by studying the risks associated 

with green and brown portfolios. We provide comprehensive comparisons of systematic risk 

(beta), and downside risk (semi-beta) and idiosyncratic risks of clean energy and fossil fuel 

ETFs. To the best of our knowledge, no earlier study has conducted the different risk 

measurements conditional on climate-related information.  We find brown fossil fuel ETFs are 

more sensitive to market movements than clean energy ETFs, and it is mainly driven by the 

downside risk, which is opposite to the finding based on the unconditional comparison, i.e., the 

brown portfolio does not have a higher downside beta. We also report how climate-related 

instruments affect the idiosyncratic volatilities of green and brown ETF portfolios. In addition, 
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the paper contributes to a strand of burgeoning literature that investigates the impact of climate 

risks on energy industries (He & Zhang, 2022; Pham et al., 2023; Siddique et al., 2023; Li et 

al., 2024). 

Our results offer insights for evaluating portfolio investment performances and risk 

perceptions. If we solely consider unconditionally estimates, one could conclude that there are 

no differences in returns and risks between green and brown assets. In contrast, our findings 

reveal that green and brown assets are significantly different in terms of returns and risks when 

considering climate risk-related information. Specifically, while fossil fuel ETFs provide 

negative returns, clean tech ETFs provide positive returns during periods of high climate risks. 

Investors also need to differentiate market risks (particularly the downside market beta), of 

green and brown portfolios by incorporating the correlations with climate risks.  Therefore, our 

conditional results provide important implications for portfolio allocations and hedging against 

climate risks, and investment decisions cannot be solely based on unconditional measurements. 

The remainder of the paper proceeds as follows. Section 2 presents the relevant 

literature review and hypotheses. Section 3 describes our data and the method for testing our 

hypotheses. Sections 4 and 5 present empirical results and robustness checks. Finally, the 

conclusions are in Section 6. 

2 Literature review and hypotheses 

Numerous studies have looked at how well green and brown assets perform. The results 

that are currently available are mixed. For instance, the earlier studies examine whether 

investing strategies that are environmentally friendly or socially responsible (SRI) produce 

positive anomalous returns in comparison to conventional strategies that are based on 

traditional asset pricing models. According to some research, the average alphas of SRI and 

non-SRI funds do not differ statistically significantly (Hamilton et al., 1993; Statman, 2000). 

Nonetheless, additional research suggests that SRI tactics may have favourable outcomes 

(Kempf & Osthoff, 2007; Statman & Glushkov, 2009; Guenster et al., 2011). Conversely, 

Geczy et al. (2021) discover that diversification costs cause SRI techniques to perform worse 

than traditional investing strategies. 

Furthermore, some research indicates that socially irresponsible or environmentally 

unfriendly stocks are riskier than other stocks because of investor boycotts (Luo & Balvers, 

2017) and shifts in environmental regulations (Hsu et al., 2020). As a result, such stocks have 

to offer higher expected returns to attract investors. For example, Chava (2014) finds that firms 
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with environmental concerns, such as hazardous chemicals, substantial emissions, or climate 

change concerns, have higher expected returns than firms without such environmental 

concerns. Choi et al. (2020) find green assets have higher returns than brown ones during 

months with high abnormal temperatures. Bolton and Kacperczyk (2021) find that stocks of 

firms with higher total CO2 emissions earn higher returns since investors demand 

compensation for their exposure to carbon emission risk. Ardia et al. (2022) and Pástor et al. 

(2022) show that green assets outperform brown assets when media news about climate change 

is high. In general, the existing studies find that green assets outperform brown assets only at 

certain periods. However, they do not directly test whether green (brown) assets offer positive 

(negative) returns during periods of high climate risks.  

Apart of mixing empirical findings, theoretical studies attempt to shed light on the 

relationship between sustainability and asset returns. Heinkel et al. (2001) develop a theoretical 

model based on the price implications of limited risk sharing proposed by Merton (1987), to 

investigate the effect of exclusionary ethical investing on corporate behavior in an equilibrium 

setting. Pástor et al. (2021) propose a theoretical equilibrium model of investing based on 

environmental, social, and governance (ESG) criteria. The model predicts that green stocks 

have lower expected returns than brown stocks in the long run. However, green assets 

outperform brown assets when there are unexpected increases in customers’ tastes for green 

products and investors’ tastes for sustainable investing. Specifically, negative climate shocks 

not only motivate customers to tilt toward green products but also lead the government to 

impose climate regulations that favor green firms over brown firms. In other words, the 

unexpected worsening of climate change could strengthen not only customers’ demands for 

green products but also investors’ preference for green holdings. While Baker et al. (2022)’s 

multiple-agent model asserts that polluting firms attract more investment capital than identical 

non-polluting firms through a hedging channel. Other theoretical work including Hsu et al. 

(2022) develops a general equilibrium asset pricing model in which firms’ cash flows face the 

uncertainty of policy regime shifts in environmental regulations, therefore, high-emission firms 

are more exposed to the policy regime shift risk and expected to earn a higher average return 

than low emission firms. 

Market efficiency theories suggest that asset prices reflect all available information. 

When new information about climate risks is released, it should be quickly incorporated into 

asset prices. Green portfolio is composed of companies that are environmentally friendly or 

have low carbon footprints. These companies are likely to benefit from climate risk-related 
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information (e.g., new regulations favoring green technology, and consumer shifts towards 

sustainable products) (Pastor et al., 2021; Giglio et al., 2021). As this information is 

incorporated into the market, the value of green stocks increases, leading to positive returns. 

From the behavioural perspective, investors possess a positive sentiment towards green assets, 

and there is a growing positive sentiment and investor enthusiasm for green investments (Briere 

& Ramelli, 2022). 

Our study aims to provide a formal hypothesis testing if green assets outperform brown 

assets conditional on climate risk instruments. In addition, we investigate whether the green 

(brown) portfolio generates positive (negative) returns conditional on climate risk instruments. 

H1a: The green portfolio outperforms the brown portfolio conditional on climate risk-

related information. 

H1b: The green (brown) portfolio yields positive (negative) returns conditional on 

climate risk-related information. 

The market beta of green assets could be lower than that of brown assets when climate 

risks are realized. Giglio et al. (2021) suggest that adverse climate shocks reduce consumption 

but favor green assets because of their ability to hedge against climate risks. Therefore, adverse 

climate shocks could affect the correlation of the green (brown) portfolio with the market. 

Furthermore, environmentally friendly firms have lower systematic risks (market betas) 

than environmentally unfriendly firms (Sharfman & Fernando, 2008; Albuquerque et al., 

2019). Therefore, we hypothesize that brown assets have higher market betas than green assets, 

conditional on instruments reflecting climate risk.  

H2a: The market beta of the brown (fossil) portfolio is higher than that of the green (clean 

energy) portfolio conditional on climate risk-related information. 

We further investigate the covariation between green (brown) portfolio returns and 

market returns by following Bollerslev et al. (2021) and decomposing the market beta into four 

realized semibetas that depend on the signed covariation between the market and asset returns: 

𝛽̂𝑡,𝑖  ≡  
∑ 𝑟𝑡,𝑘,𝑖𝑓𝑡,𝑘

𝑚
𝑘=1

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

=  𝛽̂𝑡,𝑖
𝑁 + 𝛽̂𝑡,𝑖

𝑃 −  𝛽̂𝑡,𝑖
𝑀+

−  𝛽̂𝑡,𝑖
𝑀−

(1) 

Let  𝑟𝑡,𝑘,𝑖 denote returns on asset 𝑖 over the 𝑘𝑡ℎ time interval within a fixed period 𝑡, 

with the concurrent returns for the aggregate market denoted by 𝑓𝑡,𝑘, namely 𝑘 is a day and 𝑡 
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is a month in the study, and m denotes the number of higher-frequency return intervals within 

each period. The decomposition is based on the semicovariance concept of Bollerslev et al. 

(2020). Specifically, 𝑁, 𝑃, 𝑀+, 𝑎𝑛𝑑 𝑀−  semicovariance components refer to respective 

portions of total covariance 𝐶𝑜𝑣(𝑟, 𝑓) defined by both returns being positive (𝑃 state), both 

returns being negative (𝑁), mixed sign with positive market return (𝑀+), and mixed sign with 

negative market return (“ 𝑀− ”). Defined the signed intra-period asset returns by 𝑟𝑡,𝑘,𝑖
+  ≡

max (𝑟𝑡,𝑘,𝑖, 0) and 𝑟𝑡,𝑘,𝑖
−  ≡ min (𝑟𝑡,𝑘,𝑖, 0), with the signed intra-period market returns defined 

analogously. The realized semibetas are then defined by: 

𝛽̂𝑡,𝑖
𝑁  ≡  

∑ 𝑟𝑡,𝑘,𝑖
−𝑚

𝑘=1 𝑓𝑡,𝑘
−

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

, 𝛽̂𝑡,𝑖
𝑃  ≡  

∑ 𝑟𝑡,𝑘,𝑖
+𝑚

𝑘=1 𝑓𝑡,𝑘
+

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

𝛽̂𝑡,𝑖
𝑀−

≡  
− ∑ 𝑟𝑡,𝑘,𝑖

+𝑚
𝑘=1 𝑓𝑡,𝑘

−

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

, 𝛽̂𝑡,𝑖
𝑀+

≡  
− ∑ 𝑟𝑡,𝑘,𝑖

−𝑚
𝑘=1 𝑓𝑡,𝑘

+

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

(2) 

 Bollerslev et al. (2021) show that the 𝛽̂𝑁 and 𝛽̂𝑀− disentangle the risk premium from 

downside risk, and the correlation between asset returns and market downturns is the main 

concern of investors. Fossil fuel firms are more exposed to climate risk-related information that 

negatively impacts their returns. Regulatory frameworks and policies aimed at mitigating 

climate change disproportionately impact fossil fuel companies. Stricter regulations on fossil 

fuels, such as carbon taxes, emission caps, and fossil fuel divestment policies directly affect 

brown portfolios. In addition, Giglio et al. (2021) indicate that the materialization of climate 

shock lowers consumption. In other words, climate risks lead to a downturn in the stock market. 

So, regulatory changes, shifts in investor preferences, and potential stranded assets make brown 

assets more vulnerable to adverse market conditions triggered by climate-related risks, and 

negative climate risk-related information exacerbates investor sentiment against brown assets, 

leading to selloffs and higher downside risk, therefore increasing the downside risk (semibetas) 

of brown portfolios.  

On the contrary, when an adverse climate shock occurs, the value of green (clean 

energy) stocks will increase because they are hedging assets (Giglio et al., 2021; Pastor et al., 

2021). In other words, when a downturn in the market due to climate risks occurs, the value of 

green (clean energy) stocks increases, which explains why green assets have lower downside 

risk compared to brown ones. The supportive policies for carbon reduction and incentives for 

clean energy technologies reduce the downside risk (semibetas) for green portfolios. As a 

result, clean energy companies are less sensitive to negative climate news since they are aligned 
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with sustainability trends and often benefit from regulatory support and positive investor 

sentiment. 

Therefore, we focus on the correlation between green (brown) returns and the market 

downturns when climate risks are realized. We test the null that the semibetas of the green 

(clean energy) portfolio are greater than or equal to those of the brown (fossil) portfolio, 

conditional on climate risk instruments. 

H2b: The brown (fossil) portfolio has higher semibetas than the green (clean energy) portfolio 

conditional on climate risk-related information. 

Idiosyncratic risk includes firm-specific risks that stem from adverse events such as 

lawsuits, strikes, brand and reputation erosion, and boycotts, which could affect a firm’s 

profitability and overall risk profile considerably. Lee & Faff (2009) find that firms with strong 

corporate social performances (CSPs) have lower idiosyncratic risks than firms with weak 

CSPs. Due to the increasing concern about climate change, fossil fuel firms are not only under 

the pressure of divestment campaigns but also face potential lawsuits. Therefore, we 

hypothesize that the brown portfolio has a higher idiosyncratic risk than the green portfolio. 

Specifically, we jointly test the null that the idiosyncratic risk of the green (clean energy) 

portfolio is greater than or equal to that of the brown (fossil) portfolio, conditional on climate 

risk instruments. 

H3: The brown (fossil energy) portfolio has a higher idiosyncratic risk (volatility) than the 

green (clean energy) portfolio conditional on information set about climate risks. 

3 Data and methodology 

3.1  Instrumental variables 

We have collected the following instrumental variables data in our study: 

1. U.S. natural disaster data were obtained from the National Oceanic and 

Atmospheric Administration (NOAA) from 2008 to 2020.2 These data contain the 

number of disaster events that cause losses of more than U.S. billion dollars, the 

financial cost of each disaster and the number of deaths as a result of each disaster. 

Theoretically, natural disasters induced by climate change affect aggregate wealth 

and asset valuations (Bansal et al., 2016). Some existing papers find the effect of 

 
2 ncdc.noaa.gov/billions/events 
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natural disasters on market anomalies (Tsai & Wachter, 2016; Bai et al., 2019; 

Lanfear et al., 2019)  and return comovement (Ma et al., 2022). 

2. Climate Policy Uncertainty (CPU) index proposed by Gavriilidis (2021). CPU 

captures the uncertainty related to climate policy which is likely to affect investors’ 

decisions.3 The index is constructed by extracting news about climate policy from 

major US newspapers, including the Boston Globe, Chicago Tribune, Los Angeles 

Times, Miami Herald, New York Times, Tampa Bay Times, USA Today, and the 

Wall Street Journal. This indexing method follows the methodology of Baker et al. 

(2016) who construct the Economic Policy Uncertainty (EPU) index. CPU contains 

information that could affect the expected returns of green and brown assets. The 

index reaches a peak when there are important climate events such as new emissions 

legislation, global strikes about climate change, and Presidents’ statements about 

climate policy, among other developments.   

Overall, natural disasters and CPU proxy for physical risk and transition risk due to climate 

change. These instruments are economically motivated and intuitive. We also obtained 

cyclicality-adjusted real P/E (CAPE) ratio from Shiller’s website,4 oil price, and NBER-based 

recession periods from the Federal Reserve Bank of St. Louis in robustness checks. We have 

collected four Carhart factors data from Kenneth R. French website5 and oil prices from the 

Federal Reserve Bank of St. Louis. 

3.2 Green and brown portfolios 

We use fossil fuel ETFs and clean energy ETFs as proxies for brown and green assets. 

Specifically, our study uses four clean energy ETFs including iShares Global Clean Energy 

ETF (ICLN), Invesco WilderHill Clean Energy ETF (PBW), Invesco Global Clean Energy 

ETF (PBD), and First Trust NASDAQ Clean Edge Green Energy Index Fund (QCLN). In 

addition, the study uses four fossil fuel energy ETFs including Energy Select Sector SPDR 

Fund (XLE), Vanguard Energy ETF (VDE), SPDR S&P Oil & Gas Exploration & Production 

ETF (XOP), and VanEck Vectors Coal ETF (KOL).  They are top ETFs based on assets under 

management (AUM). ETF data are obtained from the Centre for Research in Security Prices 

(CRSP). We form an equally weighted green portfolio consisting of four clean energy ETFs 

and an equal-weighted brown portfolio consisting of four fossil fuel ETFs. 

 
3 https://policyuncertainty.com/climate_uncertainty.html 
4 http://www.econ.yale.edu/~shiller/ 
5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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Panel A of Table 1 provides the correlation estimates between ETFs. We observe that the 

clean energy ETFs (ICLN, PBW, QCLN, PBD) are highly correlated, with estimates from 

0.873 to 0.955. Three of the fossil fuel energy ETFs (XLE, VDE, and XOP) are also highly 

correlated, their paired correlation coefficients are well above 90%. However, the correlations 

of these ETFs with KOL are lower, from 61.3% to 71.6%. The correlation estimates between 

the fossil fuel ETFs and clean energy ETFs are also moderate.  

Panel B of Table 1 reports summary statistics of ETF returns, and the variables used to 

construct instruments from June 2008 to December 2020.6 As can be seen, all clean energy 

ETFs have positive mean returns, whereas the fossil fuel ETFs have negative mean returns 

except XLE (0.008). Also, the mean excess return of the green (clean) portfolio is 0.583%, 

while that of the brown (fossil) portfolio is −0.193%. While the standard deviations of the green 

and brown portfolios are not very different, the green portfolio is much more negatively skewed 

than the brown portfolio. There are 165 natural disasters during the sample and monthly mean 

and median numbers of natural disasters are two and one. The mean and median of the Climate 

Policy Uncertainty (CPU) index are 125 and 104.32, respectively. 

[Table 1 about here] 

3.3 Conditional testing procedure 

We examine the assertions of Pástor et al. (2021) by adopting the multivariate inequality 

constraints approach proposed by Wolak (1987, 1989). This approach provides a rigorous test 

for validating the priori signs of the parameters to be estimated, where such a priori beliefs 

point to an inequality restriction rather than an equality restriction. It allows moments to be 

conditioned on observable information and takes the unobservability of expected returns into 

account by employing instrumental variables. Wolak (1987) also illustrates how to compute 

critical values for a small sample size (refer to Lemma 4.1 and Theorem 4.4); and further details 

the exact distributions for the various forms of the test statistic, including the covariance matrix 

of errors for a small sample, and demonstrates that small sample results continue to hold (refer 

to Section 6 of Wolak (1987)).  

The conditional test with multivariate inequality constraints has several attractive features as 

demonstrated by Boudoukh et al. (1993), which study the market annual risk premium. First, 

this approach does not require a model for conditional expectations. This is especially 

 
6 Our sample starts from 2008 due to most of the green energy ETFs data available from June 2008. 
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important because most asset pricing theories do not explicitly model conditional expectations. 

As it turns out, all that needs to be satisfied are the stationarity and ergodicity assumptions on 

the observable variables. Second, econometricians tend to include instrumental variables but 

may not know how they enter the model. Indeed, while the existing studies use a linear model, 

the relationship between climate-related variables and returns is unknown. Therefore, this non-

parametric approach is advantageous because it does not require an assumed functional form 

nor the conditional distribution of data to be tested. Third, the restrictions can be tested jointly, 

meaning that the test incorporates any correlations across the mean estimators. For example, 

natural disasters and climate policy could be correlated. Therefore, the approach makes the 

results more robust.  

In contrast to other commonly used approaches, such as t-test and F-test, which require 

strong assumptions on the data distribution, and often require a large sample size; regression 

methods require assumptions of linear relationship, normality of residuals, and 

homoscedasticity. Other alternative non-parametric methods, such as the Mann-Whitney U test 

and the Kruskal-Wallis test, both are unconditional approaches that generally test for equality 

rather than inequality; and are less powerful for detecting specific types of differences with 

smaller sample sizes. Other conditional tests use Bayesian approaches, which require the 

specification of prior distributions, and their results are typically presented in terms of posterior 

probabilities, which are not intuitive to communicate and interpret, especially when dealing 

with multiple inequality constraints. See Klugkist and Hoijtink (2007), Van West, et. al, (2011) 

for details. Most of the Bayesian approaches involve computational complexity and 

convergence issues. Of particular interest, the inequality approach by Wolak (1987, 1989) is 

easy to implement and results are intuitive to interpret. 

We consider a model that implies the following null hypothesis: 

𝐸𝑡[𝑅brown,𝑡+1 − 𝑅green,𝑡+1] =  𝐷𝑡 ≥ 0 ,        (3) 

where 𝑅brown,𝑡+1 and 𝑅green,𝑡+1 are brown (fossil) and green (clean energy) portfolio returns, 

respectively, at time t + 1 and 𝐷𝑡 is defined as the difference. Eq. (3) states that the ex-ante 

return difference between the brown and green portfolios is nonnegative. 

 Following Pástor et al. (2021), portfolio returns may depend on a variety of instruments 

related to either the customer channel or the investor channel in the agent’s information sets. 

Specifically, we use information about natural disasters and climate policy uncertainty. The 
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sign of the equation does not change when both sides of Eq. (3) are multiplied by nonnegative 

instruments 𝑧𝑡
+. Therefore, we obtain: 

𝐸[(𝑅brown,𝑡+1 − 𝑅green,𝑡+1) ⊗ 𝑧𝑡
+ − 𝜃𝐷𝑧+] = 0 ,        (4) 

where 

𝜃𝐷𝑧+ = 𝐸[𝐷𝑡 ⊗ 𝑧𝑡
+] ≥ 0 . (5) 

Eq. (4) provides a set of moment conditions for which the econometrician needs to 

estimate the vector of parameters 𝜃𝐷𝑧+ . The attractiveness of this approach is that, it does not 

matter if 𝐷𝑡 is observable or not, because the vector of observables (𝑅brown,𝑡+1,  𝑅green,𝑡+1,, 

𝑧𝑡
+) is enough to identify 𝜃𝐷𝑧+ . Since we have two instruments, we expand the restrictions 

given in Eqs. (4) and (5) as a system of 2-moment conditions: 

𝐸[(𝑅brown,𝑡+1 − 𝑅green,𝑡+1)𝑧1𝑡
+ ] =  𝜃𝐷𝑧1

+

𝐸[(𝑅brown,𝑡+1 − 𝑅green,𝑡+1)𝑧2𝑡
+ ] =  𝜃𝐷𝑧2

+

(6) 

 𝐻0: 𝜃𝐷𝑧𝑖
+ ≥ 0             ∀𝑖= 1, 2 

𝐻𝐴: 𝜃𝐷𝑧𝑖
+ ∈ 𝑅𝑁  

We calculate the unrestricted estimate (sample mean) and the restricted estimate 

nonnegative under the null by using a non-parametric approach. Then, we test the difference 

between unrestricted and restricted estimators that under the null, the difference should be 

small. The test statistic is calculated as the Wald statistic, and the statistic is distributed as a 

weighted sum of chi-squared variables with different degrees of freedom (Wolak, 1989). The 

p-value is calculated based on 1000 draws from Monte Carlo simulations. The detailed 

procedure for conducting the multivariate inequality testing is outlined in Appendix A1. 

Following Boudoukh et al. (1993), we construct both dummy and magnitude-based 

instruments. Specifically, we use their median as the threshold to construct nonnegative 

instruments. For dummy instruments, we define it as the following 

𝑧𝑖𝑡
∗ = {

1
0

 𝑖𝑓 𝑥𝑖𝑡 >  𝑥𝑖𝑡
𝑚𝑒𝑑  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7) 

where 𝑥𝑖𝑡 is the number of natural disasters and the CPU index in each month, whose median 

is denoted as 𝑥𝑖𝑡
𝑚𝑒𝑑. 
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Since the dummy instruments may not utilize all available information up to month t, we 

also generate magnitude-based instruments to consider their magnitudes. For the magnitude-

based instrument, we define it as  

𝑧𝑖𝑡
∗ = max(0, 𝑥𝑖𝑡 − 𝑥𝑖𝑡

𝑚𝑒𝑑) (8) 

The instruments are normalized as 𝑧𝑖𝑡
+  =  𝑧𝑖𝑡

∗ /𝐸[𝑧𝑖𝑡
∗ ] if 𝑧𝑖𝑡

∗ ≠ 0, and 𝑧𝑖𝑡
+  =  0 otherwise. This 

normalization ensures that these instruments have a clear economic interpretation. For 

example, 𝜃𝐷𝑧2
+  is the sample mean of brown-minus-green returns conditional on a high CPU. 

The detailed procedure of conducting the inequality test is provided in Appendix A1. 

We also apply the inequality tests for market betas, semibetas, and idiosyncratic risks. 

However, regarding risk metrics, we test the null that green-minus-brown risk metrics are 

greater than or equal to zero instead of brown-minus-green as returns. We examine whether we 

can reject the null that green-minus-brown risk metrics are nonnegative (if we can reject the 

null, we conclude that the brown portfolio is riskier than the green portfolio conditional on the 

climate-related instruments). 

4 Empirical findings 

4.1 Unconditional comparisons 

We first examine the unconditional tests of portfolio returns including risk-adjusted returns 

estimated from the CAPM and Carhart four-factor model with oil returns, the results are 

presented in Table 2. At first glance, the green portfolio raw return is insignificantly positive, 

and the brown portfolio raw return is insignificantly negative. It appears both risk-adjusted 

returns of the brown portfolio are significantly negative. We are more interested in the 

difference between the two portfolios as it is more important to our understanding of the 

underlying issue.  Although Table 2 implies a marginal rejection (p  = 0.083) of nonnegativity 

for the mean difference between the raw returns (i.e., brown-minus-green mean return), we 

cannot reject the null that brown-minus-green mean return is nonnegative for both risk-adjusted 

returns (p-values = 0.113 and 0.259). These preliminary results of unconditional tests indicate 

that green portfolios do not outperform brown ones. 

 Table 2 also reports the disparities between the green and brown portfolios’ market 

betas, realized semibetas, and idiosyncratic risks, respectively. First of all, we cannot reject the 

null that the market beta of the green portfolio is greater than or equal to that of the brown 

portfolio. This implies that the brown portfolio does not have a higher systematic risk than the 
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green portfolio under an unconditional setting. If we further look into the covariation with the 

market by separately considering negative and positive returns, i.e., examining the covariance 

between the negative (positive) returns of the portfolios and the negative (positive) returns of 

the market that is denoted by 𝛽̂𝑁 ( 𝛽̂𝑃), the unconditional test indicates that 𝛽̂𝑏𝑟𝑜𝑤𝑛
𝑁 is not higher 

than 𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑁  (we cannot reject the null that the 𝛽̂𝑔𝑟𝑒𝑒𝑛

𝑁  is greater than or equal to 𝛽̂𝑏𝑟𝑜𝑤𝑛
𝑁 ). Since 

𝛽̂𝑁measures the risk during the market downturn, this unconditional comparison implies that 

the brown portfolio is less volatile than the green portfolio in market downturn periods. For the 

idiosyncratic risk comparison, we reject the null that the idiosyncratic risk of the “green” 

portfolio is higher than or equal to that of the “brown” portfolio at the 1% level, which implies 

that the brown portfolio has unconditionally higher idiosyncratic volatility than the green 

portfolio. The bottom of the table reports the result for the fund flow, we find weak evidence 

that green ETFs attract more inflows compared to the brown portfolio at the 10% significant 

level. 

[Insert Table 2 Here]  
 

4.2 Conditional testing on portfolio returns 

We use CAPM-adjusted returns to test the first hypothesis. Panel A of Table 3 reports 

conditional mean returns and test statistics. The multiple inequality restriction statistics are 

1.879 (p-value = 0.086) and 4.757 (p-value = 0.014) for dummy and magnitude-based 

instruments. Thus, we can jointly reject the null that the brown-minus-green return is greater 

than or equal to zero in conditional tests using magnitude-based instruments at the 5% level of 

significance. Indeed, when we change from dummy instruments to magnitude-based 

instruments, the brown-minus-green mean difference becomes more negative. For example, 

conditional on natural disasters, it decreases from -1.002 to -1.423%. Similarly, conditional on 

Climate Policy Uncertainty (CPU), it decreases from -1.562 to -3.738%.  In contrast to 

pertinent results in Table 2, we find convincing evidence of the outperformance of the green 

portfolio to the brown portfolio by taking the magnitude of instruments into account.  

 Columns 3, 4, 6, and 7 in Panel A of Table 3 present results of testing whether the 

returns of brown and green portfolios are nonnegative conditional on climate-related 

instruments. We can reject the null that the brown portfolio’s mean return is nonnegative, 

which is consistent with the unconditional test. The multiple statistics are significant at the 1% 

level. Compared to the unconditional mean returns of -1.552%, incorporating instruments 
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makes the brown portfolio returns more negative, i.e., conditional mean returns are -2.371% 

and -2.477% associated with natural disasters and CPU when using magnitude-based 

instruments. In contrast, the result of green portfolio returns based on our conditional tests are 

not statistically negative. Indeed, we cannot reject the green portfolio returns are nonnegative 

(p-values of these tests are 0.218 and 0.210 for dummy and magnitude-based instruments, 

respectively). This is in sharp contrast to the green portfolio’s unconditional risk-adjusted 

return documented in Table 2, which is significantly negative. The return differences between 

these two portfolios are more clearly visible in Figure 1. Conditional returns for the brown 

portfolio returns are more negative than its unconditional return. While we cannot reject the 

nonnegativity of the green portfolio’s return conditional on natural disasters, its mean return 

conditional on CPU is positive, with a value of 1.261%.  

Furthermore, we reconstruct instruments by using the 75th percentile as the threshold 

instead of the median. In other words, the new instruments capture a higher number of natural 

disasters and CPU levels. Panel B of Table 3 displays the conditional tests with these 75th 

percentile threshold instruments, and the results are statistically significant at the 5% level. We 

also observe that the results are more economically significant compared to those using 

median-based instruments. Regarding dummy instruments, brown-minus-green returns are -

1.8% and -4.236% associated with natural disasters and CPU. For magnitude-based 

instruments results, brown-minus-green returns are -2.089 % and -4.335% associated with 

natural disasters and CPU. Compared to the existing studies assume a linear relationship 

between climate change  news and asset returns (Ardia et al., 2022; Pástor et al., 2022), we 

report the effect of climate information is not uniform and values above the 75th percentile have 

a more significant impact on the performances of green and brown portfolios.  

 In general, conditional tests on CAPM-adjusted returns support our first hypothesis that 

the green portfolio has a higher return than the brown one conditional on climate-related 

instruments. In addition, the results show the significant impact of CPU on green and brown 

portfolio returns. According to Krueger et al. (2020), institutional investors believe that 

regulatory risks due to climate change have begun to materialize already. Our conditional tests 

show not only the outperformance of the green portfolio relative to the brown one, but also a 

positive mean return of the green portfolio during high CPU. The results confirm that holding 

a green portfolio pays off when climate risks are realized. In contrast, the brown portfolio’s 

returns are statistically and economically negative during high climate risks. In addition to 

providing formal tests on the impact of climate-related policies and events on the energy 
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industry motivated by van Benthem et al. (2022), our findings have explicit hedge implications 

of green (clean energy) assets against climate risks, including regulatory risks.  

[Insert Table 3 Here] 

[Insert Figure 1 Here] 

4.3 Conditional testing on the market beta and semibetas 

For the second hypothesis, we begin by testing the null that the market beta of the green 

portfolio is greater than or equal to that of the brown portfolio, and results are reported in Table 

4. Specifically, market betas are estimated based on the CAPM with a 36-month rolling 

window of regressions. The multiple inequality restrictions statistic is 2.259 (p-value = 0.067) 

and 2.962 (p-value = 0.043) for dummy and magnitude-based instruments, respectively, and 

these results infer that the brown portfolio has higher market betas than the green portfolio after 

conditioning instruments. This is in contrast to the unconditional study where the brown 

portfolio’s market beta is not higher than the green portfolio’s. 

Similar to the comparisons of return performances, the tests conditional on magnitude-

based instruments present more significant results than those of the dummy-based tests, and 

the beta difference varies from 0.004 to -0.027 for the natural disaster instrument and from -

0.118 to -0.245 for the CPU instrument.  Figure A2.1 (Appendix) shows changes in market 

betas when we include climate-related instruments. As can be seen, when conditioning 

instruments related to natural disasters and especially CPU, the increment in the market beta 

of the brown portfolio is higher than that of the green portfolio.  

Overall, our results support hypothesis 2a that the brown portfolio has a higher market 

beta than the green portfolio under the conditional setting. The results provide explicit 

implications on market beta hedging and reducing the overall beta of a portfolio by longing 

assets with offsetting betas. In addition, our results complement the results of Ma et al. (2022) 

by showing the difference in comovement between brown and green assets under the impact 

of climate risks. 

[Insert Table 4 Here] 

Table 5 reports the results of inequality tests on the null that the green portfolio has 

higher semibetas than the brown portfolio.  We focus on 𝛽̂𝑁 (covariance between negative 

portfolio returns and negative market returns) since investors care more about downside 

variations, and the downside beta can better explain the cross-sectional variation in asset 



19 
 

returns and provides superior predictions in the presence of leverage effects, as conjectured in 

Ang et al., (2006) and Bollerslev et al. (2021). Specifically, Bollerslev et al. (2021) find that 

the correlation with the market downturns appears to carry a significant risk premium. As 

reported, the multiple inequality restrictions statistics are 6.252 (p-value=0.006) for dummy 

instruments and 5.770 (p-value=0.008) for magnitude-based instruments, which implies the 

brown portfolio has a higher 𝛽̂𝑁  than the green portfolio. In other words, conditioning on 

climate instruments, the brown portfolio has greater correlation with market during market 

downturns. 

Here we again find the opposite result of the unconditional comparisons in Table 2 

which indicates that the brown portfolio does not have a higher 𝛽̂𝑁 than the green one. When 

conditioning on magnitude-based instruments, absolute values of the difference are 0.032 and 

0.104 associated with natural disasters and CPU. The 𝛽̂𝑁  difference becomes prominent 

because of the decrease in 𝛽̂𝑁 of the green portfolio during high CPU. Figure A2.2 (Appendix) 

also shows that the conditional mean of 𝛽̂𝑡,𝑖
𝑁  of the green portfolio tends to be lower compared 

to the unconditional mean in the states of high CPU. These results are therefore supportive of 

the argument of Giglio et al. (2021) that climate shocks could negatively affect the market but 

favor green assets because of their ability to hedge climate risks.  

Furthermore, the brown portfolio has a higher 𝛽̂𝑀+
 (positive market returns and 

negative portfolio returns covariation) and does not have a higher 𝛽̂𝑃 (positive market returns 

and positive portfolio returns covariation) than the green portfolio. Interestingly, using 

magnitude-based instruments, the brown portfolio does not have a higher 𝛽̂𝑀−
(the negative 

market return and positive portfolios returns covariation) than the green portfolio, which 

contradicts the unconditional comparison in Table 2. In other words, when conditioning 

magnitude-based instruments, the brown portfolios’ ability to hedge against market downturns 

is not superior to green portfolios. Overall, the results imply that the brown portfolio has higher 

downside risks than the green one during periods of high natural disasters and especially CPU.7 

Therefore, if investors are averse to downside risk, they will not hold brown assets when 

climate risks are realized.  

[Insert Table 5 Here] 

 
7 Results are more statistically and economically significant with 75th percentile instruments. Those are reported 

in Appendix A2 (Table A2.2-A2.3). 
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4.4 Conditional testing on idiosyncratic volatilities 

The empirical existence of a positive/negative relationship between idiosyncratic risk and 

returns has been tested and debated for more than a decade, c.f Campbell, et al., 2001; Ang, et 

al., 2006. To understand which portfolios might be more prone to specific asset-related risks 

rather than market-wide movements, we  move to study our third hypothesis and focus on the 

comparisons of idiosyncratic volatilities of green and brown portfolios, which are 

conventionally calculated as the standard deviation of residuals from the CAPM model. Table 

6 demonstrates that the multiple inequality testing rejects the null that the idiosyncratic 

volatility of the green (clean) portfolio is higher than or equal to that of the brown (fossil) 

portfolio at the 1% level for dummy and magnitude-based instruments. Their multiple 

inequality restriction statistics are 13.881 (p-value = 0.000) and 12.232 (p-value = 0.000). 

Compared to the unconditional volatility of -0.933, the conditional volatilities associated with 

natural disasters and CPU are -1.329 and -1.346 for dummy instruments and -1.591 and -1.819 

for magnitude-based instruments. This indicates that these instruments are informative about 

the volatility of clean and fossil portfolios.  

Figure A2.3 (Appendix) shows how instruments affect the idiosyncratic risks of green 

and brown portfolios, i.e., conditional on climate related instruments, the brown portfolio is 

more volatile than the green one. For example, compared to the unconditional idiosyncratic 

risk of 4.86 %, conditional estimates are 5.22% and 6.17% associated with natural disasters 

and Climate Uncertainty Policy (CPU). In contrast, the green portfolio’s volatility is less 

affected by instruments. Compared to unconditional mean volatility of 3.93%, conditional 

estimates are 3.63% and 4.35% associated with natural disasters and CPU, respectively.8 

Therefore, our results support the hypothesis that the brown portfolio has a higher 

idiosyncratic risk than the green portfolio conditional on climate-related information. The 

higher idiosyncratic risk of the brown portfolio is plausible, for example, fossil fuel firms 

increasingly face lawsuits related to climate change and the effects of climate activism actions 

such as the Global Climate Strike on March 15, 2019 (Ramelli, et al., 2021).  

[Insert Table 6 Here] 

 
8 Results are more statistically and economically significant with 75th percentile instruments. Those are reported 

in Appendix A2 (Table A2.4). 
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5 Further results and robustness checks 

5.1 Non-fundamental demands for brown and green ETFs 

Pástor et al. (2021) indicate that climate shocks lead to an increase in the demand for 

green assets, which makes green assets outperform brown ones. Therefore, we test whether 

green ETFs’ flows are higher than brown ETFs’ flows conditional on climate instruments. In 

addition, Brown et al. (2021) and Davies (2022) find that ETF fund flows signal non-

fundamental demand for assets. We define ETF fund flows as the percentage change in ETF 

shares outstanding for fund 𝑖 at time 𝑡 denoted by 𝑆𝑂𝑖,𝑡 

𝐸𝑇𝐹 𝐹𝑙𝑜𝑤𝑖,𝑡 =
𝑆𝑂𝑖,𝑡

𝑆𝑂𝑖,𝑡−1
− 1 (9) 

and run the following time-series regression 

𝐸𝑇𝐹 𝐹𝑙𝑜𝑤𝑖,𝑡 =  𝑎𝑡 + 𝛾𝑡𝐶𝑡−1 +  𝜖𝑖,𝑡 (10)  

where 𝐶 denotes control variables including fund returns, fund volatilities and oil returns. We 

measure unexpected fund flows for an ETF fund as follows  

𝑈𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝐸𝑇𝐹 𝐹𝑙𝑜𝑤𝑖,𝑡 =  𝐸𝑇𝐹 𝐹𝑙𝑜𝑤𝑖,𝑡 − 𝛾𝑡𝐶𝑡−1 (11)   

 We take the average of green and brown ETFs’ unexpected flows as measures for 

greens and brown flows. We hypothesize that the green flow is higher than the brown flow 

conditional on climate-related instruments. Specifically, we test the null that brown-minus-

green flow is nonnegative. As reported in Table 2, the brown-minus-green flow is 

unconditionally -0.038 and it is significant at the 10% level. For comparison, our conditional 

results reported in Table 7 provide statistically strong evidence that the green flow is higher 

than the brown flow, i.e., the multiple test statistics are 4.753 (p-value=0.014) and 6.355 (p-

value=0.006) for dummy and magnitude-based instruments. 9 

 We observe that the difference between the brown and green portfolios is broader when 

changing from dummy to magnitude-based instruments. Indeed, the absolute value of the 

difference increases from 0.026 to 0.032 conditional on natural disasters and from 0.063 to 

0.114 conditional on CPU. Using magnitude-based instruments results in a strong rejection of 

the brown-minus-green flow being nonnegative. Specifically, Figure 2 shows, that during 

periods of a high number of natural disasters, the brown flow is negative (-0.01). Also, during 

 
9 Results are statistically and economically significant with 75th percentile instruments. Those are reported in 

Appendix A2 (Table A2.5). 
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periods of high CPU, we have a high green flow, while the brown flow appears unchanged. 

Compared to unconditional green flow (0.05), the green ETF flow conditional on CPU is 0.13.   

 The result of higher unexpected green flow implies that climate-related information 

significantly affects the demand for green and brown assets. These results support Pástor et al. 

(2021)’s argument.  In addition, Davies (2022) finds that ETF flows provide information about 

the non-fundamental demand signaling investor sentiment. Therefore, the conditional tests on 

fund flows explain the outperformance of the green portfolio reported in Section 3. 

[Insert Table 7 Here] 

[Insert Figure 2 Here] 

5.2 Conditioning on bad economic periods 

In this section, we use economic instruments to examine whether our results are driven by 

particular economic conditions instead of climate-related information. One argument is that the 

underperformance of the brown portfolio might be due to low demands for fossil fuel energy 

during bad economic periods. Following Bansal et al. (2022), the good-times indicator is 

defined by cyclically-adjusted real P/E (CAPE), and a bad time indicator is defined by the 

National Bureau of Economic Research (NBER) recessions, and we use CAPE ratios and 

NBER-based recessions to construct nonnegative instruments related to bad economic periods 

as follows 

𝑧𝐶𝐴𝑃𝐸𝑡
∗ = {

1
0

      𝑖𝑓 𝐶𝐴𝑃𝐸𝑖𝑡 <  𝐶𝐴𝑃𝐸𝑚𝑒𝑑𝑖𝑎𝑛 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 10 𝑦𝑒𝑎𝑟 𝑟𝑜𝑙𝑙𝑖𝑛𝑔)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12) 

𝑧𝑁𝐵𝐸𝑅𝑡
∗ = {

1
0

 
    𝑖𝑓 𝑁𝐵𝐸𝑅 𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 = 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

 Similar to climate instruments, we normalize economic instruments. Also, we construct 

a magnitude-based instrument for CAPE as max [0, −(𝐶𝐴𝑃𝐸𝑡 − 𝐶𝐴𝑃𝐸𝑚𝑒𝑑𝑖𝑎𝑛)]. Panel A of 

Table 8 provides results of conditional tests based on economic instruments. The multiple 

inequality statistics are 1.503 (p-value = 0.109) and 1.445 (p-value = 0.115) for dummy and 

magnitude-based instruments. Therefore, we fail to reject the null that the brown-minus-green 

return is nonnegative in recession economic periods. In other words, there is no evidence that 

the green portfolio outperforms the brown one conditional on economic instruments. Although 

the brown-minus-green return is negative conditional on NBER, its standard error is high, and 

the joint test does not indicate a rejection. In contrast to results using climate instruments, we 

cannot reject that null that the brown mean return is nonnegative during bad economic periods. 
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Therefore, climate-related instruments are more informative about the outperformance of the 

green portfolio relative to the brown one. 

Panel B of Table 8 provides conditional test results by using climate-related instruments 

during NBER-based economic recessions. For example, for the dummy instrument, it takes the 

value of 1 if both natural disasters (CPU) > its median and NBER-based recession = 1, and 

zero otherwise. We also construct magnitude-based instruments by analogy. While the test 

statistic is 1.556 (p-value = 0.106) for dummy instruments, it is 3.011 (p-value = 0.042) for 

magnitude-based instruments. Overall, we find that the green portfolio outperforms the brown 

one in the conditional test with magnitude-based instruments. Indeed, brown-minus-green 

returns are more negative when switching from dummy to magnitude-based instruments as 

they are -3.167% and -3.584% for dummy instruments and -5.689% for magnitude-based 

instruments. In addition, when conditioning instruments, green (brown) returns are positive 

(negative). Compared to the results in Table 3, the return differences are much wider. This 

indicates that the outperformance of the green portfolio relative to the brown one is more 

pronounced when climate risks are high, and also the economy is in recession.  

[Insert Table 8 Here] 

5.3 Controlling for Carhart four factors and oil returns 

For a further robustness check, we use returns adjusted by Carhart four factors and oil 

returns. The results reported in Table 9 are consistent with those in Table 3. Specifically, we 

find persuasive evidence that the green portfolio return is higher than the brown portfolio in 

the conditional test with magnitude-based instruments as the test statistic is 3.050 and 

significant at the 5% level. Moreover, we reject the null that the brown portfolio has a 

nonnegative mean return conditional on instruments but cannot reject the null that the green 

portfolio has a nonnegative mean return.  

Similar to CAPM-adjusted returns, green and brown portfolios have unconditionally 

negative mean returns and we cannot reject the null that brown-minus-green return is 

unconditional nonnegative, which is reported in Table 2. However, when incorporating 

climate-related instruments into our tests, we again find evidence of the outperformance of 
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green portfolios relative to brown ones and the nonnegative mean return of green portfolios. 

Overall, our main findings are still robust when controlling for more factors adjusted returns.10 

[Insert Table 9 Here] 

5.4 Alternative instruments 

We use the cost of natural disasters to reconstruct an instrument instead of using the 

number of natural disasters each month. Specifically, we define the natural disaster instrument 

by comparing the cost caused by natural disasters in each month to the median cost in the 

sample. We replicate studies in Table 3 by using the new instruments, whose results are 

reported in Table 10. As can be seen, they are qualitatively similar to the main findings reported 

in Table 3, i.e., we can reject the null that brown-minus-green returns are nonnegative (the 

green portfolio outperforms the brown one). We also find that brown (green) portfolio returns 

are negative (positive) conditional on the new climate-related instruments. Overall, our results 

are still robust with alternative measurements in constructing the climate risk related 

instruments. 

[Insert Table 10 Here] 

6 Concluding remarks 

            The evidence of green and brown assets performances is becoming intriguing in 

empirical finance with debatable findings. This paper provides rigorous comparisons of green 

and brown portfolios constructed from clean and fossil energy ETFs. We study the portfolio 

returns performances and the associated risk measurements by using multiple inequality tests.  

We present novel evidence under conditional settings using natural disasters and the climate 

policy uncertainty (CPU) index as instrumental variables.  

We find that the green portfolio outperforms the brown portfolio conditioning climate-

related information, while this outperformance is not significant in unconditional tests. In 

addition, we find that green the (brown) portfolio yields positive (negative) returns during 

periods of high natural disasters and CPU. Our results also show that the brown portfolio has 

a higher market beta, and we further report that the brown portfolio’s higher systematic risk is 

mainly due to downside covariations (higher downside semibeta), which is not found in 

unconditional comparisons. Interestingly, we show that the effects of climate information on 

 
10 Results with the raw returns and adjusted returns (4FF+oil returns) using instruments based on 75th percentile  

are qualitatively the same, as reported in Appendix A2 (Table A2.6 and A2.7) 
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inequality tests are not uniform, i.e., when using the instruments based on higher thresh hold 

values the effects are more pronounced. 

We provide further evidence that unexpected fund flow into the green ETFs is higher 

than the brown ETFs conditional on climate instruments, this finding contributes to explaining 

the outperformance of the green portfolio relative to the brown one. Through the robustness 

checks, we have confirmed that our findings are not driven by economic cycles, alternative 

instruments and specifications. Our study reveals the state dependence of green and brown 

assets’ returns and risks. The results emphasize the impact of climate-related information on 

investment decisions and have important implications for investors constructing portfolio 

allocations when hedging climate change risks. We hope to explore the hedging implication in 

future research. 
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Figure 1. Unconditional mean and conditional portfolios mean returns in the period 2008-2020.  

This figure plots brown and green portfolios mean returns. These portfolios are formed from fossil fuel and clean 

energy ETFs. Specifically, this figure includes unconditional mean and conditional means weighted by the 

magnitude of a number of natural disasters and Climate Policy Uncertainty (CPU). 
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Figure 2. Unconditional mean and conditional portfolios fund flows in the period 2008-2020.  

This figure plots brown and green portfolios fund flows. Brown flow is average of brown ETFs fund flows and 

green flow is the average of green ETFs fund flows. The figure plots the unconditional and conditional fund flows 

associated with magnitude-based instruments. Fund flows are adjusted by past fund return, fund volatility and oil 

return. The instruments include number of natural disasters and Climate Policy Uncertainty (CPU). 
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Table 1 

Descriptive statistics 

Panel A reports correlation estimates between energy ETFs, including four clean energy ETFs, i.e., iShares Global Clean Energy 

ETF (ICLN), Invesco WilderHill Clean Energy ETF (PBW), Invesco Global Clean Energy ETF (PBD) and First Trust NASDAQ 

Clean Edge Green Energy Index Fund (QCLN), and four fossil fuel energy ETFs, i.e., Energy Select Sector SPDR Fund (XLE), 

Vanguard Energy ETF (VDE), SPDR S&P Oil & Gas Exploration & Production ETF (XOP) and VanEck Vectors Coal ETF 

(KOL). Panel B reports summary statistics for ETF returns, natural disasters, and Climate Policy Uncertainty (CPU) over the 

sample period from June 2008 to December 2020.  

Panel A: Correlation 

  ICLN PBW QCLN PBD XLE VDE XOP KOL 

ICLN 1        

PBW 0.886 1       

QCLN 0.873 0.955 1      

PBD 0.935 0.933 0.932 1     

XLE 0.566 0.64 0.646 0.666 1    

VDE 0.569 0.645 0.649 0.669 0.998 1   

XOP 0.515 0.589 0.605 0.614 0.943 0.951 1  

KOL 0.648 0.622 0.635 0.716 0.664 0.666 0.613 1 

Panel B: Descriptive statistics        

Variable N Mean 25th Median 75th Std.Dev Skewness Kurtosis 

ICLN 151 0.237 -4.340 0.846 5.483 9.240 -0.906 2.687 

PBW 151 0.568 -5.106 0.733 6.273 9.858 0.147 2.974 

QCLN 151 1.099 -3.936 1.561 6.324 9.111 -0.204 1.964 

PBD 151 0.596 -4.443 1.014 5.161 8.558 -0.356 2.561 

XLE 151 0.008 -3.515 0.870 3.875 7.759 -0.118 4.042 

VDE 151 -0.043 -3.721 1.079 3.881 7.993 -0.135 4.190 

XOP 151 -0.208 -5.479 -0.104 5.813 11.696 0.787 6.889 

KOL 151 -0.362 -5.937 -0.435 5.437 10.348 -0.135 2.237 

Green portfolio 151 0.583 -4.344 0.860 5.624 8.912 -0.424 2.469 

Brown portfolio 151 -0.193 -4.635 0.310 4.737 8.694 -0.023 2.819 

Natural disaster (number) 165 1.618 1.000 1.000 2.000 1.005 1.937 6.849 

CPU 151 125.009 72.435 104.32 159.90 84.153 2.242 8.340 
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Table 2 

Unconditional differences between brown and green portfolios 

This table reports mean values and one-side (left-tailed) p-values of t-tests over the sample period. Specifically, 

we conduct the unconditional test on raw returns, risk-adjusted returns estimated from CAPM,  and the four-factor 

Carhart model with oil return, fund flows, market beta, realized semibetas proposed by Bollerslev et al. (2021) 

and idiosyncratic risks estimated from CAPM. 𝐹𝑢𝑛𝑑 𝐹𝑙𝑜𝑤𝐵𝑟𝑜𝑤𝑛  is the average of brown ETFs fund flows and 

𝐹𝑢𝑛𝑑 𝐹𝑙𝑜𝑤𝑔𝑟𝑒𝑒𝑛 is the average of green ETFs fund flows. Fund flows are adjusted by past fund returns, fund 

volatilities and oil returns. Regarding realized semibetas, 𝑁, 𝑃, 𝑀+, 𝑎𝑛𝑑 𝑀− semicovariance components refer to 

respective portions of total covariance 𝐶𝑜𝑣(𝑟, 𝑓) defined by both returns being positive (𝑃 state), both returns 

being negative (𝑁), mixed sign with positive market return (𝑀+), and mixed sign with negative market return 

(“𝑀−”). The green portfolio was constructed by equal-weighted four clean energy ETFs (ICLN, PBW, QCLN 

and PBD). The brown one is the equal-weighted portfolio of four fossil fuel energy ETFs (XLE, VDE, XOP and 

KOL).  

Variables Mean P-value 

“Green” return 0.583 0.789 

“Brown” return -0.193 0.393 

“Brown” – “Green” -0.776 0.083 

Risk-adjusted “Green” return (CAPM) -0.877 0.016 

Risk-adjusted “Brown” return (CAPM) -1.552 0.000 

Risk-adjusted “Brown” – “Green” (CAPM) -0.675 0.113 

Risk-adjusted “Green” return (4FF + oil return) -1.014 0.004 

Risk-adjusted “Brown” return (4FF + oil return) -1.363 0.001 

Risk-adjusted “Brown” – “Green” (4FF + oil return) -0.349 0.259 

𝛽̂𝑚𝑎𝑟𝑘𝑒𝑡,𝑔𝑟𝑒𝑒𝑛 − 𝛽̂𝑚𝑎𝑟𝑘𝑒𝑡,𝑏𝑟𝑜𝑤𝑛 0.019 0.757 

𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑁 −  𝛽̂𝑏𝑟𝑜𝑤𝑛

𝑁  -0.015 0.226 

𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑀−

−  𝛽̂𝑏𝑟𝑜𝑤𝑛
𝑀−

 -0.006 0.050 

𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑃 −  𝛽̂𝑏𝑟𝑜𝑤𝑛

𝑃  -0.023 0.140 

𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑀+

−  𝛽̂𝑏𝑟𝑜𝑤𝑛
𝑀+

 -0.017 0.003 

𝐼𝑑𝑖𝑜_𝑟𝑖𝑠𝑘𝑔𝑟𝑒𝑒𝑛 −  𝐼𝑑𝑖𝑜_𝑟𝑖𝑠𝑘𝑏𝑟𝑜𝑤𝑛  -0.933 0.000 

𝐹𝑢𝑛𝑑 𝐹𝑙𝑜𝑤𝐵𝑟𝑜𝑤𝑛 − 𝐹𝑢𝑛𝑑 𝐹𝑙𝑜𝑤𝐺𝑟𝑒𝑒𝑛  -0.038 0.079 
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Table 3 

Conditional difference between green and brown Returns (CAPM-adjusted return). 

This table reports multiple inequality tests for CAPM-adjusted returns of brown and green portfolios conditional 

on Natural disasters and the Climate Policy Uncertainty index over the period 2008-2020. The green portfolio 

includes clean energy ETFs and the brown portfolio includes fossil fuel ETFs. We test the null that brown-minus-

green return ≥ 0 with restrictions corresponding to a large number of Natural disasters and high Climate Policy 

uncertainty (CPU). Besides dummy instruments, the test uses magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+  is the 

conditional mean of brown-minus-green returns in these two climate-related instruments. In addition, we test 

whether brown (green) portfolio returns are nonnegative conditional on the instruments. Panel A represents tests 

with instruments based on median values which capture a number of natural disasters and CPU above median 

values.  Panel B reports tests with instruments based on 75th percentile. Instruments capture the number of natural 

disasters and CPU above their 75th percentile. Also given are the standard errors of the conditional means. All 

estimates are adjusted for conditional heteroskedasticity and serial correlation using the method of Newey and 

West (1987). The statistic’s p-value is calculated using Monte Carlo simulations. 

Panel A: Inequality tests conditional on number of natural disasters and CPU above their median values 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – 

Green 
Brown Green 

Brown – 

Green 
Brown Green 

Natural Disaster (Cost-

based) 

      

Mean 𝜃̂𝐷𝑧1
+ -1.002 -1.930 -0.928 -1.433 -2.371 -0.938 

(Standard error) (1.585) (0.974) (1.191) (1.582) (0.887) (1.171) 

       

Climate Policy Uncertainty 

(CPU) 
      

Mean 𝜃̂𝐷𝑧2
+ -1.562 -1.652 -0.090 -3.738 -2.477 1.261 

(Standard error) (1.140) (0.583) (0.868) (1.714) (1.038) (1.669) 

       

Multiple inequality 

restriction statistic W 
1.879 10.009 0.607 4.757 10.581 0.641 

(p-value) (0.086) (0.001) (0.218) (0.014) (0.001) (0.210) 

Panel B: Inequality tests conditional on number of natural disasters and CPU above their 75th percentile  

Statistics Dummy instruments Magnitude-based instruments 

 Brown – 

Green 
Brown Green 

Brown – 

Green 
Brown Green 

Natural Disaster       

Mean 𝜃̂𝐷𝑧1
+ -1.800 -2.930 -1.130 -2.088 -3.041 -0.953 

(Standard error) (2.183) (1.246) (1.446) (1.913) (1.142) (1.416) 

       

Climate Policy Uncertainty 

(CPU) 
      

Mean 𝜃̂𝐷𝑧2
+ -4.236 -2.782 1.454 -4.335 -2.756 1.580 

(Standard error) (2.124) (1.026) (1.554) (1.964) (1.454) (2.237) 

       

Multiple inequality 

restriction statistic W 3.979 11.098 0.611 4.994 9.995 0.453 

(p-value) (0.024) (0.000) (0.211) (0.012) (0.001) (0.253) 
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Table 4 

 Conditional differences of market betas 

This table reports multiple inequality tests for 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕  of brown and green portfolios conditional on Natural 

disasters and the Climate Policy Uncertainty index over the period 2008-2020. The green portfolio includes clean 

energy ETFs and the brown portfolio includes fossil fuel ETFs. We test the null that the green-minus-brown 

𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕  ≥ 0 with restrictions corresponding to a large number of Natural disasters and high Climate Policy 

uncertainty (CPU). Besides dummy instruments, the test uses the magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+  is the 

conditional mean of green-minus-brown 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕  in these states. Also given are the standard errors of the 

conditional means. Note that high (low) is defined as being above (below) the median of the instrumental 

variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using the method of 

Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations. 

 Green - Brown 

Statistics  Dummy Magnitude-based 

Natural Disaster    

Mean 𝜃̂𝐷𝑧1
+ 0.004 -0.027 

(Standard error) (0.123) (0.116) 

   

Climate Policy Uncertainty (CPU)   

Mean 𝜃̂𝐷𝑧2
+ -0.118 -0.245 

(Standard error) (0.078) (0.143) 

   

Multiple inequality restriction statistic W 2.259 2.962 

(p-value) (0.067) (0.043) 
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Table 5 

Conditional difference in semibetas 

This table provides the multiple inequality tests on the null that green-minus-brown semibetas  ≥ 0 conditional on a large number of Natural disasters and high Climate Policy 

uncertainty (CPU). The tests use dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ is the estimate of the conditional green-minus-brown semibeta . All standard errors are 

calculated via the Newey & West (1987) heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimator. Note that high (low) is defined as being above 

(below) the median of the instrumental variables. The statistic’s p-value is calculated using Monte Carlo simulations. 

 Green - Brown 

  Dummy Instruments Magnitude-based Instruments 

Statistic 𝜷̂𝑵 𝜷̂𝑴−
 𝜷̂𝑷 𝜷̂𝑴+ 𝜷̂𝑵 𝜷̂𝑴−

 𝜷̂𝑷 𝜷̂𝑴+ 

Natural Disasters            
Mean 𝜃̂𝐷𝑧1

+  -0.005 -0.008 0.009 -0.029 -0.032 -0.010 0.009 -0.031 

(Standard error) (0.030) (0.007) (0.064) (0.017) (0.036) (0.009) (0.070) (0.015) 
         

Climate Policy Uncertainty         

Mean 𝜃̂𝐷𝑧2
+   -0.061 -0.009 -0.012 -0.034 -0.104 -0.004 0.053 -0.035 

(Standard error) (0.024) (0.006) (0.035) (0.013) (0.044) (0.010) (0.055) (0.022) 
         

         
Multiple inequality restriction 

statistic W 6.252 3.205 0.116 7.007 5.770 1.404 0.000 4.527 

(p-value) (0.006) (0.036) (0.365) (0.004) (0.008) (0.116) (0.500) (0.017) 
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Table 6 

 Conditional difference in idiosyncratic risk 

This table provides the multiple inequality tests on whether green-minus-brown idiosyncratic risk ≥ 0 conditional 

on a large number of Natural Disasters and high Climate Policy uncertainty. The idiosyncratic risk is the standard 

deviation of residuals estimated from CAPM. The tests use dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+is the 

estimate of conditional green-minus-brown idiosyncratic risk in these states. Also, the table reports the standard 

errors of the conditional means. Note that high (low) is defined as being above (below) the median of the 

instrumental variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using 

the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations.  

 Green - Brown 

Statistics Dummy Magnitude-based 

Natural Disaster    

Mean 𝜃̂𝐷𝑧1
+ -1.329 -1.591 

(Standard error) (0.469) (0.483) 

   

Climate Policy Uncertainty (CPU)   

Mean 𝜃̂𝐷𝑧2
+ -1.346 -1.819 

(Standard error) (0.366) (0.651) 

   

Multiple inequality restriction statistic W 13.881 12.232 

(p-value) (0.000) (0.000) 

 

Table 7 

Conditional difference in unexpected fund flows 

This table provides the multiple inequality tests on the null that brown-minus-green fund flows ≥ 0 conditional 

on a large number of Natural Disasters and high Climate Policy uncertainty. Fund flows are adjusted by the past 

month’s oil return, fund return and fund volatility. The tests use dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+is 

the estimate of conditional brown-minus-green fund flows in these states. Also, the table reports the standard 

errors of the conditional means. Note that high (low) is defined as being above (below) the median of the 

instrumental variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using 

the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations.  

 Brown - Green 

Statistics Dummy Magnitude-based 

Natural Disaster    

Mean  𝜃̂𝐷𝑧1
+ -0.026 -0.032 

(Standard error) (0.014) (0.014) 

   

Climate Policy Uncertainty (CPU)   

Mean  𝜃̂𝐷𝑧2
+ -0.063 -0.114 

(Standard error) (0.053) (0.094) 

   

Multiple inequality restriction 

statistic W 4.753 6.355 

(p-value) (0.014) (0.006) 
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Table 8 

Conditional difference in CAPM-adjusted returns with economic instruments 

This table reports multiple inequality tests for CAPM-adjusted returns of green and brown portfolios over the 

period 2008-2020. We test the null that the brown-minus-green returns with restrictions corresponding to bad 

economic periods proxied by low CAPE and NBER recession. Besides dummy instruments, the test uses 

magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ is the estimate of the conditional mean of brown-minus-green returns in these 

states. In addition, we test whether brown (green) portfolios returns are nonnegative conditional on these states. 

Also given are the standard errors of the conditional means. Note that low CAPE is defined as being below the 

median of a 10-year rolling window. Panel A reports the results conditional on instruments indicating bad 

economic periods, and Panel B reports the results conditional on the high number of Natural disasters and high 

CPU during NBER-based recession periods. All estimates are adjusted for conditional heteroskedasticity and 

serial correlation using the method of Newey and West (1987). The statistic’s p-value is calculated using Monte 

Carlo simulations. 

Panel A Tests conditional on instruments indicating bad economic periods 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

CAPE       

Mean 1.627 -0.631 -2.258 1.490 0.839 -0.651 

(Standard error) (0.885) (0.571) (0.952) (0.867) (2.099) (2.561) 

       

NBER       

Mean -3.340 -1.408 1.932 -3.372 -0.985 2.387 

(Standard error) (2.724) (1.430) (3.210) (2.805) (3.311) (5.362) 

       

Multiple inequality restriction 

statistic W 
1.503 1.718 5.626 1.445 0.088 0.065 

(p-value) (0.109) (0.096) (0.009) (0.115) (0.379) (0.391) 

Panel B Tests conditional on a high number of Natural disasters and high CPU during recessions. 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

Natural Disaster       

Mean -3.167 -0.485 2.682 -6.425 -2.389 4.037 

(Standard error) (5.641) (2.696) (5.171) (6.266) (2.572) (7.297) 

       

Climate Policy Uncertainty 

(CPU) 
      

Mean -3.584 -0.825 2.759 -5.689 -1.292 4.398 

(Standard error) (2.873) (1.467) (3.067) (3.279) (1.916) (10.121) 

       

Multiple inequality restriction 

statistic W 
1.556 0.316 0.000 3.011 0.862 0.000 

(p-value) (0.106) (0.287) (0.502) (0.042) (0.177) (0.684) 
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Table 9 

Conditional difference in returns Adjusted by the Carhart four factors and oil returns 

This table reports multiple inequality tests for 4FF and oil-adjusted returns of brown and green portfolios 

conditional on Natural disasters and the Climate Policy Uncertainty index over the period 2008-2020. The green 

portfolio includes clean energy ETFs and the brown portfolio includes fossil fuel ETFs.  Portfolio returns are 

adjusted by the Carhart four factors and oil returns. We test the null that brown-minus-green return ≥ 0 with 

restrictions corresponding to a large number of Natural disasters and high Climate Policy uncertainty (CPU). 

Besides dummy instruments, the test uses magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ is the conditional mean of brown-

minus-green returns in these states. In addition, we test whether brown (green) portfolio returns are nonnegative 

conditional on these states. Also given are the standard errors of the conditional means. Note that high (low) is 

defined as being above (below) the median of the instrumental variables. All estimates are adjusted for conditional 

heteroskedasticity and serial correlation using the method of Newey and West (1987). The statistic’s p-value is 

calculated using Monte Carlo simulations. 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

Natural Disaster       

Mean 𝜃̂𝐷𝑧1
+ -0.447 -1.500 -1.054 -0.797 -1.933 -1.136 

(Standard error) (1.541) (0.876) (1.144) (1.460) (0.831) (1.099) 

       

Climate Policy Uncertainty (CPU)       

Mean 𝜃̂𝐷𝑧2
+ -1.077 -1.532 -0.455 -2.801 -2.325 0.476 

(Standard error) (1.088) (0.542) (0.754) (1.604) (0.890) (1.298) 

       

Multiple inequality restriction 

statistic W 0.980 9.707 0.849 3.050 9.872 1.069 

(p-value) (0.163) (0.001) (0.179) (0.039) (0.001) (0.145) 
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Table 10 

The conditional difference in CAPM-adjusted returns (with alternative instruments) 

This table reports multiple inequality tests for CAPM-adjusted returns of brown and green portfolios conditional 

on Natural disasters and the Climate Policy Uncertainty index over the period 2008-2020. Panel A represents tests 

conditional on Natural disasters with high cost and high Climate Uncertainty Policy. Besides dummy instruments, 

the test conditions on the magnitude of cost caused by Natural disasters and Climate Policy Uncertainty. Note that 

high (low) is defined as being above (below) the median of the instrumental variables. All estimates are adjusted 

for conditional heteroskedasticity and serial correlation using the method of Newey and West (1987). The 

statistic’s p-value is calculated using a Monte Carlo simulation. 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

Natural Disaster (Cost-based)       

Mean 𝜃̂𝐷𝑧1
+ -0.217 -1.220 -1.003 -1.427 -1.678 -0.251 

(Standard error) (1.201) (0.773) (1.089) (1.575) (0.771) (1.214) 

       

Climate Policy Uncertainty (CPU)       

Mean 𝜃̂𝐷𝑧2
+ -1.562 -1.652 -0.090 -3.738 -2.477 1.261 

(Standard error) (1.124) (0.585) (0.879) (1.719) (1.026) (1.690) 

       

Multiple inequality restriction 

statistic W 1.932 8.917 0.848 4.727 9.848 0.043 

(p-value) (0.084) (0.001) (0.180) (0.014) (0.001) (0.416) 
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Appendix A1:   

The detailed procedure for conducting the multivariate inequality testing is as follows. 

Step 1: We estimate the sample means of the product of the observable variables. In 

particular, 

𝜃𝐷𝑧𝑖
+  =  

1

𝑇
∑[

𝑇

𝑡=1

(𝑅brown,𝑡+1 − 𝑅green,𝑡+1)𝑧𝑖𝑡
+] ,              ∀𝑖= 1, 2, I. . . , 𝑁 .          (A1) 

There is no restriction on the sign of the difference returns. In other words, they may 

be negative due to sampling error or the possible rejection of the null hypothesis. The vector 

𝜃𝐷𝑧+   is asymptotically normal with mean 𝜃𝐷𝑧+ and variance-covariance matrix Ω, which is 

estimated using the Newey & West (1987) approach. 

Step 2: Under the null hypothesis restriction, the parameter estimates must be 

nonnegative. Estimates are derived under the null restriction by minimizing deviations from 

the unrestricted model: 

min
𝜃𝐷𝑧+

   ( 𝜃𝐷𝑧+  −  𝜃𝐷𝑧+)′ Ω̂−1(𝜃𝐷𝑧+  −  𝜃𝐷𝑧+) ,                   (A2) 

subject to  𝜃𝐷𝑧+ ≥ 0 . 

Let 𝜃𝐷𝑧+
𝑅  be the solution to this quadratic program. 

Step 3: The statistic for testing the null hypothesis is generated. The purpose is to test 

how close the restricted estimates 𝜃𝐷𝑧+
𝑅  are to the unrestricted estimates 𝜃𝐷𝑧+. Under the null, 

the difference should be small. The test statistic is then computed as: 

                                                         𝑊 ≡ 𝑇(𝜃𝐷𝑧+
𝑅 −  𝜃𝐷𝑧+)

′
 Ω̂−1(𝜃𝐷𝑧+

𝑅 −  𝜃𝐷𝑧+) .                     (A3)  

Wolak (1989) showed that the W statistic no longer has an asymptotic chi-squared 

distribution in the presence of inequality restrictions. Instead, the statistic is distributed as a 

weighted sum of chi-squared variables with different degrees of freedom. The asymptotic 

distribution of W is given by: 

                                                     ∑ 𝑃𝑟[𝜒𝑘
2 ≥ 𝑐]𝑤 (𝑁, 𝑁 − 𝑘,

𝛺̂

𝑇
)

𝑁

𝑘=0

 ,                                             (A4)  
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where 𝑐 ∈ 𝑅+  is the critical value for a given size, and the weight 𝑤 (𝑁, 𝑁 − 𝑘,
𝛺̂

𝑇
)  is the 

probability that 𝜃𝐷𝑧+  has exactly N – k positive elements. 

Wolak (1989) indicates that calculating the weights 𝑤 (𝑁, 𝑁 − 𝑘,
𝛺̂

𝑇
) can be nontrivial 

because the weights require the evaluation of N-multiple integrals, and closed forms have been 

calculated for only a small number of restrictions (𝑁 ≤  4). As an alternative, Kodde & Palm 

(1986) provide upper- and lower-bound critical values which do not require the calculation of 

the weights. These bounds are given by: 

𝛼𝑙 =
1

2
𝑃𝑟(𝜒1

2 ≥ 𝑐𝑙) (A5) 

𝛼𝑢 =
1

2
𝑃𝑟(𝜒𝑁−1

2 ≥ 𝑐𝑢)  +  
1

2
𝑃𝑟(𝜒𝑁

2 ≥ 𝑐𝑢) (A6) 

where 𝑐𝑙  and 𝑐𝑢 are the critical values of the lower and upper bounds, respectively. 

The weights need only be calculated when the test statistic value lies within these 

bounds. Wolak (1989) proposes a procedure for calculating the weights based on Monte Carlo 

simulations. Specifically, a multivariate normal distribution with mean zero and covariance 

matrix (
𝛺

𝑇
) is simulated. Given the realizations 𝜃𝐷𝑧+

∗  which denote the vector of realizations 

from each replication, we then search for the 𝜃𝐷𝑧+  which solves the minimization:  

                            𝑚𝑖𝑛(𝜃𝐷𝑧+
∗ − 𝜃̃𝐷𝑧+) (

𝛺̂

𝑇
)

−1

(𝜃𝐷𝑧+
∗ − 𝜃̃𝐷𝑧+),                                                       (A7) 

subject to  𝜃̃𝐷𝑧+  ≥  0 . 

As advocated by Wolak (1989), the approximate weight 𝑤̂ (𝑁, 𝑁 − 𝑘,
𝛺̂

𝑇
) is the fraction 

of replications in which the estimated 𝜃̃𝐷𝑧+  has exactly N – k elements exceeding zero. 
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Appendix A2: 

 

Figure A2.1. Unconditional and conditional portfolios 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕 in the period 2008-2020.  

This figure plots brown and green portfolios mean 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕. These portfolios are formed from fossil fuel and clean 

energy ETFs. Specifically, this figure includes unconditional mean and conditional mean 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕 weighted by 

the magnitude of number of natural disasters and Climate Policy Uncertainty (CPU). 
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Figure A2.2. Unconditional and conditional portfolios 𝜷̂𝑵 in the period 2008-2020.  

This figure plots brown and green portfolios mean 𝜷̂𝑵. These portfolios are formed from fossil fuel and clean 

energy ETFs. Specifically, this figure includes unconditional mean and conditional mean 𝜷̂𝑵 weighted by the 

magnitude of number of natural disasters and Climate Policy Uncertainty (CPU). 
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Figure A2.3. Unconditional and conditional portfolios idiosyncratic risk in the period 2008-2020.  

This figure plots brown and green portfolios idiosyncratic risk. These portfolios are formed from fossil fuel and 

clean energy ETFs. The figure plots the unconditional and conditional idiosyncratic risk associated with 

magnitude-based instruments. The idiosyncratic risk is the standard deviation of residuals estimated from CAPM. 

The instruments include number of natural disasters and Climate Policy Uncertainty. 
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Table A2.1 

Variable definitions 

Variable Definition Source 

ICLN iShares Global Clean Energy ETF CRSP 

PBW Invesco WilderHill Clean Energy ETF CRSP 

PBD Invesco Global Clean Energy ETF CRSP 

QCLN 
First Trust NASDAQ Clean Edge Green Energy Index 

Fund 
CRSP 

XLE Energy Select Sector SPDR Fund CRSP 

VDE Vanguard Energy ETF CRSP 

XOP SPDR S&P Oil & Gas Exploration & Production ETF CRSP 

KOL VanEck Vectors Coal ETF CRSP 

Natural disasters U.S. billion-dollar disaster events NOAA 

CPU Climate Policy Uncertainty Index Gavriilidis, K. (2021) 

SharesOutstanding  Shares Outstanding CRSP 

Oil price Crude Oil Prices: West Texas Intermediate (WTI) St. Louis Fed 

CAPE Cyclicality-adjusted real P/E (CAPE) ratio Shiller’s website 

NBER-based 

recession 
NBER-based recession  St. Louis Fed 

SMB  Size factor 
Kenneth French data 

library 

HML  Value factor 
Kenneth French data 

library 

MOM  Momentum factor 
Kenneth French data 

library 

MKT  Market return 
Kenneth French data 

library 
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