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Chapter 1
Overall Introduction

Wenzhong Shi, Michael F. Goodchild, Michael Batty, Mei-Po Kwan,
and Anshu Zhang

Abstract Urban informatics is an interdisciplinary approach to understanding,
managing, and designing the city using systematic theories and methods based
on new information technologies. Integrating urban science, geomatics, and infor-
matics, urban informatics is a particularly timelywayof fusingmany interdisciplinary
perspectives in studying city systems. This edited book aims to meet the urgent need
for works that systematically introduce the principles and technologies of urban
informatics. The book gathers over 40 world-leading research teams from a wide
range of disciplines, who provide comprehensive reviews of the state of the art and
the latest research achievements in their various areas of urban informatics. The book
is organized into six parts, respectively covering the conceptual and theoretical basis
of urban informatics, urban systems and applications, urban sensing, urban big data
infrastructure, urban computing, and prospects for the future of urban informatics.
This introductory chapter provides a definition of urban informatics and an outline
of the book’s structure and scope.
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2 W. Shi et al.

1.1 Defining Urban Informatics

Urban informatics is an interdisciplinary approach to understanding, managing,
and designing the city using systematic theories and methods based on new infor-
mation technologies, and grounded in contemporary developments of computers
and communications. It integrates urban science, geomatics, and informatics: urban
science provides studies of activities, places, and flows in the urban area; geomatics
provides the science and technologies for measuring spatiotemporal and dynamic
urban objects in the real world and managing the data obtained from the measure-
ments; informatics provides the science and technologies of information processing,
information systems, computer science, and statistics which support the quest to
develop applications to cities.

The field covers many sectors that define city systems. Those sectors are often
studied in their own right, such as transportation, housing, retail activity, physical
infrastructure involving the distribution of waste, water, electricity, and other sources
of energy, as well as demographic structure, economic location, urban development,
and a host of related perspectives that pertain to cities and urban systems.Whatmakes
urban informatics different and complementary to these disciplinary approaches is
the fact that computation is central to the way in which methods and models are used
to generate a deeper understanding: of many problems that involve working out how
cities function, how they generate different forms, how their dynamics reflects the
ways in which they grow and decline, and how they mix, segregate, and polarize
different populations and activities.

What makes urban informatics a particularly timely way of gathering together
and fusing many interdisciplinary perspectives which involve computation is that
in the last twenty years, computers have scaled down to the point where they can
be used as sensors and embedded in a variety of physical infrastructures as well
as being used in a mobile context by the population at large. This has meant that
quite suddenly we are now endowed with streams of data about a city’s functioning
in real time, something that was not generally available hitherto when most of our
methods of data collection were not automated through sensors. This has led to what
is called big data—data that are generated in real time, with great variety, and hence
almost limitless in volume. Such data may be the product of sensors that operate
continuously and provide immediate updates to the system of our concern. For these
data, we need newmethods andmodels to help our understanding and to interpret old
models that still have relevance. This has thrown the 24-hour city onto the agenda,
and many of the chapters in this book reflect the fact that temporal dynamics is now
a serious feature of this field of informatics. Time is now being deeply reflected in
our models, whereas in the past the focus was more on spatial variety.

The field of urban informatics is still developing rapidly in its embrace of new
sensing technologies, new kinds of spatial data science, newmethods of analysis that
range from traditional statistical methods as in spatial econometrics, all the way to
new developments inmachine learning, andmultivariate analysis that enable analysts
to explore big data in ways that have not been possible hitherto. In terms of the fields



1 Overall Introduction 3

that are distinct within the contributions we have collected here, it is worth noting that
new approaches to the structure, form, and dynamics of cities using mainly physical
approaches are being used to define a new kind of urban science. New methods of
urban analytics are being fashioned using these ideas, and the fact that we are now
able to exploit real-time movement data from sensors—either fixed to monitor traffic
or mobile to do the same through telephone calls and other social media—means
that we have a much richer understanding of cities than anything we have been able
to develop so far. Mobility studies have thus become central to urban informatics,
while developments in the dynamics of infrastructure, urban pollution, andwaste—in
short, the metabolism of the city—are coming to the fore through urban analytics. A
large part of urban informatics involves sensing at many spatial scales from satellite
remote sensing to indoor navigation, while the development of the third dimension
in cities in terms of sensing and visualization is now becoming routine. Stitching all
these ideas together is another important function of urban informatics, while the
development of what was seen as rather disconnected types of urban models—land
use and transportation, urban microsimulation, cellular automata, and agent-based
models—is now part of the wider agenda. Last but not least, the field also has regard
to how its theories, models, and tools relate to wider questions of governance, risk,
security, crime, health, and welfare, as well as geodemographics. All these features
are encapsulated in our definition of urban informatics here, and we hope readers
will thus be able to piece together their own big picture of the field as they navigate
many contributions in this book.

1.2 The Background: The Origins of Urban Informatics

The idea of publishing this book is rooted in the fast development of urban informatics
in both academia and industry in the big data era. In academia,many universities have
established programs to offer both undergraduate and postgraduate degrees related
to urban informatics. Examples of such programs include a undergraduate program
in Urban Informatics at Shenzhen University, an MSc program in Smart Cities and
UrbanAnalytics atUniversityCollegeLondon (UCL), a graduate program inApplied
Urban Science and Informatics at New York University, an MSc program in Urban
Informatics at Northeastern University, an MSc program in Urban Informatics and
Analytics at Warwick University, and an MSc program and a PhD research area
in Urban Informatics and Smart Cities at The Hong Kong Polytechnic University
(HKPU). These kinds of courses are rapidly expanding as different research groups
recognize the importance of training and research in the ways in which urban infor-
matics might be applied to contemporary urban problems. The common goal shared
by these programs is to promote education and research activities to copewith various
challenges in cities under the rapid global urbanization process. In industry, the smart
city is a major new trend in urban development and management, and urban infor-
matics is the core technology of smart cities. According to recent reports by Grand
View Research and Zion Market Research, the global smart city market accounted
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for USD 955.3 billion in 2017 and is anticipated to reach USD 2.57 trillion by
2025. Such a huge and increasing market is driven by many factors, such as rapid
growth of urban populations around the world and the need to foster sustainable
urban development. However, there are very few books systematically introducing
the principles and technologies of urban informatics, including urban science, urban
systems and applications, urban sensing, urban big data infrastructure, and urban
computing. There is an urgent need to edit and publish such books to equip the
current and next-generation workforce with the knowledge to tackle the challenges
that cities are facing. Our contribution here is to address this urgent need.

The publication of this book is among a series of activities carried out by HKPU
for promoting urban informatics internationally. Other activities include initiating
and organizing the International Conference on Urban Informatics (ICUI) series,
establishing the International Society of Urban Informatics (ISUI) and Interna-
tional Journal of Urban Informatics (IJUI), developing a new MSc program and
a PhD research area in Urban Informatics and Smart Cities, and founding the Smart
Cities Research Institute for conducting cutting-edge research.

Hosted by the Department of Land Surveying and Geo-Informatics (LSGI),
HKPU, ICUI provides a platform for leading scientists, young scholars, and
researchers worldwide to share an interest in urban informatics. The first confer-
ence in the ICUI series was held in 2017, with around 40 presentations on topics in
urban systems, urban sensing, spatiotemporal big data, urban computing, and urban
solutions. The second conference was held in 2019 with the theme “Toward Future
Smart Cities”. Over 280 participants from 18 countries and institutions such as MIT,
Harvard University, the University of Cambridge, UCL, ETH, and the Alan Turing
Research Institute, joined the conference and delivered over 120 presentations on
18 topics. Also introduced in ICUI 2019 was the International Society of Urban
Informatics (ISUI). ISUI aims to promote the international exchange of knowledge
and experience in the field of urban informatics, helping its members to succeed in
their professions through regional and international academic exchange programs,
publications, and networks of cross-disciplinary experts.

A number of other universities in Hong Kong have also contributed to urban
informatics and smart city development. For example, the University of Hong Kong
has formed the Hong Kong Urban Labs, the Chinese University of Hong Kong has
established the Institute of Future Cities, and the Hong Kong University of Science
and Technology has developed the GREAT Smart Cities Institute. HKPU has been
conducting research on various topics in urban informatics and has accumulated
numerous theories,methods, advanced technologies, and successful application cases
that provide updated materials for this book.

The book is based on invitations to over 40 world-leading scholars and their teams
across awide range of fields in urban informaticswhowere asked towrite the chapters
of this book. In the book, theynot only give comprehensive reviewsbut also share their
latest research achievements in various topics within urban informatics, as well as
vivid examples of employing emerging urban informatics technologies for solving
urban problems. Some of the chapters have been contributed by the participants
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of the ICUI series, but include new material rather than the presentations at these
conferences.

This book is intended for use by researchers and students from a wide range of
disciplines related to urban informatics, urban science, urban systems and applica-
tions, urban sensing, urban big data infrastructure, and urban computing. It will
serve as a textbook for those undergraduate and graduate students majoring in
urban informatics, studies in smart cities, transport and civil engineering, geog-
raphy, geosciences, urban planning, geographic information science, environmental
science, resources science, and land use. It can also be used as a reference book
for practitioners and professionals in the governmental, commercial, and industrial
sectors, such as urban planners, computer scientists, data scientists, geographers,
policy makers, architect designers, surveyors, urban governors, and environmental
scientists.

1.3 Structure of the Book

This book has six parts that cover the latest developments in a wide range of topics
in urban informatics. These topics include the conceptual and theoretical basis of
urban informatics, applications of urban informatics in understanding and managing
various urban systems, urban sensing, urban big data infrastructure, and urban
computing. While the parts are related, they can be read in any order except Part
I, which intends to provide an overview of the backgrounds of urban informatics and
thus should be read before the other parts.

After the overall introduction, Part I (Dimensions ofUrbanScience) focuses on the
conceptual and theoretical basis of urban science as it has evolved in the examination
of the city as a system. It highlights contemporary theories of urban interactions,
human dynamics,metabolisms, and the urban economy, and relates these to thewider
vision of a new urban science for examining cities in the twenty-first century. The
chapters in Part II (Urban Systems and Applications) discuss applications of urban
informatics in understanding, analyzing, andmanaging various urban systems. These
include applications in urban travel and humanmobility, urban freight systems, crime
and security, pollution monitoring, energy systems, health and well-being, risk and
resilience, as well as urban governance. The state-of-the art urban informatics are
used to identify the problems and provide viable solutions for those problems. The
chapters in Part III (Urban Sensing) describe existing and new methods of urban
sensing, including remote sensing, ground-based sensors, global navigation satellite
systems (GNSS), mobile mapping technologies, indoor positioning technologies,
user-generated content, and other developments that have a considerable potential
for advancing urban science.

Part IV (Urban Big Data Infrastructure) focuses on issues related to the new
developments in urban big data infrastructure, including those concerning big data,
geoprivacy, 3D city modeling, 3D cadastre, rule-based modeling, cyber infrastruc-
ture, spatial search, and urban IoT. These new developments will likely contribute
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to significant progress in urban informatics and in urban science more broadly. The
chapters in Part V (Urban Computing) cover various topics in urban informatics
from the perspectives of computer science and urban modeling. Specific research or
application areas examined include visual analytics, cloud and mobile computing,
data mining, artificial intelligence (AI) and deep learning, agent-based modeling,
microsimulation, Cellular Automata modeling, and transportation modeling. The
chapters highlight the development and use of computing technologies, principles,
and models for urban contexts and applications. Part VI (The Value of Urban Infor-
matics) concludes the book with a broadly based and forward-looking discussion by
Michael F. Goodchild on the goals of urban informatics, the potential for unintended
consequences, and possible approaches to accountability.

1.4 Retrospective and Prospective

In the third decade of the twenty-first century,wefindourselveswith awell-developed
ability to acquire vast amounts of information about the city and with the tools to
perform a wide range of analyses. Projects under way in world cities such as Beijing,
London, New York, Hong Kong, and Singapore are described at many points in the
chapters of this book, and there is every reason to believe that the burgeoning field
of urban informatics will continue to grow. But while the reader will find rich detail
in the pages that follow, he or she will also recognize that what is being described
is a first-world activity, largely confined to the Global North. What all of this means
for the Global South remains an issue that is scarcely addressed, and we can only
speculate as to what is likely to happen if this omission continues.

Urban informatics is a young field, and not surprisingly it is difficult to organize
into self-contained subfields. The reader will become well aware of this issue as he
or she navigates the parts of the book and encounters issues such as urban mobility or
urban heat islands in different chapters and parts and in different contexts. Hopefully,
a better and more robust conceptual model of urban informatics will emerge in time,
as the field matures and as its principles become more clearly articulated. We look
forward to one ormore future textbooks that distill the field into a simple, concise, and
theory-based structure. For now, however, the approach has to bemore encyclopedic.

What else is missing? First is a sense of history, of how earlier cities dealt with
their limited information resources and their lack of the tools to make sense of what
they had. John Snow’s map of the London cholera outbreak of 1854 was a masterful
exercise in inference (Johnson 2007); while the concept of the smart lamppost has
a fascinating precursor in the Pluto lamps that were installed in London in the late
1890s (https://www.british-history.ac.uk/survey-london/vol47/pp52-83). We should
be able to learn much from a counterfactual approach from earlier times. Second is
a sense of what the future may hold in the way of unintended consequences, gaming
of technology, and subversion. The history of information technologies is rich in
examples of breakthroughs gone astray, finding application for purposes that are
malicious and dystopic. Many of the chapters are full of enthusiasm and excitement

https://www.british-history.ac.uk/survey-london/vol47/pp52-83
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for the positive potential of urban informatics and understandably do not dwell on the
negative. These possibilities are addressed at the end of the book in Part VI. Finally,
as in any data-intensive field there will always be a need to address uncertainty, and
associated issues of data provenance and measurement error, especially given the
spatiotemporal focus of the field. Dealing with uncertainty is not simply a matter of
putting a plus or minus on each item of data, given the strong existence of statistical
dependence in both spatial and temporal domains. To quote Korszybski (1933), the
map is not the territory; the data are only an approximation and representation of
reality.
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Chapter 2
Introduction to Urban Science

Michael Batty

Abstract This introduction outlines a portfolio of theory andmethods in the chapters
that develop a basic urban science for urban informatics. Inductive and deductive
methods for generating data, analytics, and urban simulation, form the focus. In this
first Part of the book, the emphasis is on mobility, space-time theory, energy and
infrastructure, the spatial economy, and the role of modelling in understanding and
planning the smart city.

There are many different but related disciplinary perspectives underpinning urban
informatics, and each of these brings a different science to bear on the tools and
techniques which form the core of this new domain. In this introduction, we will
not sketch all of these different approaches, for many of these will be developed
throughout this book. Here, we will simply outline some of the basic physical theo-
ries that pertain to the structure of cities, in particular how the form of the city and
its functions influence the location of different activities and the ways in which these
activities are linked together. We call this “urban science,” which is a little more
comprehensive than particular sciences relevant to cities, which relate to ecology,
energy, social structure, economic development, and so on, and which develop theo-
ries and concepts of these particular subsystems in greater depth. Urban science deals
with generic theories of how cities are structured and how they grow and evolve in
time, how they change qualitativelywith respect to growth, and how their populations
organize themselves in space. These features often reveal the kinds of problems that
urban planning is designed to alleviate, and in this context, the ways in which urban
informatics might progress physical planning can be rooted in some of the theories
and principles which urban science is able to elucidate.

Like any science, urban science articulates relationships that define the compo-
nents of the city using quantitativemethodswhich are generally validated by observa-
tions that are drawn from actual cities. In short, the conventional scientific method is
key to developing the best tools and techniques that comprise urban informatics. The
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tool set that is evolving rapidly is based on the classic distinctions between methods
that are used to infer order and pattern in data drawn from the city, as well as testing
hypotheses that are framed about this order and pattern with respect to data about
the city. In short, these tools are based on generating theory through induction or
testing theory through deduction. The scientific method usually involves both induc-
tion that generates ideas, often alongside deductions from these ideas which in turn
are tested. The loop that defines this method is continuous as new ideas are evolved,
improved, or discarded, revealing whether or not they are fit for purpose. But at any
point in this cycle, these theories need to be translated into forms that are useful in
applying the methods of urban informatics. Indeed, the first substantive chapter by
Daniel Zünd and Luis Bettencourt illustrates how we can capture data in real time
from various objects in the city and by using machine learning, can generate patterns
that define how the form of the city can be interpreted. In a later chapter, Shih Lung
Shaw illustrates how a series of models about the dynamics of the city can be defined
in terms of how the city changes in space and time, with the models then validated
in classic deductive terms. Thus, induction and deduction are both brought to bear
on the development of urban informatics.

This entire area is dominated by many new methods emanating from computer
science, which in turn have developed as computers have scaled down to the point
where we can use them to sense any movement and change in the built environment.
These sensors may be fixed or mobile, but they have given rise to new data sets that
measure how different components in the city change through time. This has led to
very large data volumes that tend to produce highly unstructured data that we can
only interpret using new methods of pattern recognition and statistical analysis that
search for pattern and order in the data. These data are often called ‘big’ in that they
pertain to individual movements and decisions in real time and are only bounded
by the time the sensors are active. In this way, data streams can be continuous, and
if they grow to terabyte or petabyte levels, we need new and different techniques
to explore them, that is, to find the pattern in such data. This is in stark contrast to
traditional data sets in cities that usually do have structure, as they are collected in
one-off fashion through interview or census. The focus in this book on techniques that
involvemachine learning and data search has emerged primarily from the need to find
structure in data that in their raw form are often completely unstructured. At the same
time, increasing amounts of data which might become big can be fashioned from
individuals generating their own data either individually or through crowdsourcing.
Crowdsourcing has always been used to collect some data, but the existence of new
information technologies to support such sourcing has given a new momentum to
this kind of data collection.

The elements of urban science that the chapters in this first part of the book
address deal with urban morphology, which defines the form and function of the
city in terms of location and interactions. Morphology is developed in terms of
a threefold characterization of the size, scale, and shape of the city, and much of
urban informatics addresses ways in which we might improve the city by changing
and manipulating these dimensions. Mobility is the generic area that has grown to
encompass the relations between locations and interactions, and this immediately
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raises the role of networks at different hierarchical levels in the city, as well as the
flows that are directed by these networks. Transportation modeling encompasses the
best-developed set of tools in this domain, and many of the chapters here allude to
such modeling. The relations that bind all these ideas together and are the essence
of urban science are scaling, which formalizes the way the hierarchy of elements of
different sizes and scales, such as neighborhoods and districts, function within the
city. The classic signature of such scaling is the power law, which is ubiquitous as
a measure of nonlinearity in urban systems; and in the next chapter, these ideas are
spelt out in more detail. In absorbing the contents of this book, readers will find that
they emerge in many different guises.

With respect to what follows in this first part, Daniel Zünd and Luís Betten-
court illustrate how it is possible to sense the most obvious objects in a small town
in the Galapagos Islands using a blanket coverage and street-view-like cameras.
This produces data that can be mined for the more abstract morphology of the place,
showinghowa judiciousmixof user-generated content canbeused to sense the spatial
structure of the town. Shih Lung Shaw then provides a detailed review of different
dynamic models of cities based on urban systems dynamics, cellular automata, and
agent-based simulations, setting this in the wider context of human dynamics at the
individual person level, and space-time theory as originally developed by Torsten
Hägerstrand. The use of new technologies in unpacking individual movements is
explored by Martin Raubal, Dominik Bucher, and Henry Martin, who show how
personalized tracking can be scaled to look more generally at mobile decision-
making, complementing the two previous chapters, with the focus very much on
urban dynamics, spatial structure, and individual mobility.

The argument then changes direction. SybilDerrible, LynetteCheah,MohitArora,
and Lih Wei Yeow explore urban metabolism that they articulate using input–output
relations and flows of energy and materials that define linkages between many
different components of the urban system. These models are static in that they simu-
late flow at a cross section in time, and although the authors provide an example
based on Singapore, they illustrate how problematic it is to generalize these kinds
of models to embrace the fine spatial scale. Ying Jin then explores a simple spatial
econometric model which looks at GDP in Guangzhou province in China, where he
uses the classic measure of gravitational potential or accessibility to relate this to
the way the urban system functions with respect to innovative economic activities.
This has important implications for future planning of industrial development in the
region. Helen Couclelis then concludes this part by standing back and speculating
on how all these trends in digital modeling at different scales pertain to the planning
of future cities, particularly smart cities. This serves as gentle closure to the ideas in
this first part of the book, which establishes many of the theoretical concepts to be
picked up and operationalized in the chapters that follow.
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Chapter 3
Defining Urban Science

Michael Batty

Abstract This introductory chapter provides a brief overview of the theories and
models that constitute what has come to be called urban science. Explaining and
measuring the spatial structure of the city in terms of its form and function is one
of the main goals of this science. It provides links between the way various theories
about how the city is formed, in terms of its economy and social structure, and
how these theories might be transformed into models that constitute the operational
tools of urban informatics. First the idea of the city as a system is introduced, and
then various models pertaining to the forces that determine what is located where
in the city are presented. How these activities are linked to one another through
flows and networks are then introduced. These models relate to formal models of
spatial interaction, the distribution of the sizes of different cities, and the qualitative
changes that take place as cities grow and evolve to different levels. Scaling is one
of the major themes uniting these different elements grounding this science within
the emerging field of complexity. We then illustrate how we might translate these
ideas into operational models which are at the cutting edge of the new tools that are
being developed in urban informatics, and which are elaborated in various chapters
dealing with modeling and mobility throughout this book.

3.1 A Science of Cities

There are many sciences that encompass our understanding of cities. In this introduc-
tory chapter, we seek to define the range of scientific disciplines and perspectives that
underpin theories pertaining to urban form, social structure, and the built environ-
ment in contemporary cities. The science that we will present is based on abstracting
the critical functions that determine processes of change that characterize cities,
processes such as the way markets operate; the way goods, people, and information
are distributed across networks; the economic rationale for the location of activities
in cities; and the way these functions and processes grow and change as cities get

M. Batty (B)
Centre for Advanced Spatial Analysis, University College London, London, UK
e-mail: m.batty@ucl.ac.uk

© The Author(s) 2021
W. Shi et al. (eds.), Urban Informatics, The Urban Book Series,
https://doi.org/10.1007/978-981-15-8983-6_3

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8983-6_3&domain=pdf
mailto:m.batty@ucl.ac.uk
https://doi.org/10.1007/978-981-15-8983-6_3


16 M. Batty

bigger or smaller. There are many sciences of the city that are not included in our
remit, such as those involving the physics of the built environment, the ecology of
cities, and the way climate impacts on city form and function; and there are many
aspects of the social domain such as political actions and social mixing that are not
considered in this review. But it is important at the outset to be clear about the limits
to this science (Lobo et al. 2020). The purpose of this chapter is to suggest a wide
variety of scientific ideas that support the quest for establishing urban informatics.We
loosely define it here as the technologies and tools as well as the data that enable our
city science to be embodied in the models and simulations that are used to improve
the management and planning of cities and regions across many different scales and
topic areas (Batty 2019).

Urban informatics has emerged as a coherent field largely due to the scaling
down of computers and sensors to the point where they can be embedded at very
high densities in every part of the urban environment. This includes mobile devices
that people activate and operate, as well as fixed sensors that record data pertaining
to their functions, often in real time. Urban informatics thus covers a wide range of
digital data, from that which is collected in traditional terms from universal or sample
censuses at typically low frequencies such as years or decades, all the way to real-
time big data streams that are captured at very high frequencies and which provide a
portrait of how the city is changing continuously. This field not only covers data, but it
also embraces the tools andmodels that are collectively referred to as urban analytics.
In all these tools, we need good theory, and thus, it is the purpose of this chapter
to sketch the rudiments of a city science that covers both low- and high-frequency
processes in cities, as well as methods of representing and visualizing the form these
processes take when we are able to incorporate them in models, simulations, and
predictions.

Accordingly we begin by exploring the nature of the city as a system, which
was the dominant way of articulating its structure and dynamics in the middle years
of the past century. This will establish the key components of cities and how they
function at different levels of organization arranged in hierarchical fashion. This
then leads us to extend our knowledge to systems of cities, although in this book
we will only occasionally refer to such extended systems when we explore cities at
regional and national levels. In reviewing these ideas, we introduce the notion that
cities can also be seen as systems that emerge from a multitude of local individual
decisions, implemented from the bottom up. These generate order from the apparent
chaos of non-coordination, and this grounds the study of cities and this science as
one of the main exemplars of complexity theory. The theories that have emerged
from this focus on systems and complexity are often referred to loosely as social
physics in analogy to mechanical systems, and we review these before we develop
two key constructs that define the essence of this science of cities: scale and size. The
way a city’s spatial form—often through its geometry—is reflected in its functions
generates the key properties of cities that are articulated in theories about how cities
function economically and socially. We then present these functions, linking these
to the networks and flows that form the cement that binds the various subsystems,
components, and the city’s elements together. Many of these models form the basis
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of operational applications, and we will note a wide variety of these simulations
to give readers some idea of the range of possibilities in using simulation in urban
informatics.Wewill then conclude with some speculations about how these theories,
as viewed in terms of urban informatics, influence the distribution of different types
of cities world-wide and the way in which they can be used to develop tools to
improve the quality of life and sustainability of cities through the development of
urban informatics.

3.2 City Systems and Systems of Cities

Up to the beginning of the industrial revolution, all cities evolved from some central
location where people came together to trade or to rule. From ancient times, popu-
lations clustered around these central places and cities developed in such a way
that competition for locating closer to the center depended upon the ability of those
who engaged in production to capture sufficient demand for their goods to be able
to outbid others with respect to the price of space and proximity. Although this
model was distorted in the early industrial revolution with the exploitation of fossil
fuels around which cities also grew, the notion of the city having a dominant core
with bands of different land-use activities or land uses surrounding it, became the
received wisdom for how cities came to be formed . As transportation routes bringing
producers and consumers to the center to engage in trade could not be built every-
where, cities also developed in radial fashion, with the dominant model being the
radially concentric form that wasmost clearly articulated by Park andBurgess (1925)
in their classic studies of Chicago.

The system underlying this model is muchmore complex, in that different subsys-
tems exist, each with a radially concentric form at different hierarchical levels. These
form neighborhoods, districts, communities, villages, and even small towns within
bigger cities, and as the city grows and evolves, these hubs or clusters become
ever more differentiated. In short, these subsystems form highly structured networks
which in turn mirror a hierarchy of different functions, each serving local areas. The
kinds of models that have been developed, and are still widely applied, simulate
flows of people and goods between different places within the city, using analogies
from gravitation that mirror the increasing deterrence effects that distance imposes
on movement. The standard model divides the city into different locations (or zones)
whichwe can label i and j , andwe assume that a generic flowbetween these locations
Ti j is a direct function of the size of places i, Oi and j, Dj and an inverse function
of the distance or some function of spatial impedance di j between them. The typical
model is

Ti j ∼ Oi Dj f
(
di j

)
(3.1)
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and this is still widely applied to simulate transportation in cities, migration between
cities, flows of expenditure to retail centers, and many other flow systems that define
how the subsystems of the city engage with one another across many different hier-
archical levels. A key element in this new science of cities is that patterns of spatial
interaction also reflect underlying networks, and that the activities at different specific
locations can be simulated as being proportional to the flows that emanate from all
locations. From Eq. (3.1), these accumulations of flow at different locations might
be predicted as proportional to the relevant activities as

Pi ∝ ∑

j
Ti j ∼ Oi

∑

j
D j f

(
di j

)

Pj ∝ ∑

i
Ti j ∼ Dj

∑

i
Oi f

(
di j

)

⎫
⎪⎬

⎪⎭
, (3.2)

where Pi and Pj might be defined as some measure of population size at their
respective locations.

The models in Eq. (3.2) are in essence measures of potential—in analogy to
gravitation once again—or accessibility, and measure the relative nearness of all
places to each place in question (Stewart 1947; Hansen 1959). Themodels developed
by Jin (Chap. 8), which measure hotspots with respect to income and GDP, are in this
tradition. In fact, this generic model can be made subject to constraints on locations
in various ways. The usual version of the model used for transportation modeling
is to make sure the trip distribution produced by the model in Eq. (3.1) meets the
constraints on the size of trips generated at origins and attracted to destinations. This
is the so-called doubly constrainedmodel. If there are constraints solely on the origins
or the destinations, these are singly constrained models, and it is possible to use them
to predict the cumulative flow of trips at origins or destinations; in this sense, these
are location models. If there are no constraints on either origins or destinations, the
model in Eq. (3.1) predicts the location of activities such as the populations given by
Eq. (3.2). This is the unconstrained model. This family of models and other variants
was introduced by Wilson (1971) and has become the de facto standard in spatial
interaction modeling.

This link between location and spatial interaction is key to the science that we are
referring to.We can in fact generalize these ideas to many cities—to systems of cities
as Berry (1964) first referred to them—in that although functions such as retailing
specialize across a hierarchy within individual cities, this same sort of differentiation
exists between cities. It wasChristaller (1933)who first defined the hierarchy of cities
with respect to the different functions different-sized cities have, using the idea that
the bigger the city, the more specialist services it could provide—largely through its
division of labor. The populationwould demandmore specialist services in the bigger
cities, and this would imply that the bigger city would need a much bigger hinterland
to capture this demand than smaller cities. This would then be reflected in the area
of the hinterland and thus implies a hierarchy of cities based on nested hinterlands
associated with different city sizes, and a decreasing number of large cities and their
hinterlands as the demand for more and more specialist functions grew. Christaller
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did two things with these ideas. He first demonstrated that this pattern of nested
hinterlands could be observed in the relatively well-developed landscape of Bavaria,
while his second contributionwas to abstract these hinterlands into a regular hierarchy
of hexagonal market areas that could be nested and which reflected a progression
of ever fewer but bigger central places. In fact, the model is one of the cornerstones
of human geography, and it is consistent with much of location theory (Isard 1956),
with spatial interaction models, with network representations of cities, and with the
development of urban economics (Alonso 1964).

If we order the cities in such a system by size from the largest to the smallest,
we can then rank them, and when we examine this ranking, it is easy to show that
these sizes follow an inverse scaling relation which is often assumed to be an inverse-
power law. Of course, the frequency of cities of the same size increases with rank
in this theoretical central place system based on regular-nested hexagons, but if we
consider that some noise is always present in such an evolving system, then it is not
difficult to imagine that we get a smoother continuum, and it is this that has been used
to demonstrate a strong relationship between city size and rank. It was Zipf (1949)
who first popularized this relationship, and we can give some form to this by first
thinking about the size of the various neighborhoods within a single city using the
model that we introduced in Eqs. (3.1) and (3.2). Let us assume that the destination
activity in Eq. (3.2), that is, Pj , can be ordered from largest to smallest. Then, we
can use the index 1, 2, . . . , n to define these cities where P(1) j = P(max) j and
P(1) j > P(2)k > P(3)z > · · ·. We can dispense with the index j because we are
now rank-ordering the locations with respect to size, not location. The formal relation
which has been demonstrated many times in many places for locations within cities
and also between cities themselves—Zipf’s Law or the rank-size rule—can thus be
stated as:

P(r) ∝ 1/rα (3.3)

where r is the rank of the location or city with population P(r) and α is a parameter
which defines the slope of the power law. In fact, the strict form of Zipf’s law is
where α = 1 but most applications suggest that this parameter differs from 1. This
is due to the relative stage which particular cities have reached in the evolutionary
process, the fact that the distribution of cities is not in a steady state, and the fact that
the spatial regions over which the relationship is defined, are not usually closed in
any sense.

3.3 Urban Growth: Urbanization from the Bottom Up

The models that define the city in terms of spatial interaction are essentially static, in
that they articulate the workings of the city at a cross section in time. There is little
concern for process other than developing average relationships that encapsulate the
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entire historical development of the city at the given point in time, and there is little
concern for urban growth and change. As soon as the models from social physics
were applied and adapted to urban applications, there was a move to embed and
extend them to deal with related dynamic processes. Some of these applications
simply used the models to simulate a series of cross sections and to explore the time
series that was generated, but some have been used to simulate the actual changes as
increments in each time interval, which provides a more basic representations of the
dynamics. However, these kinds of application do not embrace the fundamentals of
urban dynamics, and other models which are essentially temporal have been adopted.

Many of these models articulate the city not as a mechanism but as an organism,
evolving like a biological system rather than being manufactured like a machine.
In this sense, cities are represented not as aggregates of populations but as sets of
individuals—agents—that act purposively in making decisions pertaining to urban
development. Thus cities develop from the bottom up rather than being organized or
planned from the top down. There are many models of how city populations grow
and change but in aggregate, it looks now as though world population, whose growth
until quite recently appeared to be exponential or even super-exponential, is likely
to become logistic with the total population stabilizing by the end of the century.
This of course is one prediction too far, but it appears currently to be the most likely,
and in some respects, the growth of cities is following a similar trend. Big cities
are getting bigger, but they are achieving this by fusing with other cities, generating
polycentric urban landscapes while still attracting population, but at a decreasing
rate. Cities are thus fusing into larger urban agglomerations, but their dynamics is
much more mixed than following simple exponential and capacitated-exponential
curves. A number of models that illustrate chaotic patterns of urban growth have
been suggested, and although none of these have been operationalized for real cities,
other than as thought experiments illustrated by stylized facts, they have provided
an arsenal of tools for studying nonlinear dynamical systems that underpin many of
the tools and techniques presented in the rest of this book.

As cities grow in size, they change qualitatively, generating economies and disec-
onomies of scale that do not cancel each other out. As cities get bigger, they bring
more specialized people together, and as central place theory reveals, the bigger cities
are much more specialized and serve a much larger population than the smaller ones.
Their economies of scale are reflected in the fact that big cities are more innova-
tive, more creative, and consequently often more wealthy, and there is considerable
evidence that as cities grow, they do indeed becomemore than proportionately richer,
creative, and innovative. But at the same time, there are diseconomies of scale which
relate tomore-than-proportionately increasing levels of crime, lower incomes among
the poorest, and increasing inequalities between rich andpoor. These relationships are
captured in the key relationship between the income of a city Y (t) and its population
P(t) that can be written as:

Y (t) ∼ P(t)β, β > 1 (3.4)
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where β is a measure of the economies of scale. If β < 1, then the model in Eq. (3.4)
illustrates that income increases less than proportionately with population size. This
in fact is unlikely, but if we were to break the population down into different groups,
then the poorest group would have to get more than proportionately much greater
when cities increase in size for the relationships inEq. (3.4) to hold. This sort ofmodel
was originally developed to look at growth in biological systems, but it presents a
good analog of economies of scale, and has been widely applied to examples of
ancient and modern city systems as well as firms, individual incomes, and a host of
related socio-economic phenomena (West 2017).

In fact, this allometric model has not been developed temporally for individual
cities or sets of cities, and there is considerable debate about the effect of scale
economies, as the underlying processes which lead to this are defined away by such
models; as such they remain implicit in these formulations. In fact, there is still a
dearth of dynamic models that represent the way cities evolve, although with the
development of complexity theory, there are several key dimensions to the way
we now characterize these dynamics. There are no well-worked-out dynamics that
coincide with the processes that determine how cities grow and evolve, and this is
as much because there are very few good, robust theories that we have been able to
discover to date. This is also because of our inability to observe such processes at
first hand and compile good data. Urban systems like many social systems are highly
resistant to detailed observation and show a degree of invisibility that is much more
problematic than in many physical systems where we are able to instrument most
features of any relevance.

Complexity theory does, however, reveal certain features of cities that define the
limits to our existing models. Cities are always in disequilibrium and this is the new
normal, as if it was anything other than that hitherto. In fact, cities are far from
equilibrium, in that equilibrium is an abstract concept that in some models repre-
sents a long-term steady state, but in most models cannot be defined and probably
does not exist. As cities grow from the bottom up, patterns emerge at higher levels.
Although there are features of self-similarity at these different levels that we can
grasp and sometimes articulate in terms of fractal phenomena, it is often difficult to
tie the patterns that we see in cities at different levels to specific bottom-up processes.
In this sense, history is all important as we perceive an average randomness in how
decisions about urban development are made at the lowest levels. Decisions are for
the most part rational if they are unpacked to the level at which they become under-
standable, but the physical limits of the city and the way we interact socially are such
that these constrain what is possible and enable the emergence of order at all levels.
In this sense, history matters just as much as geography does. As we implied above,
ourmodels and theories need to rapidly reflect the fact that the systemswe are dealing
vary in space and time. Our abilities to improve the quality of life in cities must take
account of such variations which of course reflect underlying human behaviors. In
short, in any complex system, there is a degree of historical path dependence that
reflects the fact that decisions, although rational, are not necessarily ordered in any
obvious way.
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There are some processes that are now quite well defined such as those that
reveal remarkably clear organization based on decisions that are initially random. For
example, the model of segregation first developed by Schelling (1978) demonstrates
that if a population system composed of agents are initially randomly distributed, but
these agents have distinct preferences to always live with as many of their own kind
around them, then if agents begin to move when this is not the case, very quickly an
extreme pattern of segregation can evolve. The degree of extremeness—like ghet-
toizationor gentrification inmodern cities—appears to be entirely unwarranted, given
that the agents have a very mild preference to live side by side with those of their own
kind (being quite content to have an equal number of their own kind as well as an
equal number of other kinds around them). The reason for this segregation, then, is
that there is no coordination at the micro-level. Individuals move of their own accord
when they see those around them dominating the neighborhood. It is processes like
these that we need to identify in cities because part of our quest to make cities less
polarized, more efficient, and to increase the quality of life, are closely bound up
with this kind of decision making.

All issues pertaining to complexity influence our current thinking about cities
(Batty 2005), but the theories we have about how the city system functions are still
quite rudimentary. Many of the models we have hinted at so far are being developed
for individual sectors and distinct dynamic processes, and many are being adapted
to deal with short- as well as long-term change in the high- as well as the low-
frequency city. For example, in this book, there are several chapters that deal with
mobility and new data sets that pertain to networks and flows, and the models in this
chapter are reflected in these. To an extent, urban informatics is much more about
tools, techniques, and models than about theories, although theory is essential to
constructing the bigger picture of how this domain can improve our understanding,
prediction, and design of future cities. In the next section, wewill pull the ideas of the
previous two sections together, emphasizing how these models can be consistently
linked in terms of what we know about scale and size, networks, and flows.

3.4 Scale and Size, Networks, and Flows

To all intents and purposes, by the end of the century, everyone will be living in cities
of one size or another, where the distribution of sizes will follow the rank-size rule.
The biggest cities will be up to 100 million in population, but all of these will be
urban agglomerations that consist of polycentric hierarchies of smaller cities, towns,
and villages that have fused together. But as we have shown in the previous two
sections, the size of a city can also be measured with respect to its local morphology,
its geometry, and the distances that define the bounds over which people will interact
intensively to enact the business of the city. Since the industrial revolution and the
invention of new technologies for mobility and interaction, all cities are part of a
global urban form where distances, travel costs, travel times, and like measures of
impedance condition the interactions and networks that bind all cities together. In
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short, we can no longer think of cities as being freestanding entities; they are now
networked in ways that make it ever more difficult to disentangle them from one
another.

The ideas that we have introduced all pertain to different levels of size and scale.
A metropolitan area for example has a certain population size, a density which is
some measure of size with respect to unit area, and various distances from its core to
its boundary. There is a common force which relates scale to size, and this is referred
to in statistical physics as scaling. In essence, it means that as a city grows in size,
density, in the length of its perimeter, and in the distances travelled within it, we
can identify a common scaling that enables us to represent these various properties
with respect to size. As we change their size, then the quantities involve scale in a
relatively simpleway.We can demonstrate this quite easilywith respect to the various
models that we have introduced. Starting with the standard spatial interaction model
in Eq. (3.1), we can now write it in more specific terms using the inverse-power
function of distance as follows:

Ti j ∼ Oi Djd
−γ

i j (3.5)

If we increase the scale of the city by a factor λ, which to fix ideas, we might
consider being equal to 2, this will change the model to:

Ti j ∼ λ−γ Ti j ∼ λ−γ Oi Djd
−γ

i j = Oi Dj (λdi j )
−γ (3.6)

We have doubled the distance, but the number of trips has not halved, for the
nonlinearity applied in the model reduces the number of trips by the factor λ−γ . If
we define an inverse square law of distance γ = 2, then the number of trips reduces
by a factor of 4. In the same way, if our model incorporated economies of scale ϑ

and μ which we apply to the origin and destination attractors as

Ti j ∼ Oϑ
i D

μ

j d
−γ

i j (3.7)

and if we scale these attractors by (ξOi )
ϑ and

(
�Dj

)μ
, then we can easily show

that the trips also scale in a nonlinear way, but remain proportionate to the existing
flows.

When we look at the distribution of population sizes and any of the cumulative
flows that can be predicted from the model in Eqs. (3.5) or (3.6), we have also noted
in Eq. (3.3) that these follow an inverse-power law in the form of the rank-size rule.
If we scale the rank of the cities by a rate α, then the rank-size relation becomes:

λ−αP(r) ∼ (λr)−α = λ−α(r−α) ∼ P(r) (3.8)

The same kind of self-similar scaling is evident in any power-law relationship
such as the urban allometric relationship in Eq. (3.4). If the population in all cities
grows by a factor λ, then
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λβY (t) ∼ (λP(t))β = λβ P(t)β ∼ Y (t) (3.9)

It is also worth noting that several key relationships which emerge from urban
economics, such as the relationship between the density of population, rents charged,
and indeed income itself, vary with respect to distance in the city. The long-standing
observation that densities and rents decline inversely with distance from the core
of the city has been widely modeled using inverse relationships as either a negative
exponential or a power law. The density ρi (population Pi divided by area Ai ) defined
as

ρi = Pi
/
Ai

∼ exp(−ϕdi ) or ρi = Pi
/
Ai

∼ d−ϕ

i (3.10)

is also scaling, as a simple change in the scale of distance in either of these relation-
ships in Eq. (3.10) would show. These relationships indicate that as size increases
in cities, quantities such as income, the numbers of trips, etc., increase or decrease
more or less than proportionately, and this indicates that as cities grow or decline,
there are qualitative changes that are likely to change the kinds of informatics that are
appropriate. This is certainly true of issues concerning economic development, the
provision of transportation, and the ability of the city to generate wealth, innovations,
and new industries (Bettencourt 2021).

In some senses, what we know about the pattern of locations and interactions in
cities is reflected in the underlying networks that support them. There are a multitude
of such networks, other than the most obvious and visible systems that transport
people and goods using different technologies ormodes, butmany are hard to observe
and measure, particularly those that involve information, such as email, Web access,
social media, even telephone, television, and countless other media. All of these
networks have scaling properties that suggest that the distribution of their hubs in
terms of their indegrees and outdegrees—the number of links that enter or leave
the hubs or nodes defining these networks—follow rank-size distributions, and the
number of clusters in such networks by size also follow similar inverse-power laws
(Barabási 2018). Inmanyof the chapters in this book that dealwithmobility, networks
form the basis of the various simulations, and the properties introduced here are key
to the way such flows are measured and modeled.

3.5 The Development of Operational Urban Models

The theories and models that we have introduced formmany of the elements of more
comprehensive urban models that deal with various sectors of the urban system.
Most models developed so far tend to be those that deal with the low-frequency city,
but some of these tools, particularly those dealing with flows and networks which
involve transportation, are beingdeveloped to dealwithmovements over short periods
of time, focusing on real-time movements, usually on a daily basis. There are at least
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four classes of model that we can define as the pillars of urban science with respect
to urban informatics: first, those that depend on aggregate populations and activities
which we call land-use transportation interaction (LUTI models), physical urban-
development models using cellular automata (CA models), agent-based models that
deal with disaggregate populations of individuals moving and making decisions
through time (ABMmodels), and dynamicmodels that deal with individual decision-
making, focusing largely onmobility and geodemographics such asmicrosimulation
models (Chap. 44).

The generic spatial interaction model in Eq. (3.1) and its derivatives, such as
accessibility potentials in Eq. (3.2), lie at the heart of many land-use transportation
models that essentially stitch together several such models to replicate the locations
and interactions between many population and employment sectors of the urban
system. These models were first developed as pure transportation models and then
extended to dealwith land uses and activities in the 1960s. The problems they encoun-
tered were due to limits on computation which have now largely disappeared, but
more important were the limitations of good theory and of course data. Data still
remain an enormous problem, for data on spatial movements have always been hard
to get, notwithstanding new sources from real-time capture on mobile devices. The
fact that such models and their variants only simulate the city at a cross section in
time spurred the development of more dynamic urban models, and in the later years
of the last century, models based not on simulating the dynamics of population and
employment location but on urban land use more generally at the physical level were
developed. These models were largely based on cellular automata whose roots lie in
complexity theory and in physical diffusion processes (such as forest fires). Because
they focus literally on the physical development of land-use change, they are not
easily linked to the numerical characterization of the city in terms of population,
employment, income, and related properties. As such, rather than providing opera-
tional applications, CA processes as articulated in this genus of model find their use
in more specific processes such as traffic simulation at the level of detailed flows.

In the quest for better representations, much more disaggregate models are being
built using two different but complementary approaches: agent-based modeling and
microsimulation. In terms of ABM models, urban models formulated in this way at
the operational level are highly detailed with large data requirements on the behav-
iors of individual decision makers, usually households and firms, but most suffer
from difficulties over developing good theory for the key urban dynamics processes
at work in cities. As such, many models tend to be pilots and demonstrations, proto-
types used to illustrate what is possible, and very few reach the level of full opera-
tionality. UrbanSim and PECAS are exceptions. The fourth class of model based on
microsimulation uses techniques based on constructing synthetic populations which
are more tolerant of the lack of data pertaining to individual behaviors. Such simu-
lations reflect probability distributions pertaining to the attributes of individuals in a
population, and such profiles are used to construct synthetic estimates of populations
according to a series of conditional probabilities. There are two subtypes of model,
the first being traditional microsimulation models reflecting population profiles in
terms of geodemographics. The second set are rather different in that these have
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been quite widely developed for transportation modeling. These are loosely referred
to as activity models, where households generate decisions about trip-making over
the course a day, and the probabilities associated with such decision making translate
into trip patterns at a very detailed level, such that these are much more powerful
than detailed traffic-flow models. MATSIM is one of the best-known such models,
although others such as SimMobility, SimAgent, and so on have been developed. All
of these models derive from TRANSIMS, the original Los Alamos microsimulation
of traffic flow. There are a number of reviews of all these models, and the reader is
referred to Batty (2008), Wegener (2014), and Moeckel et al. (2018) for definitions,
theoretical expositions, and applications.

In the rest of this book, these dimensions of urban sciencemap out intomany areas
of urban informatics, and it is worth noting some of the key chapters that relate to this
science before we conclude. In terms of modeling, all four of the areas that we have
just defined are covered in detail in the chapters at the end of the book, in Part 5 where
Eric Miller deals with transportation modeling (Chap. 47), Anthony Yeh with CA
modeling (Chap. 45), AndrewCrooks and his co-authors (Chap. 46)with agent-based
modeling, andMarkBirkin (Chap. 44)withmicrosimulation.Mobility of course runs
through all these themes and is dealt with from different perspectives in several parts
of the book, particularly by Shih-Lung Shaw (Chap. 5) and Martin Raubal and his
co-authors (Chap. 6) in Part 1, by Marta Gonzalez et al. (Chap. 11) linking mobility
to urban science in Part 2, Chiang Kai-Wei et al. (Chap. 25) explaining developments
in mobile mapping in Part 3, methods for spatial search by Liping Di and Eugent
Yu (Chap. 37) in Part 4, and with respect to the visualization of movement data
by Gennady Andrienko et al. (Chap. 40) in Part 5. Sybil Derrible et al. (Chap. 7)
and Budhendra Bhaduri et al. (Chap. 18) examine energy and infrastructure in their
contributions in Parts 1 and 2, respectively. In terms of an overview, urban informatics
is such a broad area that many of the authors here develop the big picture from their
own perspectives. But in particular, Helen Couclelis (Chap. 9) sets all this in context
of the smart city in Part 1, and Michael Goodchild provides the wider perspective
for how this whole area of urban informatics is addressing questions of new and big
data and geographic information science in Part 6.

3.6 Future Directions in Urban Informatics

There are many aspects of urban systems which we have not addressed in this brief
review of what constitutes urban science. There is a general question as to how
the tools and techniques of urban informatics apply to different types and sizes of
cities in different cultures and societies. Much of urban studies is focused on such
comparative analysis from the point of view of social and economic differences,
and there are implications for the use of urban informatics in different sizes of city
with different social cultures, political regimes, and governance. In particular, the
distinction between the Global North and Global South is important, and there are
already attempts at extending the ideas of city science to these domains, as in the
reports from Acuto et al. (2018) and Lobo et al. (2020). Urban science deals with
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how we define cities in terms of their spatial scale and their boundaries, and in this
sense, the size of the city is all important with respect to the kinds of models and
techniques that spin off from the ideas introduced in this chapter and elaborated in
the rest of this book.

The theories that we have hinted at in this introductory chapter are by no means
complete and never will be. Cities are driven by individuals, and complexity theory
tells us that they grow and evolve from the bottom up. If there is a hidden hand in this
process, it is in the fact that we appear to be able to produce quite ordered structures
from our actions that in many respects are quite independent of each other. How
we intervene in such complex systems is highly problematic, and urban informatics
is in the front line of how we move toward a planning system that is effective in
developing more sustainable, equitable, and efficient cities. This book introduces a
very wide range of tools that can be used at many points in the planning and policy
process, and a major focus needs to be on developing models and techniques that are
able to adapt to new changes that continue to beset cities, as well as new technologies
that are being introduced ever more rapidly.
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Chapter 4
Street View Imaging for Automated
Assessments of Urban Infrastructure
and Services

Daniel Zünd and Luís M. A. Bettencourt

Abstract Many forms of ambient data in cities are starting to become available
that allows tracking of short-term urban operations, such as traffic management,
trash collections, inspections, or non-emergency maintenance requests. However,
arguably the greatest promise of urban analytics is to set up measurable objectives
and track progress toward systemic development goals connected to human develop-
ment and sustainability over the longer term. The challenge for such an approach is
the connection between new technological capabilities, such as sensing and machine
learning and local knowledge, and operations of residents and city governments.
Here, we describe an emerging project for the long-term monitoring of sustainable
development in fast-growing towns in the Galapagos Islands through the conver-
gence of these methods. We demonstrate how collaborative mapping and the capture
of 360-degree street views can produce a general basis for a broad set of quantitative
analytics, when such actions are coupled to mapping and deep-learning characteri-
zations of urban environments. We map and assess the precision of urban assets via
automatic object classification and characterize their abundance and spatial hetero-
geneity.We also discuss how thesemethods, as they continue to improve, can provide
themeans to perform an ambient census of urban assets (buildings, vehicles, services)
and environmental conditions.

4.1 Introduction

Many forms of ambient data in cities are starting to allow tracking of short-term oper-
ations and services (Park et al. 2014; Townsend 2015). Uses of these technologies
range from facilitating traffic management to air quality control, or the management
of non-emergency requests (Park et al. 2014; O’Brien 2015). However, arguably one
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of the greatest promises of urban analytics is to set up measurable objectives and
track progress toward systemic development goals connected to human development
and sustainability over the longer term (Brelsford et al. 2017). A main challenge to
achieving long-term monitoring of processes in urban settings is the convergence of
new technology, local knowledge, and the operations of residents and local gover-
nance. Whereas these objectives already constitute challenges for developed cities,
they are even more daunting in developing country settings (Praharaj et al. 2017).
In rapidly developing cities, data are often far less abundant or even non-existent.
Additionally, urban environments often change at a much faster pace and in informal
ways (Sarin 2016).This makes it much more difficult to track change, and specifi-
cally, to generate statistical progress in development trajectories toward sustainable
development goals (Randhawa and Kuma 2015; Komninos 2015).

A good case study to research the potential of new technology in semi-informal
settings, and the impact it has on managing and tracking the progress of long-term
goals, are the Galapagos Islands. The archipelago, famous for its unique ecosystems,
lies about 1000 km off the Pacific coast of Ecuador (the blue square in Fig. 4.1).
Though most of the islands remain a natural reserve, the human presence on land and
sea is growing very quickly, with four fast-growing towns concentrating most of the
immigrant human population. The remote location and the unique coupled urban–
natural system of these islands constitute a particularly interesting and poignant
setting to study the development trajectories of urbanization (Batty et al. 2019).

Fig. 4.1 The Galapagos Islands are an archipelago in the midst of the Pacific Ocean (blue square).
Their secluded location, fast-growing towns, and unique ecosystems offer a particularly interesting
and poignant setting for developing models of sustainable development for coupled urban–natural
systems. The manageable size of these urban areas makes it possible to study novel methods of
collaborative data collection and the convergence of new technology and local knowledge. We
exemplify the method on the capital of the islands, Puerto Baquerizo Moreno on San Cristóbal,
depicted in the inset. Map designs are from Mapillary (2019) and OpenStreetMap (2019)
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From amodeling perspective, the islands provide a unique setting due to their remote
location, and the fact that all materials and goods in and out the system are registered
upon arrival or departure, just as are people’s migration (Bettencourt 2019), provides
a good basis for assessing the impact of the island system on its external environment
and vice versa.

Together with the emergence of a plan to harmonize tourism with sustainable
stewardship of the local charismatic ecosystem (Rousseaud et al. 2017), the towns in
the Galapagos Islands provide a unique chance to study novel approaches to urban
planning, urban management of resource flows, and tracking of development toward
sustainability goals (Batty et al. 2019).

We will focus in this study on the second largest town in the Galapagos, Puerto
Baquerizo Moreno, which is also the regional capital and has a population of about
eight thousand residents (Andrade and Ferri 2019). The town is located on the eastern
part of theArchipelago, on the island of SanCristóbal, as depicted in Fig. 4.1. In terms
ofmaterials, the island is relatively independent of the other islands in the archipelago
since it has its own harbor and airport that directly connect it to continental Ecuador
where most people, construction materials, energy, and consumer goods originate.

Historically, the island of SanCristóbal has not been the archipelago’smain tourist
hotspot. However, since the airport opened in 1986, the island is increasingly attrac-
tive to a growing number of tourists—as can be seen by the number of arrivals at
the airport—which shows a higher growth rate than the total growth rate of tourist
arrivals across the Galapagos Islands (Izurieta 2017). The annual increase of 3.72%
in tourism (about 225 thousand visitors in 2015; Izurieta 2017) creates a growing
economyon the islands, but also places pressure on the urban–natural interfaces of the
islands. These pressures and possible solutions remain hard to track in detail, there-
fore precluding a balanced path where economic opportunities may be expanded,
while ecosystems in the islands are protected.

Thus, innovative approaches that track the growth and effects of urbanization on
the islands are becoming paramount. Here, we exemplify how collaborative data
collection and new imaging and artificial intelligence technology can support this
process in the context of an emerging project for long-term sustainable development
of the Galapagos Islands.

4.2 Data Collection and Object Localization

The rapid development of computer vision and object recognition has opened up
efficient ways to process large image datasets (Chen et al. 2016). For urban science
and policy, these capabilities have great potential to follow the trajectory of the built
infrastructure and to assess the heterogeneity of urban assets and services, including
the consumption of energy and materials. However, data about these issues are often
lacking, outdated, or too coarse in many developing urban areas. This is even more
so the case for remote locations, such as the towns in the Galapagos Islands and
specifically, the town of Puerto Baquerizo Moreno. Before we started the project of
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monitoring the town’s built environment, very few data were available online (about
a dozen images) of which only a few depicted the island’s urban areas.

Monitoring the urban development, however, asks for data that capture the urban
fabric as a whole and over time. In the following, we introduce a method that makes
it possible to document the whole town within only a few days’ work and with only
minimal initial investments, thus making collaborative data collection possible. The
data pipeline consists of three main steps, of which two are fully automated. The first
involves capturing street-level photographs, and the second analyzes single images in
order to recognize and segment objects, as depicted on the right panel of Fig. 4.2. The
third step consists of identifying the same object in different images and geolocating
its position in space and time.

The most time-consuming step is the collection of enough imagery to cover the
whole town. The process is entirely parallelizable and can involve a group of people
or vehicles. There must be enough overlap in the images so that the geolocation of
objects is possible and thus becomes unambiguous. Figure 4.3 depicts an example
where a store sign was recognized in six different images.

In this study, we used a 360-degree action camera able to automatically take
images with a chosen temporal frequency. The camera is capable of taking images

Fig. 4.2 Street-level imagery can be captured with relatively simple tools. For this study, we
collected data by attaching a 360-degree sports camera on a helmet and rode a bicycle through the
town. The imagery is available through Mapillary’s (2019) user interface, as depicted on the left
panel. The right panel shows processed and segmented imagery. The automatic object classification
identifies structures and objects out of almost three-dozen categories. However, on the island, the
algorithms sometimes fail to properly identify certain objects. For example, the sidewalk on the
right is classified as ground. Nevertheless, the methods provide a powerful tool to assess urban
features in developing towns experiencing rapid change
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Fig. 4.3 The imagery covers most of the accessible street network of Puerto Baquerizo Moreno on
San Cristóbal, Galapagos. The green dots show the locations of all 360-degree imagery produced
by us. When a series of images are available along a street, objects can be identified and geolocated.
The inset depicts a situation in which the same store sign is recognized in six different images in
the right inset panel, taken from slightly different locations, of which three are shown in the left
inset panel. Map designs are from Mapillary (2019) and OpenStreetMap (2019)

that cover the whole surrounding from the current location which, with some post-
processing, produced globes at each location. We attached the camera to a helmet
and drove around the town with it. Since the camera also added the GPS coordinates
to each image’s metadata, we were able to cover about 75 km of geotagged image
globes within only a couple of days. The collected imagery accounts for more than
10,000 images, of which many overlap and provide a good dataset for the next steps
in the data pipeline. Each location of a 360-degree image is depicted by a trace of
green dots in Fig. 4.3.

We executed steps two and three in collaboration with Mapillary (2019), a tech-
nology company dedicated to creating crowdsourced street view maps. Mapillary
provides an engine that automatically processes uploaded images, including a user
interface to walk from one image to the next and, thus, ultimately throughout the
entire city. The left side of Fig. 4.2 depicts the interface that is accessible to the public.
The images are further processed using computer vision and object recognition algo-
rithms, of which many have been developed and optimized by theMapillary research
teams (Bulo and Kontschieder 2016; Bulo et al. 2017; Cariucci et al. 2017; Neuhold
et al. 2017). The algorithms segment the images and add semantic information to
different parts of the visual field.
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The field of computer vision and object recognition has made significant strides
in recent years by using deep-learning algorithms to perform image segmentation
(Krylov et al. 2018). However, these techniques are not yet perfect and the resulting
semantic information extracted from images is often only an approximation to reality.
For street-level data, this is especially the case for areas that differ from the data that
were used to train the object recognition classifier. Nevertheless, the algorithms are
able to recognize core properties in the imagery, as depicted in the right inset panel
of Fig. 4.2.

When the same object is recognized in several images, it can be geolocated
uniquely in space. Figure 4.3 shows an example where a single store sign is recog-
nized in six different images located in the right inset, three of which are shown in the
left inset panel. The task of geolocating objects from different images at street level
involves several major technical challenges. Besides aggregating the same object
present in several images, the main challenge in processing crowdsourced street-
level data is the varying qualities of the imagery, such as blurring or restricted field
of view, and variability in camera positions. The latter is important, since high-quality
geolocation depends on the camera position relative to the object in the field of view
for accurate triangulation and location (Krylov and Dahyot 2018).

Despite these challenges, the engine was able to geolocate almost 12,000 objects
in the small town of Puerto Baquerizo Moreno, including 777 trash cans, 343 store
signs, 412 advertisement signs, and 224 driveways. These are the classes of objects
that we use in the next section to derive the functions of certain parts of the town and
to exemplify the conclusions that can be drawn from these methods, as they continue
to improve.

4.3 Deriving Urban Functions from Object Statistics

The collection of data and the identification and localization of objects in space
provides a basic functional mapping of an urban area. The spatial distribution of
different classes of objects makes it possible to study the location and functions of
different districts. For example, the density distribution of store signs in Fig. 4.4b
shows the areas in PuertoBaquerizoMoreno that provides a range of specific services,
typically associated with tourism (Andrade and Ferri 2019).

Figure 4.4 shows two object–class density distributions that are good indicators
of residential areas: the distributions of trash cans and driveways (subfigures (a) and
(c)). Trash cans in residential areas of Puerto Baquerizo Moreno are standardized
vessels with a unique shape and color combination. Each household is required
to have their trash cans outside of the building, close to the street for easy access
for trash collectors. They additionally serve as public trash bins. The trash bins in
tourist areas are different, not as prominently placed, and often obfuscated. The
segmentation engine has problems identifying them as such, but this is also a clear
sign of a different look and function and of an intentional effort to deal with the issue
differently. The waterfront area with the most tourist services is much denser than
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Fig. 4.4 Geolocated objects help to identify and locate different properties of the town. The figures
depict the distribution of a trash cans, b store signs, c driveways, and d advertisement signs. The
distribution of the trash cans shows the importance of local knowledge. The ones identified by the
segmentation are private trash cans, whereas the public ones are not recognized and are largely
in the business parts of town, close to the sea and indicated by a high volume of shop signs in b.
The driveways in c indicate a lower density of houses in those areas, since they are set back from
the street. The advertisement signs in d have a similar pattern as the store signs in b, but are more
uniformly distributed, mainly along principal roads. Map designs are from Stamen Design (2019)

the rest of the town. The buildings are often located next to the street and not set
back. This is indicated by the abundance of driveways in the residential area in the
northeast and their absence in the denser locations, such as the area central of the
town toward the sea. Figure 4.4c depicts this clearly.
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The last indicator we want to point out in this study is the distribution of adver-
tisement signs. Their spatial distribution is depicted in Fig. 4.4d. According to the
density distributions of advertisement signs, there are three main patterns specific to
places with a large accumulation of advertising signs. The first pattern is where most
tourists spend their time within the town and also where most restaurants and tourist
services are located, corresponding to the highest density of store signs in Fig. 4.4b.

The second area with a high density of advertisements consists of the main thor-
oughfares that cut through the town from east to west, each a one-way street. Within
the town, these are the streets where most shops frequented by locals are located.
The main street also connects further to the only other settlement on the island and
is the only street that cuts through the San Cristóbal from east to west. This road
constitutes the main axis in the town, together with the street that is orthogonal to it
and starts at the airport on the left of the map. However, these signals are not as clear
as for other indicators.

The third cluster, the one with the highest density of advertising signs according
to the data, is located at the international convention center close to the center top
of the image. This cluster has to be regarded with care, because many of our data
collection trips started here, so that the region is oversampled in terms of imagery.
The data-processing engine has some difficulties to cope with this sampling effect,
separates advertisement signs that are the same, and geolocates them in very similar
locations.

The above interpretations of the different density distributions in Fig. 4.4 are
clearly highly reliant on local knowledge. For example, the unique form and shape
of the private trash cans are not a general pattern across different urban systems,
but a very local feature. There would not have been an obvious conclusion from the
extracted data without knowledge of local choices, habits, and rules.

4.4 Discussion

Recent technological advancements are paving the way to novel ways of monitoring,
studying, and assessing characteristics and change in urban environments that are
closer to the human experience. Our present study shows how collecting street view
imagery and identifying and locating associated functional objects require little initial
investment. These methods are also suitable for collaborative approaches involving
both image collection and interpretation of resulting spatial statistics. Thus, this type
of result demonstrates that concepts of smart cities and the collection of extensive and
detailed ambient urban data are no longer restricted to large investments and efforts
by large corporations or universities, but are also feasible in developing towns by
relatively small numbers of people.

It is desirable that local citizens take a greater part in this type of process for
a number of different reasons. First, on purely technical grounds, an ongoing data
collection effort helps improve the system’s evidence pool in terms of coverage
and accuracy of object identification statistics. Second, local knowledge is critical
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for good urban planning and policy, and there have been thus far few systematic
strategies that combine data and technology with people’s local experiences. Third,
and most important, data collections by corporations and governments rarely speak
to the perspective and priorities of local communities, who, in the case of sustainable
development, have a clear stake in the future of their environment and can act as the
best stewards of its well-being (Burke et al. 2006). Fourth, the use of methods such
as the ones discussed here provides a number of interesting educational and training
opportunities that can contribute to the growth of local human capital and may have
spillovers to other innovative local practices.

There are still a number of technical obstacles for turning the pilot described here
into an effective system that can speak to these objectives. Object recognition in
images of developing cities is far from working perfectly. This is likely due to biases
in training of the artificial intelligence algorithms with imagery from more formal
environments, such as cities of the Global North. As a result, the present algorithms
often fail to extract all semantic information from the images in the Galapagos and
thus fail to achieve high levels of accuracy in object recognition and segmentation.
Nevertheless, the methods already offer powerful tools in their current state, so that
we can reasonably expect that they will improve in the near future as more evidence
from informal and variable environments becomes part of training corpora.

Aspects of algorithms that need improvement are likely related to increasedknowl-
edge of geographic and cultural contexts. We have seen for example that the recogni-
tion of sidewalks remains difficult as these rather irregular spaces are often classified
as parts of the streets or simply as ground. Another example is the classification
of beaches. In the data, we collected on the Galapagos Islands, sand beaches are
often classified as snow. Simple contextual clues would certainly improve this type
of classification.

Nevertheless, the methodology provides initial stages of potentially powerful arti-
ficial intelligence tools to assess the assets of cities and towns and to study the
development trajectory of urban microenvironments. This will become even more
powerful in the future, as the algorithms become capable of more fine-grained object
classification and segmentation in a ways that can track, for example, construction
processes and the materials and costs involved.

A big impact in future studies of urban areas will arise from extracting three-
dimensional (3D) city models (Schläpfer et al. 2015) from the type of imagery
produced and analyzed in this study. In combination with more traditional aerial
and remote sensing (Qin and Fang 2014; Weng et al. 2018) and citizen engagement,
high-quality 3D models of whole towns and cities are just now becoming acces-
sible also in fast-changing settings in the developing world (see also Chap. 34). The
simplicity and generalizability of data collection demonstrated here provide a way to
easily and quickly track these development trajectories in ways that are closer to the
experience of individuals and households living and working in these environments,
and at the same time allow us to characterize material and information flows through
these systems across scales.
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Chapter 5
Urban Human Dynamics

Shih-Lung Shaw

Abstract Urban areas are places where people concentrate in a relatively
high density built environment to carry out a wide range of activities. Each urban
area should provide adequate infrastructure and services to support the needs of
its population. Since various resources, services, and facilities are at different loca-
tions, urban areas manifest a complex system of flows of people, goods, and infor-
mation to support the economic, social, cultural, and political systems in human
society. These activities, flows, and systems are driven by various processes and
exhibit various spatiotemporal patterns that are the outcomes of human dynamics.
However, howwe investigate the various dynamic processes and complex systems in
urban areas has been and continues to be a challenging research topic. Urban human
dynamics cover multiple aspects and can be studied from different perspectives. This
chapter discusses urban dynamics and human dynamics in terms of their respective
approaches and methods, along with some selected examples. It then connects urban
human dynamics research with urban informatics to highlight their relationships and
how together they could lead to urban areas that can better serve human needs and
improve the quality of life.

5.1 Introduction

Urban areas are places where people concentrate in a relatively high density built
environment to carry out a wide range of activities. The terms urban area and city are
often used interchangeably. The National Geographic Society, for example, indicates
that “An urban area is the region surrounding a city” (https://www.nationalgeograp
hic.org/encyclopedia/urban-area/). Each urban area requires adequate infrastructure
and services such as electricity,water, sewer, transportation, schools, hospitals, shops,
and parks to support the needs of its population. Since various resources, services, and
facilities are at different locations, urban areas therefore have a complex system of
flows of people, goods, and information to support their economic, social, cultural,
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and political systems. These activities, flows, and systems are driven by various
processes and exhibit various spatiotemporal patterns that are the outcomes of urban
human dynamics. It should be noted that urban human dynamics also constantly
evolve across space and over time with changing technologies, environmental issues,
and social values.

According to the United Nations Educational, Scientific and Cultural Organiza-
tion (UNESCO, https://www.unesco.org/education/tlsf/mods/theme_c/popups/mod
13t01s009.html) and Our World in Data (https://ourworldindata.org/urbanization),
the trend to global urbanization has dramatically accelerated in the past several
decades. Approximately 30% of world population lived in urban areas in 1950 and
around 55% in 2019. This urbanization trend is expected to continue, and it is esti-
mated that close to 70% of the world’s population are likely to live in urban areas
by 2050. With this trend, many existing cities must grow bigger to accommodate
the increasing population. Given the fact that many big cities already face signifi-
cant challenges with respect to their current population size, how to accommodate a
continuously increasing urban population without sacrificing our general quality of
life has become an important and urgent research topic.

Urban areas have long been considered to be dynamic and complex in nature
(Crosby 1983;Batty 2003). Batty (2005) suggested that the emphasis of urbanmodels
is no longer on spatial interaction but on development dynamics and local movement.
However, how to investigate the various dynamic processes and complex systems
in urban areas has been and remains a challenging research topic. Urban human
dynamics cover multiple aspects and can be studied with different perspectives. In
general, we can divide research in urban human dynamics into twomajor types, urban
dynamics research, and human dynamics research. Urban dynamics research tends
to focus on the evolution of an urban area in terms of its growth, change, and decline.
In this case, the focus is mainly on the urban area itself, and human activities often
are considered implicitly through the outcomes of human activities such as land-use
types. For example, we can study how a city evolves spatially through its land-
use change patterns over time in terms of its growth, change, and decline. Urban
dynamics research also can investigate the dynamics among a system of urban areas
such as studying various types of flows among a set of cities. In this case, the focus
is mainly on the interactions between cities. Human dynamics research, on the other
hand, has a focus on humans per se and studies the dynamics of human activities and
interactions that lead to various flows and patterns in an urban area or between urban
areas. Although urban dynamics and human dynamics are closely related to each
other and should not be treated as two independent types of dynamics in urban areas,
this chapter discusses each of these two types of urban human dynamics separately
since they tend to use different research approaches and research methods.

https://www.unesco.org/education/tlsf/mods/theme_c/popups/mod13t01s009.html
https://ourworldindata.org/urbanization
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5.2 Urban Dynamics

One way of studying complex and dynamic urban areas is to employ general systems
theory (von Bertalanffy 1968; Straussfogel 1991; Alfeld 1995; Xie 1996). General
systems theory considers a system comprising of a set of interdependent subsystems.
Asystem,which canbemore than the sumof its parts, exhibits emergingpatterns from
the interactions of its parts. Changes in one subsystem can affect other subsystems
as well as the system as a whole. Forrester (1969), who is considered the founder of
system dynamics, published a book titled Urban Dynamics in 1969. He states that
“In this book, the nature of the urban problem, its causes, and possible corrections
are examined in terms of interactions between components of the urban system”
(Forrester 1969, p. ix). Forrester uses computer simulations to study the life cycle of
an urban area to reveal its dynamic characteristics. Thiswas an early effort at studying
urban dynamics with a computer simulation approach to systematically examine the
structure, growth, stagnation, and revival of urban areas.

Due to the influence of Forrester’s approach in investigating urban dynamics, two
volumes of Readings in Urban Dynamics were subsequently published in 1974 and
1975, respectively (Mass 1974; Schroeder et al. 1975). These two volumes include
articles that cover conceptual issues, models, and applications of various aspects
of urban dynamics as well as responses to the criticisms of the approach presented
in Forrester’s book. For example, Forrester uses a five-step process to reach his
conclusions about the dynamics of a typical inner area of a US city, his example
loosely related to Boston. The first step chooses certain basic variables to represent
the social and economic composition of an urban area, followed by a second step of
using specific equations to describe the development of an urban area. The third step
introduces public policies to modify the development expressed in the equations,
which then leads to the fourth step of deriving the development outcomes due to the
public policies introduced into the equations. The fifth step compares the different
development outcomes and recommends the public policy that would generate a
desirable development outcome. Kadanoff (1971) pointed out several shortcomings
of Forrester’s approach, which includes (1) Forrester’s model fails to include city–
suburban interactions, (2) migration is the only interaction between an urban area
and the outside world in Forrester’s model, and (3) Forrester’s model focuses mainly
on predictive methods and does not give sufficient attention to the goals behind the
normative approach. Kadanoff (1971, p. 262) then concluded that “I would reject the
conclusions, but accept the model as an appropriate basis for further work.”

In response to these criticisms, Forrester (1974, p. vii) wrote: “With the publica-
tion of Readings in Urban Dynamics, it seems important to emphasize that the orig-
inal Urban Dynamics model represented more a viewpoint and a methodology for
analyzing urban behavior than a single, finished model. Urban Dynamics was a first
step in a continuously evolving set of ideas about social systems. The urban dynamics
approach has several major distinguishing features. First, it focuses primarily upon
the interrelationships between economic, political, psychological, and sociological
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variables rather than analyzing in detail any one subsystem of the urban environ-
ment. Second, it deals with the long-term evolution of an urban area; it treats the
positive feedback processes that lead to urban growth as well as the nonlinearities
and negative feedback processes that arise to limit growth. Finally, it provides a
formal means for testing the implications of our collective assumptions about urban
behavior.” The above statements provide a clear picture of Jay Forrester’s approach
to studying urban dynamics; it is associated with general systems theory and uses
computer simulations to examine the interrelationships among different subsystems
of an urban area. More importantly, the computer simulation approach suggested by
Forrester has been pursued by many other researchers in their investigation of urban
dynamics, although different simulation models have been used in various studies.

5.2.1 Cellular Automata for Urban Dynamics Research

Cellular automata (CA), which were developed in the 1940s by Ulam (1950) and
von Neumann (1966), are frequently used to model and simulate urban dynamics.
Following these ideas, Tobler (1979) proposed a cellular geography that uses cellular
spaces in geographic modeling. A cellular space can be considered as a two-
dimensional grid, and each cell in the grid has a state that is determined by the states
of its neighboring cells. The neighbor of a given cell can be defined in different ways,
by either the four cells sharing a common side (known as von Neumann neighbor-
hood) or the eight cells that share a common side or a common corner of a given cell
(known as theMoore neighborhood). A transition rule then determines how the state
of a cell changes into a different state from time t to time t + 1 based on the specific
configurations of the states of its neighboring cells. For example, a transition rule
could convert a given cell from the state of non-residential at time t to residential
at time t + 1 if three of its four neighboring cells have a state of residential at time
t. Cells, states, neighbors, and transition rules therefore serve as the foundation of
cellular automata models.

There are two characteristics of cellular automata that are attractive to geograph-
ical problems (White and Engelen 1993). First, cellular automata divide a study
area into a grid that is intrinsically spatial. Second, cellular automata can generate
very complex forms from very simple rules that are useful to study complex spatial
phenomena. In other words, simple local changes due to interactions among the
neighboring cells in a CA model could lead to complex emergent global patterns
(Wolfram 1983, 1984). CAmodels therefore can reflect micro–macro interactions in
a simple and direct way, and the key contribution of CAmodels is to provide insights
into how urban systems work rather than offer a simulation tool of urban dynamics
(Couclelis 1985). This presents a way of linking the processes operating at different
scales to tackle a major research challenge in many fields that attempt to link forms
to processes and address local to global structures (Batty and Xie 1994; Emmeche
1994). In fact, Jacobs (1961) suggested that the observed disorders in urban areas
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could be viewed as organized complexity due to a deeper order reflecting their diver-
sity. Cellular automata models enable us to investigate urban dynamics from local
processes in order to understand global complex patterns and to gain insights into
the evolution of various aspects of urban dynamics.

Chapin andWeiss (1968) first applied the concepts of cellular automata to an urban
land development model, and Tobler (1970) employed the idea of cellular space to
simulate urban growth in the Detroit region, although both studies did not use the
term cellular automata. Tobler (1970, p. 234) suggested that “the utmost effort must
be exercised to avoid writing a complicated model. … Because a process appears
complicated is also no reason to assume that it is the result of complicated rules.”
White and Engelen (1993) argued that most geographic theories, such as central
place theory and urban economic models as embodied in the Alonso-Muth land-use
theory, are static in nature and assume a state of stable equilibrium, which is contrary
to our common sense and experience that all urban areas are undergoing continual
growth, change, decline, and restructuring. White and Engelen (1993) consequently
developed a CA model that generates fractal patterns of land use from relatively
simple rules of spatial behavior in order to address the issue of complexity in urban
structure. The objective of this study is to gain insight into the underlying reasons
behind the evolution of land-use structures and to demonstrate the existence of a
complex fractal order of land-use patterns. Their findings suggest that complexity
is a necessary feature of cities. When cities are too simple in their structure, they
probably will not evolve successfully and could cease to function effectively. This
study is a good example of using a CA model to assess the complexity of urban
structure and to establish general guidelines for planning policy.

Couclelis (1985) pointed out that the standard cell-space model has many limita-
tions to its usefulness for tackling real-world geographic problems. These limitations
include the infinite plane, neighborhood stationarity, spatial homogeneity, spatial and
temporal invariance of transition rules, and closure to external events that are directly
related to the basic assumptions of cell-space models. Batty and Xie (1994, p. S46)
also suggested that a major problem of applying CA models to urban systems is that
“It is most unlikely that urban systems can be simulated entirely at the local scale,
but the value of this approach lies in focusing our attention on this scale and the
extent to which a hierarchy of processes and scales is essential to understanding how
cities work.” Xie (1996) discussed improvements to CA models over the years and
proposed a generalized model for cellular urban dynamics, named dynamic urban
evolutionary modeling (DUEM), to demonstrate the theoretical integrity and tech-
nical merit of the CA approach for urban dynamic applications. One major contribu-
tion of DUEM is to adopt a hierarchical system of CA spaces consisting of neighbor-
hood, field, and region that can be used to simulate interactions between cell space,
model space, and geographic space to overcome some limitations of the conventional
cell-space models. DUEM further connects with a geographic information system
(GIS) to benefit from GIS data, analysis, and visualization capabilities.

Anthony Yeh, Xia Li and their collaborators have used cellular automata models
extensively to study urban dynamics. Li and Yeh (2000) developed a constrained
CA model within a raster GIS that includes local, regional, and global constraints
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to regulate cellular space and defines gray cells as representing the percentages of
urban land development at any iteration of the CA model. Yeh and Li (2001) further
used a constrained CA model and a raster GIS to simulate seven different types of
urban forms and developments ranging from compact-monocentric to very highly
dispersed development patterns. Their model considers various criteria such as urban
forms, environmental suitability, and land consumption for the purpose of planning
sustainable cities. They also combined CA models with computational intelligence
methods such as neural networks (Li and Yeh 2001), ant colony optimization (Liu
et al. 2008), and artificial immune systems (Liu et al. 2010) to investigate complex
urban systems. Santé et al. (2010) offered a helpful review of urban cellular automata
models applied to the simulation of real-world urban processes with respect to their
capabilities and limitations. They also conclude that thewidespread use ofCAmodels
is due to their simplicity. In the meantime, the simplicity of CA models is also the
main weakness that limits their ability to represent real-world phenomena. Another
major shortcoming is the lack of a standard method for the definition of transition
rules in urban CA models which represent the complexity of the processes.

5.2.2 Other Urban Dynamics Approaches

Batty (2008) indicated that traditional urban models treated cities as aggregate equi-
librium systems and mainly used spatial interaction. The approach changed in the
late twentieth century to consider urban dynamicsmore as evolving complex systems
whose structure emerges from the bottom-up. In his book Cities and Complexity:
Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals,
Batty (2007) presented agent-based models as another useful approach to study
complex urban dynamics as urban planning moves from a top-down centralized
perspective to a bottom-up decentralized perspective. An agent-based model (ABM)
consists of autonomous agents, which can be either individual or collective enti-
ties, with defined behaviors to simulate the effects on emerging system patterns
from the actions and interactions of the autonomous agents. One key difference
between cellular automata models and agent-based models is that agents in ABM
are free to move and interact with each other and the environment. The goal of
agent-based models is mainly to gain insights into the collective behavior of agents
that follow simple behavioral rules. Huang et al. (2014) reviewed 51 agent-based
residential choice models in three research domains, which are (1) urban land-use
models based on classical theories, (2) different stages of the urbanization process,
and (3) integrated agent-based and microsimulation models, to offer a retrospective
on developments in agent-based models (ABMs) of urban residential choices. This
review paid special attention to the progress of the representation of agent hetero-
geneity, the extent of land-market representation, and the method of measuring the
extensive model outputs. They concluded that “Urban land-use models can benefit
from agent-based modeling by incorporating heterogeneous intelligent agents and
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explicit modeling of an institution that stands behind land exchange” (Huang et al.
2014, p. 681).

Xie et al. (2007) applied agent-based modeling to study the development of
desakota, which is a mixed urban-rural space adjacent to a metropolitan area, in
the Suzhou-Wuxian region in China for the period of 1990–2000. They devel-
oped an ABM that links local household reform to global urban reform in order
to examine processes of local land developments that are moderated by the higher-
level macroeconomy. Benenson et al. (2008), on the other hand, developed an agent-
based model to study the complex self-organizing dynamics of parking patterns
in a non-homogeneous road space by examining the distributions of search time,
walking distance, and parking costs of different driver groups.Hosseinali et al. (2013)
introduced an agent-based model with new methods of modeling agent movements
and competition among agents to simulate urban land-use development in Qazvin,
Iran. After the model is calibrated with existing data, it is used to predict land-use
developments under four scenarios of development policies.

There are also studies of urban dynamics of a system of urban areas. For example,
Batty (2003) presented an approach to urban dynamics that generalized Zipf’s rank-
size model to investigate the changing rank-size relationships among cities through
time. He used data of the 100 largest towns and cities from 1790 to 2000 at a ten-year
interval to examine the volatility of the distributions of individual cities within the
rank-size distributions with a measure of the half life of cities. He found that there
is considerable volatility in the rank-size relationships which change almost entirely
over a 200 year period. This study illustrates the dynamics of how an individual city
rises, falls, or holds its position in a system of cities. In addition, Batty’s (2013a)
book The New Science of Cities, which suggested that we must view cities not only
as places in space but also as systems of networks and flows, further indicated the
need for looking into the connections and interactions both within an individual city
and among a system of cities to better understand various aspects of urban dynamics.

5.3 Human Dynamics

Human dynamics are the foundation of human society. All economic, social, cultural,
and political systems and all built environments are developed to serve human needs
that are dynamic in nature. The focus of human dynamics research therefore is on the
dynamics of disaggregate individual behaviors as well as aggregate group behaviors
(Shaw et al. 2016; Shaw and Sui 2018a, b, c). Human dynamics has been a research
topic in many disciplines ranging from business, geography, planning, psychology,
and sociology to physics. A recent surge of research interests in human dynamics is
partially due to the work of Albert-László Barabási and his associates on scale-free
networks and heavy-tailed distributions of human behavior. Barabási and Bonabeau
(2003) suggested that many complex systems share an important characteristic of
some nodes having a large number of connections to other nodes in a network while
most nodes have just a handful connections. In other words, these networks appear
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to have no scale or are scale-free. Barabási (2005) further indicated that individuals
often execute tasks with bursts of rapidly executed tasks separated by long periods
of inactivity that results in heavy-tailed distributions. This line of research identifies
some general laws of human dynamics from the perspective of statistical physics.

From an urban planning perspective, we need to go beyond the general laws
of human behaviors and gain further insights into human dynamics to facilitate
policy making and planning practices. Human dynamics evolve with the changing
environment, technology, and society (Shaw and Sui 2018b). The ways that people
carried out their activities and interacted with other people and the environment
50 years ago are very different from human dynamics today. It is therefore important
to gain a better understanding of evolving human dynamics in order to design and
develop smarter cities to better serve human needs in the next 10–20 years, if not
longer.

5.3.1 Effects of Information and Communications
Technologies on Human Dynamics

Information and communications technologies (ICT) such as the Internet and mobile
phones have significantly influenced the ways that people carry out their activities
and interactions. The Internet allows us to access a huge amount of information and
a wide range of services online through a global system of interconnected computer
networks. With Wi-Fi technology, we can connect to the Internet from any locations
that have awireless local area network.Mobile phones and tabletswhich are equipped
with increasingly powerful computing power further free us from the fixed landline
phones and bulky computers, to stay connected almost anywhere and at any time. It
is now feasible to find a journal article when a library is closed, purchase an item
without a physical visit to a store, and stay in touch with friends almost all of the
time. In other words, modern technologies have removed many spatial and temporal
constraints on human activities and interactions to extend our activity space (Janelle
1973). Human activities and interactions therefore have become more flexible and
spontaneous which in turn can change the nature and spatiotemporal patterns of
human dynamics.

There have been many studies of the effects of ICT on travel and human activity
patterns (e.g., Salomon 1986; Salomon and Koppelman 1988; Mokhtarian and
Meenakshisundaram 1999; Townsend 2000; Hjorthol 2002; Ben-Elia et al. 2014).
Mokhtarian (2003) suggested that there exist four types of relationships between
telecommunications and travel. The first type of relationship is substitution such as
teleconferencing or e-shopping, where an online activity substitutes for a trip in phys-
ical space. The second type of relationship is complementarity, which suggests that
the use of ICT will increase activities in physical space. For example, sales messages
pushed to smart phones could attract more people to visit stores in physical space.
The third type of relationship is modification, such as when information obtained
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from an online real-time traffic information service changes the route that a traveler
takes to make a trip. This simply modifies a trip pattern in physical space without
adding or reducing the number of trips in physical space. The last type of relationship
is neutrality, which means that an activity using ICT has no effect on activities in
physical space. This study illustrates the challenge of identifying specific effects of
ICT on human dynamics.

Humansmustmove between different locations in physical space to carry out their
activities (e.g., work, school, shopping, social, recreation). Transportation provides
the means for people to move from a location to another location in physical space.
Since physical movements take time, humans have to trade time to overcome spatial
separation. As transportation technologies improve over time, we can overcome the
same distance over a shorter time period, which is known as time-space convergence
(Janelle 1968, 1969). With the rapid growth and widespread use of ICT in today’s
world, an increasing number of human activities and interactions are carried out in
virtual space using ICT devices to navigate among different places in virtual space.
For example, many people stay in touch with their friends via online social network
apps and shop online with their smart phone or computer. These activities in virtual
space can have major implications for the activities in physical space. For instance,
an online order at Amazon.com triggers a shipment from a distribution center to the
customer’s location via a courier delivery service (e.g., FedEx or UPS). This delivery
replaces a personal trip to a store. When there are many people who engage online
shopping, a large number of personal trips are replaced by a few delivery truck trips
that normally take different routes and occur at different times from those of personal
shopping trips. We therefore need to consider human activities and interactions in
both physical and virtual spaces, in order to study their interactions and gain a better
understanding of human dynamics in the modern world (Shaw and Yu 2009).

5.3.2 Time Geography

Time geography, which was developed by Torsten Hägerstrand (1970), presents a
useful framework for studying individual activities in a space-time context. A well-
known time-geographic concept is the space-time path that tracks the movements of
an individual across space and over time. When there are multiple space-time paths
for a group of people, we can analyze their spatiotemporal relationships (Parkes
and Thrift 1980; Golledge and Stimson 1997; Janelle 2004; Shaw and Yu 2009).
For example, when two or more individuals are at the same location during the same
time period, they have a co-existence relationship. If two or more individuals visit the
same location at different times, they have a co-location in space relationship. If two
or more people communicate with each other at different locations during the same
time period (e.g., online chat), then they have a co-location in time relationship.
When two or more people interact asynchronously in both space and time (e.g.,



50 S.-L. Shaw

email communications), it does not require co-existence, co-location in space, or co-
location in time. These relationshipsmake it feasible to study human activity patterns
at the individual level to understand human dynamics in a space-time context.

Time geography also covers many other useful concepts for human dynamics
research. Time geography assumes that every individual faces three types of
constraints on their activities. Capability constraints are related to an individual’s
biological system and ability for utilizing tools. For example, all people must sleep
and eat, which take time at certain locations. Also, a person who can drive a car
can reach more distant locations than people who do not drive. Coupling constraints
require that an individual be coupled with other people or entities to carry out partic-
ular activities. For example, a class lecture requires an instructor, and the students to
be present at the same location during the same time period. Authority constraints
are imposed by a domain. An example is that an individual cannot access a grocery
store when it is closed. Our daily activities and interactions are conditioned by these
three types of constraints, which in turn influence spatiotemporal human dynamics.
Another useful time-geographic concept is the space-time prism, which allows us to
identify themaximum feasible space-time extent that an individual could reach under
given constraints. A space-time prism can help us understand why an individual
exhibits certain space-time activity patterns. Diorama is another critical concept.
Hägerstrand puts various time-geographic concepts together in a diorama to empha-
size the presence of an individual in an immersive environment, such that the indi-
vidual appreciates how situations evolve as an aggregate outcome while considering
various constraints and situations to achieve the goal of a project (Hägerstrand 1982).
In fact, Hägerstrand (1982, p. 338) stated that “without a diorama approach, the
revealing power of time geography cannot be fully explored.”

Although timegeographyoffers a useful framework for humandynamics research,
it has not been widely used in empirical studies, due mainly to two limitations (Shaw
2012). First, time geography requires detailed spatial movement data over time at
the individual level that is costly and time-consuming to collect. Most previous time
geography studies used data collected from surveys or interviews that had a relatively
small sample size. Second, even though many studies collected data of large sample
size, it was challenging to conduct time-geographic analyses using a space-time path
and a space-time prism due to a lack of computational tools to process, analyze,
and visualize the data. These limitations have been overcome to some extent in the
big data era, along with the advances in space-time-geographic information systems
(GIS).

5.3.3 Big Data and Space-Time GIS for Human Dynamics
Research

With advances in sensing, mobile, and information and communications technolo-
gies in recent decades, it has become far easier andmuch cheaper to collect individual
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data. Mobile phones can constantly track our locations across space and over time
at unprecedented spatial and temporal granularity using built-in global positioning
system (GPS) capability. Phone companies have records of our phone communi-
cations including phone calls, text messages, and websites accessed. Credit card
companies know where, when, and what we purchased, and how much we paid for
each purchased item. Smart cards used in many cities for public transit know where
andwhenwe used public transit, which transit routes we used, and how oftenwe used
them. Search engine service providers such as Google know when we have searched
online, which websites we visited, and how long we browsed a particular website.
Online social network service providers like Facebook, Twitter, Flickr, and LinkedIn
know who our friends and connections are, how frequently we communicated with
each other, and what we discussed with each other. These tracking data cover not
only human activities in physical space but also human activities and interactions
in virtual space. They provide extremely useful data sources to conduct empirical
studies of human dynamics, although the research community needs to pay close
attention to the ethical and privacy issues of using such data (see Chap. 32).

In the meantime, the large amount of data available for human dynamics research
demand adequate tools to process, manage, analyze, and visualize the data. GIS was
designed to handle spatial data, yet they were not adequate to dealing with space-
time data. Efforts extending the conventional GIS to space-time GIS started in the
1990s by developing functions in GIS that support time-geographic concepts. Miller
(1991) first implemented the space-time prism concept in GIS to study individual
accessibility, followed bymany other efforts at expanding time-geographic functions
in GIS (e.g., Kwan 2000a, b; Buliung and Kanaroglou 2006; Yu 2006; Chen et al.
2011; Scott and He 2012). One of the major challenges of applying time geography
to human dynamics research is that most time-geographic concepts are based on
human activities in physical space. Since many human activities and interactions
today are taking place in virtual space, it is critical to extend the conventional time-
geographic concepts to cover human dynamics in both physical and virtual spaces.
Yu and Shaw (2008) developed a space-timeGIS that extends the conventional space-
time prism concept to support analysis of potential human activities and interactions
in both physical and virtual spaces. Shaw and Yu (2009) further extended the time-
geographic concepts of space-time path, station, bundle, activity, event, and project
into a hybrid physical–virtual space and implement them in a space-time GIS. Yin
and Shaw (2015) then developed a method for creating social closeness of space-
time paths in a GIS environment, such that we can assess the relationships between
any pair of individuals in both physical space and social closeness space. These
efforts make it feasible to study human dynamics in a hybrid physical–virtual space
based on time-geographic concepts, although many research challenges remain to
be addressed.
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5.3.4 Some Other Examples Human Dynamics Studies

In addition to human dynamics research based on time-geographic concepts, there
exist a large volume of studies investigating human dynamics using a wide range of
individual data collected in the Big Data era. Candia et al. (2008) used mobile phone
data to study the mean collective behavior and identify the rise, clustering, and decay
of anomalous events that can be useful in real-time detection of emergency situations.
They also examined calling activities at the individual level and found that they follow
a heavy-tailed distribution. Vazquez-Prokopec et al. (2013) employed GPS tracking
of residents in Iquitos, Peru to study mobility patterns, infer mobility networks, and
model infectious disease transmission within an Iquitos neighborhood. This study
demonstrated how to use data collected from location-aware technology to charac-
terize complex social systems in a developing country and then use the identified
mobility patterns and networks to address an important health issue of infectious
disease dynamics in an urban environment. Zhong et al. (2014) applied methods in
network science to identify the spatial structure of city hubs using smartcard transit
data collected in Singapore. They illustrated the evolving roles and influences of
local areas in the overall spatial structure of urban movements and indicated that
collective movement can shape local communities similar to what happens in social
networks. Xu et al. (2016), on the other hand, used mobile phone data collected in
Shenzhen and Shanghai, China, to compare their human dynamics patterns based
on the number of major activity points, activity range, and frequency of movements
(for further examples of this kind of research see Chaps. 28 and 29).

Liu et al. (2015) proposed a concept of social sensing, in contrast to remote
sensing, to characterize the research that employs individual level Big Geospatial
Data to study socioeconomic aspects of human dynamics. They also considered each
individual person as a sensor that helps contribute data to human dynamics research.
The concept of social sensing is clearly related to human dynamics research. Due
to an explosion of research related to urban human dynamics in recent years using
crowdsourcing data and other big data, it is not an intention of this chapter to provide
a comprehensive review. Instead, readers can find various examples in other chapters
of this book.

5.4 Urban Human Dynamics and Urban Informatics

With this brief review of urban human dynamics research, it is important to connect
urban human dynamics to the theme of this book: urban informatics. Urban infor-
matics, which is a relatively new field, takes a data-driven approach enabled by
modern sensing, mobile, and information and communications technologies to gain
insights into how people function in an urban area and how various systems and
services operate in an urban area (Kontokosta 2018). Foth et al. (2011, p. 4) define
urban informatics as “the study, design, and practice of urban experiences across
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different urban contexts that are created by new opportunities for real-time, ubiqui-
tous technology, and the augmentation that mediate the physical and digital layers of
people networks and urban infrastructures.” This definition links place, technology,
and people together in an urban environment.

As urban areas continue to grow in their geographic size and population density
in order to accommodate the ever-increasing urban population, there is an urgent
need for improving our understanding of how urban areas function, what causes
urban problems, and how we can address these urban problems in smart and sustain-
able ways. These challenges are not new at all, and they have been studied for
many decades. Unfortunately, it appears that we have not been able to reign in these
urban problems, and many urban areas are experiencing worse traffic congestion,
air pollution, heat-island effects, housing issues, job mismatches, etc., than ever
before. If we accept that human dynamics are the fundamental driving forces of the
economic, social, cultural, political, and other systems in urban areas, we must better
understand human needs and how they interact with other people and the environ-
ment under various constraints imposed by the environment, society, and technology.
When infrastructure and services in an urban area cannot adequately accommodate
human needs, we run into problems. Since human needs emerge at different loca-
tions and different times, they present a challenge of matching supply and demand
spatially and temporally. From an urban planning perspective, our goal is to design
urban areas that can best meet human needs and improve the quality of life. This is
a significant challenge, as evidenced by a wide range of problems facing most urban
areas today.

In his article “big data, smart cities, and city planning,” Batty (2013b, p. 274)
stated that “the growth of big data is shifting the emphasis from longer term strategic
planning to short-term thinking about how cities function and can be managed;
although with the possibility that over much longer periods of time, this kind of big
data will become a source for information about every time horizon.” Batty (2013b,
p. 276) further indicated that “There is, however, a coincidence betweenwhat are now
being called smart cities and big data, with smartness in cities pertaining primarily
to the ways in which sensors can generate new data streams in real time with precise
geo-positioning; of course, it is often pointed out that cities only become smart when
people are smart, and this is sine qua non of our argument here.” Technologies clearly
play an important role in urban informatics and smart cities. However, we must keep
in mind that urban informatics and smart cities are developed to better serve human
needs and improve quality of life. Whether or not a city or a particular system in a
city is smart should be assessed by howwell it serves the needs of various population
groups to improve the quality of life (Shaw and Sui 2019).

Shared bicycles experienced an amazing rapid growth inmanyChinese cities a few
years ago and this created amotive for reviving bicycles as a popular travel alternative
in Chinese cities. However, the entire business collapsed quickly. As indicated by
Huang (2018), “Bike-sharing apps seemed poised to be the solution—and millions
of bikes were poured into China’s streets by the private sector in the last three years.
But today, as the companies fail, unused units pile up in bicycle graveyards, and
queues of angry users demand their deposits back, it is obvious just how doomed the



54 S.-L. Shaw

idea was from the start.” The bike-sharing apps were smart in the sense that users
could unlock and lock bicycles and pay rent by smart phones anywhere in a city.
Yet, it is not clear to what extent the shared bicycles fit well with human needs with
respect to various constraints people face in urban areas to carry out their dynamic
activity patterns. This example reminds us that it is critical to keep human dynamics
in mind when we pursue urban informatics. In conclusion, it is beneficial to combine
urban informatics with urban human dynamics research to better understand human
activities and interactions in an increasingly hybrid physical–virtual space; yet we
must remember that various systems and services in urban areas are created to better
serve and meet the human needs in order to improve the quality of life.
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Chapter 6
Geosmartness for Personalized
and Sustainable Future Urban Mobility

Martin Raubal, Dominik Bucher, and Henry Martin

Abstract Urban mobility and the transport of people have been increasing in
volume inexorably for decades. Despite the advantages and opportunities mobility
has brought to our society, there are also severe drawbacks such as the transport
sector’s role as one of the main contributors to greenhouse-gas emissions and traffic
jams. In the future, an increasing number of people will be living in large urban
settings, and therefore, these problems must be solved to assure livable environ-
ments. The rapid progress of information and communication, and geographic infor-
mation technologies, has paved the way for urban informatics and smart cities, which
allow for large-scale urban analytics as well as supporting people in their complex
mobile decision making. This chapter demonstrates how geosmartness, a combina-
tion of novel spatial-data sources, computational methods, and geospatial technolo-
gies, provides opportunities for scientists to perform large-scale spatio-temporal
analyses of mobility patterns as well as to investigate people’s mobile decision
making. Mobility-pattern analysis is necessary for evaluating real-time situations
and for making predictions regarding future states. These analyses can also help
detect behavioral changes, such as the impact of people’s travel habits or novel travel
options, possibly leading to more sustainable forms of transport. Mobile technolo-
gies provide novel ways of user support. Examples cover movement-data analysis
within the context of multi-modal and energy-efficient mobility, as well as mobile
decision-making support through gaze-based interaction.
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6.1 Introduction

Urban mobility and the transport of people have been rising inexorably for decades.
Despite the many advantages and opportunities, mobility has brought to our society,
there are also severe drawbacks such as the transport sector’s role as one of the main
contributors to CO2 emissions, traffic jams, and mass event catastrophes (Elliott and
Urry 2010; Taaffe et al. 1996). Forecasts show that by 2030, the world will have
41 megacities each with more than 10 million inhabitants (UN 2014), and by the
year 2050, approximately 80% of the European population will be living in urban
areas (Caragliu et al. 2011). Therefore, these challenging problems must be solved
to assure livable environments for future generations.

The rapid progress of information and communication technologies (ICT) and
geographic information technologies has paved the way for urban informatics and
smart cities, which allow for large-scale urban analytics as well as supporting people
in their complex mobile decision making. This chapter demonstrates how geosmart-
ness, a combination of novel spatial-data sources, computational methods, and
geospatial technologies, provides ample opportunities for scientists to perform large-
scale spatio-temporal analyses of mobility patterns as well as investigate people’s
mobile decision making. This application of novel methods and technologies with
spatial big data will allow for unprecedented possibilities of evaluating current states
of urban systems including their citizens in real time, and making predictions and
forecasts of future states.

Mobility-pattern analysis is necessary for evaluating real-time situations but also
for making short- and longer-term predictions regarding the transportation network.
In addition, these analyses can help detect behavioral changes, such as the impact of
people’s travel habits or novel travel options, possibly leading to more sustainable
forms of transport. Sustainable urban mobility will become ever more important in
order to curb greenhouse-gas emissions in the future. Long-term decarbonization
of transport will not solely be achievable through new technology, such as vehicle
efficiencymeasures, powertrain technology, and new energy carriers, but will require
people’s efforts in containing demand and shifting to lower-emission transportmodes
(Boulouchos et al. 2017).

Mobile technologies help to identify individual-oriented problems and provide
novel ways of personalized user support. Spatial Big Data can be utilized to support
people in their location-based decision making, in combination with novel tech-
nologies and interaction concepts, such as location-based services and gaze-based
interaction. This will lead to more effective and efficient spatio-temporal decision
making, and, hopefully, contribute to sustainable urban mobility of the future.

This chapter starts by introducing geosmartness and its major enablers,
namely geospatial technologies, spatial, big data and spatio-temporal computational
methods. We then investigate the analysis of urban-mobility patterns, including data,
prediction, and labeling methods. The section is complemented by an overview
of mobility studies and a detailed example focusing on multi-modal and energy-
efficient mobility. In the next section, we elaborate on the potential of geospatial
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Big spaƟal data

Geo-
Webservices

Fig. 6.1 Methods and tools enabling geosmartness

and persuasive technologies to support people in sustainable mobility. This includes
motivational aspects and methods for detecting and supporting behavioral change.
The section also includes an overview of studies in this area and the description of a
recent study targeting the change of mobility behavior. In the penultimate section, we
explain the specificities ofmobile decisionmaking, introduce the technique ofmobile
eye-tracking and the concept of gaze-based interaction, and demonstrate how their
combination can enable personalized gaze-based decision support. The final section
presents conclusions and directions for future work.

6.2 Geosmartness

Geosmartness relates to the vast opportunities of utilizing novel geospatial tech-
nologies, spatial big data, and spatio-temporal computational methods for solving
many of the world’s challenging problems in the domains of mobility, transport,
and climate. It has been made possible through the rapid progress of computing,
communication, and information technologies, but also by theoretical advancements
in fields such as geographic information science (or to bemore encompassing, spatial
data science including its representations, models, and analysis methods) (Goodchild
1992; Raubal 2019; Reitsma 2012).

Geosmartness is essential for successfully transforming traditional cities and
urban areas into smart cities, which are in essence digitally integrated urban spaces
based on a real-time sensor-based control system. Such a system comprises tech-
nology, people, and community (Nam and Pardo 2011), and its major goal and
challenge is to solve key problems of growing cities through integration of tech-
nology and environment (Batty et al. 2012). Ratti and Claudel (2016) provide an
overview of future smart-city concepts, emphasizing also the value of open data
and platforms, and the necessity for smart citizens. Concrete efforts and lessons
learned when building a smart city have been demonstrated and described, such as
for Barcelona (Gasco-Hernandez 2018).

The various methods and tools enabling geosmartness (Fig. 6.1) cover the tradi-
tional stages of aGIS (geographic information system) process, including spatial data
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modeling, representation, analysis, and presentation (Longley et al. 2011), but on a
much wider scale, involving novel interfaces, cutting-edge information technology,
and real-time sensor data (not only at the geographic scale; Montello 1993).

Spatial big data results from the ever-increasing progress in computing, communi-
cation, and information technologies. They come in the form of massive movement-
trajectory datasets, fine-resolution environmental data, or specific user-behavior data
(e.g., from eye-tracking), often in real time. Li et al. (2016) characterize geospatial
big data by the following dimensions:

• Volume: Exabytes (or more) of imagery, sensor, and location-based social-media
data raise both storage and analysis issues.

• Variety: relating to the various types of geospatial data, such as raster, vector,
network, structured, and unstructured data and their integration.

• Velocity:Real-time trajectory and social-media data, andother continuous streams
of sensor data require data processing at the same speed as data acquisition.

• Veracity: Depending on the sources, geospatial big data vary in accuracy and
precision, and impact reliability and trust. Quality assessment may therefore be
difficult.

• Visualization: on the one hand providing procedures to impose human reasoning
on big data analysis, and on the other hand facilitating the communication of
patterns and relationships as the results from such analysis.

• Visibility: Geospatial big data can nowadays be efficiently accessed and processed
through cloud-computing technologies.

In order to pursue knowledge discovery from these complex and massive spatial
data, traditional spatio-temporal analysis methods are now extended and comple-
mented on a large scale by machine-learning approaches (Raubal et al. 2018).
Machine learning is applied to spatial big data in CyberGIS analytics, for spatio-
temporal outlier and anomaly detection, and for predicting human spatial behavior.
Spatial data science enhances machine learning by proposing methods for spatio-
temporalmodeling and context integration to achieve better results and higher perfor-
mance. In the area of mobility and transport, it has recently been demonstrated how
graph convolutional neural networks (GCNs) can be used for imputing human activity
purposes fromGPS trajectory data (Martin et al. 2018).Multiple personalized graphs
were utilized to model human mobility behavior and to embed a large variety of
spatio-temporal information and structure in the graphs’ weights and connections.
These graphs served as input to the GCNs, which in turn exploited such structure.

Geographic information technologies encompass systems and services that exploit
geoinformation to support people’s spatio-temporal decision making (Raubal 2018).
They utilize data related to locations in space and time, and process these data with
respect to spatial locations, which results in increased complexity during reasoning
and data analysis. Nowadays, geographic information technologies not only include
desktop GIS for acquiring, representing, analyzing, and visualizing spatio-temporal
data, but also location-based services (LBS), which support people in their mobile
decision-making by providing spatial information based on their current locations,
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typically by relying on GPS (Global Positioning System) technology built into them
(Brimicombe and Li 2009). LBS can be further enhanced by other context informa-
tion, such as the user’s gaze. This allows taking the user’s viewing direction into
account (Anagnostopoulos et al. 2017), leading, for example, to personalized audio
guides that help users to find objects in the environment, and adapting the audio
content to what has previously been looked at (Kwok et al. 2019). This directly
relates to geographic human–computer interaction, i.e., people’s interaction with
geographic information technologies (Hecht et al. 2011). Novel interaction modal-
ities and paradigms, and context-aware user interfaces, are available nowadays. In
addition to traditional user interfaces through which people can interact with text-
based information or cartographic maps, novel interaction modes, such as audio,
gesture, gaze, or vibration (Gkonos et al. 2017), and displays integrating augmented
and virtual reality exist (Rudi et al. 2016).

6.3 Analyzing Urban-Mobility Patterns

Mobility has always been a crucial part of urban life. As cities grow larger, moving
millions of people for work, errands, or leisure activities becomes increasingly
complicated, and when unmanaged, mobility has severe negative effects such as
greenhouse-gas emissions, air pollution, health problems (Krzyżanowski et al. 2005),
and traffic congestion.

To mitigate these negative effects, system-level actions must be combined with
actions that empower mobility behavior change of individuals (Banister 2011).
Examples for system-level interventions are the implementation of smart traffic
management systems, or adaptive and attractive public transport systems. Individual
mobility changemay be achieved by enabling new forms ofmobility, such asmobility
as a service (MaaS), on-the-fly ride sharing or on-demand last-mile buses. These
novel mobility concepts are all manifestations of geosmartness as they are ways to
optimally allocate spatial resources, for which they require detailed knowledge of
individual and aggregated city-wide mobility behavior.

6.3.1 Data

With the proceeding digitalization of our society, cities have become amelting pot for
data from many different sources. This development bears new and unprecedented
potential of gaining detailed knowledge about people’s mobility behavior that can
be used to enable sustainable mobility concepts. From the perspective of movement
analysis, all available data can be divided into two groups: tracking data and context
data.

Quantitative movement analysis is based on tracking data, which can be described
as sequentially recorded and time-stamped locations. In the past, the elicitation of
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these datawas based on paper or telephone surveys, but over the past decade the diver-
sity of tracking-data sources multiplied and today, a manifold of different types of
tracking data are available. Examples are global navigation satellite system (GNSS)
tracking data (Zheng et al. 2008), location data based on the proximity to WiFi
hotspots (Sapiezynski et al. 2015), location data from social networks (Hasan et al.
2013), public transport smart card data (Zhong et al. 2016), call detail record (CDR)
data (González et al. 2008; Yuan andRaubal 2016b; Yuan et al. 2012), and credit-card
transactions (Clemente et al. 2018).

These sources offer newpossibilities to analyzemovementwithin cities. However,
themany possibilities to record urbanmovement create a heterogeneous landscape of
tracking data sets. Four factors are particularly important when comparing different
data sets:

• Tracking style (e.g., fixed versusmoving tracking devices as in the Eulerian versus
Lagrangian tracking style concept; Laube 2014)

• Spatio-temporal resolution (i.e., sampling rate)
• Spatio-temporal distribution (track point distribution, e.g., regular vs. burst

patterns)
• Sample biases (e.g., daily urban mobility vs. mobility of tourists).

Due to these differences, it is difficult to compare results across different data sets
and to develop data-agnostic methods. These are still open research challenges to be
addressed in the near future in order to ensure the success of urban movement data
analytics.

The second part of the data that are available in an urban setting does not describe
the movement of people itself but the context in which people are moving. These
context data are important for the analysis of humanmobility patterns because human
movement is always set in and influenced by its spatio-temporal context (Sharif and
Alesheikh 2018). For example, when driving, ourmovement is restricted by the street
network, when using public transportation, we depend on fixed schedules; we walk
faster when it rains (Knoblauch et al. 1996), and we move differently depending on
the urban or suburban setting (Yuan and Raubal 2016a).

In the past, only a few sources of context data, usually with a coarse spatio-
temporal resolution, were available. This changed with progress in the digitalization
of cities, and today many different context data sources with fine spatio-temporal
resolution are available. Among the most important ones, urban movement analytics
are volunteered geographic information (VGI) platforms such as OpenStreetMap,
which provides easy access to road networks and point-of-interest data. A more
recent trend inspired by the success of the open-data community is the open-data
movement at the city level. Today many cities have open-data policies and publish
their data on open-data platforms. Sensor networks provide another important source
for context data, such as temperature, noise, pedestrian counts, or air quality. Exam-
ples for sensor networkswith publicly available data areVGI-based platforms such as
OpenSenseMap or luft-daten.info for air-quality data. There are also sensor networks
operated by the cities themselves such as the Array of Things project in Chicago.
Other context data include photogrammetry or street imagery data such as Google
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Street View. The latter has been used to automatically assess the well-being of
neighborhoods (Suel et al. 2019) and to develop image-based navigation systems
(Mirowski et al. 2019).

6.3.2 Computational Methods for Large-Scale
Spatio-temporal Mobility-Pattern Analysis

Movement and context data generated by smart cities offer unprecedented possibili-
ties for analyzing urban-mobility patterns (see also Chaps. 28 and 29). However, the
large data volume, the variety of the new urban data sources, and the large bandwidth
of tasks require the enhancement of traditional GIS methods known from classical
movement analytics (Long and Nelson 2013; Zheng 2015).

6.3.2.1 Data Preparation and Data Fusion

Especially for the preparation of the data and for the combination of different spatial
datasets, well-established GIS methods are of great importance. Important prepro-
cessing steps are GPS-trajectory segmentation, map matching, spatial filtering or
movement-trajectory compression. In the same way, proven GIS methods can be
used to combine different spatial datasets and to enrich trajectories with context data
(Jonietz and Bucher 2017).

However, with the growing data volume, manual processing will not be an option
in the future. Therefore, scalability of workflows must always be kept in mind. This
includes the choice of efficient algorithms, their efficient implementation, and the
possibility of processing using distributed frameworks (e.g., big data frameworks).

6.3.2.2 Prediction and Labeling

The following tasks are of great importance when analyzing urban-mobility patterns:
adding semantic information to unlabeled data and predicting urban mobility for a
short forecast horizon (e.g., hours or days).

Adding semantic information is important because even though digital cities
provide large volumes of data, large-scale tracking data sets are usually recorded
passively (e.g., without interaction of the user) and are therefore unlabeled (Bauer
et al. 2016). In order to interpret and understand urban mobility, these datasets must
be enriched with semantic information such as activity labels or mode of transport.

The prediction of movement and mobility is important to optimize future states of
the mobility system and to create flexible and personalized mobility offers. Knowing
the future mobility demand within a city allows for optimizing the schedule of public
transport systems, taxi placements, or timings of traffic lights. On the other hand,
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knowing about the subsequent places, an individual wants to visit helps in identifying
potential ride-sharing partners.

The current state-of-the-art to solve these prediction and labeling tasks is the usage
of machine-learning methods (Toch et al. 2018). The usual approach is to extract
meaningful features from the available movement and context data, and to use them
for training a classifier for label-prediction tasks or a regressor for predicting future
mobility demand. Here, the random-forest algorithm (Breiman 2001) is especially
worth mentioning, as it is very robust with regard to the distribution of the input data,
has generally a very good performance, and does not require extensive hyper-tuning
of parameters.

An important research direction is to create spatially aware machine-learning
methods (Gilardi and Bengio 2000; Hengl et al. 2018). One problem is that general-
purpose machine-learning algorithms do usually not consider spatial dependencies
(e.g., spatial autocorrelation present in the input or output data; Cracknell and
Reading 2014). Another recent research direction is to avoid the explicit feature
extraction step altogether, because it usually implies the assumption of independent
and identically distributed data. An alternative is the use of neural networks and
learning feature maps directly from the data. However, here, it is often difficult to
find a meaningful data representation that is suitable for neural networks. Possible
representations are image representations (Chen et al. 2016a) or more recently graph
representations (Martin et al. 2018).

6.3.3 Studies

In practice, studies based on tracking data are scarce and usually not publicly avail-
able. The most important reason for this is that personal tracking data are extremely
privacy sensitive (Keßler and McKenzie 2018). This implies that on the one hand, it
is difficult to find participants who are willing to share their geodata due to privacy
concerns, and on the other hand, that datasets are unavailable for other research
groups once they were collected. Resulting from this situation, there are two types
of mobility studies: user studies based on participants that were recruited for the
purpose of the study by a research group, and mobility studies based on data that
were already collected for different purposes and contained the locations of users as
a byproduct. The first type of study are also called active-tracking studies because
users in these studies commonly provide feedback that can be used to label the data
and to answer the underlying research questions. The second type of study is called
passive-tracking studies because users are commonly unaware that they participate
in a study and that their location is collected passively in the background without
any possibility for the user to provide feedback. Some notable examples of mobility
studies based on passive-tracking data sets include:

Brockmann et al. (2006)were among the first to use already-collected data (sight-
ings of dollar bills from www.wheresgeorge.com) that contained information about
human mobility as a byproduct. The analysis of this dataset with more than a million

http://www.wheresgeorge.com
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displacements uncovered fundamental statistical properties of human movement,
such as a power-law distribution of traveling distances.

González et al. (2008) developed an early large mobility study based on CDR
data collected for billing purposes by the mobile-phone provider, which also allowed
for the reconstruction of human mobility patterns. These data allowed one to analyze
the movement of individual persons over a time span of six months and revealed a
high spatio-temporal regularity of human movement patterns.

Both studies are early representatives of large-scale empirical studies and are
rather descriptive and general. Studies in later years became more specific:

Hasan et al. (2013) used data from smart cards utilized in public transportation
systems to specifically analyze human mobility within a city. Among other results,
this study reproduced the already known general mobility characteristics in an urban
setting.

Yuan and Raubal (2016a) used CDR data that were enriched with demographic
information to empirically analyze the spatial distribution of different demographic
groups within a city.

Clemente et al. (2018) used credit card records in combination with CDR data
from the same users to analyze urban mobility. This allowed them to cluster the users
utilizing the semantically rich credit-card data and to interpret these clusters spatially
using the CDR data.

The second type of study is significantly different as it involves only a small
number of people but with very detailed data about these persons:

Eagle and Pentland (2006) conducted one of the first larger studies using mobile
phones as wearable sensors. They collected information such as call logs, Bluetooth
proximity data, and the current cell phone tower ID as a proxy for location. The
goal of the study was to study not the mobility of the participants but rather their
social interactions. This so-called reality-mining dataset is one of the first publicly
available datasets that includes tracking data.

Zheng et al. (2008) introduced GeoLife, one of the first large GPS tracking
studies, with 65 users being tracked for varying timespans within a ten-month period.
These data were used to analyze individual mobility patterns. This dataset is publicly
available and can be used for research purposes.

Alessandretti et al. (2018) used different publicly available datasets such as
the reality-mining dataset and proprietary datasets such as the CNS dataset from
Stopczynski et al. (2014) to show that persons only have a limited number of regularly
visited locations and that, while the locations change slowly over time, the total
number of locations stays constant.
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6.3.4 SBB Green Class (Multi-modal and Energy-Efficient
Mobility)

This section presents one case study in greater detail, the SBB Green Class pilot
studies. In 2016 and 2017, the Swiss federal railways (SBB) carried out two large,
one-year pilot tests of a MaaS concept. In these studies, customers received access
to comprehensive mobility options for a fixed yearly fee. The first pilot study had
150 participants from Switzerland, who received a Swiss-wide public transport pass,
a battery electric vehicle, a parking space at their local train station, and credit for
carsharing and bikesharing services. The second pilot study had 50 participants and
included an e-bike instead of the e-car. As part of the pilot study, all participants
installed a tracking app on their phone and agreed to label the recorded and segmented
GPS tracks with the user mode of transport and a high-level description of the trip
purpose. The most interesting characteristic of the SBB Green Class pilot studies is
a flat rate for mobility, where almost all costs are covered by the subscription fee,
making it the first study of this size that can be used to test the impact of MaaS offers.

To evaluate the mobility behavior of the participants the tracking data had to be
prepared using different preprocessing steps, such as the fusion of different data
sources, imputation of missing labels, map matching, grouping movement into trips
and tours, and the detection of anomalies. Subsequently the participants’ mobility
behavior could be compared to a pseudo-control group generated from the Swiss
mobility and transport microcensus (MTMC). The most important results were:

• Especially the Green Class e-car pilot study participants traveled more than
the average Swiss person and were particularly frequently multimodal. These
differences can be partially explained by the SBB Green Class offer: on the one
hand, there are available parking facilities near the railway station, which clearly
promote combined travel, and on the other hand the lower marginal costs for
mobility invite passengers to longer and more frequent journeys.

• A comparison with the control group revealed that the electric car primarily
replaced journeys with a conventional vehicle; the proportion of train journeys
differed only slightly between Green Class customers and the control group.

• The analysis of the longitudinal tracking data showed that the CO2 emissions
of most participants decreased significantly shortly after the start of the project.
This can primarily be attributed to the electric vehicle, which has lower average
CO2 emissions than a car with a combustion engine (especially when taking into
account the Swiss electricity mix). The overall development of the Green Class
e-car users’ CO2 emissions and the possible impact of a MaaS offer can be seen
in Fig. 6.2.

• A result that is particularly noteworthy is that the e-car established itself in the
mobility mix of the participants in the long term while primarily replacing the
conventional car.
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Fig. 6.2 Comparison of SBB Green Class 1 users’ average CO2 emissions during a six-week pre-
project tracking phase and their emissions after they got access to the new mobility tools (public
transport pass, e-car, etc.). Most participants (indicated in green) were able to reduce their CO2
emissions significantly and only few participants (indicated in red) increased their average CO2
emissions compared to before the project

6.4 Behavioral Change and Sustainable Mobility

It is often argued that making mobility ecologically sustainable requires a wide
range of technical, institutional, and societal innovations, in particular in the short
term (Banister 2008; Holden 2016; Kemp and Rotmans 2004). These innovations
are related to the optimization and extension of public transport networks, to the
electrification of car fleets alongside an increased renewable energy production, and
also to various shifts in our use ofmobility, for example fromcars to alternativemeans
of transport. The latter is commonly referred to as changing one’s mobility behavior,
and a substantial body of research concerns the effects of mobility behavior changes
on a large scale (Bucher et al. 2019; Taniguchi and Fujii 2007), how ICT impacts
people in their mobility planning and choices (Chen et al. 2016b; Cohen-Blankshtain
and Rotem-Mindali 2016), how persuasive technologies can be used to nudge people
toward certain desired behaviors (Gabrielli et al. 2014; Weiser et al. 2016), and how
and where critical support infrastructure should be built to maximize its impact on
mobility behavior (Buffat et al. 2018; Huétink et al. 2010). Here, we will focus on the
potentials of novel geospatial and persuasive technologies alongside contextualized
and personalized computational methods to help people travel sustainably.
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6.4.1 Motivation

Behavior is strongly driven by motivation, which in turn arises from two groups of
base needs (Deci and Ryan 2004; Reeve 2014): Psychological needs form the most
innate group and include the desire for autonomy, competence and relatedness. They
describe the facts that humans like to be in control of their actions, that these actions
must be challenging yet doable, and that people need to interact with others within
meaningful relationships. Social needs are similarly about the cultivation of rela-
tionships but are learned over the course of our lives. They encompass achievement,
affiliation, intimacy, and a desire for leader- and follower-ship.

Individual actions (such as choosing a particular mode of transport) are usually
spurred by either external or internal motivational sources. External sources include
monetary incentives, rewards, or simply promises by other people. In stark contrast,
intrinsic motivation is generated by one’s own goals, expectations, beliefs, and
perceptions.At its core is the perceptionwehaveof ourselves, subconsciously built by
inspecting the effects of our behavior on other people. Based on this, we develop atti-
tudes and beliefs, onwhichwe relywhen formulating certain goals or building expec-
tations. Intrinsic motivation correlates with the satisfaction of the above-mentioned
base needs (Van den Broeck et al. 2016). If a human does not manage to live up to his
or her core beliefs, a state of cognitive dissonance is entered, which forms a strong
internal motivational source that can be used to induce behavior change.

Such a change of behavior can be modeled using the trans-theoretical model
(Prochaska and Velicer 1997). On a high level, we can classify behavior change into
two phases: discovery and maintenance (Li et al. 2011). The trans-theoretical model
splits discovery into a pre-contemplation, a contemplation, and a preparation phase,
which are characterized by a transition from being unaware of a certain behavior
to starting to form plans on how to change it. The transition into maintenance is
performed once a person starts taking actions, which are prompted by triggers, for
example, receiving a notification about an upcoming appointment (Fogg 2009). After
reaching a certain level of competence, people have to be kept from relapsing until
the behavior is truly internalized and a new habit is formed. Smart geographic ICT
must thus be aware of the different motivational factors and phases that influence
individuals in varying ways and provide adapted support for people in different
circumstances and contexts.

6.4.2 Detecting and Supporting Behavioral Change

A substantial amount of research focuses on using ICT to detect and identify activ-
ities related to movement and mobility (Feng and Timmermans 2013; Gong et al.
2012; Montini et al. 2014), in particular the motives for traveling somewhere as
they heavily influence transport-mode choices. This identification of activities and
transport modes becomes increasingly accurate as researchers get easier access to
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large ground-truth datasets that can be effectively used for machine learning and thus
automated inference at scale.

Once the activities are known, their change over time can be analyzed to detect
sudden or gradual changes in behavior and support users adequately throughout
differentmotivational stages. Jonietz andBucher (2018) continuouslymined trajecto-
ries with the aim of identifying behavioral patterns and anomalies. They summarized
daily and weekly mobility usage by computing characteristic features; for example,
the number of trips taken or the total distance traveled with a certain mode of trans-
port. An anomalous deviation of these features from oneweek to another can indicate
a transition from one phase of behavior change to another and should be reflected
within the supporting ICT. Additionally, identifying people in similar behavioral
transition phases can be used for analytical purposes or to target individual groups
with specific incentives (Zhao et al. 2019).

Depending on the motivational phase, people have different needs for support:
someone (pre-)contemplating change is well served by information about the exis-
tenceof alternative transport options; someone taking action requires externalmotiva-
tors andwell-timed and appropriate triggers (Weiser et al. 2015). If a trigger manages
to increase our motivation (e.g., by giving additional external rewards) or to decrease
the difficulty of the action (e.g., by providing a meaningful sustainable mobility
alternative), a user is much more likely to exhibit the desired behavior (Fogg 2009).
To provide alternative mobility plans, ICT has to generate and evaluate them, taking
into account sustainability as well as the user’s context (e.g., the planned activity
at the destination, or past and future trips). Based on a wealth of (multi-modal)
transport planning systems (Bast et al. 2016), heuristic methods (Bucher et al. 2017),
and approaches based on previously recorded movement (Arentze 2013; Campigotto
et al. 2016) were developed to generate meaningful routes. The resulting alternatives
are scored using the primary feature of interest, e.g., the total CO2 emissions, the
distance, or the duration.

An often employed persuasive method is gamification, i.e., using game design
elements in non-gamecontexts (Deterding et al. 2011).Gamification canbeused as an
external source of motivation by employing mechanisms such as feedback, rewards,
challenges, competition, or cooperation (Weiser et al. 2015). These should follow a
set of general design principles, such as offering meaningful suggestions, providing
guidance, supporting user choices, or personalizing experiences. It needs to be noted
that the use of common gamification elements for feedback on mobility behavior is
not as straightforward as in other domains. As mobility is highly individual, simply
offering rewards for taking the bicycle to work might be completely unfeasible for
some while extremely easy for others. Similarly, rewarding points for taking public
transport may lead to people trying to travel more, while the most ecologically
friendly choice would likely be not to travel at all (Froehlich et al. 2009).
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6.4.3 Studies

Among the well-known early studies on the effects of persuasive ICT on mobility,
choices and behavior are applications that feature a combination of movement
tracking and technology-assisted feedback, commonly by showing users the impact
of the CO2 emissions caused by their trips (Anagnostopoulou et al. 2018; Gössling
2018). UbiGreen (Froehlich et al. 2009) uses a combination of a mobile sensing
platform, GSM cell tower localization, and information entered by users to record
mobility patterns. It features a visual representation involving either a tree or an
iceberg that indicates the effect of trips taken during a week. While there was no
quantitative analysis of behavior change performed (due to the small sample size
of 14 people and the short tracking duration of three weeks), interview responses
demonstrated the viability of such eco-feedback applications. Similarly, MatkaHupi
(Jylhä et al. 2013), tripzoom (Bie et al. 2012), the THELMA project (Bauer et al.
2016), or the Streetlife EU project (Kazhamiakin et al. 2015) featured smartphone
applications that were used both as a tracker as well as for providing feedback to the
mobility consumer.

Typically, these studies were performed with a smaller sample of participants
(approximately 10–50) over the course of up to two months (Anagnostopoulou et al.
2018).Recently, several studies have tried to replicate their resultswith larger samples
over longer periods of time. Research by Semanjski et al. (2016) involved a six-
month data collection and intervention period with 3400 participants. During this
time, movement data were collected and feedback given via a Web platform. Their
results showed that eco-feedback can be used to initiate behavioral changes but the
outcomes vary depending on the attitudinal profiles. Ebermann and Brauer (2016)
similarly enrolled 248 participants to use a Web site during a three-week period and
explored the influence of different goals (“self-exploration,” “competition,” “climate
protection,” etc.) on the use of various gamification elements. An additional large
body of work emphasizes the use of persuasive technologies to improve personal
health—which often leads to more ecologically sustainable travel behavior as well.
Consolvo et al. (2008) explored the potential of early smartphones in combination
with mobile sensing platforms to promote healthy lifestyles. Similarly, Harries et al.
(2013) enrolled 152 participants for their study that used an app to promote walking
behavior. They found that the appmanages to increase the step count by around 64%,
but that comparative social feedback did not improve this value.

The latter also indicates that not all persuasive strategies work well in a mobility
context. Gabrielli et al. (2014) summarize these challenges associated with inducing
a mobility behavior change for more sustainable future urban mobility. They found
that changingmobility behavior is a lengthy process and that it is very difficult to find
motivational features that engage a wide range of users. In contrast to the personal
health domain, collective mechanisms (i.e., social influence) tend to have a stronger
influence on behavior than individual ones. Their findings corresponded to research
by Nicholson (2012) and Weiser et al. (2015), who stressed that eco-feedback must
be timely and meaningful.
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6.4.4 GoEco!

For a more in-depth account of a study targeting the change of mobility behavior, the
example of GoEco! is chosen (Cellina et al. 2019). In contrast to previous studies,
GoEco! targeted around 200 people from two diverse geographic regions; they were
asked to participate in the experiment over the duration of a year. Within this year,
three periods were chosen during which participants had to install an application on
their smartphone that would simply record their movement in the first phase, give
them additional eco-feedback (using gamification elements) in the second phase, and
resort back to simple movement tracking for the third one (to determine potential
long-term effects of the intervention in the second phase; Cellina et al. 2019).

The application used a naïve Bayes classifier to identify transport modes from
several features, such as travel speed, journey distance, or the distance to public
transport stops in the vicinity (Bucher et al. 2019). This transport-mode identification
was then given to users for verification, after which several potential (and feasible)
alternatives were computed for each trip. These alternatives were presented as feed-
back to people, together with an assessment of potential CO2 emission reductions
stemming from transitions to different transport modes. In addition, the gamified
feedback included personal goals, weekly challenges, badges as rewards for desir-
able behavior (e.g., taking the bicycle towork, or completing a certain challenge), and
a leaderboard that ranked people according to the number of badges they collected
(Fig. 6.3; Cellina et al. 2019b).

Studying the long-termeffects, itwas found that people in rural areas changed their
behavior on systematic routes. This was partially due to the selection of participants,
who came from the city of Zürich (where people are often already eco-friendly
travelers due to artificially created impediments for car drivers) and the canton of
Ticino (where public transport is less developed, and the private car is the primary
means of transport). The fact that people changed their behavior on systematic routes
(e.g., from home to work and back) is likely due to having more options on those (as
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one is potentially less restricted by context, such as the need to drive the whole family
or carry shopping goods) and due to only having to find good alternatives a limited
number of times (in contrast to non-systematic routes, where a suitable alternative
has to be searched for every time).

6.5 Mobile Decision Making

Mobile geospatial technologies support people in their location-based decision-
making, and at the same time acquire spatial big data, which can be utilized for
urban planning and the enhancement of urban infrastructure resilience (Heinimann
and Hatfield 2017). Mobile location-based decision-making encompasses a variety
of spatio-temporal constraints, which relate not only to people’s spatio-temporal
behavior in large-scale space (Kuipers and Levitt 1988) but also to their interac-
tion with mobile devices, and perceptual, cognitive, and social processes (Raubal
2015). People often need to make fast decisions on the spot, which requires both
fast access to spatial memory and immediate system responsiveness. Furthermore,
mobile devices such as mobile phones limit the communication process to their
users, for example through small screen size, which makes it challenging to present
information to someone on the move (Montello and Raubal 2012).

6.5.1 Mobile Eye-Tracking and Gaze-Based Interaction

Asdescribed earlier, geosmartness is also enabled by novel interactionmodalities and
paradigms, and one of these concerns gaze-based interaction. Gaze-based interaction
is made possible by eye-tracking technology, and it is regarded as a particularly
efficient and intuitive interaction modality (Majaranta and Bulling 2014), especially
when interacting with space and visual-spatial representations (Kiefer et al. 2017).
In explicit gaze-based interaction, the user deliberately triggers an interaction by
looking at a certain position in the stimulus, whereas implicit gaze-based interaction
refers to the automatic interpretation of eye movements for recognizing cognitive
states, such as search activities on maps.

The ability to track gaze movements with eye-tracking technology allows
measuring the current point of regard on a specific stimulus. There exist remote and
mobile eye-tracking devices, and nowadays, most of them are video-based corneal
reflection systems (Duchowski 2017). Mobile eye trackers measure a person’s visual
attention on a stimulus in the wild instead of the laboratory. The basic recordings
are called gazes, and it is generally assumed that perception takes place only if gaze
remains almost still for a minimum amount of time. Gazes are therefore often aggre-
gated spatio-temporally to fixations. A transition between two fixations is called
a saccade, which is caused by a rapid movement of the eye. Eye-tracking data
can be used for investigating cognitive processes, such as self-localization during



6 Geosmartness for Personalized and Sustainable Future … 75

wayfinding (Kiefer et al. 2014), for activity recognition (Kiefer et al. 2013), and as
input for gaze-based assistants. Many eye-tracking systems allow for real-time data
access, which is the principle behind such gaze-assistive systems.

6.5.2 Personalized Gaze-Based Decision Support

Urbanmobility andnavigation of the futurewill becomemore complex for people due
to the variety of combined transport modes offered by mobility-as-a-service options,
increased environmental complexity (especially in megacities), and the multifaceted
decision-making process of how to engage in sustainable mobility. Smart city envi-
ronments, as described here, in combination with gaze-assistive systems, will allow
personalized navigation support for their users.

Nowadays, navigation instructions are typically displayed as turn-by-turn instruc-
tions on a digital map presented on small mobile screens (Hirtle and Raubal 2013).
Visual attention switches between display and environment can lead to high cognitive
load (Bunch and Lloyd 2006) and distraction, such as in busy traffic situations. These
problems can be avoided by utilizing gaze-based interaction concepts. An example is
GazeNav (Fig. 6.4), which enables gaze-based interaction for pedestrian navigation
(Giannopoulos et al. 2015). Gaze is utilized to inform the wayfinder whether the road
that he or she is gazing at is the correct one to follow. To use this system, the userwears
mobile eye-tracking glasses, which capture the current point of regard. When a deci-
sion point with different options is approached, the user starts to examine the possible
ones to follow. At the moment when the user’s gaze is aligned with the correct street,
the system automatically provides feedback to convey this, for example through a
vibrotactile belt or, more effectively, its combination with gaze information (Gkonos
et al. 2017). Systems for real-time gaze tracking in outdoor environments, whichmap
the gazes from a mobile eye tracker to a georeferenced view using computer vision
methods, allow for such personalized gaze-based decision support (Anagnostopoulos
et al. 2017).

The example of GazeNav illustrates how novel interaction modalities will impact
our spatio-temporal decision-making in the future, leading to more personalized

Gaze input NavigaƟon service Model of surroundings

Fig. 6.4 Gaze-based pedestrian navigation
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information that can facilitate and improve people’s decision processes. In addition,
such technologies will also provide an enormous amount of spatial big data, in this
case user-behavior data, which can be utilized by both the private and public sectors
to improve old services and offer new ones. This implies that our locations will
be shared with a multitude of different services, and therefore, the protection of
geoprivacy in combination with other types of personal information will become an
even more important issue in smart city environments (Keßler and McKenzie 2018;
see Chap. 32).

6.6 Conclusions and Future Work

The ever-increasing urban mobility and transport of people has led to an increase
of greenhouse-gas emissions and traffic jams. In this chapter, we demonstrated how
geosmartness, a combination of novel spatial-data sources, computational methods,
and geospatial technologies made possible through major advances in ICT helps
to make urban mobility of the future more sustainable and personalized. On the
one hand, novel movement-analytics methods including machine learning can be
applied to massive volumes of tracking and context data, in order to make short- and
longer-term predictions of transportation network states. This will help to optimize
future states of the mobility system and to create flexible and personalized mobility
offers. An overview of recent mobility studies and SBB Green Class, a detailed
case study of multi-modal and energy-efficient mobility, served as examples. On the
other hand, mobility-pattern analysis will help detect people’s behavioral changes,
and the impact of their travel habits and alternative travel modes, which in turn
should pave the way toward more sustainable forms of transport. Sustainable urban
mobility will be one contributor to the reduction of CO2 emissions in the future. We
introduced methods for detecting and supporting behavioral change, related studies,
and GoEco! as a concrete study targeting the change of mobility behavior through
tracking data analysis and eco-feedback. Finally, from a user perspective peoplemust
also be directly supported in their complex mobile decision making. We proposed
mobile eye tracking as a novel data source, which allows personalized gaze-based
decision support in urban navigation. GazNav illustrated how gaze-based pedestrian
navigation facilitates people’s decisionmaking based on the integration of gaze input,
a navigation service, and a representative model of the environment.

Further research is necessary in all three of the discussed aspects of geosmart-
ness, that is, spatial big data, spatio-temporal analysis methods, and geographic
information technologies, in order to achieve a fully personalized and sustainable
urban mobility of the future. For various states it will be important to have true
real-time data from different sources—for example tracking, context, and social-
media data—available, in order to evaluate a particular situation comprehensively
and to detect the causes of a potential problem. The sheer data volume, and data
integration and accuracy issues present obvious challenges. From a data analysis
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perspective, most machine-learning methods do not account for spatial autocorrela-
tion; therefore, further research on how to make machine-learning methods spatially
aware is required. In addition, most machine-learning models come as black boxes,
which hinders interpretability and explanation of results. Machine-learning model
interpretability is therefore a pressing issue (Hohman et al. 2019). Finally, future
advancements in the area of urban informatics will continue to be technology driven.
We expect novel geographic information technologies that will enhance both urban
system evaluations and predictions, as well as mobile decision-making support for
the individual user.
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Chapter 7
Urban Metabolism

Sybil Derrible, Lynette Cheah, Mohit Arora, and Lih Wei Yeow

Abstract Urban metabolism (UM) is fundamentally an accounting framework
whose goal is to quantify the inflows, outflows, and accumulation of resources
(such as materials and energy) in a city. The main goal of this chapter is to offer
an introduction to UM. First, a brief history of UM is provided. Three different
methods to perform an UM are then introduced: the first method takes a bottom-up
approach by collecting/estimating individual flows; the second method takes a top-
down approach by using nation-wide input–output data; and the third method takes a
hybrid approach. Subsequently, to illustrate the process of applying UM, a practical
case study is offered using the city-state of Singapore as an exemplar. Finally, current
and future opportunities and challenges of UM are discussed. Overall, by the early
twenty-first century, the development and application of UM have been relatively
slow, but this might change as more and better data sources become available and as
the world strives to become more sustainable and resilient.

7.1 Introduction

Water, electricity, gasoline, natural gas, food, concrete, and asphalt are some of the
energy and resources that are imported, consumed, stored, or exported to, in, and from
cities every day. Keeping track of these exchanges and processes can be extremely
challenging and is at the heart of urban metabolism (UM). The term metabolism
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relates to how a human body converts nutrient intake into energy. The first attempt
at quantitative (human) metabolism accounting was probably developed in the early
seventeenth century where, in the first documented experiment, Sanctorius (1561–
1636) spent over 30 years weighing his dietary intake and bodily excretions on a
weighting chair to create a mass-balance sheet. Understanding that not everything
that is consumed is directly excreted, he concluded that a significant portion of his
consumption was lost through insensible perspiration via his skin (Eknoyan 1999).

Quantifying the metabolism of a city requires a similar methodological approach.
The origins of the modern form of UM date back to 1965 when Abel Wolman
wrote a ten-page article in Scientific American titled “The Metabolism of Cities”
(Wolman 1965). As a sanitary engineer, Wolman’s research interests delved into
pollution, recognizing that getting an account of the flows of resources inside and
outside of a city was key to solving the problem at its root. The concept then grew
in popularity in the early 2000s, notably aided by the rise of the global research
agenda toward sustainable development and the need to identify major consumers of
energy and emitters of greenhouse gases (GHG). Over the years, UM has grown in
its understanding into three main schools: Marxist ecology, industrial ecology, and
urban ecology (Newell and Cousins 2014). Marx defined UM as the characterization
of complex nature–society relationships that produce uneven outcomes; industrial
ecology looks at UM as stocks and flows of materials and energy; and urban ecology
looks at it as complex socio-ecological systems. More broadly, UM fits within the
realm of sociometabolism defined by Haberl et al. (2019) as “a systems approach to
study society–nature interactions at different spatiotemporal scales.”

Since its origin,UMhas evolved significantly fromamethodological point of view,
partly due to changes in data format and accessibility. Conceptually, UM remains
largely an accounting framework, as illustrated in Fig. 7.1, that includes inputs (I),
outputs (O), internal flows (Q), storage (S), and production (P) of water (W), energy
(E), material (M), and food (F). With its initial focus on resources and materials, UM
has evolved to account for energy (in addition to resources) and for the endogenous
processes occurring within cities (e.g., accounting for the production of food in

Fig. 7.1 Sketch of UM processes accounting for inputs (I), outputs (O), internal flows (Q), storage
(S), and production (P) of water (W), energy (E), material (M), and food (F)
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cities and for the internal reuse and recycling of materials), again in line with the
global sustainability effort. A commonly adopted definition of UM comes from
Kennedy et al. (2007) who defined it as: “the sum total of the technical and socio-
economic processes that occur in cities, resulting in growth, production of energy,
and elimination of waste.”

From a methodological viewpoint, following the industrial ecology way of
thinking, UM is largely inspired bymaterial flow analysis (MFA), which for example
quantifies the flows of a particular material across industrial sectors. An account of
energy flows can then be added to the approach, thus giving material and energy flow
analysis (MEFA). Broadly, there are twomainmethods for studying the UMof a city:
the bottom-up method is based on directly collecting flow data from a city (e.g., how
much water is consumed), while the top-down method is based on economic input–
output data (e.g., from the United Nations International Trade Statistics Database,
also known as UN COMTRADE). Both techniques are presented in this chapter. In
addition, a hybrid approach combining bottom-up and top-down datasets has facili-
tated the development of several methods discussed in this chapter and categorized
as hybrid methods.

Ultimately, the volume of data available is the main limiting factor to what can be
included in an UM study. In spite of the fact that we have entered the era of big data,
UM involves such a large number of flows that data availability is arguably the main
reason why UM has not been applied more systematically to cities across the world.
New datasets and new UM methods might help partly tackle this issue, however, as
will be discussed. In fact, when it comes to urban informatics, UM holds a central
presence and has the potential to directly inform policies and designs to help cities
become more sustainable and resilient (Mohareb et al. 2016; Derrible 2019a).

In line with the general theme of this book, the main goal of this chapter is to give
a brief introduction to urban metabolism by:

• Offering a brief review of the history of urban metabolism;
• Introducing two methods to calculate the metabolism of a city;
• Applying UM to a practical case study (Singapore); and
• Discussing the future of urban metabolism.

The structure of the book chapter follows these goals sequentially. To learn more
about UM, the reader is referred to several important works (that inspired this
chapter), including Sustainable Urban Metabolism by Ferrão and Fernández (2013),
UnderstandingUrbanMetabolism: A Tool forUrban Planning byChrysoulakis et al.
(2014), Urban Engineering for Sustainability by Derrible (2019b), and the book
chapter “A Mathematical Description of Urban Metabolism” by Kennedy (2012).
For quicker references and data on cities, the reader is strongly recommended to
look at the Metabolism of Cities online platform accessible at https://metabolismof
cities.org/.

https://metabolismofcities.org/
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7.2 History of Urban Metabolism

As an accounting framework, UM is used to gain an understanding of the flows
between a city and its surrounding environment. As cities grew in size and as pollu-
tion levels increased significantly because of the Industrial Revolution—that notably
spurred the initial push for suburbanization (Hall 2002)—it was only a matter of
time before a technique like UM was developed. A first essay titled “Essay on the
Metabolism of Berlin” was written by TheodorWeyl in 1894 and quantified the flows
of nutrients in and out of Berlin (Lederer andKral 2015).We can then see some traces
of UM in Patrick Geddes’s book “Cities in Evolution” (Geddes 1915). It was only
when more data started to be collected and become available, however, that UM
took its more modern form, and the rise of UM from sanitary engineering and in the
twentieth century is, therefore, not surprising. Issues related to data availability have
always been central to UM. In fact, even in his original article, Wolman could not
calculate the UM of an actual city, and instead estimated the UM of a hypothetical
American city of one million inhabitants, focusing on three inputs (water, food, and
fuel) and three outputs (sewage, solid waste, and air pollutants). Figure 7.2 shows
the original figure used by Wolman, which illustrates the large imports of water and
exports of sewage from a typical city.

Fig. 7.2 Wolman’s 1965 urban metabolism of a hypothetical American city of one million people,
focusing on water, food, and fuel as inputs and on sewage, solid waste, and air pollutants as outputs
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Fig. 7.3 UMof Brussels in the 1970s, Belgium. Adapted fromDuvigneaud and Denaeyer-De Smet
(1977)

Perhaps the most famous of all early UM studies is the surprisingly exhaustive
case study of Brussels in the 1970s by Duvigneaud and Denaeyer-De Smet (1977).
Themain figure from the study is shown in Fig. 7.3. One year after the Brussels study,
in 1978, Newcome et al. (1978) calculated the inflows and outflows of construction
materials and finished goods in Hong Kong for 1971, foreseeing the amazing growth
in demand for materials and resources for an increasingly wealthy and urban world.
In their article, Kennedy et al. (2007) report the UM of nine cities:

• US typical (Wolman’s study) in 1965
• Brussels (Belgium) in the 1970s
• Tokyo in 1970
• Hong Kong (China) in 1971 and 1997
• Sydney (Australia) in 1970 and 1990
• Toronto (Canada) in 1987 and 1999
• Vienna (Austria) in the 1990s
• London (United Kingdom) in 2000
• Cape Town (South Africa) in 2000.

Since the early 2000s, many more UM studies have been carried out, from Paris
(Barles 2009) to Ho Chi Minh City (ADB 2014), including one particularly large
study by Kennedy et al. (2015) that investigated the UMof 27megacities. Significant
data requirements remain a limiting factor to calculate the UM of more cities. In the
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next section, we will review two standard methods to estimate the metabolism of a
city.

7.3 Methods of Urban Metabolism

Estimating the flows in Fig. 7.1 can be done in many different ways. In fact, there
is no right technique as long the flows can be identified. Broadly, we can categorize
techniques in three groups: bottom-up, top-down, and hybrid methods. From the
bottomup, flows are investigated individually, for example, by contacting localwater,
gas, and electricity utility companies. From the top down, economic input–output
(IO) data can be collected, often at the country scale, and then disaggregated to the
city scale.

The bottom-up approach is generally preferred because it tends to provide more
insights about a city; for example, to investigate differences between residential and
commercial consumption patterns. The bottom-up approach tends to be arguably
more accurate as well since disaggregating data from the national scale to the urban
scale can be challenging. Nevertheless, methodologically, the top-down approach
may be easier to apply and thus might be preferred in some instances. Other
approaches including using emergy, ecological, or environmental network analysis
and other methodological advancements have found lesser momentum but can be
powerful tools for UM study. The three groups of approaches are introduced in this
section.

7.3.1 Bottom-Up Methods

Identifying the flows in Fig. 7.1 from the bottom up can be done by asking the proper
authorities for data or by using some means to estimate them. Flows related to the
consumption ofwater, electricity, gas, and other resources can be collected from local
utility companies, for example. Flows related to the amount of water received from
precipitation can be collected from local weather stations. Nevertheless, collecting
these data can be challenging—local utility companies may not want to share data
or they may not have access to data in the first place. This section introduces some
of the ways these flows can be estimated.

Primarily, we will use the divide and conquer technique by breaking down a
problem into multiple parts; the general approach (not related to UM) is well
discussed by Mahajan (2014). This approach is greatly influenced by the IPAT
equation, initially developed by Ehrlich and Holdren (1971) and defined as

I = P · A · T (7.1)
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where I, P, A, and T stand for impact, population, affluence, and technology, respec-
tively. Essentially, the end goal is to estimate total energy use or emissions (e.g.,
in watt-hours or Wh) and the problem is divided cleverly to play with units. For
example, if we are looking for the total energy use linked with water consumption in
liters [L], we can use the IPAT equation by estimating the average water consump-
tion per person and the average energy use per liter of water; in terms of units, we
get: [Wh] = [pers]× [L/pers]× [Wh/L]. In this section, we will cover four sectors:
materials, energy, water, and food. The chapter is greatly inspired byKennedy (2012)
and more details can be found in Derrible’s (2019b) book.

7.3.1.1 Materials

Cities are physically composed of countlessmaterials.While it is impossible to quan-
tify the flows of every material imported to or exported from a city, certain materials
are worth investigating. In particular, for many cities, the two giants are concrete for
buildings and asphalt for roads—in terms of weight, concrete production actually
tends to be the most produced material in the world, over oil and gas production
(Ashby 2013). In this section, we will see two ways to estimate these two materials,
but the methods can easily be extended to account for other materials such as steel
and other metals.

For buildings, we can try to divide the problem into estimating the floor space
available per person, A, in a city in [m2/pers], and the material intensity M of a
building in tons per square meter (i.e., [t/m2]). Specifically, for building type i, the
stock S of material m (e.g., concrete) can be estimated from

Si,m = P · Ai,m · Mi,m (7.2)

The units of the three variables on the right-hand side are [pers] × [m2/pers] ×
[t/m2], thus giving us an answer in [t] (i.e., a weight). For roads, we can follow the
same procedure or instead try to estimate the proportion of roads space taken by unit
area in [km/km2] for A, using the following equation:

Si,m = D · Ai,m · Mi,m (7.3)

where Si,m is the stock of road type i for material m in [t], D is the area of a city in
[km2], A is the affluence of roads in [km/km2], and M is the material intensity in
[t/km].

Results in units ofweight can then bemultiplied by an energy or carbon conversion
factor, for example, in [MWh/t] and [t CO2/t], respectively. These conversion factors
can be found in the literature. For example, the Circular Ecology group offers a fairly
extensive and free database accessible at https://www.circularecology.com/. In this
database, the energy and carbon conversion factors of concrete are 1.53 MWh/t and

https://www.circularecology.com/
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0.95 t CO2/t, and the same factors for asphalt are 696.95 kWh/m2 and 99 kg/m2—note
the difference of units between concrete and asphalt.

7.3.1.2 Energy

The UM of energy can include a number of sources since virtually every process
requires some kind of energy. Here, we divide total energy use into six sources:
buildings, transport, industry, construction, water pumping, and waste, such that:

IE = IE,buildings + IE,transport + IE,industry + IE,construction + IE,water pumping + IE,waste

(7.4)

where I andE stand for impact and energy, respectively.Quantifying these six sources
of energy can be challenging, and other sourcesmight exist depending on the scope of
the study. Ideally, data can be collected from local utilities. If not, individual sources
can be broken down into quantities that are simpler to estimate.

Energy use in buildings can be broken down into energy use for heating, cooling,
water heating, and light and appliances—about 50% of the energy used in buildings
is consumed for space conditioning (heating and cooling) and about 20% for water
heating, although values vary greatly, especially with climate. In the USA, data
for these four subcategories are available from the Department of Energy. Other
strategies are available in Derrible’s (2019b) book. For transport, we either need to
know how much fossil fuel was consumed and convert it into energy/emissions, or
we need to estimate the average distance traveled per vehicle type (e.g., car and bus)
and multiply it by an energy conversion factor. Local surveys are generally needed to
estimate distances traveled per vehicle type, although national surveys can help. In
the USA, the National Household Travel Survey offers US-wide travel pattern data,
and the Environmental Protection Agency (EPA) offers typical conversion factors
for distance traveled to carbon emissions.

For industry and construction, the flows can even be harder to estimate; this is
where the top-down approach might offer an alternative. For water pumping, energy
uses vary greatly based on several factors, including the topology of a city (i.e., hilly
vs. flat terrain). Chini and Stillwell (2018) have gathered and made available a large
database for the USA. Other values are available in the literature. We have to be a
little bit careful since some values in the literature might take into account the full
life cycle of a water distribution system (i.e., including the construction, operation,
and disposal of the water treatment plant and water distribution system), while many
others will not.

For waste, the quantity of waste generated as aweightmust first be estimated (e.g.,
in [kg/y]). Urban-scale data are rarely available, but many countries offer national
per capita estimates that can be sufficient—the World Bank has also compiled a
significant database (Kaza et al. 2019). What may be more difficult is to get a break-
down of howmuch of the waste is recycled versus incinerated versus landfilled. Once
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achieved, however, the WAste Reduction Model (WARM) of the EPA offers carbon-
emission intensity values for different disposal strategies. Finally, some studies also
include natural energy inputs, such as the amount of energy received from the sun
(that was included in Fig. 7.3). Kennedy (2012) offered an equation which can be
referred to if needed. Ultimately, energy uses included in an UM study depend on
the scope of the study.

7.3.1.3 Water

As Wolman had already illustrated in his study, water is one of the largest resources
imported in a city, and water use is often included in UM studies. Moreover, although
energy use and carbon emissions linked to water use tend to be relatively small, water
is essential to generate electricity (i.e., Energy–Water Nexus) and for agriculture irri-
gation (i.e., to produce food), and monitoring water flows within an UM framework
is typically desirable.

In general, the overall water balance of a city can be captured by seven variables,
following the equation:

IW,precip + IW,pipe + IW,surface + IW,ground = OW,evap + OW,out + �SW (7.5)

where IW, precip denotes natural inflow from precipitation, IW, pipe denotes pipe inflow,
IW, surface denotes net surface-water inflow (e.g., streams), IW, ground denotes net
groundwater inflow, OW, evap denotes water loss through evapotranspiration, OW, out

denotes pipe outflow, and ΔSW denotes annual change in water stored within the
city—typically close to 0 unless groundwater levels are changing, for example,
because of over pumping.

In Eq. (7.5), four variables are hydrological (precipitation, surface-water inflow,
groundwater inflow, and evaporation) and should be available from local weather
stations in most places. Pipe inflow relates directly to water use. Pipe outflow relates
both to water use and stormwater management. Pipe inflow tends to match water
use and accounts for both consumption and losses (e.g., through leaks). Estimating
water use can be challenging without adequate data, however. Leakage rates can
vary greatly from about 6% in some US cities to 50% in places like Rio de Janeiro
(Derrible 2019a). For water consumption, Kennedy (2012) proposed a method that
accounts for a base demand and a seasonal demand that was reproduced by Derrible
(2019b). Ideally, metered data from water-treatment plants can be collected since it
accounts for both consumption and leakage.

Pipe outflow can be broken down into three types: sanitary, stormwater, and
infiltrated wastewater (from groundwater aquifers that penetrate the sewer system).
Sanitary wastewater comes directly from water use, although the two quantities are
not equal since some of the water used is lost through leakage, some evaporates,
and some simply does not enter the sanitary sewer system (e.g., lawn watering);
Kennedy (2012) found that 20−25% of the water consumed in Toronto did not enter
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the wastewater system. Here, again, data may be available from local wastewater
utilities. Stormwater and wastewater comprise mostly surface runoff that enters the
sewer system during heavy precipitation. Local wastewater utilities may have some
data here as well, depending on whether the sewer system is combined or separated.
Estimates of stormwater flows can also be generated through modeling, for example,
by using theNatural ResourcesConservation Service curve numbermodel. Infiltrated
wastewater flows are harder to estimate and may be negligible.

7.3.1.4 Food

Historically, food, as a specific sector, has rarely been included in UM studies.
Nonetheless, UM studies that focus on energy and water often include the amount
of energy and water used to prepare and dispose of food. Moreover, it may be more
difficult to collect data on food, but we can still think about ways to estimate the
UM related to food. First, the term food here includes both solid food and liquid
food. Packaged drinks, for example, can be accounted for here. Water use related to
food, such as water used in the kitchen, IW,Kit, can be included here, but we should
be careful not to double-count it if it was already included in the UM section related
to water.

Furthermore, food can be both imported into a city, IF , as well as produced within
a city, PF . In terms of exports, food waste, OF,FW, can either be disposed of in
landfills or it can be recycled (e.g., through composting). We can also account for the
carbon and water lost by transpiration and evaporation, OF,MET (where met stands
for metabolism), and for the water disposed of in the sanitary sewer, OF,S (unless
it is accounted for in the UM section related to wastewater). Altogether, we get the
following equation for the UM of food:

IF + PF + IW,Kit = OF,FW + OF,Met + OF,S (7.6)

All or only some of the variables in Eq. (7.6) may be available depending on
the scope of a study. In particular, food imports and exports may be available from
freight data sources. It might be more challenging to estimate the other variables. In
terms of units, food is generally expressed both as a weight in tons, although it could
be expressed as an energy in Wh or Joules with the proper conversion factors. This
is all we will cover in this section, but many more methods and techniques can be
imagined and applied to study UM from the bottom up. Now, we will switch to a
different conceptual approach to UM by estimating flows from the top down.

7.3.2 Top-Down Methods

Bottom-up approaches for UM accounting often tend to be time consuming and data
intensive. As an alternative, most countries maintain data for economy-wide import,
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export, and production of resources, which can be tapped for an UM assessment.
A top-down approach primarily benefits from the availability of relevant data in
aggregate form. Often generating economy-wide insights on UM can be a powerful
tool to influence sustainability efforts at the national or regional scale. In addition, the
top-down approach tends to be easier to carry out and relies on international datasets,
which helps in making time-series assessments to track progress over time. This
section first provides a historical evolution of top-down economy-wide material flow
accounting. It also discusses resources categories, data sources, and the accounting
methods that can be chosen based on the scope and boundaries of an UM study.

7.3.2.1 General Approach

TheMFA in an economy-wide (ew) exercise signifies the socioeconomicmetabolism
of a territory. Even though this section provides amethodology for an ew-MFA, often
only partial accounts are performed, both in terms of materials and commodities
as well as inflows and trade, or outflows in some combinations. As illustrated in
Fig. 7.4, ew-MFA aims to assess the overall material inputs into a national economy,
material stock changes within the economic system, and the material outputs to
the external environment and economies (Krausmann et al. 2018). Such an exercise
aims to describe the total scale of socio-economic activities in physical quantities.
While initial efforts for ew-MFA were initiated in the 1990s in Austria, Japan, and
Germany, credit for leading the global comparative ew-MFAmethodology has often
been assigned to a seminal study byMatthews et al. (2000). They assessed five coun-
tries, namely Austria, Netherlands, Germany, Japan and the USA, for their compre-
hensively mass-balanced material flows from 1975 to 1996, and they developed
material flow indicators.

Fig. 7.4 General framework of economy-wide MFA. Adopted and modified from Eurostat (2001)
and Krausmann et al. (2018)
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In the same fashion, and to harmonizemethodological details and indicators, Euro-
stat published its 2001 report “Economy-wide material flow accounts and derived
indicators: A methodological guide” (Eurostat 2001), which has evolved over the
years (Eurostat 2018) and which remains widely adopted for ew-MFA. For a step-
by-step procedure to perform ew-MFA, the reader can refer to the comprehensive
guide developed by Krausmann et al. (2018).

The basic concept of ew-MFA follows the mass-balance principle with a unit of
metric tons per year (i.e., [t/y]) where:

Input = Output+ Additions to Stock−Removals fromStock

= Output+ Net StockChanges (7.7)

Covering over 70 material groups, a typical MFA approach aggregates four mate-
rial categories, namely biomass, metal ores, non-metallic minerals, and fossil energy
carriers. In terms of biophysical bases for society, these fourmajormaterial categories
fulfill all the material and energy requirements for socio-economic metabolism such
as food, feed, energy, housing, and infrastructure, including all man-made artifacts.
Water and air are typically not accounted along with these four major groups of
materials, excluding the mass balancing items such as moisture.

Table 7.1 defines themainMFAparameters for input and output into the economy,
aswell as for societal stocks.Most commonly, ew-MFAconsiders direct flows,which
are defined as flows crossing the system (national) boundary. Major direct material
flow categories include domestic extraction (DE) and imports on the input side, with

Table 7.1 MFA parameters and definition

Parameter Definition

Domestic extraction (DE) Used extraction of materials including solid, liquid, and gaseous raw
materials from the natural environment (excluding water and air)

Imports, exports All imported or exported commodities as weights (e.g., metric tons).
Traded commodities comprise of goods at all stages of processing
from basic commodities to highly processed products

Stocks Physical structures of society: humans, livestock, and manufactured
capital

Manufactured capital All in-use artifacts (buildings, infrastructures, and durable goods)

NAS Net additions to stock; year to year change of stocks

DPO Domestic processed output of wastes and emissions including
deliberately applied materials (e.g., fertilizers)

DPO* DPO excluding balancing flows of oxygen and water (i.e., the
fraction of DPO contained in DE)

Balancing flows Oxygen taken up during combustion and respiration and water
uptake by humans and livestock

Metabolic rate Material consumption per capita of population

Material intensity Material consumption per unit of GDP
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exports and domestic processed outputs (DPO) of waste and emissions on the output
side. DPO includes all waste and emissions from processing, manufacturing, use,
and final disposal of materials. Unused or indirect flows that do not become an input
for production or consumption are ignored. Because of the direct flows into and out
of an economy, there are net changes in the stocks, which are taken into consideration
to assess the physical growth. All accumulated materials in the form of manufactured
capital and discarded or demolished artefacts lead to a net addition to stock (NAS)
that can be positive or negative based on the overall balance. Negative NAS is rare
in growing cities and national economies.

Considering the mass balance nature of ew-MFA, it is important to account for the
water and air flows required in the processing and transformation of materials. Such
flows are categorized as balancing items on the input and output sides. These may
include water vapors for respiration, oxygen required for combustion of fossil fuels,
and atmospheric gases captured or transformed into commodities such as fertilizers.
These balancing items can be calculated using stoichiometric equations. Based on
these material flow categories, a national material balance for a given year can be
given by:

DE+ Imports+ Input Balancing Items = Exports+ DPO

+ Output Balancing Items+ NAS (7.8)

In socioeconomic metabolism, material flows represent the pressure on the envi-
ronment from an economy. These pressures can be measured through aggregated
material flow indicators, which capture the socioeconomic sustainability of the
system being studied. Direct material input (DMI) measures the direct input of all
materials with an economic value and used in production and consumption activ-
ities. Domestic material consumption (DMC) provides all material inputs into an
economy that are destined to be consumed and eventually released into the environ-
ment as waste, representing domestic waste potential. Physical trade balance (PTB)
represents the balance of imports minus exports. These indicators aremathematically
defined by:

DMI = DE+ Imports (7.9)

DMC = DE+ Imports−Exports (7.10)

PTB = Imports−Exports (7.11)

For cross-country comparisons, material flow indicators require appropriate
measures to account for differences in size. Overall, material efficiency is assessed
by relating DMC to GDP. The ratio of DMC to GDP is defined as material intensity
while the ratio of GDP to DMC is defined as material productivity. The ratio of
material flows to total land area measures the scale of the physical economy to its
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natural environment. The DE to DMC ratio measures the dependence of the physical
economy on domestic raw material supply. The proportion of import or export with
DMI measures the trade intensity for import or export for a physical economy.

7.3.2.2 Data Sources

Several data sources exist to meet the data requirements needed to carry out an
ew-MFA; for example, to collect inflow, outflow, or domestic extraction. National
statistics and databases serve as the primary and most reliable data sources due to
their direct collectionmechanisms.Multiple international databaseswith harmonized
values across countries and commodities also exist. In particular, the United Nations
International Trade Statistics Database (UN COMTRADE) remains one of the most
comprehensive datasets for international trade that provides monetary as well as
quantity data for import and export commodities. This dataset can be alignedwith the
MFA computation tables based on the focus of the UM exercise for biomass, metals,
fossils or non-metallic minerals. In addition, the Food and Agriculture Organization
(FAO) maintains the FAOSTAT database for all biomass production and trade, which
is more detailed and reliable.

Table 7.2 provides major data sources for various material categories. It is impor-
tant to highlight that both the time scale (1917–2018) and the geographical coverage

Table 7.2 Major data sources for material flows in world economies

Material Flows Main source

Biomass (food, paper, wood,
timber, and products, etc.)

Production, import, export,
consumption

FAOSTAT, UN COMTRADE

Metals (steel, aluminum,
copper, etc.)

Production, import, export,
consumption

World Steel Association, The
Aluminum Association, British
Geological Survey, US
Geological Survey, UN
COMTRADE, UN Industrial
Commodity Statistics Yearbook

Non-metallic minerals (sand,
gravel, etc.)

Production, import, export UN COMTRADE, UN
Industrial Commodity Statistics
Yearbook, United States
Geological Survey

Cement Production, import, export,
consumption

CEMBUREAU, UN
COMTRADE, UN Industrial
Commodity Statistics Yearbook

Asphalt Production, import, export,
consumption

International Energy Agency
(IEA)

Fossil materials and petroleum
products (coal, crude and
refined oil, gas, etc.)

Import, export, consumption IEA, UN COMTRADE
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(from a few countries to worldwide) of these data sources vary significantly. Addi-
tional sources of data include scientific studies, reports, and surveys, which can be
very useful in certain cases.

For countries with limited datasets, several academic studies over the years have
led to a comprehensive understanding of socio-economic metabolism, leading to
significant datasets. Ongoing efforts in UM and industrial ecology communities have
resulted in data repositories such as the industrial ecology database at the Univer-
sity of Freiburg Germany (https://www.database.industrialecology.uni-freiburg.de/),
the UNEP MFA database (https://www.resourcepanel.org/global-material-flows-dat
abase, https://www.materialflows.net/), and the Eurostat MFA database (https://ec.
europa.eu/eurostat/web/environment/data/database).

In case of poor data quality for certain commodities or countries, various datasets
can be combined. When combining datasets for UM assessment, proper validation
processes should be followed. For instance, data for domestic extraction of primary
resources such as mining activities and food and vegetable production should ideally
be validated with national statistics. Data for consumption of non-metallic minerals
can be validated with consumption data for cement and asphalt. Likewise, gross
metal ore production can be estimated from metal production and ore grades data in
mining. Such exercises help in ensuring the mass balance of material flow. We now
move on to hybrid methods to perform a UM study.

7.3.3 Hybrid Methods

Basedon the scope andboundary of anMFAstudy, rawmaterial equivalents (allmate-
rials used in the production of a commodity) for traded commodities can be calcu-
lated based on life-cycle assessment (LCA), environmentally extended input–output
models, or by combining both. This is particularly useful for estimating consumption-
based indicators such as the material footprint of an economy. Multiregional input–
output (MRIO)models have beenmostwidely used for sectoral resolution of physical
flows based onmonetary inputs and outputs. Allocating physical amounts of material
extraction to products of final consumption can be carried out based on monetary
information about the economics and structure of a sector while considering global
processing chains and trade; however, challenges also exist (Krausmann et al. 2017a).

To estimate material and substance stocks, several extensions have been devel-
oped with varied temporal, sectoral, and spatial resolutions. Methodologically, it
includes top-down and bottom-up static or dynamic stock assessment models. The
basic concept of stock assessment depends on the service life of built-up stock and
stock renewal rates, which are estimated for stock building artifacts such as infras-
tructure, buildings, road networks, and vehicles (Fishman et al. 2014; Krausmann
et al. 2017b). Techniques such as geographical information systems and satellite-
based imaging have allowed for various advances in the measurement of stocks and
resource flows. In addition, hybrid approaches combine both the bottom-up and top-
down approaches for assessing the UM of a city. From an ecological system’s point

https://www.database.industrialecology.uni-freiburg.de/
https://www.resourcepanel.org/global-material-flows-database
https://www.materialflows.net/
https://ec.europa.eu/eurostat/web/environment/data/database
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of view, the use of emergy and ecological network analysis (ENA) has found greater
interest.

The use of emergy originated in the 1950s through the pioneering work of the
Odum brothers on the energetic basis of ecology on Earth. Hau and Bakshi (2004)
suggest that emergy analysis “provides an ecocentric view of ecological and human
activities, which can be used for evaluating and improving industrial activities.” This
approach is fundamentally based on the principle that the sun is the primary source of
energy for all ecological and economic activities on earth. It considers tidal energy and
deep earth heat as additional non-solar sources of energy on Earth and converts them
into an objective matrix of energy quality that can be added altogether. As a result,
all direct or indirect energy required to manufacture or deliver any or all products and
services can be characterized in terms of solar energy equivalents. Emergy, hence,
is estimated based on energy required to perform a function or service, with solar
energy as the only source of energy (Odum 1996). As a scientific unit, emergy is
represented in terms of solar embodied joules, abbreviated as [sej]. To account for
energy transformations from high to low quality or into heat, the concept of solar
transformity has been developed. Solar transformity, as a measure of energy quality
or transformations, is defined as the solar emergy required to make one J of a service
or product (measured in [sej/J]). Mathematically,

M = τ · B (7.12)

where M is emergy, τ is transformity, and B is available energy.
This equation provides a convenient way of estimating the emergy of commodi-

ties, resources, and services. Odum pioneered the estimation of transformity for
most inputs and, at the time of this writing, research still relies on Odum’s matrix
to estimate emergy. Total emergy input to the Earth can be derived from the sum of
emergy of solar exposure, tidal energy, and deep Earth heat. To estimate ecological
and metabolic pressures, emergy estimations can be carried out from the planetary
level to the product or city level. To integrate economic and ecosystems activities, it is
possible to estimate emergy of economic inputs based on the total emergy of a country
and its gross national economic product, thus allowing for an objective comparison.
The thermodynamic rigor behind this approach, the inclusion of ecological contribu-
tions in economic activities, and the ease of objective comparison based on a single
measurement unit are some of its major advantages. The reader should refer to Odum
(1996) for a detailed methodology.

As a different approach, modeling the complexity of nature–societal interactions
has been carried out in some studies through ecological network analysis and its vari-
ations. This approach develops urban metabolic networks between different actors
and assigns possible transformative processes to the flows (Fath et al. 2007). In
comparison to linear relationships, network analysis captures more realistic interac-
tions between various stakeholders and flows. However, complexity and assumptions
involved in network simulations are primarily data limited. The methodology has
evolved to capture the complete dynamics of urban metabolic activities. The scope
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and boundary of an urban metabolic network varies according to carbon emissions,
pollutants, energy, materials, nutrients, and other substances. Finally, several studies
have combined network analysis with emergy and MFA to provide robust compa-
rable results for cities such as Beijing and Vienna (Chen and Chen 2012; Zhang et al.
2009). As a practical case study, we will now turn to the UM of Singapore.

7.4 A Case Study: The Metabolism of Singapore

Singapore has unique characteristics that makes it a good case study for showcasing
the methodologies of UM. In 2016, the small and dense city-state in Southeast Asia
housed 5.6 million people on a total land area of 720 km2 and imported most of its
material, food, and energy requirements. Unlike many other cities, the city-state has
clear national and urban boundaries that coincide with each other (Abou-Abdo et al.
2011). Thus, all flows in and out of the city are classified as international trade and
are well documented at Singapore’s highly regulated ports of entry. Moreover, water
flows in Singapore are highly managed by the Public Utilities Board (PUB), making
for relatively easy accounting. Stormwater and used water are collected in “separate
storm and sanitary sewer systems” (Irvine et al. 2014), which channel stormwater
and surface runoff to rivers and reservoirs, and used water to water treatment plants
(Tortajada et al. 2013). The water distribution network is robust, with “[no] illegal
connections, and all water connections are metered” (Tortajada and Buurman 2017).

The study of Singapore’s UM from the perspective of material flows began with
Schulz (2007), who used physical trade flows and other data sources to conduct
an ew-MFA, as described in the previous section. The flows of biomass, construc-
tion materials, industrial minerals, fossil fuels, and semi- and final products were
analyzed over a 41-year period from 1962 to 2003. The study found that DMC
“remained closely coupled to economic activity,” rising in tandem with Singapore’s
massive economic growth since independence. Chertow et al. (2011) continued this
work into the years 2000, 2004, and 2008, and have expanded the scope of flows to
include emissions, waste, and recycling. The authors found large variations in DMC
of between 14 and 55 metric tons per capita, which is mainly explained by variations
in the import of construction minerals. Other UM studies in Singapore include an
analysis of phosphorus flows (Pearce and Chertow 2017), and stocks and flows of
concrete and steel in residential buildings (Arora et al. 2019). Beyond the analysis
of material flows, system dynamics have been used to study urban resource flows
(Abou-Abdo et al. 2011) andwater (Welling 2011), while Tan et al. (2019) use exergy
and ecological network analysis to study Singapore’s resource effectiveness.

As an illustration of UM methods, this section adopts the simpler top-down
approach to estimate the UM of Singapore in 2016, owing to the fact that as a city-
state, national data do not need to be disaggregated to the urban scale. Awide range of
data sources was used, such as international trade statistics from UN COMTRADE,
data from the Food and Agriculture Organization (FAO), the International Energy
Agency (IEA), and Singapore’s Department of Statistics. The physical flows reported
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by these data sources are combined and adjusted to achieve mass balance. From
these balanced flows, the key metabolism indicators, such as DMI and DMC (Euro-
stat 2001), are calculated and compared with the same indicators during Singapore’s
independence in 1965 (Schulz 2007).

Figure 7.5 shows the material flows of Singapore’s economy in 2016. In total,
270.3 million metric tons of material were imported, with a large majority being
fossil fuels (187.2 Mt, 69%) followed by non-metallic minerals (65Mt, 24%), which
are mainly used for constructing buildings and infrastructure, such as the 9,308
lane-kilometer long road network (Government of Singapore 2019). As a major oil
trading and refining hub, most of the fossil fuels it imports are in the form of crude
oil, which is traded or refined into other petroleum products for export (160.8 Mt).
As a small island with no natural resources and limited options for renewable energy
(NCCS 2019), 95% of Singapore’s electricity is generated from the combustion of
imported natural gas. A small proportion of energy is also produced from solar power
and waste-to-energy facilities that produce energy from incinerating waste (MEWR
2019). Of the 48.6 TWh of electricity consumed in 2016, the largest share was
by the manufacturing industry (38%), followed by businesses in the commerce and
services sector (36%), andhouseholds (16%) (Singstat 2019).Altogether, oil refining,
electricity generation and the 956,430 motor vehicles (Land Transport Authority,
2018)—most of which run on fossil fuels—contributed 51.5 Mt of greenhouse gases
(CO2 equivalent) emitted into the air in 2016 (MEWR 2019).

Fig. 7.5 Metabolism of Singapore in 2016. Major flows of materials (in million metric tons, Mt),
water, and energy are displayed, along with several key statistics. Data on water flows, recycling,
and greenhouse gas emissions obtained from MEWR (2019). Singapore skyline by Kiraan on
VectorStock
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With a total renewablewater resource (TRWR) per capita of 105.1m3/year, Singa-
pore is considered to be facing absolute water scarcity (Food and Agriculture Orga-
nization 2014, 2019). Even though Singapore is located just one degree north of
the equator and receives more than two meters of rainfall per year (weather.gov.sg
2019), its small size gives little room for water catchment sufficient to meet its water
demand. Historically reliant on its closest neighbor for water imports, Singapore has
invested heavily in water recycling (locally branded as NEWater) and desalination to
“close the water loop” (PUB 2016) and achieve self-sufficiency in water resources.
Investments in water recycling have resulted in the significant secondary flow of
water that makes up more than 25% of all the water sent to the end-users.

Table 7.3 shows howSingapore’s UMhas grown since independence from 1965 to
2016. Except for DE, which has virtually disappeared relative to the other indicators,
all other indicators in 2016 have increased by 5–7 times their values in 1965, with
imports growing the most from 6.8 to 48.2 metric tons per capita. Fossil fuels have
always made up the bulk of Singapore’s imports and exports, although the share
of fossil fuels in total exports has increased while the opposite is true for imports.
These metabolic indicators show the phenomenal growth of the material flows of
Singapore, which occurred in tandem with Singapore’s rise from a predominantly
agricultural economy to a global one with manufacturing, oil refining, and service
industries.

Nonetheless, Singapore is not alone in its trajectory. Other cities have also expe-
rienced great increases in material consumption per capita in the past century
(Kennedy et al. 2007). For example, the total material consumption per capita in
HongKong increased by 141% from2.9metric tons in 1971 to 7.0metric tons in 1997
(Warren-Rhodes and Koenig 2001). While cities around the world are growing and
reaching new economic heights, will the trend of increasing material consumption
and intensity continue without bounds? If the theory of the Environmental Kuznets

Table 7.3 Comparison of Singapore’s UM indicators from 1965 to 2016

Indicators (metric tons per capita) 1965a

(Schulz 2007)
2016b %-change

Imports 6.8 48.2 612

Fossil fuels (% of total) 4.9 (72%) 33.4 (69%) 582

Domestic extraction (DE) 1.4 0.07 −95

Direct material input (DMI) 8.2 48.3 489

Exports 5.0 31.0 522

Fossil fuels (% of total) 4.3 (87%) 28.7 (93%) 561

Domestic material consumption (DMC) 3.2 17.3 441

Population (million) 1.89 5.6 196

GDP per capita (S$, 2015) 5804 77,754 1240

aValues estimated from figures published by Schulz (2007)
bThis study



104 S. Derrible et al.

Curve (EKC) holds, environmental impacts would decline as societies become more
affluent. Empirical support for the theory is mixed. DMI, DMC, andDPOwere found
to correlate poorly with GDP per capita for affluent industrial economies (Fischer-
Kowalski and Amann 2001), with similarly poor correlations for water use and solid
waste production in megacities from 2001 to 2011 (Kennedy et al. 2015). On the
other hand, the latter found that energy use is growing at half the rate of economic
growth, with London even reducing its electricity consumption per capita while its
GDP grew. Returning to the case of Singapore, DMC grew at less than half the
rate of GDP growth from 1965 to 2016 (Table 7.3). Furthermore, Abou-Abdo et al.
(2011) presented evidence of per capita water consumption for Singapore following
the EKC, reaching a peak in the early 1990s with water consumption at 115 m3 per
capita and a gross urban income of about S$34,000.

The material footprints of cities are direct consequences of their metabolism; to
recall the definition of Kennedy et al. (2007): “the sum total of the technical and
socio-economic processes.” Analyzing the flows of material and energy into, within,
and out of cities provides us with a glimpse under the hood of the engine that keeps
our cities running. These flows also serve as fingerprints of our cities, reflecting
the unique circumstances—past and present—that drive their continuing growth and
adaptation.

7.5 Urban Metabolism Applications, Challenges,
and Opportunities

The study of UM has been considered for the purposes of urban planning and urban
infrastructure planning. The study of resource stocks and flow exchanges in cities
offers a perspective for urban systems analysis, and a potential to understand self-
sufficiency, efficiency, and resilience. The merit of UM lies in examining resource
requirements, availability, rates of change, and accumulation. It offers an under-
standing of sources (inflows) required to sustain growth, or the abilities of the city
to regulate flows, assimilate or treat waste, and capture emissions. As a communica-
tions tool, UM can also be used to convey the consumption of resources within cities
and allude to limits to growth. Many cities are in fact resource sinks, often accu-
mulating material stocks, and requiring continuous inflows. While UM studies help
profile the past and current status of urban systems, many UM studies have not led
to actionable recommendations beyond the initial assessment. One main criticism of
UM is that since it fundamentally offers a retrospective view of resource stocks and
flows, it has to be coupled with other approaches in order to consider opportunities
for achieving resource efficiency. UM studies therefore provide diagnosis but are
missing a prescription to follow. John et al. (2019) found that two-thirds of 221 UM
studies followed a problem-oriented approach to characterize the metabolism of the
system and understand risks, as opposed to seeking ways to solve the challenges
uncovered.
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This limitation of UM is partly due to its systems perspective, which masks many
complex interactions that take place within cities and cannot yet be adequately
captured. It, therefore, lacks visibility about which actors are driving the flows,
where the flows occur, and the underlying usage and consumption patterns. Without
a view on the causes and drivers for resource flows, this makes it difficult to extract
details on specific infrastructure systems, levers of control, and to consider how to
manage, let alone optimize. Many UM scholars have, therefore, highlighted the need
to advance the field of practice beyond accounting, assessment, and reporting, to
guidance for designing, optimizing, and decision making.

A number of studies have suggested options to couple UMwith notions of sustain-
able design, in order to translate the assessment into practical urban design and
planning. Examples include:

• The European BRIDGE research project (2011) developed a GIS-based decision-
support UM assessment tool that evaluates urban planning alternatives. The
research team emphasized a need for UM to focus on the local scale.

• González et al. (2013) used UM to assess the sustainability impact of urban
planning alternatives, such as building types or the location of transportation and
infrastructural developments.

• Thomson and Newman (2018) explored the influence of different urban forms
on resource inflows, and waste and emissions outflows, for the city of Perth,
Australia.

• In a comparative study ofUMof differentmegacities, Han et al. (2018) considered
the industrial structures of cities and suggested that the pursuit of service industries
instead of manufacturing can allow cities to achieve green growth.

As the field advances, we see four challenges in the further application of UM:

1. As mentioned, unless the internal flows within cities are adequately portrayed
in UM, it will be difficult to translate the findings into intervention options.
Pincetl et al. (2012) suggested to connect metabolism studies with the actors
driving their dynamics. They also highlighted a need to consider the internal
political, economic, and social processes within cities, to better understand the
complexities of possible change. The aim is to better understand “socioeconomic
and policy drivers that govern the flows and patterns.”

2. The quantities or qualities of energy and material flowing through cities may not
always be the right metric of concern, nor are they all that matter. The forces
driving resource consumption are the demands for services derived from these
resources, or the utility obtained. There is a need to capture the value of the
services derived, and not just the amounts of resources. Carreón and Worrell
(2018) argue for the consideration of energy services, and drivers of them, in
UM research.

3. The study of UM remains highly constrained by the availability of quality data.
Most existing UM studies cover a limited set of resources—materials (particu-
larly metals), energy, water, and nutrients. Analyses are also usually limited to
a single time period (e.g., a single year). Moreover, Currie and Musango (2017)
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highlighted that UM studies have generally been limited to the cities in theGlobal
North, given the lack of data elsewhere.

4. While there have been attempts to carry out comparative UM studies across cities
(including those by Currie and Musango 2017; Han et al. 2018), it is generally
difficult to compareUMstudieswithout a standard approach. Beloin-Saint-Pierre
et al. (2017) reported on the lack of consistency on assessment methods. Zhang
et al. (2015) recommended the establishment of “a multilevel, unified, and stan-
dardized system of categories to support the creation of consistent inventory
databases,” which can guide comparative analysis. Even so, the harmonization
of efforts will likely remain highly challenging given disparate and often missing
datasets.

Despite these challenges, we see related opportunities to advance the field in
several ways. Most essentially, new data sources are becoming more available to
better examine urban systems. This allows for disaggregated UM that (i) operates
at finer temporal resolutions, (ii) is spatially explicit, and (iii) integrates relevant
sources of information. Enabled by pervasive sensing and improved communica-
tions technologies, time-series data on the building-, district- and even city-level are
increasingly available, such as real-time electricity use, individual mobility patterns,
water use, and management tools. With the shortening of the timescale of analysis,
it is possible to monitor and track resource consumption more carefully. This also
allows for understanding rates of change, to better understand the timescale of impacts
and potential interventions. In this direction, Shahrokni et al. (2015) proposed what
they termed smart urban metabolism, which is capable of integrating UM concepts
with information and communication technologies (ICT) and smart-city technolo-
gies, thus enabling user-generated automated data collection, real-time analytics, and
feedback for city planners.

Themapping of resource flows for amore spatially explicit UManalysis is another
potential area of development. Bymoving beyond scalar quantities, this allows for an
understandingof the direction anddistributionof internal flowswithin the city. Impact
arises from the distributed nature of activities that drive the demand for resources,
resulting in flows. Planners can then consider the resource efficiency implications
of land use or infrastructure location decisions. Voskamp et al. (2018) also recom-
mended finer spatio-temporal resolution for monitoring energy and water flows,
arguing that this is required in order to develop interventions to optimize resource
flows. There is also the opportunity to integrate different types of information at the
disaggregated level to evaluate UM. Related sources of information and tools include
supply chain data (e.g., transaction data from enterprise resource planning systems)
or building information modeling (BIM) data. Researchers have even used satellite
and night-light imagery (Xie and Weng 2016), GIS tools (Li and Kwan 2018), and
freight transportation surveys (Yeow and Cheah 2019) to better examine UM.

Furthermore, data concerning different resources can be fused or integrated to
allow analysts a better understanding of the interdependencies and relationships
between different resource flows, as opposed to examining individual resources
separately. Exploring the interactions between water consumption and energy use
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Fig. 7.6 Hybrid Sankey diagram of 2011 U.S. water and energy flows. Source U.S. Department of
Energy

(water–energy nexus), or linking resource demand with urban activities can aid with
holistic policy decision-making and integrated resource management. Hamiche et al.
(2016) conducted a review of the water–energy nexus to reveal the complex links
between water and electricity generation. Movahedi and Derrible (2020) studied
the interrelationships between water, electricity, and gas consumption in large-scale
buildings in New York City. Figure 7.6 shows a hybrid Sankey diagram depicting
interconnected water and energy flows in the United States in 2011, developed by
the US Department of Energy (Bauer et al. 2014).

Finally, UM analysis may progress from a descriptive approach toward a more
prescriptive one, when it is considered in simulations of resource flows through cities,
allowing the analyst an opportunity to test potential interventions. Figure 7.7 shows
the potential evolution of the field, advancing toward more disaggregated analysis
with finer temporal and spatial resolution, and eventually using real-time data to
offer predictions on the state of the system. With live data streams, one can monitor
demand and regulate resource flows in or near real time. This would be analogous to
real-time systemmonitoring, even with the possibility of feedback and control. Such
advances are already becoming available at the scale of individual buildings and
even neighborhoods, with the possibility of scaling up to virtual city representations
in the form of the city’s digital twin, albeit with greater complexity. For instance,
in the Virtual Singapore project, a digital twin of the city has been developed with
the intention for urban planners to simulate alternative policies (Wall 2019). When
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Fig. 7.7 Envisioned developments in the field of urban metabolism

available, such virtual representations of a city’smetabolism allow for an opportunity
to better monitor, manage, and optimize resource use. In the future, the metabolism
of cities can even be predicted and self-regulated.

Ultimately, the coupling of urban metabolism portrayal with sustainable urban
planning and design can provide both a comprehensive diagnosis, as well as the
capabilities to consider solutions. This allows stakeholders to explore impact miti-
gation pathways, and consider strategies to achieve sustainable urban renewal and
growth. Cities and their metabolism are an outcome of the agglomeration of the
complex behaviors of their residents. The study of UM monitors the pulse of the
city, allowing insights and actions toward greater urban sustainability.

7.6 Conclusions

From its humble beginnings in quantifying flows of nutrients in and out of Berlin and
in sanitary engineering, UM has evolved to become an established field whose main
goal is to quantify the inflows, outflows, and production of energy and resources to,
from, and in cities. In this chapter, a short history of UM was first offered, notably
recalling Wolman’s findings from his 1965 study. Because of the significant number
of flows that need to be estimated, carrying out a UM is not necessarily straight-
forward. Methodologically, the goal is primarily to perform a Material and Energy
FlowAnalysis (MEFA) of a city. In this chapter, twomain families of UMapproaches
were described. The first family attempts to calculate UM from the bottom up by
either collecting or estimating individual flows, such as quantifying the amount of
water consumed. The second family takes a top-down approach by leveraging and
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disaggregating nation-wide economic input-output data sources. Finally, somehybrid
methods exist to pursue UM studies, including one that utilizes concepts of emergy
and another that utilizes concepts of ecological network analysis.

As a practical case study, the UM of Singapore was then studied. As a city-state,
Singapore is particularly interesting since both bottom-up and top-down approaches
can be adopted. The exercise led to the development of Fig. 7.5 that offers an inter-
esting and insightful snapshot of the material and energy flows that entered or exited
Singapore in 2016. Subsequently, the applications, opportunities, and challenges of
UM were reviewed. In particular, one main challenge of UM resides in the fact that
it is purely an accounting method and it does not directly lead to the development
of appropriate designs and policies to tackle specific problems. In contrast, as more
numerous and larger data sources are becoming available, it is becoming increasingly
possible to perform UM in much finer spatiotemporal resolutions.

Overall, the development and use of UMhave evolved relatively slowly in the past
century, but significant advances are likely to emerge in the future. On the one hand,
more and better data sources are becoming available; on the other hand, cities around
the world are striving to becomemore sustainable and resilient. UM, therefore, offers
significant opportunities to help understand how energy and resources are being
consumed and, therefore, can contribute to inform better designs and policies to
radically change how people live in cities in the twenty-first century.
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Chapter 8
Spatial Economics, Urban Informatics,
and Transport Accessibility

Ying Jin

Abstract One central pillar in the development of urban science which is key to the
development of simulation of models of urban structure is spatial econometrics. In
this chapter, we outline the way in which ideas pertaining to accessibility which we
define conventionally, as in transport economics, as the relative nearness and size of
locations to one another, can be embedded in a wider econometric framework. We
are thus able to explore how GDP (gross domestic product) of different locations
is influenced by different spatial investments. To illustrate this, we first outline the
intellectual context, followed by a review of the most relevant econometric models.
We examine the data required for such models and look at various quantifications in
terms of elasticities of business productivity with respect to transport accessibility,
using ordinary least squares, time-series fixed effects, and a range of dynamic panel-
data models which narrow down the valid range of estimates. We then show how the
model is applied to Guangdong province (with its connections to Hong Kong and
Macau), which is one of the three major mega-city regions and a leading adopter of
new technologies in China.

8.1 Introduction

In a nutshell, the contributions of spatial economics to urban informatics relate to
the measurement, design, and interpretation of urban data that supports economic,
social, and technological decisions regarding the locations, distributions, and layouts
of urban activities, buildings, and infrastructure. In past decades, research at the fron-
tier between spatial economics and urban informatics has largely been commissioned
by governments, major banks, and businesses. Since new civic groups are playing
an increasingly prominent role in investigating alternative options for spatial devel-
opment (for a recent example in the UK, see the UK2070 Commission 2019), a
full range of societal stakeholders have now been actively engaging with this area
of interdisciplinary research. Students of urban informatics need an understanding
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of spatial economics if they wish to influence the real decisions underpinning the
planning, designing, funding, regulating, and maintaining of these spaces in cities
and their hinterlands.

Spatial economics has a historic root as deep as all other main branches of modern
economics. In particular, it can be traced back to the seminal works of von Thünen
(1826). Since then, spatial economics has grown into a vast field of learning, which
is sometimes referred to as the new economic geography (although this latter name
does not have the consent of all geographers). Comprehensive handbooks on spatial
economics have been compiled, for instance, seeDuranton et al. (1987, 2018), and the
higher-level overview by Redding and Rossi-Hansberg (2017). Somewhat paradox-
ically, this vastness of learning has often become a formidable barrier for those who
work in urban informatics and wish to understand more about how spatial economies
actually work.

This chapter adopts an approach that is complementary to the handbooks such
as those referred to above—it aims to give students of urban informatics a feel for
how spatial economics must tackle one of the critical issues that often confront them,
that is, the measurement and interpretation of the contribution of inter-city transport
accessibility improvements to the economy. According to Lakshmanan (2011), this
is one of the most persistent spatial-economic issues in urban and regional transport
studies. This approach which is an introduction by example is meant to encourage
students of urban informatics to start with the quantitative skills that theymay already
have (e.g., simple ordinary least square or OLS regression models) and then engage
with a cross section of advanced spatial-economics literature that is cogent to the
topic.

The quantification of the economic contribution of transport accessibility
improvements is particularly important for infrastructure investment. Significant
progress has been made in recent years in spatial economics (see, for example,
comprehensive reviews by Rosenthal and Strange 2004; Melo et al. 2009, 2013;
Laird and Venables 2017). Nevertheless, in contrast to the considerable volume of
research on the relationship between transport investment and productivity in the
OECD countries, there are to date very few quantifications in this regard in emerging
economies which are suitable for investment and loan decisions.

The complex, slow-evolving, and cumulative nature of the transport infrastructure
investmentmakes the quantification of its impact one of themost challenging. Econo-
metric modeling is the mainstay in current quantification of such impacts. Different
types of regression and modeling methods have been developed over the years in this
field, which started with OLS and time-series models that tested solely the effects
of transport investment, and progressed with the introduction of a series of control
variables, instrumental variables, and extended functional forms which are better
able to deal with the heterogeneity and endogeneity issues of cumulative causation.
This progression has led to more robust econometric models for such analysis.

In econometrics and only until recently, models have tended to be used in isolation
rather than jointly. The quantification exercise tends to be carried out using the most
advanced functional forms each time and this applies to the transport-related studies.
However, using the alternative models jointly can offer valuable new insights into
the quantification results. Bond et al. (2001) and Brülhart and Mathys (2008) point
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out that a comparison of the results of the alternative models with the theoretical,
prior expectations may serve as an important bound test. Melo et al. (2013) have
recently highlighted the empirical differences of the alternative model forms across
different studies through a comprehensive meta-analysis on the effects of investment
in transport infrastructure.

In this chapter, we show how a new approach to spatial-economic quantification
of the transport effects can be developed using a series of regression models in the
assessment of inter-city transport improvements. The econometric models are not
only examined on their individual functional forms and estimation diagnostics, but
also through a comparison of the outturn coefficient values with the prior theoretical
expectations. Through this method, we aim to identify more precisely the transport
effects on the real economy, while not substantially increasing the analytical work
for practical studies designed, for example, for loan-project assessment.

We report an econometric analyses for Guangdong province, one of the three
major mega-city regions and a leading adopter of new technologies in China. The
analyses include Hong Kong and Macau as appropriate for the regional economic
activities. Although we first started working on this quantification because of World
Bank loan projects, we soon realized that Guangdong may be among the best case-
study locations for such an investigation. Although the province has contributed to
the highest provincial share of national GDP in China for more than two decades, its
economic development is polarized, with a prosperous center and an underdeveloped
periphery; its ways of doing business are being widely emulated by other provinces
in China, thus are likely to represent what is to come in the rest of the country; and its
land boundaries consist primarily of mountain chains whichmakes it straightforward
to delineate a study-area boundary. This is in stark contrast to the amorphous limits
of the other two main mega-city regions centered upon Beijing and Shanghai.

The chapter is organized accordingly in seven sections: Sect. 8.2 outlines the
intellectual context, which is followed by Sect. 8.3 on the alternative econometric
models. Section 8.4 presents the data. Section 8.5 presents the various quantifications
in terms of elasticities of business productivity with respect to transport accessibility,
using ordinary least squares, time-series fixed-effects and various dynamic panel-data
models to narrow down the valid range of estimates. Section 8.6 discusses the wider
implications of the findings and the extent of corroborations. Section 8.7 concludes
with a short summary and considerations for future research directions.

8.2 Intellectual Context

Recent years have seen a growing body of research on the relationship between trans-
port investment and productivity. The arguments are primarily built upon the spatial-
economics literature, which gives due recognition to (1) consumers’ and producers’
love of variety in their use of products and services, (2) increasing returns to scale
in production, and (3) the importance of transport costs in shaping the economic
landscape. This has led to theoretical models that identify reasons why modern firms
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tend to be more productive when they either concentrate in or have low cost links to
large markets. Empirical studies have so far built up a substantial body of evidence
which suggests that production and income are correlated with spatial proximity in
the way suggested by the theories. Ciccone and Hall (1996), Rosenthal and Strange
(2004), Redding andVenables (2004) andMelo et al. (2009, 2013) provide systematic
surveys of the empirical evidence.

Inter-regional and city-scale theoretical models emerged about a decade after
the initial trade models (see Fujita et al. 1999). Empirical studies followed. Rice
et al. (2006) outlined an analytical framework within which interactions between the
different aspects of regional inequality in per-employee productivity can be investi-
gated econometrically using aggregate data. Kopp (2007) used a panel-data model
to address the issue of endogeneity and identified contribution from transport invest-
ment to productivity, showing that doubling road stock in a country will lead to about
10% growth in total factor productivity in Western Europe. Combes et al. (2008)
developed a general framework to investigate, respectively, the sources and mecha-
nisms that lead to wage disparities across regional labor markets through sorting and
self-selection. Graham and Kim (2008) investigated the relationship between spatial
proximity and productivity using a large sample of financial accounting information
from individual firms in the UK.

For emerging economies, Deichmann et al. (2005) distinguished between natural
advantage, including infrastructure endowments, wage rates, and natural resource
endowments, and production externalities that arise from the co-location of firms
in the same or complementary industries, in their examination of the aggregate and
sectoral geographic concentration of manufacturing industries for Indonesia. Lall
et al. (2010) differentiated local and national infrastructure supply in India, and
found that a city’s proximity to international ports and highways connecting large
domestic markets has the largest effect on its attractiveness for private investment.

In China, there has been a growing volume of literature that associates produc-
tivity benefitswith agglomeration inChinese cities and city regions (e.g., IBRD2006,
p. 145; Lu et al. 2007, p. 163). Using two nation-wide Censuses of Establishments
of 1996 and 2001, Lu (2010) outlined the spatial distribution of economic activi-
ties across China and found through multivariate analysis that, during that period,
the micro-economic explanations of agglomeration do not work well with publicly
owned institutions, although they doworkwell with non-publicly owned institutions.
Roberts and Goh (2012) showed that distance has a significant role in determining
spatial productivity disparities in Chongqing municipality. Roberts et al. (2012) used
counterfactual analysis based on a general equilibrium model to show that China’s
national expressway network has brought sizeable aggregate benefits to the Chinese
economy, although its impact on regional disparities may be contingent upon factors
such as migration.

These studies have shed an important light both on the statistical relationship
between spatial proximity and productivity, and on a variety of complex issues of
empirical modeling. Nevertheless, the studies have also shown that such statistical
relationships may be highly context-specific.
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At the heart of the difficulties of empirical measurements is the very nature of
agglomeration as a process of circular, cumulative causation, which has become
known since the work of Gunnar Myrdal: agglomeration propels endogenous
growth—higher productivity leads to higher wages, which attracts employees of
a higher caliber, which in turn draws in new investment, more productive technolo-
gies and so on; these lead to a new round of productivity growth. Conventionally,
instrumental variables are used to overcome endogeneity issues in regressions; but
by its very nature, agglomeration studies rarely have good instrumental variables for
dealing with cumulative causation (Redding 2010).

8.3 Econometric Models

The underlying empirical model can thus be presented in a general form:

yi = f (Mi , Xi ) (8.1)

where yi is a measure of per-worker income or productivity in zone i, and f (Mi , Xi )

is a measure of transport accessibility of zone i, denoted by Mi , and a set of control
variables Xi that reflect other zone-specific characteristics that may affect per-
worker income or productivity. We define accessibility as measured by an aggregate
economic mass (EM) that is accessible from a given location:

Mi =
∑

j

(
Pj

gα
i j

)
, for all zones j including j = i (8.2)

where

i Location of the ‘home’ zone, for which the EM is computed as measuring
accessibility from this location.

j All relevant zones in the study area for market access, including j = i.
gi j Cost of travel between i and j, which may include time and monetary costs.
Pj A measure of economic activity in zone j.
α A parameter that controls the distance-decay effect; e.g., it was set to 1 by

Graham and Kim (2008) and UK DfT (2006).

It goes without saying that the EM of location i increases if there is an increase
in the level of economic activity in i, or there are decreases in the generalized costs
of travel between i and j (e.g., through some transport intervention). By the same
token, increased level of traffic congestion or dispersion of economic activity around
a zone will reduce its EM.
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We note that with this measure, the calculation of EM includes the contribution
from the home zone (i.e., for j= i). This is the average travel cost for journeys within
each zone, such as defined in transport studies.

A second popular functional form for the EM uses an exponential function to
represent the effects of travel costs, in line with travel demand models:

Mi =
∑

j

(
Pje

−θgi j
)

(8.3)

whereP, i , j, and gi j are defined as previously, and θ is a parameter for the exponential
function that controls the distance-decay effect. θ maybe calibrated through observed
travel demand, and empirically, for inter-city travel, θ tends to reduce in value as
the economic cost of travel increases. Rice et al. (2006) tested a variation of this
exponential function as well as the Hansen function in their analyses of productivity
effects.

8.3.1 Isotropic Versus Hierarchical Market Linkages
for Economic Mass (EM) Computation

The two EM functions above may be used to cover market access to all destinations,
or only a subset of the destinations which are relevant to the home zone in question.
In the former case, the measurement is said to be isotropic in the sense that economic
linkages between any cities, towns, and so on are considered in an identical way. This
has been a common approach in the wider New Economic Geography literature.

In developing economies with limited technical specialization across locations,
a hierarchical approach to covering the true market area (as originally defined by
Christaller 1933) may be more realistic. This means that the cities and towns are
central places of different orders in a regional hierarchy, and the linkages between
different orders often tend to be stronger than those among centers of the same order.
This is particularly true for learning new skills and transferring technology.

This is not a criticism of the existing EM measures in the literature, because they
have largely been defined for regions of developed countries where the inter-city
and inter-regional transport networks today are so well connected that they enable
nearby central places at the same level of hierarchy to specialize and cross-trade to
an extent that was not seen in Christaller’s time. Extensive analyses of inter-city and
inter-regional travel in Europe and Australia during the 1960s and 1970s indicated
that the spatial patterns of travel in that era still exhibited features of the central
place hierarchies (Bullock 1980). Our field work in Guangdong has also shown that
regional hierarchies are important when firms consider their suppliers, markets, and
linkages for technology transfer.
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8.3.2 Control Variables

Other than transport accessibility that is represented by the EM, per-employee earn-
ings in a given zone are influenced by a range of factors such as the number of
hours worked, capital investment, level of skills, industry composition, and so on. If
workers in a given zone work longer hours (e.g., through routine overtime working),
they get higher nominal total pay. All being equal, better capital endowment enables
higher output. Higher-skilled workers are paid more, and a high proportion of skilled
workers in zonal employment would raise the level of average earnings. Similarly,
employees working in some industries, such as finance, business services, IT, and
research and development are often seen to be paid more than in other industries.
These influences on per-worker earnings must be tested, and if significant, controlled
for.

Here, we control the effect of working hours by modeling the average hourly
earnings per employee as the dependent variable, that is, the annual average per-
employee earnings are divided by the average number of working weeks and the
average working hours per week. Similarly, we control for employee skills using as
a proxy the proportions of those who achieved college, university, and post-graduate
qualifications among the employees. In addition, we include control variables to
represent industry composition and capital investment.

The regression analyses have been conducted using time-series data for 1999–
2008, consisting of assembled economic data at the county or urban-district level
and the economic mass (EM) data estimated by the study team using car travel times
at the inter-county or urban-district level and a real GDP, as discussed above.

8.3.3 Representing Spatial Spillover Effects

The spatial econometrics literature suggests that there can be significant spillover
effects between neighboring counties or urban districts. A formal way to deal with
such spillover effects is to construct a spatial-weights matrix such that the lagged
dependent and independent variables of all the near and distant neighbors are tested
as explanatory variables, in addition to the independent variables of each county
or urban district. Given that the EM variable has by definition already accounted
for spatial proximity to each employment center, a weights matrix containing the
influences of both near and distant neighbors would make the regression model over-
complicated if used simultaneously with the dynamic panel-data models. We have
therefore adopted here a simplified approach of only including as additional control
variables the nearest neighbor of each county or urban district for such spillover
effects. As a rule, including the nearest neighbor in the spatial spillover, analysis
should take account of 70–80% of the spillover effects (LaSage 2012).

In line with our field-survey findings, in the main regression models, we have
assumed a lag of up to three years for the EM, capital stock, and education level in
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each county or urban district to take effect. This is implemented through producing
composite independent variables for any year t through producing a moving average
of the samevariable for t, t−1, and t−2. For the spillover effects, themain regression
models that use spatial-lag variables take variables of the nearest neighbor from one
year earlier.

In terms of the regression models, we exploit what is known in theory about the
nature of the OLS, fixed-effects (FE) panel-data models, and dynamic panel-data
models, in terms of coefficient estimation bias when used with a dataset such as ours
which is autoregressive in nature and has a relatively short time-span. On the one
hand, the pooled OLS estimation is likely to bias the coefficient upwards, because of
potential endogeneity of the EM variable: if there exist un-measured zonal features
that impact on per-employee productivity that would attract the businesses and output
and thus impact upon the EM variable over time. The corresponding FEmodel which
is intended for use with a long time series will bias the coefficients downwards if the
time series is fairly short, which is often the case with the panel-data series assembled
for transport impact studies.

Since our aim is to identify causal effects that run from the economic mass to per-
employee hourly earnings, we have to account for the fact that all explanatory vari-
ables may be potentially endogenous. In this context, the dynamic panel-data model
based on a linearized generalized method of moments (GMM) technique (Arellano
and Bond 1991; Arellano and Bover 1995; Blundell and Bond 1998) would in theory
be more appropriate than the pooled OLS and FE methods above. The idea of the
dynamic panel-data model is to use the past realizations of the model variables as
internal instrument variables, based on the assumptions that (1) past levels of a vari-
able may have an influence on its current change, but not the opposite, and (2) past
changes of a variable may have an influence on its current level, but not the oppo-
site. The method suits well our requirements because truly exogenous instrumental
variables are hard to find in investigations of urban agglomeration effects.

In large samples and given some weak assumptions, GMMmodels can be free of
some of the estimation bias inherent in the OLS and FE models. However, the two
variants of the GMM methods, namely DIFF-GMM and SYS-GMM, have different
properties when used with small samples. While the DIFF-GMM technique may
be unreliable under small samples (Bond et al. 2001), the SYS-GMM technique is
expected to yield considerable improvements in such situations (Blundell and Bond
1998). As a rule, data samples of transport impact analyses are unlikely to be very
big ones, especially in developing economies. It is therefore necessary to test all the
above models in order to clarify the robustness of the models. In turn, a comparison
with the theoretical, prior expectations may also serve as a robustness test (Brülhart
and Mathys 2008).
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8.4 Data

The bulk of the Guangdong economy consists of manufacturing and local commerce.
Despite being one of the richest provinces in China, Guangdong had a per-capita
GDP of US$6500 in 2008, which in real terms is equivalent to the level of the US
per-capita output in the 1930s. The primary and manufacturing industries, mostly
low-tech and labor intensive, account for over 70% of the provincial output, and the
high-end R&D and business services are a small, unknown fraction of the tertiary
sector output. Empirical evidence for the developed economies may not therefore be
transferrable to Guangdong or elsewhere in China.

Data from Guangdong are available at two different spatial scales: the province
is first divided into 21 municipalities, and the municipalities are in turn subdivided
into 67 counties or county-level cities and 21 urban districts of the municipalities
(therefore, 88 county-level units in total). This is the most detailed spatial level
currently reachable.

The earnings data are for fully employed staff and workers in urban establish-
ments. This definition excludes farmers and other workers in rural areas. Compared
with other employment and earning data available, these are the most suitable, as
the employees in urban establishments are the most relevant to the agglomeration
effects on productivity.

The data for calculating the economic mass (EM) consist of the level of economic
activity and travel costs. For economic activity, we chose zonal GDP as themain vari-
able, and retained the zonal size of employment as a sensitivity test. The travel costs
and times are those of business travel, because these trips are most directly related
to business linkages, technology transfer, commercial transactions, and negotiations.
Because our regression models presuppose that the EM variable is correlated with
the control variables and respective error terms (see choice of regression modeling
strategy below), we have opted to using business travel time as the main travel-cost
variable, while retaining travel cost and general travel cost as sensitivity tests.

Road construction data have been assembled over the period of 1999–2008 from a
variety of provincial sources. Road links from the 2008 road network are then modi-
fied backward in time. For time-series analysis, a road network has been produced
for each year of 1999–2008 within the GIS tool. The resulting travel distance, cost,
and time matrices at the county or urban-district level for 1999–2008 are checked
using our transport modeling experience. Up to 2008, the use of rail for business
travel was minimal within the province, and thus, it is not necessary to include rail
costs and times in the travel data.

In order to carry out comparisons of different EMmeasures, both the Hansen and
exponential EM function forms are calculated for both the isotropic and hierarchical
market areas. For the hierarchical market-area computation, we assume that (1) a
county or urban district always interacts with itself, with constant business travel
times through all years 1999–2008, and (2) a county or urban district interacts with
all component counties or urban districts within its own municipality, as well as the
provincial-level centers of Guangzhou, Shenzhen, Zhuhai, and HongKong. The only
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exceptions are Guangzhou and Foshan, which are effectively coalesced into the same
metropolitan area—the two urban areas are allowed to interact with each other.

For the control variables,we use the percentage ofworkerswith college degree and
above as a proxy for labor skills from the statistical yearbooks at the county or urban-
district level. The statistical yearbooks report the levels of fixed asset investment per
year. The Economic Census of 2004 also reports the total capital stock for production
purposes permunicipality.We estimate the county or urban-district level capital stock
through these sources and build up the yearly capital stock for the entire time series
that incorporates a standard capital stock depreciation rate of 5%per year. Investment
in residential properties is excluded. We divide the zonal total capital stock by the
total of full-time workers and staff in that zone to obtain the per-employee capital
endowment. According to the National Labour Statistics Yearbook 2009, finance,
information technology, and R&D industries are ranked as the top three high-earning
sectors in Guangdong Province. We use the number of employees by region in these
three sectors to control for the effects that can potentially arise from such differences
in industrial composition. Specifically,we construct the index of sectoral composition
following the definition of location quotient (LQ).

8.5 Model Test Results

The regression analyses have been conducted using time-series data for 1999–2008,
consisting of assembled economic data at the county or urban-district level and the
economic mass (EM) data estimated by the study team using inter-county or urban-
district level business car travel times and level of economic activity, as discussed
above.

To recap, on the left-hand side of the regression equations, the dependent variable
is a vector of zonal data representing per-employee productivity levels: the average
nominal hourly earnings at the county or urban-district level is used as the main
test variable, with per-employee average GDP as a sensitivity test variable. On the
right-hand side of the equations, the list of independent zonal variables at the county
or urban-district level includes the EM representing transport accessibility, a range
of variables representing zonal capital investment, skills, and industrial composition,
and spatial-lag variables from the nearest neighbor zones. The independent variables
are tested as appropriate for each specific functional form. In addition, the GMM
models use time-lagged independent variables as instruments as specified.

Through the regressions, we have tested different measures of productivity (i.e.,
hourly earnings and per-employee GDP), different EM terms (i.e., using distance,
travel time, and generalized travel cost for isotropic and hierarchical market areas),
and different measurements of capital endowment and labor skills. All regression
models have retuned consistent results, among which we have found that the equa-
tions using hourly nominal earnings, hierarchical EM using time to measure travel
cost, accumulated and depreciated capital stock, and parentage of college and above
graduates to measure labor skills, have an overall best fit. This is in line with our
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field-survey findings. Both the Hansen-type and exponential functional forms of the
EM variable are tested. Owing to the limit of space, we report the core estimation
results in Table 8.1. The other tests are available upon request.

In Table 8.1, Model (1) is a pooled OLS model which returns an EM coefficient
of 0.24, with the EM and the control variables (for capital stock and education level)
being statistically significant and a relatively high R-squared = 0.69. However, we
have good theoretical reasons to suspect that the coefficients are biased upwards and
this model result embodies an absolute upper bound of the productivity elasticities.

By contrast, with Model (2) which is the time-series fixed-effect (FE) model, the
EM coefficient drops to 0.115 when the period dummies (representing the period-
specific effects) are included for the Hansen EM formulation. The EM coefficient
further drops to 0.052 in Model (3) when the exponential EM variable is used.
Our theoretical expectations are that these are biased downwards for respective EM
functional forms, and thus could be considered as a lower bound to theEMcoefficient.

This is reflected in the DIFF-GMM model in Column (4). The EM coefficient
output from this model is at 0.151, between the upper and lower bounds as we
expect, although the coefficients are not statistically significant. The SYS-GMM
model (5) gives a similar EM coefficient at 0.141: Both the EM and the capital stock
coefficients are now significant; note that this model includes additional explanatory
variables that represent the spillover effects from the nearest neighbor zones in terms
of capital stock endowment and education level of the employees.

The GMM-SYSModel (6) is a standard test to assess the robustness of the model
by reducing the number of instrument variables (from 115 to 69), which has raised
somewhat the significance of the education-level variable but has not altered the
nature of the model results nor the magnitude of the coefficients. The standard tests
of the GMM models suggest that there are no apparent misspecification problems.
TheHansen test for over identification restrictions, and the differenceHansen tests for
the validity of the GMM and IV instruments, indicate that the instruments are valid.
The Arellano-Bond AR2 test suggests that no second-order residual auto-correlation
is present.

Model (7) presents the SYS-GMM results for the exponential functional form
of EM, which returns an EM coefficient of 0.087. The estimation diagnostics are
similarly good. A test to reduce the number of instruments (from 103 to 75) has also
been carried out as Model (8) and has confirmed that the instruments are valid.

Given that the exponential form of the EM variable embodies the distance-decay
parameters that are consistent with the travel-behavior model calibrated in China, it
would seem sensible to consider Model (7) as the preferred estimate of the produc-
tivity elasticity (i.e., 0.087 with a standard error of 0.03 and robust t statistic 2.89)
with respect to transport accessibility.

In summary, the econometric results show that transport accessibility as repre-
sented by theEMis statistically significant after controlling for control-variable endo-
geneity and spatial spillover effects. Our preferred estimate comes fromModel (7) in
Table 8.1, which adopts a SYS-GMM formulation and exponential EM formula and
returns a productivity elasticity of 0.087, with a robust standard error of 0.030. The
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model diagnostics suggest that all the SYS-GMMmodel results are robust. Further-
more, the GMM model results fit our prior expectations regarding the upper bounds
established by the pooled OLS models and the lower bounds by the time-series
fixed-effects models.

8.6 Discussions

An extensive series of regression model tests show a consistent pattern for a statis-
tically robust relationship between transport accessibility and business productivity.
In particular:

(a) As expected, the pooled OLS regressions produced high elasticity estimates
while the time-series fixed-effects (FE) regressions produced low estimates.
The dynamic panel-data models using the linearized generalized method of
moments (GMM) tend to return intermediate elasticity values.

(b) Our understanding of the regression models and the development process in
Guangdong, China gives grounds to prefer the GMM model estimates (partic-
ularly the SYS variant which corrects for relatively small samples). This is
because the SYS-GMMmodels are capable of making a sound use of the short
panel dataset.

(c) Our preferred estimate of the productivity elasticity with respect to transport
accessibility is 0.087 (with robust standard error 0.03 and t statistic 2.89).
This comes from the SYS-GMM model which uses the exponential formula in
measuring transport accessibility. This positive relationship remains robust after
controlling for a range of control variables, endogeneity, and nearest neighbor
spillover effects. The robustness of this estimate is confirmed through both
the regression diagnostics and a comparison with results from the alternative
models.

This central productivity elasticity estimate of 0.087 implies that a 10% improve-
ment in transport accessibility would give rise to an increase of per-worker produc-
tivity of 0.83% (i.e., (1 + 10%)0.087 – 1 = 0.0083), and a doubling in transport
accessibility would imply an increase of per-worker productivity of 6.2% (i.e., (1
+ 100%)0.087 – 1 = 0.0622). This is well within the consensus range of produc-
tivity elasticities from a comprehensive review of such evidence in predominantly
developed economies that “doubling city size seems to increase productivity by an
amount that ranges from… roughly 5–8%” (Rosenthal and Strange 2004), and is
comparable with the elasticity range from the latest meta-analysis of productivity
elasticities published by Melo et al. (2013), who suggests the central elasticity value
is around 0.05.

In assessing the estimates we may also compare them with our prior expecta-
tions: transport accessibility and agglomeration are thought to play an important
role in knowledge spillover and technological improvements in China (IBRD 2006).
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The empirical findings in this chapter are to an extent supported by emerging esti-
mates for China, although our estimates are considerably lower. For instance, Au and
Henderson (2006), using data of 1990 and 1997 from 205 Chinese cities, suggested
that there are significant urban agglomeration benefits: for example, moving from
a city of 635,000 to one of 1.27 m increases the real output per worker by 14%,
after controlling a range of other influences. More recently, Zhang’s analysis (Zhang
2008) using the 1993–2004 data put the mean elasticity value at 0.106 in China after
controlling for spatial spillover effects.

Our field studies in Guangdong (see EASCS 2014a, b) have also started to
investigate the actual mechanisms through which businesses benefit from transport
accessibility improvements in terms of employee productivity. It indicates that the
agglomeration benefits accrued by transport improvements are well understood by
the businesses and individuals, and the extent to which they exploit such benefits is
comparable with those observed in developed economies. This provides a degree of
corroboration at the micro-level. Of course, further work is still needed to quantify
such effects at the level of individual businesses and employees.

8.7 Conclusions

This chapter aims to introduce the theories andmethods of spatial economics through
one specific example of quantifying the economic contribution of transport accessi-
bility improvements, which may well be a research question that often confronts the
students of urban informatics. The chapter starts with simple OLS regression models
that are commonly used in urban-informatics research and then extends the models
step by step using a cross section of spatial analytical and economic theories. The
resulting models reach the current frontier of the field, and they serve to fill a gap
in current literature. In developing the models, there is also an ethos of developing
a methodology which is theoretically rigorous but can be made operational with a
level of data availability that is generally achievable in the emerging economies.
In the low- and middle-income developing countries such as China, such empirical
evidence for spatial-economic effects of transport is currently poor and the practical
needs for them are urgent, for example for assessing major investment initiatives.

Of course, the current econometric models may not yet fully control for other
differences between zones, for example, the spatial self-selection and sorting of
employees within and among the counties and urban districts. Clearly, spatial prox-
imity resulting from transport improvements plays an enabling role in spatial self-
selection and sorting.Nevertheless, it is yet difficult to discern the precise contribution
of transport improvements to such mechanisms within the available data sources.

Also, it is not for econometric studies alone to establish causality between trans-
port accessibility and productivity where there is a process of significant cumulative
causation; that task should be supported by an in-depth understanding of the actual
mechanisms at work, for example through field studies as discussed above.
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Additional future work may further improve the robustness of the findings
presented here; the list below would serve to indicate the scope of further research
on this topic:

First, it may be possible to expand the time series under consideration both in
years covered and the range of explanatory variables, which is likely to make the
model more robust and improve the precision of the coefficient estimates.

Secondly, similar econometric models can be estimated for the economically less-
developed regions in China (e.g., inland regions such as Sichuan), as well as other
affluent regions along the Eastern Coast (e.g., the Yangtze River Delta centered upon
Shanghai and the Bohai Bay Metropolitan Area centered upon Beijing). This would
clarify whether there are significant differences among regions of different levels of
development.

Thirdly, if and when the disaggregate Economic Census data become available
from the Chinese statistics bureaux, enterprise-level production functions (e.g., of
the Translog type) can be estimated, which would provide more precise estimates of
the agglomeration effects including possible spatial sorting effects. The Economic
Census data were collected by enterprise, although so far they have not been released
for use in research in China.

Fourthly, micro-level case studies of firms and institutions will help us understand
howfirms actually respond to transport improvements, and throughwhatmechanisms
they gain from agglomeration effects or otherwise.

The cumulative evidence through the above could eventually provide a fuller
understanding of economic development in terms of dynamic general equilibrium
processes, for example as suggested by Au and Henderson (2006) and Lakshmanan
(2011). Such understanding would in turn enable us to better plan transport projects,
particularly to promote shared prosperity and poverty alleviation in under-developed
regions.
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Chapter 9
Conceptualizing the City
of the Information Age

Helen Couclelis

Abstract Cities are among humanity’s most important and most complex creations,
and they have been steadily increasing in complexity since the advent of the digital
age. Informatics, the science of information, has by now advanced to a point where
high expectations of improved understanding and evidence-based actionable knowl-
edge for urban researchers, managers, and planners appear justified. But while there
is more information than ever before, many kinds of theories, models, approaches,
and tools that we have relied on thus far may no longer be of much use in the city of
the information age. This chapter provides an overview of the state of affairs in urban
science and planning, pointing out the limitations of formerly reliable methods and
tools in the face of dramatic developments in the life and function of cities in the
developed world. The chapter closes with suggestions for data-oriented strategies
that might replace the ways we have used urban data up until recently.

9.1 Introduction

9.1.1 Urban Complexity in the Age of Information
and Communication Technologies

A defining characteristic of a complex system is that it can be seen from any number
of different, even contradictory angles (Casti 1984). Cities are complex systems by
this as well as by many other possible definitions. They are made of asphalt and
concrete, but they grow and change; they are places, but also networks; they are
spatiotemporal objects, but they are about people; they are physical structures, but
also abstract institutions connected with the notion of citizenship; they may fit within
a square mile, or they are larger than many small countries; and more recently, they
are also both actual and virtual.
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For some time now, cities have been responding to information and communica-
tion technologies (ICTs) while also helping define them, with or without the help
of urban analysts, managers, or planners. Years of publications on the topic have
shown that the results of mostly piecemeal urban applications of ICT have so far
been mixed, with few spectacular achievements or transferable best practices. There
are also many questions of time–space perspective, as we transition from the city
of yesterday to the city of tomorrow. For example: the repurposing of urban struc-
tures and infrastructures for new uses at new times; the anticipation of new divisions
of labor, of new forms of urban management, and of new urban decision-making
pathways, whereby technology companies increasingly call the shots; the role of
supra-local and global agents, and of new political alliances at any scale. And of
course, also, the appearance of new technologies not yet on the horizon. Issues such
as these are highly likely to arise within the next twenty to thirty years, most of them
supported by the unrelenting spread of ICTs across the globe. How does one even
begin to grasp what is really going on? But there is hope: this may be the moment
when the data, tools, infrastructure, and analytic approaches of the informatics revo-
lution are becoming mature enough to forge unprecedented opportunities for the
betterment of cities.

9.1.2 A Different Kind of City

There is no question that ICTs significantly add to the fundamental complexity of
cities. Also, the piecemeal nature of most urban applications of ICT to date is anti-
thetical to the notion of complexity, which entails interdependence and interplay. One
everyday example of the interdependent complexity contributed by ICTs is captured
by the related notions of the disconnect of urban form from function (Batty 2018)
and the fragmentation of activity (Couclelis 2009; McBride et al. 2019), which affect
the macro- and micro-levels of the city. The former notion concerns the relationship
between, on the one hand, the classic urban activities of residing, working, shopping,
learning, recreating, etc., and on the other, the urban places where these activities
take place. In the traditional pre-ICT city, there is a close correspondence between
each kind of urban activity and the urban spaces adapted to support it. The corre-
spondence used to be so reliable that knowing where someone was at some point
in time made it relatively easy to guess what they might be doing—and conversely
(“if working then at the workplace, if shopping then at the shopping mall, if getting
an education then at school”). This match between activity and place was also at
the heart of traditional urban land-use and transportation models and planning, since
people’s movement from place to place was largely dictated by the daily schedule of
predictable activities, and urban form and function were tightly linked. In much of
today’s industrialized world, these close connections between urban activities and
spaces are disintegrating, and as a result, model predictions of urban growth and
change are becoming less reliable.
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Fig. 9.1 Fragmentation of activity and ICT. a Before ICT: one of four activities is carried out at
one place, during one time interval; b After ICT: that same activity is carried out at two different
places, at three distinct time intervals (from Couclelis 2009)

The notion of the fragmentation of activity sheds light on the micro-level of
this phenomenon. Indeed, for some time now, thanks to ICTs, increasing numbers
of daily activities can be broken down into tasks and carried out consecutively at
several different places and several different time intervals during the day (Fig. 9.1).
For increasing numbers of people, gone is the compulsive Monday to Friday 8–5
at the office, or the family Saturday trip to the shopping mall. These traditional
specialized places still exist, but we can also shop from home after a visit to the drug
store, watch movies on our workplace computer during breaks from work, close an
extra business deal from our car after the martini lunch at the fancy hotel, follow
university lectures on our smartphone while in bed, before cycling to campus, or
monitor our real-time health indicators on our smart watch at the gym to expedite
the check-up at the clinic later.

9.1.3 The Smart City

The broadening international conversation about the coming smart city is certain to
add several more layers of complexity to urban research and management. While
the smart-city concept remains ill-defined and open-ended, and few, if any, generally
accepted examples exist today, there is agreement on several of the anticipated (or
desired) defining characteristics: smart cities will be sustainable, livable, equitable,
innovative, and creative. Above all, they will be able to capitalize on the extraordi-
nary possibilities that technology, especially ICTs, artificial intelligence (AI), and
big data, are already unraveling before our eyes. Are all these hopes, assumptions,
and anticipated characteristics realistic, or even mutually compatible? There is also
the unavoidable gap between intention and reality. As Goh (2015, p. 169) asks:
“What happens when intelligent plans encounter messy politics, social systems, and
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divergent scales of urban governance?” San Francisco, USA comes to mind. There,
the world’s most famous breeding ground of new information technologies coexists
with sky-high property values and with some of the worst levels of homelessness
and street squalor to be found in any city of the industrialized world.

Further: smart is not quite the same as intelligent. Smart, much like clever, has
connotations of something playful, a bit superficial, not terribly serious, of no great
consequence. A smart child. A smart dog. A smart answer. Street smarts. A clever
trick. The smart city could easily be smart in this sense, with bright flashes of bril-
liance here and there (and then), but also with much that is technology for tech-
nology’s sake, unhelpful, unneeded, wasteful, discriminatory, retrograde, ephemeral,
or downright damaging—now, or a few years down the road. How can our cities be
not just smart, but truly intelligent?

The smart cities phenomenon thus encapsulatesmany of themajor new challenges
of current urban research and management. At the one end of a spectrum, smart
(urban) growth only recently meant wisely managed urban development, socially,
fiscally, and environmentally sustainable, mindful of resource constraints, prepared
to capitalize on comparative advantages and to seize opportunities as they arise,
while attentive to community input, fairness, and the planners’ recommendations.
At the other end of the spectrum, a smart city is the bionic city of science fiction. At
the moderate middle, we find mixed approaches of some of this and some of that,
or even coexisting views that appear incompatible at first sight. As an example, the
European Commission’s website begins by defining the smart city as “a place where
traditional networks and services are made more efficient with the use of digital
and telecommunication technologies for the benefit of its inhabitants and business,”
but a few lines later, the European Partnership on Smart Cities and Communities
is introduced as being primarily about governance, citizenship, wise regulation, and
other such traditional soft imperatives going back to theAthens of Pericles (European
Commission 2020).

Different authors also provide many contrasting definitions and descriptions of
the smart city. Thus Caragliu et al. (2009, p. 50) consider “a city to be smart when
investments in human and social capital and traditional (transport) and modern (ICT)
infrastructure fuel sustainable economic growth and a high quality of life, with a
wise management of natural resources, through participatory governance,” whereas
Batty (2018, p. 178) emphasizes the technological aspects: “The nature of the smart
city then lies in the very technology that defines it.” Geertman et al. (2015) take a
different approach, attempting a classification of smart cities into four categories, as
follows: (a) Smart machines and informated [sic] organizations; (b) Partnerships and
collaboration; (c) Learning and adaptation; and (d) Investing for the future. These
categories are discussed in the above chapter, and they are interesting and plausible,
but are meant more as alternative abstract types than as descriptions of possible,
actual kinds of cities.
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9.1.4 Urban Informatics

Informatics, the increasingly preferred term for information science, has been defined
as “the study of the behavior and structure of any system that generates, stores,
processes and then presents information; it is basically the science of information.
The field takes into consideration the interaction between the information systems
and the user, as well as the construction of the interfaces between the two.” (Techno-
pedia). The smart city is but one application area for urban informatics, albeit one of
fundamental importance, considering the ever-increasing significance of the urban
in the present world and in any conceivable near future. Not coincidentally, Batty’s
(2018, p. 176) notion that “Smart cities essentially enable computers and commu-
nications to be embedded in the very fabric of the city” is very close to the use of
the term “system” in the above definition. But informatics is needed just as much
in the still-traditional city, where so many taken-for-granted regularities are being
increasingly challenged by ICTs.

The next section provides a broad overview of current approaches to urban
research and planning, seeking to identify areas where modern informatics may
have a key role to play.

9.2 Urban Research and Planning, Yesterday,
and Tomorrow

9.2.1 The City as Place

A direct consequence of the complexity of the urban is the multitude of possible
ways of approaching the study of the city. On the one hand, there is the vast range
of disciplinary perspectives, whereby the word “urban” may be added as a quali-
fier to almost any empirical discipline. We thus have urban economics, urban soci-
ology, urban history, urban geography, urban ecology, urban transportation, urban
health, urban anthropology, urban planning, etc., and now also urban informatics. In
addition, there are numerous cross-disciplinary and methodological viewpoints and
approaches applicable to cities, such as post-Marxism, post-structuralism, gender
studies, science and technology studies, quantitative social science, spatial analysis,
computer simulation and modeling, the networks perspective, the design perspec-
tive, and so on. In “Key Thinkers on Cities,” Koch and Latham (2017) collected 40
profiles of scholars who in one way or another have made significant contributions
to the study of cities, the stress being on “one way or another,” as the diversity of
approaches represented is quite stunning.While there are significant affinities among
cognate disciplines or approaches (urban sociology and urban anthropology, say, or
spatial analysis, mathematical modeling, and computer simulation), others are so
distant intellectually from one another that they hardly seem to be about the same
general topic. One may say that the universe of perspectives and theories on cities
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is locally coherent but globally not coherent. The most creative new work on cities
might be that which discovers and establishes important connections among intellec-
tually or methodologically remote areas of urban research. An example is the work
by Reades et al. (2018) on gentrification, which combined spatial analysis, qualita-
tive research, and machine learning to show that it is possible to analyze existing
patterns and processes of neighborhood change to identify areas likely to experience
change in the future.

Theories of the city have existed since antiquity, but have flourished since World
War II along with the establishment of academic units and journals dedicated to their
study, and the fast-increasing number, size, complexity, and importance of cities in
the modern world. At the same time, the quantitative and computational turns in
the social sciences and urban planning have enabled more thorough and empirically
relevant work, while also stimulating theory development, motivated by the newly
available observations and informed discussions.

This trend toward more realistic empirical theory may now be reversing. We
saw earlier how gravity-based spatial interaction modeling, one of the mainstays of
quantitative urban theory and planning, risks becoming less and less relevant as urban
activity becomes more fragmented in space and time, and as urban form is getting
disconnected from function. The same seems true of urban cellular-automata-based
modeling, another popular approach that also relies on assumptions of proximal
relations among cognate places and land uses. It is true that the principle of distance
decay, which underlies these kinds of models, is too fundamental to become obsolete
as long as people and cities inhabit the physical world; but having to coexist with
principles of the virtual world makes its theoretical utility more elusive.

Other ways of looking at the city, such as those involving cognition (think space
syntax, the legibility of urban environments, finding one’s way in an unfamiliar area,
recognizing place in space) may bemore resilient in principle. But faced with ubiqui-
tous digital aids for navigation, point-of-interest (POI) location, place-related infor-
mation, and environmental problem-solving in general, it is questionable whether
human spatial abilities might not degrade over time. More optimistically, spatial
abilities should improve in tasks involving ICTs, just as they degenerate where no
longer needed.

Economy, demography, and technology remain among the handful of key drivers
of urban growth and change, especially in the vast megalopolises of the world that
are not yet steeped in ICTs. Increasingly, ecological conditions such as water avail-
ability and climate are added to the key drivers of urbanization. Most of these factors
are slow-moving and can be accounted for relatively well with traditional data and
methods. But the more a city becomes part of the information society, the more
its study requires indicators on fleeting phenomena that vary during the course of
the day, the hour, or the minute. Many of these may be local quality-of-life factors
(noise levels, air pollution, traffic conditions, disturbances due to special events or
incidents), while others, such as threats to community health and safety, or to the
integrity of energy and information networks at any scale, may be of broader import.
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9.2.2 The City as Node on a Network

The vast majority of urban research has approached the city as a kind of place,
but an alternative, increasingly relevant way of thinking about cities is as nodes
in a network. This idea has been around for some time, and is reflected, among
others, in Christaller’s widely known Central Place Theory, which views individual
settlements as elements in a recursive regional hierarchy of population sizes centered
on the largest settlement. The idealized model of the resulting spatial arrangement
is a hierarchy of nested hexagons, the vertices of which are the smaller settlements
that depend on the central larger one. While Central Place Theory emphasizes the
notions of trade and distance, it also clearly describes systems of settlements bound
together by networks of relations.

Christaller’s notion of networks of interdependent cities also appears, at a much
grander scale, in Doxiadis’s (1968) vision of Ecumenopolis. This is the author’s
term for the coming network of cities of all different sizes that spans the entire globe,
and which becomes, at the limit, a mesh of continuous corridors of urbanization
(‘Ecumene’ is Greek for the inhabited world). Megalopolis—literally, the big city—
is a more modest and better-known version of the same idea, of which there are
multiple actual instances around the world. While the term had appeared in earlier
writings of the twentieth century, it was popularized by Gottman’s (1961) work on
the north-eastern seaboard of the USA. The catchy name BosWash, for the urban
agglomeration reaching fromBoston,MA toWashington,DC is the best-remembered
part of Gottman’s ground-breaking study.

The most systematic contemporary approach to the notion of the city as node
in a network of cities is quite likely represented by the work of the international
research network on Global andWorld Cities (GaWC 2020). Scholars affiliated with
the GaWC network sometimes describe their work as metageography—a geography
of geographies—to emphasize the global-scale perspective on cities that they adopt.
The group’s focus is the world-wide hierarchy of cities of different degrees of impor-
tance and size (world, global, peripheral, and specialized cities), with an emphasis on
the mutual dependencies and other relations that make up the international network
of urban interactions. The socioeconomic, political, and physical characteristics of
individual cities are examined to the extent that they reflect or promote the forces that
bind the world’s cities together, such as the global phenomena of capital flight, indus-
trial dislocation, labormigration, trade and resource flows, innovation and technology
diffusion, and so on. To study these networks ofmostly intangible long-distance flows
and their local implications, GaWC researchers must ask novel questions requiring
new kinds of data and new forms of visualization—in other words, define a new
agenda for urban research. The network’s website provides a wealth of informa-
tion about the work of the close to three hundred affiliated members, who include
several prominent names in geography, urban studies, and a number of other fields
contributing to research on the information society (e.g., Latham and Sassen 2005;
Hoyler et al. 2018).
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9.2.3 Planning the City

Urban planning—professional as well as academic—is another field that is being
substantially affected by developments in the city of the information age. Like urban
studies, planning deals with the city at several different scales, from that of the neigh-
borhood park to that of themegalopolis. Unlike urban studies, the planners’ approach
is more that of the engineer than of the scientist, more synthetic than analytic, more
action-oriented than knowledge-oriented. The major difference between these two
fields, however, is the fact that planning is inherently and fundamentally about the
future, whereas urban research and data are at best about the very recent past. Predic-
tive models developed by urban researchers still go some way toward meeting the
current needs of planning, but the assumptions, generalizations, and rules of thumb
built into them may soon become obsolete. It is ironic that deep qualitative uncer-
tainty, the kind that matters most to future-oriented endeavors like planning, might
be substantially increasing at a time when the quantity and quality of available data
are also increasing dramatically.

Urban management is also a form of planning, operating over shorter time frames
and handlingmore specific sets of problems. Both professional planning andmanage-
ment directly contribute to urban governance, and their errors have consequenceswell
beyond the threat of a research paper rejection. Despite the considerable overlap with
urban studies, planning and management thus involve a very different take on the
city, and information needs that are as complex but different from those of the urban
researcher. For example, planning must now (by law, in many countries) take into
account the often vague or conflicting input of the public, while also accommodating
political interventions and juggling a myriad of local and regional regulations that
may include mutually contradictory, obsolete, or otherwise unhelpful restrictions.

Things were not always as complicated for urban planning. In the modern era,
planning was at first a straightforward engineering profession focused on urban sani-
tation and other infrastructure development, before embracing the systems approach
and operations-researchmethodologies in the 1950s and 60s, and later also additional
perspectives by the names of comprehensive, integrated, or strategic planning. It is
only with the social movements of the 1970s, when the participatory era began, that
the planners’ tidy office spilled onto the streets. Planning was no longer carried out
for the people but with the people. Opinion surveys, public hearings, story-telling,
and politicking increasingly replaced computer models, especially in countries such
as the USA that lack a strong planning tradition. However, geographic information
systems (GIS) eventually came along to fill the technical void, and there was no way
back.

The adoption of GIS in planning was at first not without problems. Critics were
concerned about the possibility of disenfranchising those lacking the requisite digital
literacy, of affecting societal priorities by focusing on what is easily measurable,
of imposing a technocratic view of the world on other people’s perspectives, of
introducing new issues of privacy and surveillance, and so on. These concerns have
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been to a large extent resolved, to the point where most of those who used to be the
critics are now often using GIS themselves.

In response to the critique, academic planners developed methodologies largely
based on GIS for the age of public participation, creating the subfields of public
participationGIS (PPGIS) and, forwell-defined groups of stakeholders, participatory
GIS (PGIS; Jankowski and Nyerges 2001). Planning support systems (PSS) emerged
in the early 1990s as a response to the increasing complexity of planning in societies
that value both the diversity of opinions and the scientific groundingof public decision
making (Brail and Klosterman 2001; Geertman and Stillwell 2009; Geertman et al.
2015). PSS were enabled by major improvements in computational resources and
geospatial data availability, and relied heavily on the rapid expansion and increasing
sophistication of GIS. The main purpose of PSS is to integrate the societal and
technical aspects of planningwith the computational bonanza of our age, and are thus,
at least in concept, oneof thebest incarnations of the ideaof geodesign todate.Current
forms of PSS successfully support public participation, allowing the collection and
processing of a wide range of relevant data through crowd-sourcing methods. The
adoption of PSS has been slow, but the field continues to attract considerable interest,
now also from scholars and practitioners from beyond traditional urban planning.

9.3 Speculations

9.3.1 The Robotic Era?

Humanity spentmillennia in the pre-industrial age, then the industrial age lasted some
two hundred years, the post-industrial age has been with us for just a few decades,
and already the term information age that followed appears too limited. Yes, this is
the age of big data, but it is also the dawn of a still nameless era (let’s call it the
robotic era) where big data become embodied in machines. There is now talk about
the second machine age (Brynjolfsson and McAffee 2014), of systems that privilege
information over energy as input, and which output intelligence as well as physical
objects and physical work: brains added to brawn, thinking built into inert matter.
The coming world of sentient machines—the autonomous vehicles, the Internet of
things, the drones delivering our packages or fighting our wars, the satellites deciding
which information to transmit to which city of the global urban network, and somuch
else we cannot yet imagine (let’s not talk yet about machines built around synthetic
biology, or quantum computers)—define a reality that challenges ordinary theoretical
treatment. Indeed, the Greek word theory literally means contemplation, viewing,
looking at something from the outside. It will eventually be futile to try to develop
theories of the traditional kind by “looking from the outside” at cities run at least in
part by emergent networks of heterogeneous, interacting smart systems.

We are not there yet, and we still need to figure out how best to use the big data
bonanza. It is not likely that data mining alone will ever give the answers that urban
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research,management, or planning need, especiallywhen it comes to helping prepare
for the future. But there might exist certain basic principles at the core of current
quantitative theories that can be relied on to remain valid even if the superstructure
of the theory (dealing with socioeconomic or other empirical processes) is no longer
helpful. Batty and March (1976) called these effects residues, and Couclelis (1984)
developed the related idea of prior structure. These principles owe their resilience
to the fact that they are formal rather than empirical: they are abstract properties
of systems qua systems, or of the formal languages used in their derivation, which
constrain what a model can represent. In spatial systems, it is properties of particular
forms of abstract space that get transferred to the model. Here are some candidates
of such principles that are well-established in the urban and geographic literature:
distance decay; spatial heterogeneity; spatial autocorrelation; scaling laws; the rank-
size rule; network properties; possibly fractal growth. And so on. There may be
additional effects deriving from properties of cyberspace that could be added to
the list. One can imagine appropriate combinations of these principles forming the
backbone of analysis in hybrid approaches to data mining and any other strongly
data-oriented techniques. But this is another discussion, for another kind of book.

9.3.2 The City’s Epistemic Planes

The speculations in this section continue, but more realistically now: how could
we best capitalize on the wealth and promise of urban informatics—not in a few
years, but today? If data do not speak for themselves, what elements of order, what
structured approach could make the data sing? Here is a tentative suggestion.

Cities—and even more so, cities of the information age—are not only highly
complex but are alsomadeupofmanyhighly complex parts.Moreover, these parts are
so qualitatively different from one another that they may be viewed as different real-
ities, partially incompatible. Consider: The smart city as technological achievement
versus as homeof humanity; the smart city as place versus as node on a global network
of urban linkages; the smart city as integration of actual and virtual dimensions.

It is increasingly unlikely that the whole of today’s urban reality can be tackled
with current notions of modeling. No comprehensive theory or framework may be
able to do justice to the growing information-age complexity of the city. What might
be possible instead is the development of strategies to guide the selection of data,
tools, and methods, so that, depending on the objectives of the research or decision
problem, the relevant critical aspects of contrasting views of the city are integrated
in the analysis.

To give a sense of what such an informatics strategy might entail, here is an
illustrative framework for merging disparate views of the city in response to specific
questions or problems. It is based on the notion of a sequence of epistemic planes,
each of which would support data and methods for a qualitatively different part of
urban reality, and for qualitatively different kinds of knowledge. As a quick example,
for any reasonably well-defined problem, onemight need to systematically glean and
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weave together specific relevant information of the following kind from four or five
different epistemic planes, e.g.:

• Measurements of the physical, social, and demographic spatial structure of the
city, including information from and about distributed sensors and associated
physical infrastructure;

• Information on social, business, financial, government, etc. ICT networks, both
local and long-distance, including data on the supporting physical infrastructure;

• Measurements and qualitative information on the level of functioning of key
aspects of the city (local and long-distance), including transportation, energy
production and distribution, commerce, business services, health and human
services, government, etc. (local and long-distance);

• Information on the agents and forces (local and global) affecting or likely to
soon affect city functioning directly or indirectly, including recent technolog-
ical breakthroughs such as autonomous vehicles and the Internet of things, and
political changes such as the power of private companies over personal data.

For each problem or objective (to do with efficiency, growth, social justice,
sustainability, quality of life, public safety, governance, etc.), appropriate analytical
methods, models, and tools should be selected or developed to allow the problem-
specific integration of the highly heterogeneous kinds of knowledge that aspects of
the truly smart city demand. Only the most tentative indications of what these tools
might look like can be suggested here. Possibilities include some type of information-
filtering system (similar to recommender engines) for traversing the set of epistemic
planes, artificial intelligence (AI) techniques for formalizing the objective or research
question motivating the search, semantic networks and ontologies, to provide struc-
ture and help guide the selection of variables from among semantically heteroge-
neous planes of urban reality. Indeed, the systematic decomposition of urban-system
information tentatively sketched above is loosely based on the information ontology
proposed by Couclelis (2010).

9.4 Conclusion

This chapter has presented several of the reasons why business as usual in
urban research, management, and planning cannot continue for much longer in
the information-age city. We will miss the traditional kinds of theories, models,
approaches, and methods that have served us well in the past century when these
can no longer be relied on, as long as operational new approaches and tools do not
yet exist to help us get the most out of ubiquitous, high-quality urban data. As an
example of what may be lost along with a good traditional theory or model is its role
in restricting the space of possibilities, so that not everything can be the case. In this
chapter, we touched in passing upon two notions that could at least in part play that
critical possibility-focusing role: first, the residues, or non-empirical effects hiding in
our more successful spatial models (Batty and March 1976), and second, ontologies,
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which provide structure and restrict meaning so as to help keep the semantics of data
interpretations consistent. Combined with data-mining techniques in the broadest
sense, a priori elements of order, reliability, and consistency such as these might
shape the hybrid strategies that can do justice to our age’s unprecedented data riches.
If informatics is the science of information, we should look to it for answers to
questions that go beyond big data and their role in ICTs.

And here ends the speculation. This book has a very concrete double objective,
which is to provide a comprehensive overview of the methods that so far form the
core of urban informatics, as well as a technical introduction to the research tools
necessary for understanding and creating the smart city of tomorrow. This should help
prepare the ground for answering two major questions that may be asked concerning
the general subject of this book: (a) How can the new science of information lead
to the new science of cities? and (b) How can big data lead to actionable wisdom
under conditions of pervasive uncertainty and complexity? It is not within the scope
of the present book to tackle these questions directly, though its original chapters
contribute to the necessary discussion that has already begun.
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Chapter 10
Introduction to Urban Systems
and Applications

Mei-Po Kwan

Abstract As new information technologies and large amounts of data from a wide
range of sources become available to government agencies and the public, urban
researchers have started to investigate how these data can be used to enhance the
planning and management of various urban systems. As a result, new methods for
collecting and analyzing complex space–time data about urban systems have been
developed to address various urban issues. These urban systems include transporta-
tion systems, energy systems, and health systems. In recent years, considerable new
work has been conducted to examine how new information technologies and data
can enhance our understanding of and ability to address urban issues. The eight
chapters in this section present various applications of urban informatics to specific
urban systems or phenomena, including human mobility and travel, urban freight
systems, urban resilience and disaster response, urban crime, urban governance, the
use of remote sensing for environmental monitoring, health andwellbeing, and urban
energy systems. All of them emphasize how new, big, or open data are useful for
helping us to better understand and manage specific urban systems. They also high-
light significant challenges in such applications of urban informatics, which would
be particularly helpful to urban researchers and planners.

Keywords Urban informatics · Urban systems · Transportation systems · Energy
systems · Health systems

Urban mobility patterns have been examined for decades using travel-survey data,
which are useful for the management and planning of urban infrastructures and
facilities (e.g., transport systems) but are costly and time-consuming to collect. The
sample sizes for travel surveys are often limited when compared to other sources
of urban big data such as point-of-interest (POI) data. In Chap. 11, Pierre Melikov
and colleagues illustrate how passively collected data can be used to examine human
mobility patterns based on a case study of Mexico City. Using POIs registered on
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Google Places to approximate trip attraction in the city, the chapter compares the trip
distribution patterns obtained with the POI data and those obtained using conven-
tional datasets based on travel surveys. The study finds that the POI data provide
good estimates of the trip flows in the study area when compared to the estimates
obtained with the official origin–destination matrices.

As tracking and sensing technologies are increasingly used to collect a wide range
of urban data, new sources of urban data have become widely available. This, in turn,
allows for the development of highly detailed transportationmodels that facilitate the
analysis of urban freight movement and the generation of policy recommendations.
In Chap. 12, André Romano Alho and colleagues review the recent developments in
data-collection methods in urban freight transportation and how the new data can be
used in state-of-the-art transport modeling. The chapter describes two software plat-
forms for enhancing freight movement research. The first platform is called Future
Mobility Sensing (FMS), which is a data-collection platform that integrates tracking
devices and mobile applications for collecting highly accurate mobility data. The
second platform is called SimMobility, which is an open-source, agent-based urban
simulation platform for modeling disaggregate urban passenger and freight move-
ments. The authors discuss how the two platforms can be used jointly to advance
behavioral modeling for passenger and goods movements in urban areas.

As populations continue to increase and migrate to cities, disaster risks from
events like hurricanes, earthquakes, or wildfires are increasing and becoming more
pronounced in urban areas. In a world that is rapidly urbanizing, the safety of rapidly
increasing numbers of urban residents is at risk. In Chap. 13, Susan Cutter discusses
how the resilience concept (as an outcome or as a process of building capacity) has
become more central in the last decade as a means for understanding how cities
prepare for and recover from disaster events. Using selected case studies of several
cities as examples, she reviews research that attempts to develop urban informatics
for facilitating intervention or mitigation strategies and fostering urban resilience.
She suggests that shifting from passive to active sensor data and making low-cost,
near-real-time datamore accessiblewould greatly enhance research on and responses
to urban risks.

Researchers have long been interested in the relationships between urban environ-
ments and crime. Environmental criminologists now commonly accept that environ-
mental factors have considerable influence on criminal behavior, and understanding
these influences would help to shed light on what measures are effective for crime
prevention. Chapter 14 by Tao Cheng and Tongxin Chen provides a useful review
of the development of crime research, including historic criminology and data-
driven policing, and its implications for urban security and crime prevention in
practice. It discusses various analytical tools for analyzing and preventing urban
crime (e.g., crime hotspot mapping and police resource allocation). The chapter
proposes a comprehensive data-driven policing system as a framework for urban
crime prevention and security improvement.

Transparency is a critical element in urbangovernance. It encourages civic engage-
ment, ensures that elected officials are accountable for their decisions, and limits
the potential for corruption. To achieve transparency in urban governance, a wide
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range of data about cities have to be widely available to the public. Chapter 15
by Alex Singleton and Seth Spielman addresses the need for and challenges in
providing adequate data to the public to enhance transparency and civic engagement.
It discusses how open-source data platforms in urban governance may facilitate the
realization of these goals and how the availability of the new data offers the potential
to transform urban governance. The chapter, however, highlights the risks of repro-
ducing or developing new social inequalities as a result of the proliferation of new
data and their integration into software that automatically generates results based on
certain algorithms.

Recent advances in sensing technologies and retrieval methodologies (e.g., the
muchfiner spatial and temporal resolutions ofmodern sensors) have greatly increased
the applicability of remote sensing in urban environmental applications. Chapter 16
by Janet Nichol and colleagues reviews the latest developments in the use of remote
sensing in urban pollution monitoring, including assessment of urban air quality,
urban heat islands, and water quality around urban coastlines. It discusses the
main sensors used and the developments in retrieval algorithms for environmental
monitoring in urban areas.

The technology and information available to urban residents may help increase
their access to health and health-enhancing information and thus may help enhance
their health and wellbeing. Chapter 17 by Clive Sabel and colleagues explores how
information technology and everyday devices connected via the Internet (the Internet
of Things) are shaping global research on the health and wellbeing of urban popu-
lations. It reviews various types of data used in health research in the context of
smart cities. Using examples from the big data Centre for Environment and Health
(BERTHA) Project at the Aarhus University of Denmark, innovative methods for
collecting individual data for examining the health and wellbeing of urban residents,
such as machine learning, mobile sensing, and tracking, are discussed. The chapter
also reviews ethical, privacy, and confidentiality issues related to the use of sensitive
personal data in health research.

The development and maintenance of urban infrastructures are highly energy-
intensive. The complex interactions between human dynamics and critical infras-
tructures in urban areas have significant implications for traffic congestion, emis-
sions, and energy consumption. Chapter 18 by Budhendra Bhaduri and colleagues
highlights recent research at Oak Ridge National Laboratory (ORNL) in the USA on
the integration of four distinct components (i.e., data, critical infrastructure models,
scalable computation, and visualization) for understanding the complex interactions
between physical and social systems in urban areas. It discusses four main themes
in such research: population and land use, sustainable mobility, energy-water nexus,
and urban resiliency. It describes how ORNL promotes innovative interdisciplinary
research that integrates its expertise in critical infrastructures and their interactions
with the human population using scalable computing, data visualization, and unique
data sets from a variety of sources.
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Chapter 11
Characterizing Urban Mobility Patterns:
A Case Study of Mexico City

Pierre Melikov, Jeremy A. Kho, Vincent Fighiera, Fahad Alhasoun,
Jorge Audiffred, José L. Mateos, and Marta C. González

Abstract Seamless access to destinations of value such as workplaces, schools,
parks or hospitals, influences the quality of life of people all over the world. The first
step to planning and improving proximity to services is to estimate the number of trips
being made from different parts of a city. A challenge has been representative data
available for that purpose. Relying on expensive and infrequently collected travel
surveys for modeling trip distributions to facilities has slowed down the decision-
making process. The growing abundance of data already collected, if analyzed with
the right methods, can help us with planning and understanding cities. In this chapter,
we examine human mobility patterns extracted from data passively collected. We
present results on the use of points of interest (POIs) registered on Google Places
to approximate trip attraction in a city. We compare the result of trip distribution
models that utilize only POIs with those utilizing conventional data sets, based on
surveys. We show that an extended radiation model provides very good estimates
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when compared with the official origin–destination matrices from the latest census
in Mexico City.

Keywords Trip distribution models · Transit use · Clustering methods · Mobility
science

11.1 Introduction

As more people continue to migrate from rural to urban settings, the challenges of
improving cities increase in pace and complexity. Planning for daily mobility within
metropolitan areas is one important topic of the coming years. The estimates of the
total daily trips specific to a metropolis are the first step to establish efficient strate-
gies that inform the transportation-planning process. However, the lack of reliable
and accessible data sources of individual mobility greatly slows down the planning
progress. Data on human mobility have thus far been collected through individual
surveys with small and potentially biased sample sizes because they require active
participation and often rely on self-reporting (Cottrill et al. 2013). While conven-
tional travel surveys provide awealth of valuable information, they are very expensive
and time-intensive. For most major cities, these surveys are conducted about once
a decade; for smaller cities and towns, it is less frequent than that or not at all.
Between the publication of these surveys, a lot can happen that could change the
dynamic of the city: new attractions, redevelopment of entire city blocks, changing
economic trends, the impact of a natural calamity, or just the gradual shift of a city’s
characteristics. These changes would not be captured until the next travel survey
is issued, which could be anywhere from the following year to a decade. With the
abundance of information and connectivity today, other sources of easily accessible
data could prove to be useful as a proxy for the data obtained in conventional surveys.
One example of this is the use of triangulated mobile phone data to form mobility
networks and extract individual trip chains (Jiang et al. 2013). Another such potential
is points of interest (POIs) registered on Google Places, a feature of the mapping
service developed byGoogle LLC (Google), which are extensive, updated frequently,
and relatively accessible for most people. Google Places lists various types of estab-
lishments, such as restaurants, schools, offices, and hospitals, allowing it to serve
as a good indicator of trip attraction. For an overview of mining POI data for urban
land-use classification and disaggregation, see the work of Jiang et al. (2015).

As a complement to the development of statistical methods to carefully treat travel
diaries (Ben-Akiva and Lerman 1985; Hall 1999; de Dios Ortúzar and Willumsen
2011), alternative, cheaper, and larger data sources are necessary to push our under-
standing of human mobility efforts further. The evolution of technology over the
past decade has given rise to ubiquitous mobile computing, a revolution that allows
billions of individuals to access people, information, and services through infor-
mation technologies such as their cellular or mobile phones. Using today’s large-
scale computing infrastructure and data gathered from sensing technologies, one can
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combine methods from computer science with urban planning, transportation, and
environmental science, to tackle specific problems with fined-tuned methodologies
in a data-centric computing framework.

Urban-science methods for characterizing human mobility should take into
account the complexity of these dynamics.However, despite being a complex system,
recent results have indicated some patterns or general features that can clarify these
dynamics. These features are called universals in analogy with phenomena in the
physical sciences. First, there is a set ofmodels to analyze aggregated humanmobility
in cities or large-scale migrations. On the one hand, we have gravity-like models,
and on the other radiation models (Simini et al. 2012). In 2008, González et al.
(2008) used data from mobile phones to show that the step-length distribution can
be described by a truncated power law. To understand the mechanism that gives rise
to this distribution, the authors used the radius of gyration: a quantity that character-
izes the radius enclosing the most visited locations of an individual over months of
observation. Simulations suggest that the step-length distribution of the entire popu-
lation is produced by the convolution of Lévy flight processes, each with a different
characteristic jump size within the individual radius of gyration of each person. The
observed power law is the result of the heterogeneity in the radius of gyration of the
population. While the great majority of users have a radius of a few kilometers, there
is a minority of users that cover thousands. Similar to the income and other variables
following a power law, following the Pareto principle 80% of the distance covered
comes from 20% of the subjects.

Another interesting pattern of human mobility is the interplay between random-
ness and predictability. There is a high rate of return to previously visited locations
such as home or work. The nature of these returns follows a probability inversely
proportional to the rank of the location, following then a Zipf law. Subsequent work
by Song et al. (2010a, b) using data from mobile phones, revealed two important
characteristics of human behavior. First, the number of distinct visited locations
increases as a power of time with exponent less than 1, indicating a very slow rate of
explorations. Second, the probability that an individual returns to a previously visited
place scales with the inverse of the rank of that location, a phenomenon labeled as a
preferential return. With a perspective from information theory, Song et al. (2010a,
b) used different kinds of entropy measures to analyze the limits of predictability of
human mobility.

Another approach to study human mobility is by mobility motifs, introduced by
Schneider et al. (2013) as an abstract (semantic) way to define periodic trajectories
in the daily movements of individuals. A daily mobility motif is a directed network
(digraph) where unlabeled nodes represent locations and the edges are trips from
one location to another. Counting motifs in data from mobile phones and traditional
travel surveys, they amazingly found that despite over 1million unique ways to travel
between 6 or fewer locations, just 17 motifs are used by 90% of the population. For
an overview of these works, see the papers by Jiang et al. (2013) and Toole et al.
(2015), and the recent review of human mobility by Barbosa et al. (2018).

In this chapter, we focus on statistical methods of the type described above in the
analysis and modeling of human mobility both in the aggregate and individually. We
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take advantage of novel data sources passively collected, to enrich the information
on human mobility patterns. Namely we parse an alternative source of geospatial
data, apply trip distribution models to estimate aggregated trips, and implement
unsupervised machine learning to characterize different types of commuters by their
mode of transportation and travel time.

As a sample case, we focus on Mexico City, one of the largest cities in the world
with over 21 million people in the greater metropolitan area. It is also one of the
most important cultural and historical centers in the Americas. With such a large
number of people and a high level of vibrancy, mobility in the region can be quite
a challenge. In 2017, a major household travel survey (Encuesta Origen-Destino en
Hogares de la Zona Metropolitana del Valle de Mexico 2017) was completed for the
Metropolitan Zone of the Valley of Mexico. Conducted from January–March 2017,
the survey obtained information to facilitate a better understanding of the mobility of
the inhabitants in the metropolitan region. This includes data on trip generation, trip
attraction, mode choice, trip purpose, trip duration, socio-demographics, and more,
which is representative of 34.56 million daily trips occurring in our study zone.

11.2 Data Collection of POIs

In order to obtain POIs (Jiang et al. 2015) from Google Places, programming scripts
were written to utilize the application programming interface (API) that Google
provides (Documentation of Google Maps API no date). However, Google sets
limits on the number of POIs a single request can return and on the number of
API requests an account is allowed to make in order to differentiate commercial
and non-commercial applications. While the conduct of this undertaking is non-
commercial, the data to be collected tend to exceed Google’s limitations. Hence, an
efficient algorithm needs to be implemented to collect the most information from a
minimal number of API requests.

To achieve this, API requests were framed and constrained by geometries defined
by the Hexagonal Hierarchical Geospatial Indexing System (H3) of Uber Technolo-
gies, Inc (Uber Engineering 2018). Uber’s H3 system is an application of the concept
of fractals. Maps are divided into large hexagonal tiles, with each tile further divided
into seven smaller hexagons. With 16 supported resolutions, the system is flexible
to most use cases. Figure 11.1a shows a sample resolution applied to a district in
Mexico City.

Hexagons serve as good approximations of circles while minimizing the overlap
between cells. This is useful as the Google Places API requires a radius parameter
within which the search for POIs will be made.
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Fig. 11.1 Hierarchical sampling method to extract POIs. a Initial state and resolution of parsing
algorithm, b Final state after recursively increasing ressolution in hexagons that reach the API
request limit

11.2.1 Parsing Algorithm

An initial resolution for the size of the hexagons was determined. The coarser the
initial resolution, the more efficiently the script is likely to run, as excessive requests
are avoided in sparsely developed areas. On the other hand, coarse resolutions also
increase the marginal areas near the borders of irregular shapes that are unaccounted
by the algorithm. Before issuing any API request, the initial resolution was tuned
and visualized to balance these tradeoffs.

For each hexagon, an API request was made at the centroid. If the request reaches
the limit of POIs that it can return, the algorithm subdivides that hexagon into smaller
hexagons. This process is repeated until each request ismetwithout reaching the limit.
In Fig. 11.1b, some areas, such as parks and nature reserves, do not need numerous
API requests. Downtown city blocks and dense neighborhoods, on the other hand,
are recursively splintered.

11.3 Spatial Distribution of POIs

In the use case for this chapter, the parsing algorithm returned a total of over 733,000
POIs from Google Places across the Metropolitan Zone of the Valley of Mexico.
These points of interest provide new dimensions to analyze data from the travel
survey that could generate insights on the characteristics of the megacity.

For instance, the API requests return tags for each POI, indicating the nature
of the establishment. This may include broad categories, such as store, or more
specific labels, such as electronic store. Clustering relevant tags together, POIs may
be classified as either commercial or public-service establishments. Combining these
data with the travel survey, Fig. 11.2a maps the relationship of the sociodemographic
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Fig. 11.2 Spatial distribution of population and services. a Relationship of the sociodemographic
stratum of a district with the ratio of the number of public service establishments to the population,
b Percentiles of the number of public service POIs for every 1 km2 block

status of a district with the ratio of the number of public service establishments to
the population.

In this case, sociodemographic strata are indices defined by the travel survey to
characterize a respondent’s social and economic conditions, with numbers from 1
to 4 denoting increasing economic well-being. In Quadrant I, the number of public-
service establishments is above average and the population is below average: such
districts tend to enjoy the highest sociodemographic stratum.Quadrant II has districts
of intermediate sociodemographic status, still benefiting from an above-average
number of POIs.Quadrant III has both less than the average population and number of
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facilities and a lower socio-economic stratum. Interestingly, Quadrant IV has districts
on opposite ends of the sociodemographic spectrum, possibly due to the diversity of
inner cities and the efficiencies of density that allow fewer establishments to serve
more people in a small amount of space. These enrich the spatial information of the
surveys and deserve further research.

Another advantage gained through the POIs is the spatial granularity of the
collected data. Travel survey respondents are often organized by the district of resi-
dence, whereas establishments on Google Places are pinpointed to street address
coordinates. Since cities and districts are not homogeneous, this level of detail
provides a more realistic perspective on city dynamics, highlighting functional
interaction over arbitrary political boundaries.

In Fig. 11.2b, the coordinates of public-service establishments are truncated to
two decimal places, binning them to grids that are approximately a kilometer per side.
Due to the orders of magnitude in the difference between the urban core and more
rural areas, the number of public-service establishments is abstracted to intervals
of 5 percentile points. As it is, mapping these establishments may have a strong
dependency on population density. Nevertheless, a hidden structure to the city is
revealed, with a strong urban core, some urban corridors expanding outwards from
the city center, and regional centers further away from the center. Significantly, there
are large regions on the outskirts of the study area where public services are sparse.
Further insights may be gained when supplemented by population distribution data
at a similar level of granularity.

11.3.1 Extended Radiation Model for Human Mobility

Counting the number of POIs per district is necessary for direct comparison with
the 2017 travel survey data, which have the smallest granularity only at the level of
districts. Mapping these per district in Fig. 11.3a, b, a direct comparison can be made
with trip attraction reported in the 2017 travel survey.

While the correspondence is not perfect, the distribution of points of interest
makes a good approximation to the distribution of trip attraction obtained from the
travel survey. Most notably, the difference between the city center and the rest of the
region is similarly stark.

Plotting the relationship between trip attraction and points of interest in Fig. 11.3c
yields a quantitative plot, with the correlation coefficient of the two variables deter-
mined to be quite high at 0.81. This comparisonwill be of great relevance later, where
the POIs are used to model mobility patterns in the city, in place of travel-survey
data.

Many models have been developed in order to predict population movement at
different scales. In the context of Greater Mexico City, we want to investigate how
accurate suchmodels are and howwell they perform to reconstruct mobility patterns.
The models of trip distribution can be divided into gravity-model types (Barthélemy
2010; Erlander and Stewart 1990; Jung et al. 2008; Lenormand et al. 2016), or
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Fig. 11.3 Trip attraction versus POIs. aValues of trip attraction, b The number of points of interest,
c Correlation plot of trip attraction and points of interest

intervening-opportunity types (Lenormand et al. 2016). In this chapter, we present
an application of the latter, named the extended radiation model (Yang et al. 2014),
to estimate trip distributions in Mexico City.

The radiationmodel (Simini et al. 2012, 2013) is based on a stochastic process that
is parameter-free and enables, without previous mobility measurements, estimates of
trip distributions in good agreementwithmobility and transport patterns (Simini et al.
2013). The original radiation model only relies on population densities to estimate
commuting patterns between US counties (Simini et al. 2013).

Here, we use the natural partition of the city in districts. Themodel states that a trip
occurs based on the number of opportunities that can be found in each district if the
two following steps are met: (1) an individual seeks opportunities from all districts,
including his or her home district (the number of opportunities in each county is
proportional to the resident population); (2) the individual goes to the closest district
that offers more opportunities than his or her home district. To analytically predict
the commuting fluxes with the radiation model, we consider locations i and j with
population mi and nj, respectively, at distance rij from each other. We denote with sij
the total population in the circle of radius rij centered at i (excluding the source and
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destination population). The average flux Tij from i to j is:

〈
Ti j

〉 = Ti
min j

(mi + si j )(mi + ni + si j )
(11.1)

where Ti = ∑
i �= j Ti j is the total number of commuters that start their journey from

location i, or the trip production of location i.
The extended radiation model aims at predicting flows without first calibrating

the data. Thus, it introduces a scaling parameter ∝ by combining the derivation of
the original radiation model with survival analysis and gives:

〈
Ti j

〉 = γ Ti
[(ai j + m j )

∝ − a∝
i j ](n∝

i = 1)

(a∝
i j + 1)[(ai j + m j )∝ + 1] (11.2)

where ai j = ni + si j , γ , is the percentage of trips between all places found between
the origin and destination, and empirically set ∝= ( 1

36[km] )
1.33, where i is the charac-

teristic length of the study area, and ∝ accounts for the fact that the trip distributions
depend on the area of study.

The extended radiation model was meant to be used when we lack trip data for
calibration. When there are actual trip data as in this case, one can evaluate them
with the common part of commuters based on the Sørensen index (Lenormand et al.
2016):

CPC(T, T̃ ) = 2
∑n

i=1

∑n
j=1 min(Ti j , T̃i j )

∑n
i=1

∑n
j=1 Ti j + ∑n

i=1

∑n
j=1 T̃i j

(11.3)

It gives a quantitative measure of the goodness of the flow estimation, 0 meaning
no agreement found and 1 perfect estimation. CPC compares the model estimates
Ti j versus the empirical observations T̃i j , between all origin–destination pairs.

11.3.2 Results

From the survey data, we extracted the different variables to run the extended radi-
ation model. First, we extracted the 194 districts that compose Greater Mexico City
with their respective population, trip attraction (number of daily trips coming to the
district), trip production (number of daily trips leaving from the district), points of
interest, and characteristic length, given as the square root of the area of the district.

Then, we set i as the mean of the characteristic length of each district. We also
constructed the distance matrix that gives for every row i and column j the distance
between the centroids of the districts i and j. Finally, γ was set to the total number
of trips as a proportion of the total population.
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Table 11.1 Comparison of the goodness of fit depending on different input data in the model

Origin Trip production Trip production Population Population

Destination Trip attraction POI Trip attraction POI

CPC 0.69 0.67 0.64 0.63

Four different setups were then used to compare the performance of the model
based on different approximations of the trip production from the origin districts
and the trip attraction of the destination districts: (1) we used trip attraction and trip
production as a baseline, (2) we used the number of POIs as a proxy for trip attraction,
(3) we used population as a proxy for trip production, and (4) we combined (2) and
(3). The resulting CPC values are shown in Table 11.1.

Table 11.1 shows that the CPC of the estimates of the extended radiation model
was close to other recently proposed models (Lenormand et al. 2016). Moreover, we
investigated the impact of different proxies for flowgeneration and attraction volumes
as input in ourmodel and found that the use ofmore easily acquired data sources such
as population and POI density achieves nearly the same level of accuracy. POIs seem
particularly interesting because they enable good estimates without travel surveys,
butwith data ofmuch cheaper access.On the other hand, the use of population in place
of trip production aims at predicting future mobility patterns given the knowledge
of γ , the proportion of the total population of the system commuting, and assuming
changes in this ratio. Here, we extracted γ from the 2017 survey and used it for the
models. Consequently, we cannot validate the predictive power of the model; but
nonetheless, when distorting the population data of each district by multiplying it by
γ , we still observe encouraging results.

11.4 Analyzing Human Mobility by Mode
of Transportation

This section is devoted to the analysis of individual travelers within Mexico City.
One advantage of a broad user survey is to identify types of dominant behavior in
the population, with respect to the modes of transportation used, their geographic
distribution, and socio-demographic characteristics.

We analyzed the large database collected by the Mexico City survey, containing
information on individual residents; it details information onmore than half a million
trips. For each trip identified, we have the mode of transportation, the districts of
departure and arrival, the time of departure and arrival, the purpose of the trip, the
gender of the traveler, and his or her age and socio-demographic stratum. As many
as twenty different modes of transportation can be identified among the 196 districts
of the survey.

Wewanted to reduce the complexity of this informationbygrouping the trips based
on transportation mode, without associating the other metrics. The latter would then
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be involved in the analysis of clusters formed. In doing so, we sought to distinguish
the main mobility behaviors, which would, in turn, combine various proportions of
the possible transport modes and trip purposes.

By simple inspection, it is clear that all the means of transport mentioned in the
database were not significantly present in the main groups of behaviors. We expected
to see certain modes of transport, such as cars or walking, as the majority in certain
behaviors and others, such as the category “Other means of transport,” very poorly
represented or even absent. It is, therefore, not necessary for such a large number
of variables, initially twenty, to describe the individual trip database. We applied
principal component analysis (PCA) to determine the main variables. This allowed
us to reduce computation time and complexity when using a clustering algorithm.
Projecting into a lower dimensional base informs our understanding (Eagle and
Pentland 2009; Ibes 2015).

The PCA method aims to capture as much of the total variance of the data as
possible with a reduced number of variables, called principal components (PC).
Since the objective was to set the size of the new projected database such that the
first N PCs had to account for 85% of the total variance, we, therefore, chose to keep
only the first five PCs for the rest of the study (Shlens 2005).

To group trips around main behaviors, we used k-means clustering (Jiang et al.
2012). Each journey of the database was initially represented as a vector composed
of zeros and ones, depending on themode of transportation used.We only considered
its projection in the PCs database when applying the k-means algorithm. K-means
works iteratively to ultimately minimize the sum of the distances between each
projected journey and the centroids of the clusters determined by the algorithm, and
thus allows patterns to be identified within the dataset. As a result, we obtained a list
that reflected the membership of each trip in a particular cluster. We also calculated
the proportions of the modes of transport for each cluster to determine their average
behavior (Jiang et al. 2012). While the ideal number of clusters can be estimated via
various metrics, such as the elbow method, the best number of clusters depends on
the interpretability of the data available. In this case, we decided to keep six clusters.

11.4.1 Detected Mobility Groups

Figure 11.4a at the top shows the six clusters that characterize daily mobility in
Mexico City and their percentages. They represent the main ways of moving around
the city. Since the database reports journeys, several of whichmay have beenmade by
the same person, and residents can have several trips. The analysis groups journeys
and not individuals. Note that these journeys also have the purposes of these trips
such as: going home, going to work, errands, shopping, etc. Their average percentage
is shown at the bottom of Fig. 11.4a. In the top of Fig. 11.4a, only the three most
reportedmodes of transportation in each cluster are shown. Each of these components
is associated in the y-axis with its fraction within the cluster. The % in the x-axis
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Fig. 11.4 Mobility groups inMexicoCity. aThe fraction of users permode in each behavioral group
or cluster. The lower part shows the legend displaying the percentage of trip purposes averaging
the entire population. b Comparison of the percentage of trip purposes by cluster in contrast to the
mean. The clusters are from 1 to 6 from left to right, starting at the top. We see that certain purposes
are more present in each group. Cluster 1 uses combined transit modes with a higher percentage
of work travel, Cluster 2 groups shopping, school, and social activities (picking someone up) by
walking. Cluster 3 groups leisure trips via private car. Clusters 5 and 6 group errands done by
Micro/Colectivo or combining Micro/Colectivo and Walking

shows the fraction of the total journeys in each cluster. We can see that the majority
of journeys in Clusters 1 and 5 combines three or two modes respectively.

Cluster 2 contains 35% of all the trips in the Mexico City survey. The fraction
of walking on the ordinate is equal to one, while that of the second most present
mode of transportation in this cluster, Mexibus & Metrobus, has a fraction of 0.027.
Thus, only about 2.7% of the trips attached to this cluster combined their walking
with Mexibus or Metrobus. It can therefore be said that these trips are made almost
exclusively by walking.

Figure 11.4b shows, for each of the six clusters, the proportion, per cluster, of
each of the ten purposes of the trips considered in the survey: going to home, going
to work, going to school, shopping, leisure, errands, picking someone up, religion,
health purposes, or all other purposes.

We compared the average percentage of trip purposes with the average within
each cluster. Cluster 1 represents 11.8% of all the trips and has 33% of them with
work as its purpose, larger than the average of 21% among all trips.We see that when
people walk (Cluster 2), the shopping purpose is twice the average.While about 16%
of the trips associated with the second cluster are for shopping purposes, the average
number for all trips is around 10% for this category. On the contrary, it seems that
walking is not commonly used for commuting or going to the doctor.

In addition, since the average travel time of this cluster is about 20 min while the
average travel time for the total population is about twice as long, this cluster can
therefore be associated with local trips. This suggests that workplaces or healthcare
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centers are generally located further from family homes than shops, schools, or
religious places.

Cluster 3 groups 20% of the daily trips made in Mexico City; it is exclusively
composed of private cars as a mode of transportation. This case has leisure in higher
proportion compared to other clusters. This can be a consequence of the lack of
transit to cover distant journeys, or being inconvenient for such purpose.

Cluster 5 contains 16% of the trips and includes the routes that exclusively
combine walking and micro/colectivo, while Cluster 4 with 7% of the trips does
not include walking. These two clusters are similar in purpose to the average and
their average travel time is the longest, about one hour per trip.

The use of walking, metro and micro/colectivo during the same journey is also
observed in the first cluster. Indeed, metro obtains a proportion equal to 1, walking
0.83 and micro/colectivo 0.71. Not all the journeys in this cluster, therefore, system-
atically combine these three means of transport, but on average in the great majority
of cases these three means of transport are combined. This group is over-represented
in the heart of the capital’s historic district, where more than 55% of the trips under-
taken are associated with this cluster. On the other hand, it becomes absent as soon
as one moves away from this geographical area. This is due to the high concentration
of metro and micro/colectivo in this part of the city, making travel much faster and
more convenient by linking these modes of transport, particularly to get to work.

Cluster 6 is not possible to interpret, because it does not represent any particular
mode. However, it should be noted that it is mainly concentrated in the agricultural
regions that make up some districts.

Koelbl and Helbing analyzed data from the UK National Travel Surveys during
nearly three decades, in the years 1972–98, observing that the average journey times
for different modes of transport are inversely proportional to the energy consumption
rates measured for the respective human physical activities. In Figure 11.5a, we show
the distribution of the travel times per mode divided by their mean, inspired by the
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Fig. 11.5 Comparison of travel times by mode and by cluster group. a Lognormal fit for the
scaled time-averaged travel-time distributions for different modes of transport on a logarithmic
scale as reported by Schneider et al. (2013) based on UK surveys. b Lognormal fit for the scaled
time-averaged travel-time distributions for the clusters found in the Mexico City travel survey
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Table 11.2 Comparison of
the fitted parameters for the
clusters

Cluster µ var mean trip time

Transit to work −0.03 0.21 89

Walking non-work −0.28 0.63 20

Private car + leisure −0.19 0.69 40

Micro/collective −0.07 0.41 49

Micro/collective + walking −0.11 0.41 58

Other modes −0.30 0.47 30

Results Kölbl et al. (2003) −0.14 0.51 N/A

results reported by Kölbl and Helbing (2003). The authors presented five transport
modes, and they all collapse well in one lognormal distribution with parameters
reported in Table 11.2. To further investigate our clusters, we made the same analysis
of the travel time of the individual trips divided by the mean travel time.We observed
a lognormal with different parameters for each cluster; only Cluster 5 has closer
parameters to the ones reported by Kölbl and Helbing (2003). Given the challenges
of mobility in Mexico City, we observed larger variance among the members of
each cluster, except for the trips of Cluster 1, which groups a higher fraction of the
journeys to work. The differences between the results reported in the UK andMexico
City could be related to more strained transit service and longer commuting journeys
in a vast metropolis. The universal scaling which is shown in different modes by
Kölbl and Helbing (2003) could still serve as a guide to target improvements in the
transit system. Note that the variance of private-car travel times is less than half that
for transit. If the travel times were more similar, transit could be more attractive for
those that can afford traveling by private car.

11.5 Conclusions

Data-informed analysis of complex socio-technical systems has become the interest
of interdisciplinary groups around the world. These techniques can inform urban
planning with an analytical angle in the complex task of amending current cities
and their infrastructures. This increases its relevance to better accommodate the
continued expansion of major cities and metropolises around the world. The purpose
of this study was to summarize statistical methods to analyze human mobility in
the urban context. We combined alternative data sources and methods in the topic
that has mostly used travel diaries and econometric methods. The common aim
of the data analysis presented is to reduce the complexity of the dataset at hand,
while simultaneously extracting useful information. To this end, the recent growth
of passively collected data lends important opportunities to the understanding and the
implementation of these and other methods. In particular, we analyzed and modeled
humanmobility inGreaterMexicoCity, one of the largest cities in theworldwith over
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21 million people. We explored a data set of a recent major travel survey conducted
in 2017, using clustering methods, and compared the trip distributions with the one
inferred from an extended radiationmodel that uses population and points of interest.

Future extensions should include the sociodemographic stratum, and possible
interventions to plan for social equity and accessibility.
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Chapter 12
Laboratories for Research on Freight
Systems and Planning

André Romano Alho, Takanori Sakai, Fang Zhao, Linlin You, Peiyu Jing,
Lynette Cheah, Christopher Zegras, and Moshe Ben-Akiva

Abstract Advancements in information and communication technologies (ICT) and
the advent of novelmobility solutions have brought about drastic changes in the urban
mobility environment. Pervasive ICT devices acquire new sources of data that can
inform detailed transportation simulation models, and are useful in analyzing new
policies and technologies. In this context, we developed software laboratories that
leverage the latest technological developments and enhance freight research. Future
mobility sensing (FMS) is a data-collection platform that integrates tracking devices
and mobile apps, a backend with machine-learning technologies and user interfaces
to deliver highly accurate and detailed mobility data. The second platform, SimMo-
bility, is an open-source, agent-based urban simulation platform which replicates
urban passenger and goods movements in a fully disaggregated manner. The two
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platforms have been used jointly to advance the state of the art in behavioralmodeling
for passenger and goods movements. In this chapter, we review recent developments
in freight-transportation data-collection techniques, including contributions to trans-
portation modeling, and state-of-the-art transportation models. We then introduce
FMS and SimMobility and demonstrate a coordinated application using three exam-
ples. Lastly,wehighlight potential innovations and future challenges in these research
domains.

12.1 Introduction

The urban mobility system, including passenger and goods movements, is becoming
more complex. Demand for mobility is growing and, at the same time, the roles to
be played, modes available, and system-wide synergies are becoming more diverse.
These changes have been stimulated by the evolution of information and communi-
cation technologies (ICT). For example, crowdsourcing initiatives allow individuals
to become temporary freight carriers. These and other changes show a clear need
for simulation tools that allow researchers, industry practitioners, and urban plan-
ners to better grasp the potential impacts of technologies and policies in the urban
mobility system. Despite their predominantly passenger-centric development, state-
of-the-art behavioral simulation models are now capable of replicating business-to-
business transactions between agents that can play multiple roles (shipper, carrier,
and receiver) in a disaggregate manner. The next generation of models is expected
to extend its capabilities to cover business-to-consumer and consumer-to-consumer
flows,which are becomingmore important as e-commerce plays a larger role in urban
goods movements. Moreover, as the boundaries between passenger and goods move-
ments become dimmer, new challenges to the development of integrated models will
arise. The increasing ability to comprehensively represent relevant agents’ decisions
and behaviors is associated with a need for fine-resolution data. Still, data collection
for freight remains a challenge, plagued by low participation rates for surveys and
hard-to-reach key respondents. Innovations in the methods for collecting freight-
transportation data are sought, leading to expectations of relying on sensing tech-
nologies and Big Data sources to overcome the data limitations. At this point in time,
these new sources of data are minimally incorporated into transportation models for
testing a wide range of policies and technologies.

This chapter consists of four sections, presenting (1) future mobility sensing
(FMS), a freight data-collection platform, (2) SimMobility, an urban land-use
and transport-simulation platform, and (3) examples of their coordinated use to
move forward the current domain knowledge. The first two sections start with
self-contained literature reviews on relevant research, including basic techniques,
methods and applications. They are followed by a detailed account of the laborato-
ries, FMS and SimMobility, as well as past and current applications. In Sect. 12.4, we
provide examples of the coordinated use of the laboratories, and finally, we conclude
with a summary and future research directions in Sect. 12.5.
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12.2 Future Mobility Sensing, a Behavioral Laboratory

12.2.1 Background

The practice of transportation modeling and planning relies on a variety of data for
both passenger and goods movements. Particularly for freight-transportation, high-
quality data is required for the development of simulation models for commodity
flows and freight-vehicle operations. Data-collection efforts in the urban freight
domain need to deal with a variety of agents (e.g., companies, establishments, and
vehicle drivers) in terms of decision-making mechanisms and behaviors. The hetero-
geneity of agents and agent types makes it challenging, compared to passenger
movements, to collect a comprehensive dataset that portrays their joint decisions.
As a result, multiple data-collection approaches are used which, in broad terms, can
be categorized into four main groups.

12.2.1.1 Static and Count Data

These are data collected through fixed location sensors such as inductive loop detec-
tors, automatic vehicle classifier systems,weight-in-motion (WIM) systems, or video
systems. Although road-based sensors, such as inductive loop detectors, are inher-
ently limited to capture fine-resolution freight counts, Tok (2008) developed a high-
fidelity inductive loop sensor to achieve commercial vehicle classification based on
the inductive signatures of vehicle types, demonstrating their potential to provide
information-rich commercial vehicle traffic-count data.

The installation of video cameras made traffic counts easier than in the past,
particularly for congested settings or when attempting to disaggregate the data by
vehicle types. Zhang et al. (2007) detailed a video-based vehicle detection and clas-
sification (VVDC) system for collecting vehicle count and classification data using
uncalibrated video images. The proposed approach was demonstrated with high
accuracy, although there are a series of enhancements suggested to deal with longi-
tudinal vehicle occlusions, severe camera vibrations, and headlight reflection prob-
lems. Mammes and Klatsky (2017) presented a video-based system to assess freight
loading-bay demand and availability. Sun et al. (2017) have used video cameras
for monitoring local freight traffic movements with fine resolution by developing
computer-vision algorithms.

12.2.1.2 Dynamic and Mobile Data

These are data collected through sensors that move with vehicles, using devices such
as GNSS, on-board diagnostics (OBD), or similar telematics. GPS data are often
collected by companies for monitoring their vehicles. One of the most widely known
truck GPS datasets is published by the American Transportation Research Institute
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(ATRI). This dataset considerably contributes to freight research in the USA and has
been used for multiple purposes, including the development of truck route-choice
data (Kamali 2015) and the generation of statewide freight-truck flows (Zanjani
2014). It is often fused with other datasets because, despite its large size, it lacks
details on commodities carried or trip purposes (Eluru et al. 2018). An alternative
to data fusion is to complement GPS tracking with surveys, which will be discussed
later in this chapter.

12.2.1.3 Survey Data

Data can also be collected through surveys that target drivers, fleetmanagers, orware-
house employees, among others. There are various designs of freight surveys. Freight
survey design and its applications are summarized by Allen et al. (2012), covering
establishment surveys, vehicle observation surveys, parking surveys, driver surveys,
commodity-flow surveys, roadside-interview surveys, and other surveys. Cheah et al.
(2017) provided a literature review focused on commodity and establishment-based
freight surveys.

12.2.1.4 Indirect Data

This refers to data from sources that are not designed to inform freight models or
derive freight-related insights, but could be used for such purposes. Some sources of
Big Data would fit this category.

A challenge for freight-transportation data collection is that a single method only
allows for a partial view of the urban freight distribution system, as indicated by
Holguín-Veras and Jaller (2013). The same authors also detailed the strengths and
weaknesses of several of the data-collection methods. Some of the above-mentioned
surveys have leveraged novel technologies, although not to a great extent. Despite a
greater number of freight data-collection efforts taking place, several surveys are still
paper-based, although Web-based surveys reduce the burden of data entry and asso-
ciated errors and are becoming more common (e.g., the Lisbon Establishment-based
Freight survey described by Alho and de Abreu e Silva 2015). A major challenge
lies in the fact that user-reported data are prone to inaccuracies as respondents often
need to recall past activities. Furthermore, the aforementioned high-resolution data
needed for modeling and simulation purposes can easily lead to extensive surveys
which respondents might not be willing to fill in. Jeong et al. (2016) highlighted
the challenges of ensuring sufficient participation to achieve a meaningful sample
size, based on the experience of pairing a Web-based fleet manager survey and a
smartphone app-based driver survey to pilot a preliminary design for the California
Vehicle Inventory and Use Survey (CAL-VIUS).

In summary, we found three main research thrusts in freight data collection that
call for greater attention. First, the innovative use of technology, including sensing
technologies, as a means to reduce user burden requires further advances. Second, as
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it is challenging to recruit participants for freight surveys, there is a need to design
incentivemethods that can effectively increase response rate and encourage long-term
participation. Some of these efforts have been piloted in household travel surveys
(Nahmias-Biran et al. 2018) and are related to informational incentives, which can
complement or be alternatives to monetary incentives. Third, new and alternative
data sources have to be explored. Ludlow and Sakhrani (2017), present a report
(NCFRP 49—NewSource of Freight Data for Urban andMetropolitanMobility) that
focuses on new data sources to address urban and metropolitan freight challenges.
The highlighted novel and potentially useful data sources include crowdsourced
data, road and vehicle sensors (Bluetooth, RFID, connected vehicles), vehicle data
streams, or image data (such as satellite-based). The FMS platform aims to address
these three research areas and is a flexible and comprehensive behavioral laboratory
for freight data collection.

12.2.2 FMS Architecture

Future mobility sensing (FMS) is a data-collection and visualization platform that
leverages mobile sensing technology, machine-learning algorithms, and user verifi-
cation to provide details of mobility behavior of passengers or freight. It was first
developed as a smartphone-based automated household travel survey system. In a
second iteration, it was extended to support commodity-flow surveys and track freight
and commercial vehicles (FMS-Freight). FMS-Freight collects and processes survey
data frombusiness establishments related to the role(s) they play in goodsmovements
(shipping, receiving, and transporting), associated shipments, and vehicle operations,
and it also collects trip information from the drivers. FMSconsists of the three distinct
but interconnected components illustrated in Fig. 12.1:

• A mobile app and tracking devices that leverage various sensing technologies;

Fig. 12.1 Future mobility sensing (FMS) platform architecture
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• A backend consisting of a server system with (a) a database and (b) custom
algorithms to infer stops, trip purposes, and other trip details, to reduce user
burden; and

• User interfaces, both mobile and Web-based, used for verification of activities
by respondents and displaying summarized information (e.g., a dashboard as
described by You et al. 2018).

WhenFMS is used to support freight data collection, the details of each component
are as follows.

12.2.2.1 Mobile App/Tracking Devices

FMS-Freight supports the collection of rawdata fromvariousmobile sensing devices,
such as tablets, GPS loggers, and OBD devices. GPS loggers and OBD devices are
primary tools to collect data. Data are gathered from several sensors and uploaded
to the backend for analysis. These devices can be easily installed and attached,
respectively, to vehicles and shipments, and can collect location information with
high accuracy. In the case of collecting vehicle trajectory data, the use of the vehicle
battery to power the device allows for uninterrupted multi-day data collection.

12.2.2.2 Backend

Backend machine-learning algorithms process collected raw data together with the
user-verified timeline (i.e., records of activities, verified through user interfaces
detailed below) and contextual information (e.g., POI data) to infer stops and stop
activities (Zhao et al. 2015). For shipment tracking, travel modes are also detected,
which can be used to further reduce the user’s verification burden. Verified data
are fused and post-processed to support the identification of vehicle and shipment
patterns.

12.2.2.3 User Interfaces

User-friendly interfaces on both tablet and Web applications allow a user to review
and verify her or his timeline and activities. Daily verification includes confirming
inferred information and fillingmissing information (i.e., activities, commodity type)
as illustrated inFig. 12.2. Thedata verifiedby the user are subsequently used to further
train the algorithms for inferences. Moreover, the interface allows for the generation
of a summary of activities in a dashboard for a user to review. An example of a
shipment trace is presented in Fig. 12.3.
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Fig. 12.2 FMS-freight stop verification interface for drivers

Fig. 12.3 Shipment dashboard, a form of informational incentive

12.2.3 Applications

FMS-Freight can be used to support applications ranging from truck-driver surveys,
shipment-tracking surveys, or full-fledged integrated commodity-flow surveys
(CFS). The survey process for integrated CFS is shown in Fig. 12.4, which consists
of three steps: first, registration and pre-survey for establishment and driver infor-
mation; second, shipment and freight-vehicle tracking; and lastly verification of
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General Business Info.

Shipper questionnaire Carrier questionnaireReceiver questionnaire

Tag Shipments

Shipment Timelines Driver Timelines

Track Vehicles

Driver pre-survey

Phase 1
Registration & pre-survey

Phase 2
Tracking

Phase 3
Verification

Fig. 12.4 Integrated commodity-flow survey process

inferred activities based on the tracking data. The tracking and verification steps are
an iterative process that can span days or weeks depending on the survey needs.

While being continuously developed and enhanced, the FMS-Freight platform
has so far been employed in the following pilots:

• A GPS-based inter-city truck-driver survey, which includes tracking, verification
and stated preferences survey on driver routing behavior (Ben-Akiva et al. 2016).

• A large-scale GPS-based vehicle tracking and driver-activity survey to a sample
of season parking ticket holders of the Urban Redevelopment Authority heavy
vehicle parks to understand movements and parking patterns (Alho et al. 2018).

• A pilot of a commodity-flow survey in Singapore (Cheah et al. 2017), which
is being followed by a larger deployment, to understand commodity flows and
associated business characteristics.

• A shipment-tracking pilot in the USA and Singapore to gain additional under-
standing of the supply chain structures that shipments go through.

12.3 SimMobility, a Simulation Laboratory

12.3.1 Background

Simulationmodels have been developed and used tomeet analytical and policy needs
in city planning for decades.Regarding transportation, themodels that simulate traffic
flows are used to predict the future transportation environment and evaluate tech-
nology and the impacts of policy measures, providing the basis for policy decisions.
With the increasing need for models that are able to handle a variety of technology
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and policy changes, the past few decades saw remarkable progress in the capability of
transportation simulation tools. Classical aggregate models are being replaced with
disaggregate, agent-based models. These novel simulation tools capture the complex
mechanism of decisions associated with the movements of passenger and goods. As
such, they enable the use of simulations to support the analysis of land-use and trans-
portation systems changes, infrastructure management (e.g. dynamic road pricing),
and emerging mobility services (e.g., shared and on-demand vehicles) among others.

The above-mentioned trend also applies to urban freight models for which
advanced frameworks were proposed around 2000 and after. A number of agent-
based urban freight models, which take into account behavioral mechanics in supply
chain and logistics operations, have been proposed as alternatives to traditional
aggregate commodity- or truck-based models (Chow et al. 2010). Those models
simulate the decisions and behaviors of different agents, such as shippers, receivers,
carriers (including drivers), and policymakers, and their interactions for commodity
flows, logistics and transportation services, and transportation infrastructure usage
(Boerkamps et al. 2000; Wisetjindawat et al. 2005; Fischer et al. 2005; Roorda
et al. 2010). The resultant improvement of the granularity in decisions and behav-
iors allows a model to capture the inter-relations among them in a reasonable and
reliable manner. The increase in data availability for specific regions and the advent
of new data-science techniques further promote the development and application
of disaggregate models, which, by their nature, require extensive data inputs. Thus,
the potential for using them in real-world planning practices has been increasing.
However, at a global level, a shortage of suitable data hampers the widespread appli-
cations of such models. In the USA, agent-based freight models were developed
for some metropolitan regions, including the Chicago region (Outwater et al. 2013;
RSG 2015) and the Arizona Sun Corridor Megaregion (Livshits et al. 2018). One
example of this type of model is SimMobility (Adnan et al. 2016), an open-source
urban simulation platform developed by the Singapore-MIT Alliance for Research
and Technology (SMART) and the Intelligent Transportation Systems (ITS) Lab
at Massachusetts Institute of Technology. Targeting urban freight modeling, a set
of SimMobility components was estimated and calibrated for Singapore. This set of
components adds the capability of simulating goodsmovements across supply chains,
as well as agents’ reactions to freight-focused policies. Examples of the latter are
route restrictions, urban consolidation schemes, off-hour deliveries, and overnight,
pickup, and delivery parking choices. We provide an overview of the simulation tool
in this section. The details of the tool, including model specifications, are available
in the paper by Sakai et al. (2019).

12.3.2 SimMobility Architecture

SimMobility is an agent-based simulation platform consisting of models for land-
use changes and passenger and goods movements at the metropolitan scale. The
simulations in SimMobility are fully disaggregated and maintain the consistency of
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agents. In SimMobility, three temporal layers are considered (Fig. 12.5): long-term
(LT), mid-term (MT), and short-term (ST). The LT model covers the components of
urban simulation, such as residential and firm locations, school and work locations,
vehicle ownership, and parking locations, as well as business relationships among
firms. The MTmodel, on the other hand, simulates activities of individuals, logistics
operations, and vehicle and transportation-system operations at the daily level. The
short-term (ST)model is amicroscopic simulator for themovements of agents within
a day. The different modules share a single database which maintains the data about
agents, land use, transportation, and activities, enabling data exchange across the
modules. Thefine-resolution simulations also allow for keeping track of the behaviors
of individual agents, or of knowing specifically on which vehicle a shipment was
loaded.

1
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Land development and 

location choices

ESTABLISHMENTS
Commodity flows and 

logistics network formation

TRAVELERS
Daily activity and 
mobility patterns
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vehicle operations
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Freight and Travelers Tours 
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Fleet Operations Decisions

Accessibility measures
Supply Chain 

Performance measures

Detailed
Performance
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(Network, Logistics )

Fig. 12.5 SimMobility framework
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To date, the platform has been deployed for the Greater Boston area, the Balti-
more region, and Singapore as well as several prototypical cities. The freight models
are currently estimated for Singapore. Further details of different components of
SimMobility are available in the literature (Adnan et al. 2016; Zhu et al. 2018; Lu
et al. 2015; Azevedo et al. 2017). The models incorporated in SimMobility were
developed using a variety of datasets, including those obtained from FMS.

The set of components for freight simulation, termed the freight simulator here-
after, was designed for advancing the state of the art in urban freight modeling prac-
tices. It should be noted that the freight simulator is integrated with other components
in SimMobility, sharing somemodules, such asmicro- andmeso-scale traffic simula-
tors, as well as taking inputs with passenger simulation. Figure 12.6 shows the main
modules of the freight simulator, which follow the above-mentioned three temporal
layers. The LTmodel simulates commodity contracts, which define commodity flows
(i.e., selling and purchasing policies), and overnight parking choices for freight vehi-
cles. The MT model simulates pre-day logistics planning and within-day vehicle
operations, translating commodity flows to vehicle operations and behaviors, and
subsequently to transport-network conditions. Lastly, the ST model simulates the
behaviors of agents at an increased level of detail, particularly regarding driver
behaviors, using car-following and lane-changing models. Each module, excluding
the ST model, is briefly described below. A detailed description of the ST model, the
microscopic traffic simulator, is available by Azevedo et al. (2017).

Commodity Contract
Overnight parking choice 

for goods vehicle

Pre-day logistics planning

Within-day vehicle operations

• Freight generation
• Shipper selection
• Shipment size/

frequency choice

• Carrier selection
• Vehicle operations planning
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Mid-term

Short-term
Microscopic traffic simulation

Database
• Agents
• Land use
• Transportation
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Commodity Contract
•
•
•

•
•

•
•

•
•
•
•

Fig. 12.6 Major components of the freight simulator
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In freight simulations, business establishments play a key role.An establishment is
characterized by location, employment and floor sizes, function, and industry. Estab-
lishments can play multiple roles, being able to behave as a receiver (or consumer),
a shipper (or supplier), and a carrier (or a third-party logistics service provider).
Commodity contracts and logistics planning are associated with establishment-
level decisions. As for the application in Singapore, the synthetic population of
establishments was developed based on various business statistics (Le et al. 2016).

12.3.2.1 Commodity Contract Estimation (LT Model)

Commodity contracts define selling and purchasing policies and are the basis of
the commodity flows between establishments. Each commodity contract specifies
shipper and receiver locations, commodity type, amount of goods, and shipment size
and frequency. The commodity contract estimation is composed of three separate
steps: (1) freight generation, (2) shipper selection, and (3) size and frequency choice
(Fig. 12.7). Freight generation starts with identifying whether each establishment is
a shipper or receiver, using a logit model. Then, multinomial logit models simulate
the selection of commodity types for outbound and inbound shipments. Finally,

Shipper selection

Contract-based demand

Establishments
(employment, floor area, function, industry) 

Shipper/receiver 
identification

Outbound 
commodity 

type

Production 
(Quantity-weight)

Inbound 
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(Quantity-weight)

Shipment size 
& order frequency
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(receiver & shipper, commodity type, size/frequency)

Freight 
Generation 

Shipper 
Selection

Size & 
Frequency

Fig. 12.7 Flow of the commodity contract estimation
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the quantities of production and consumption, which are quantities shipped and
received, respectively, for a certain time period, are determined using linear models.
In the following step—shipper selection—the estimated consumptions are used to
generate contract-based demands. Each contract-based demand requires a single
shipper (supplier), and each contract is made for a single receiver–shipper pair. A
receiver can make one or more contracts with shippers. Logit mixture models with
error components simulate shipper selection, considering the correlations among the
alternative shippers with the same distribution channel type (Sakai et al. 2018). In
the third step, linear models estimate shipment size and order frequency based on
factors associated with the volume of goods, and transportation and inventory costs.

12.3.2.2 Overnight Parking Choice (LT Model)

Overnight parking choice is considered a long-term decision. We simulate the deci-
sions of vehicle owners to assign parking lots for freight vehicles using multino-
mial logit models, using freight-vehicle population and overnight parking supply
for freight vehicles as inputs. This module enables the simulations to evaluate the
impacts of parking supply policies and to define their starting and end point of daily
trips.

12.3.2.3 Pre-day Logistics Planning (MT Model)

Logistics planning processes convert shipment demand into vehicle-operation plans
(VOPs). The VOPs define trips or tours of vehicles to be performed in a given day,
including details about stop locations and the purposes (e.g., delivery of a specific
shipment) and duration of stops. The logistics planning process has sub-modules
for carrier selection and vehicle-operation planning, both of which are rule-based. A
carrier is assigned to each shipment based on the distances from the shipment origin
to potential carriers (i.e., transportation service providers), subject to their transport
capacities. Vehicle-operation planning simulates the process of assigning shipments
to vehicles as well as determining the orders of pickups and deliveries. In this sub-
module, a custom algorithm is applied to consolidate shipments and estimate stop
duration for pickups and deliveries in a realistic manner.

12.3.2.4 Within-Day Vehicle Operations (MT Model)

VOPs are used as inputs for simulating vehicle operations and network trafficwithin a
given day.Multinomial logit models simulate route choices for trips (i.e., movements
from one location to another) based on route attributes, and driver and vehicle charac-
teristics. Furthermore, another set of multinomial logit models simulates pickup and
delivery parking choices considering cost, capacity, and congestion of parking facili-
ties near the stop points (i.e., the activity locations), subject to parking-infrastructure
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data availability. Amesoscopic traffic simulation is run jointly with these simulations
while updating network conditions.

12.3.2.5 Visualization of Outputs

The freight simulator runs at a metropolitan scale, which allows the measurement of
the impacts of policies, technologies, or other system-related changes. Figures 12.8
and 12.9 show the examples of outputs from the LT and MT models, respectively. It
should be noted that these figures are made only for illustrative purposes using a test
data set and are not representative of the predicted flows. Figure 12.8 covers industry-
to-industry and zone-to-zone commodity flows and overnight parking locations of
freight vehicles. Figure 12.9 includes delivery locations by freight vehicles, durations
of vehicle usage in VOPs, and network traffic volume.

12.3.3 Applications

SimMobility supports the evaluation of awide range of policies, from long-term land-
use development plans to short-term parking-infrastructure operations. A series of
urban freight case studies have been conducted for policy analysis purposes, with
others being designed, including:

• Land-use changes, specifically those related to new industrial development as
well as regulatory policies designed to mitigate negative impacts;

• Overnight parking-infrastructure supply policies (Gopalakrishnan et al. 2019);
• Urban consolidation policies involving participation by shippers, carriers, and

receivers;
• Regulations to promote off-hour deliveries; and
• Route restrictions for goods vehicles.

12.4 Demonstrations

The two laboratories have been used jointly to advance the state of the art in behav-
ioral modeling and simulation. We provide three cases demonstrating such joint use,
focusingon their complementarity rather than the applications of the tool for decision-
making processes, which is the subject of other publications (e.g., Gopalakrishnan
et al. 2019).

The first case is the estimation of freight route-choice models, the second is
the quantification of the performance of freight models (applied to vehicle tour
formation models), and the third is the replication of freight and non-freight-vehicle
tours for specific vehicular operation patterns that are not captured by conventional
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Fig. 12.8 Illustrative outputs from the long-term model
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Fig. 12.9 Illustrative outputs from the mid-term model
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demand models. More details about these applications can be found in the following
references: Toledo et al. (2018),Alho et al. (2019b), andGopalakrishnan et al. (2019).

12.4.1 Freight-Vehicle Route-Choice Model

The first application is the estimation of a freight-vehicle route-choice model. The
route-choice decision of freight-vehicle drivers differs from that of passenger-vehicle
drivers in terms of higher sensitivity to traffic conditions, and greater heterogeneity
among driver types and associated commodity attributes, among other factors. The
first step was to develop a truck-driver survey using FMS-Freight, which was
conducted in the USA (Ben-Akiva et al. 2016). The survey collected user-annotated
GPS data and characteristics of operational practices, vehicles, and drivers. A multi-
nomial logitmodelwas estimated using the dataset and applied to simulate thewithin-
day route choice of drivers in SimMobility using the mid-term model. Explanatory
variables include (1) traffic network attributes, which are generated by the supply
simulation (e.g., travel time) or stored in the SimMobility database (e.g., road class,
distance); and (2) characteristics of the driver and the vehicle, which are generated
in the SimMobility long-term model. The model takes the value of explanatory vari-
ables as inputs and predicts the route between a given set of OD pairs with a Monte
Carlo procedure. Figure 12.10 illustrates how the data collected using FMS-Freight
are used to develop a freight route-choice model and how the model is applied in
SimMobility.
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Fig. 12.10 Data and model flow for freight-vehicle route choice
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12.4.2 Quantification of Model Performance

The second case is the application of the laboratories to explore the research ques-
tion: What is the value of using additional data and more sophisticated model formu-
lations? We targeted the research question specifically at vehicle-operation plan-
ning, which generates tours in the freight simulator, and used data collected using
FMS-Freight to compare the model formulations’ outputs against observed truck
flows. We evaluate discrepancies in zone-to-zone flows, realizing that some of the
proposed methods applied in SimMobility achieve superior performance against
state-of-the-practice methods. The process of integrating the data between both
laboratories is summarized in Fig. 12.11. In broad terms, verified vehicle stops are
associated with specific vehicle tours. Further details on the algorithms that can be
used for this purpose can be found in papers by Alho et al. (2019a, b). Once tours
are identified, specific tour-types allow commodity flows to be estimated (Alho et al.
2018). These commodity flows are used as an input to the SimMobility mid-term
logistics planning model. By varying the formulation of this model, different vehicle
OD flows are generated, which can then be compared with the original OD flows
revealed from the data to assess model performance in replicating such flows.
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Planning model

Predicted vehicle 
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Observed vehicle 
OD flows (FAS)

Raw GPS data StopsStop detection 
algorithm
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Fig. 12.11 Data and model flow for model performance quantification
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12.4.3 Replication of Specific Freight
and Non-Freight-Vehicle Tours

The final selected application is related to the replication of specific freight and non-
freight-vehicle tours. The research team has performed a case-study in Singapore
where simulation was used to assess a hypothetical scenario of overnight parking-
infrastructure re-organization, and associated tours performance. If the overnight
parking infrastructure and the assignment of vehicles to it are optimized, this can
contribute to reducing empty travel, and reducing traffic congestion and air pollution.
For this purpose, vehicle trips to and from overnight parking locations had to be
replicated. Since the overnight parking lots are not only occupied by conventional
freight vehicles, but also by private buses (on-demand, for use by companies, tourism,
among other uses) and service vehicles (e.g., some construction vehicles such as
cranes), there was a need to replicate the tours of both these vehicle and operation
types. It should be noted that demandmodels for these vehicle and operation types are
commonly estimated as OD matrices and not at a level of detail we required for our
simulations. Thus, the approach illustrated in Fig. 12.12 was applied. This required
expanding the sampled tours to the relevant vehicle populations of subscribers of the
overnight parking lots.
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Fig. 12.12 Data and model flow for sample replication of tours of specific vehicle types
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12.5 Concluding Remarks

Urban freight data-collection and modeling techniques are currently portrayed at a
transition point. Meersman and Van de Voorde (2019) question whether past and
current data-collection methods are suitable to inform current and future modeling
needs. For all we know, the evolution of methods is predominantly incremental. We
put forward that laboratories such as those demonstrated in this chapter are key to
the assessment of new approaches to data collection and modeling, including a quan-
titative assessment of the alternative’s performance against the prior. Furthermore,
we demonstrate that the research progress in either data collection, or modeling and
simulation, can be augmented by coordinated use of their capabilities.

The pace of change in urban freight transport appears to grow faster, and with
critical implications to the relevance of freight models in assessing technological and
policy impacts. This calls for further attention to the representation of relevant agents
in the urban freight system in simulations, as well as their behaviors and interactions.
For the latter cases, the role of sensing technologies is key to reducing survey fatigue
and allowing for lengthier and deeper data-collection efforts.
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Chapter 13
Urban Risks and Resilience

Susan L. Cutter

Abstract The resilience concept has become more significant in the past decade as
a means for understanding how cities prepare and plan for, absorb, recover from, and
more successfully adapt to adverse events. Definitional differences—resilience as
an outcome or end-point versus resilience as a process of building capacity—domi-
nate the literature. Lagging behind are efforts to systematically measure resilience
to produce a baseline and subsequent monitoring, in order to gauge what, where,
and how intervention or mitigation strategies would strengthen or weaken urban
resilience. The chapter reviews research and practitioner attempts to develop urban
informatics for resilience and provides selected case studies of cities as exemplars.

13.1 Introduction

Disaster risks are increasing and becoming more pronounced in urban areas as popu-
lations increase and migrate to cities, turning them into megacities, and ultimately
megaregions. Whether originating from natural forces such as hurricane-produced
flooding (Houston), hurricanes (San Juan), wildfires (Los Angeles), earthquakes
(Mexico City), or anthropogenic sources like unhealthy air pollution days (New
Delhi), or the more insidious slow-onset events such as sea-level rise with increased
“blue sky” coastal flooding (Jakarta), the health, safety, and welfare of urban resi-
dents is clearly at risk. In a world that is rapidly urbanizing, where more than 70% of
the global population will live in cities by 2050, the nature and significance of urban
disaster risk has garnered attention in research, policy, and practice. The looming
question is how can urban informatics assist in the reduction of such disaster risks,
and equally enhance resilience to them?

The need to reduce disaster risk in cities roared into public consciousness in 2010
when two violent earthquakes struck Port-au-Prince, Haiti (7.0Mw) and Concepcion,
Chile (8.8Mw) within six weeks of each other. The impacts were catastrophic but
unequal:more than 316,000 estimated lives lost inHaiti compared to 520 inChile, and
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$30 billion in damages in Chile compared to the $14 billion in Haiti (Table 13.1).
Such disparities in earthquake impacts reflected the pre-existing vulnerabilities in
both places and broughtmore attention and pressure to address disaster risk reduction
in cities (International Federation of Red Cross and Red Crescent Societies 2010). In
many urban areas where poor-quality, overcrowded housing, and basic infrastructure
and services are insufficient to protect people from harm, health hazards such as
cholera or an infectious disease outbreak, an extreme environmental condition like
a heat wave or harmful or unhealthy air pollution episode becomes more deadly.
Reducing disaster risk, especially in urban areas, has become the rallying call for civil

Table 13.1 Selected urban disasters 2010–2018

Date Urban area Event Deaths Damagea

2010 Japan cities Heat wave 1718

Port-au-Prince, Haiti Earthquake 316,000 ~$14b

Concepcion, Chile Earthquake/tsunami 520 $30b

2011 Bangkok, Thailand Flooding 815 $32b

Christchurch, New Zealand Earthquake 185 $24b

Tohoku, Japan Earthquake/tsunami 20,000 $211b

Rio de Janeiro, Brazil Flooding/landslides 900 $1.2b

Mindanao Island, Philippines Tropical Storm Washi
(Sendong)

1300 <$1b

2012 New York City Hurricane Sandy 44 $71.4b

Ibadan and Lagos, Nigeria Flooding 363 $7.2b

2013 Tacloban and Cebu City,
Philippines

Typhoon Haiyan (Super
Typhoon Yolanda)

7300 $10b

Passau, Magdeburg, Halle, and
Wittenberge, Germany

Flooding 9 $13b

2015 Southern India Heat wave 2500

Southern Pakistan Heat wave 2000

Katmandu, Nepal Earthquake 9000 $10b

2016 Kunamoto, Japan Earthquake 205 $32b

2017 Houston Hurricane Harvey 103 $125b

San Juan, Puerto Rico Hurricane Maria 4475 $90b

Puebla, Mexico Earthquake 369 $6b

2018 Palu, Sulawesi, Indonesia Earthquake/tsunami 4340 <$1b

Southern California Wildfires 3 $5.2b

Denver, Dallas–Ft. Worth Hail storms $3.6b

Osaka, Japan Super Typhoon Jebi 11 $15b

aEstimates of deaths and economic damage (in US$ billions) vary widely depending on the source
and when the estimation was done. They illustrate the magnitude of the events, but are not definitive
of the real loss or damage. Information is compiled from a variety of Internet sources
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society globally in the second decade of the twenty-first century. One of the avenues
for reducing risk is to increase the resilience of cities to absorb and withstand the
everyday stressors and occasional shocks that lead to disastrous outcomes (Rodin
2014). The foundation for increasing resilience is the creation and application of
relevant information and data for assessment and monitoring.

The resilience concept is not new (Alexander 2013), but has gained currency in the
past two decades as a means for understanding how communities prepare for, absorb,
recover from, and successfully adapt to stressors or adverse events. There aremultiple
disciplines engaged in conceptualizing resilience andmethods for operationalizing it
that run the gamut from descriptive to normative to analytical approaches (Meerow
et al. 2016). The units of analysis are equally variable ranging from individuals
(person, building, bridge) to functional groups (households, economic sector) or
social groups (elderly) to systems (ecosystem, infrastructure, community) (Cutter
2016a). A community or a city functions as a system of systems where resilience is
measureablewithin individual systems (e.g., governance, environment, financial) and
in the interactions and interdependencies between and among systems. In this respect,
cities operate as complex adaptive systems. Given the multiple, and often conflicting
meanings of resilience, the objects of study, and the types of resilience examined
(social, economic, etc.), application tensions arise between policy discourses and
local actions.

Ultimately, however, the development of strategies for enhancing resilience in
urban places requires three sets of information: (1) the existing and potential vulner-
abilities and exposures to risks and hazards; (2) the inherent resilience or capacity
to cope with such risks; and (3) empirical measurements, in order to gauge what,
where, and how intervention or mitigation strategies would strengthen or weaken
resilience. The chapter reviews research and practitioner attempts to develop urban
informatics for resilience during the past decade.

13.2 Risks, Exposure, and Vulnerability

There are a variety of social and environmental trends from local to global scales
contributing to increasing disaster risk and vulnerability (Ismail-Zadeh et al. 2017;
UNOffice for Disaster Risk Reduction 2019). This is partly a function of the ongoing
global patterns of urbanization not only in the world’s megacities, but also in small to
mid-sized cities. Infrastructure assets in hazard-prone coastal and riverine areas create
more physical exposure with potentially catastrophic economic damage because of
the changing frequency in weather extremes and sea-level rise due to climate change
(Wong et al. 2014). Another process affecting increasing exposure is globalization
and economic interdependencies, whereby production and consumption activities are
no longer locally or regionally constrained, but occur within a larger global economic
system. The juxtaposition of economic globalization with climate change produces
the double exposure of impacts across regions, social groups, or sectors (Leichenko
and O’Brien 2008).
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Along with increasing risk exposure, there is also growing population vulnera-
bility. As income and wealth gaps widen between and within urban areas, the most
disadvantaged bear most of the risk burdens. These often relate to lack of locational
choice, whereby formal and informal housing locates in high-risk areas such and
floodplains, low-lying coastal areas subject to tidal inundation, or on steep slopes
subject to failure. In many cases, the settlements lack basic municipal services such
as potable water, sanitation, and power, which in turn generate additional public
health risks such as diarrhea, cholera, typhoid, or asthma from indoor pollutants
from open-fire cooking.

As the demographic profiles of urban areas change, many cities inWestern Europe
and the USA are seeing increased levels of dependent social groups, especially the
elderly and immigrant populations. The elderly in western cities live on fixed retire-
ment incomes, with fewer and fewer living in multi-generational homes. Elderly
persons living alone become more socially isolated and suffer daily stressors related
tomedical disabilities, limitedmobility, limited financial resources, and fear of crime.
When a shock occurs such as a heat wave, mortality among this vulnerable cohort is
especially high, leading to further inequalities in risk impacts (Fleming et al. 2018;
Klinenberg 2002).

The escalation of risk exposure and vulnerability in urban areas is also a function
of the variability in coping capacities and resilience, the latter of particular concern
for small to mid-sized cities (Birkmann et al. 2016). Strong governance structures,
political, and social engagement by stakeholders, and understanding of cities as
interdependent systems of systems all influence coping capacities (the term used in
hazards and disasters) or adaptive capacities (the term preferred in climate change
research) in either negative or positive ways (Cutter et al. 2008). Equally influen-
tial are culture, institutions, infrastructure, technology, collective action, historical
experience, environmental quality, and planning (e.g., growth management, climate
change, hazard mitigation) (Carter et al. 2015).

The social transformations that are taking place globally occur within the context
of hazard extremes from not only climate-sensitive hazards, but equally from
geophysical events. Table 13.1 provides a sampling of these singular events (shocks)
in terms of death tolls and economic damage associated with urban disasters in the
past decade. While the periodicity of geophysical hazards is uncertain, it is clear
that weather-related extremes are increasing globally, affecting many of the world’s
urban areas. Declining air quality, water scarcity, and food insecurity are everyday
stressors, which compound the impacts of the shocks, but also serve to reduce the
coping capacity when such shocks do occur.

13.3 Urban Resilience and Capacities

As complex adaptive systems with social, infrastructural, and ecological networks,
cities are a particular focus for resilience research given their scale, spatial form,
and overlapping governance structures. While definitions of urban resilience abound
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based on disciplinary and theoretical orientation, this chapter defines urban resilience
in its simplest form as “… the ability of a city or urban system to withstand a wide
array of shocks and stresses” (Leichenko 2011, p. 164). Definitions and the range of
approaches to urban resilience are as varied as the interdisciplinary schools of thought
involved, ranging fromsocio-ecological systems, to engineering, to ecology, to public
health. Despite nuanced differences, there is consistency among the perspectives in
terms of fostering positive social change, leading to longer-term sustainability, in
other words moving forward to what could be, not bouncing back to what was.

13.3.1 The Definitional Quagmire

The exponential growth in urban resilience research began in earnest in the early
twenty-first century. According to bibliometric analyses of the academic literature
(Meerow andNewell 2019;Meerow et al. 2016;Moser et al. 2019; Nunes et al. 2019;
Wang et al. 2018), studies were primarily focused on definitions, characterizations,
unpacking of a number of conceptual tensions, and theoretical inconsistencies in the
literature. Among these are resilience as an equilibrium or non-equilibrium state;
resilience as a positive construct (e.g., return to normal); resilience as a system trait,
outcome, or process; pathways for achieving a resilient state (persistence, transition,
transformation); adaptation versus adaptability; and timescale (rapid or slow).

Resilience resonates among a wide array of disciplines and stakeholders precisely
because it is a descriptively flexible term that enables different parties to adapt the
term for their own usage, or what is often termed a boundary object (Brand and
Jax 2007). It also projects a positive action (becoming resilient) rather than its affil-
iate (reducing vulnerability), recognizing that vulnerability and resilience are not
the opposite of one another—just because an individual, group, or system is vulner-
able does not mean that it lacks resilience (Cutter 2018). The definitional quagmire
presents both opportunities and constraints. The opportunities are the flexible defini-
tions, as well as a robust academic discourse on terminology and philosophy, which
has permeated the literature in the past decade. The constraints include an inability
to move beyond the semantics into measurement, let alone into policy and prac-
tice. As it now stands, there is little integration in the research literature within the
social sciences on resilience (based on climate change adaptation versus disaster risk
reduction fields), let alone integration among disciplinary perspectives (engineering,
health, ecology, social sciences) even when working with the same unit of analysis
(a city).
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13.3.2 Objects of Analysis

During the past decade, much of the urban resilience literature focused on climate
change, urban ecological systems, and disasters with specific threats (floods, earth-
quakes) as stressors. There were relatively few examples of integrated urban system
resilience. Instead, the literature remained stove-piped by discipline into three main
types (or schools of thought) of urban resilience: ecological resilience, engineering
resilience, and socio-ecological resilience. Focusing on the dynamics of ecolog-
ical processes and patterns within cities, ecological resilience narrowly focused on
understanding ecosystem dynamics in specific cities, making broader comparisons
and generalizations across cities difficult. For example, much has been learned from
the program of long-term ecological research in urban areas (LTER sites in Balti-
more and Phoenix) in the USA. This includes the role of urban ecosystem services in
resilience (McPhearson et al. 2015), and the increasing prevalence of green infras-
tructure (integration of ecology and urban design) as a mechanism for increasing
urban resilience (Childers et al. 2015). Particularly, in the urban realm, convergence
of urban ecology and socio-ecological perspectives in recognizing cites as complex
and dynamic systems subject to natural and anthropogenic agents of change from
local to global scales (Grimm et al. 2008; McPhearson et al. 2016) has prompted
new research approaches and measurements for analyzing the ecology of cities.

Engineering resilience, also termed equilibrium or functional resilience, conveys
intrinsic value-neutral decision making, whereby the attributes of the systems in
the resilient city are described in network performance terms: rapidity of systems
restoration; robustness to withstand damage without losing form or function; and
systems backup and redundancies (Borsekova et al. 2018; Bristow 2019; Heeks and
Ospina 2016). There were some attempts to transcend boundaries through socio-
technical studies but much of that research is either system-specific (e.g., transporta-
tion, ICT, power, or water), or asset-specific such as buildings or roads. Integration
with socio-ecological perspectives is less common, but increasing in the disasters
field.

Given the increasing normative interpretation of resilience, scholars began to
question the apolitical nature of urban resilience by asking “Resilience for whom?”
and “Resilience towhat?” (Cutter 2016b) or whatMeerow andNewell (2019) call the
“five Ws of urban resilience”—whom, what, when, where, and why. Such concerns
about equity fundamentally challenged the asset-based approaches in engineering
resilience. Resilience actions within a city shaped by contested views and differing
value sets, and furthermanipulated by unequal power and competing interests, neces-
sitate negotiated implementation strategies and planning (Borie et al. 2019; Leitner
et al. 2018; White and O’Hare 2014). Increasingly such evolutionary or transforma-
tive resilience is both dynamic and more sensitive to social conditions and change,
but also highlights the value-laden nature of urban resilience embedded within the
existing sociocultural structure of a city with its own historical identity and context
that is as variable as the cities themselves. It also becomes more difficult to assess.
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13.4 Measurement and Assessment Informatics

The definitional ambiguity of urban resilience is significant insofar as it influences its
assessment and measurement. For example, the engineering perspective focuses on
the efficiency of the built environment to resist or absorb shocks (robustness), redun-
dancies in systems to maintain functioning, and the return time for such systems
to return to normal operations—all static approaches. On the other hand, socio-
ecological frameworks presume dynamic interactive processes that learn, transform,
and adapt to new conditions in nonlinear and uncertain ways, thereby building
capacity to withstand the next shock while simultaneously maintaining both social
and ecosystem services. As many authors have recognized, resilience measurement
is in its nascent state, whereby resilience policy is further ahead than the science of
resilience assessment and measurement (The National Academies 2012).

A number of reviews of existing resilience measurement schemes appear in the
recent literature (Asadzadeh et al. 2017; Beccari 2016; Brown et al. 2018; Cai et al.
2018; Ostadtaghizadeh et al. 2015; Rus et al. 2018; Sharifi 2016; The National
Academies of Sciences, Engineering and Medicine 2019). Many of these are not
specific to urban resilience, but instead focus more broadly on community resilience
and resilience to climate change or natural hazards. Evaluation or assessments of
resilience generally include one of the following: measuring baselines, measuring
initiatives against accepted definitions or pre-determined indicators, or measuring
resilience compared to achieving project or program goals (Brown et al. 2018).

As described in these reviews,many of themeasurement efforts aremesoscale top-
down quantitative efforts employing secondary data collected by governmental agen-
cies, to produce an empirically-based view of resilience characteristics and drivers
at metropolitan, county, or community scales. Many studies use indexing proce-
dures with weighted or unweighted composite indices to derive a value for the entire
enumeration unit, arguing that such a baseline or screening approach (pre-stressor or
impact) is an important starting point for subsequent measurement and policy inter-
vention (Cutter et al. 2014, 2016; Cutter and Derakhshan 2018; González et al. 2018;
Harwell et al. 2019). A slightly different conceptual orientation by Kammouh et al.
(2019) added additional interdependency matrices to their indicator-based approach
and then tested it on a post-event case study of 1989s Loma Prieta earthquake.
Many of the composite indices referenced above employ geospatial analytics in their
construction and visualization of results.

The non-indexing methods incorporate fragility analyses (Barría et al. 2019),
graph theory and network analytics (in spatial and non-spatial forms; Bristow
2019; Sharifi 2019), and agent-based modeling and simulations (Kanno et al. 2019;
Moghadas et al. 2019). Locally based approaches such as those of Eisenman et al.
(2014) and Plough et al. (2013) use pre-and post-testing of subjects to assess
resilience-building programmatic activities to enhance resilience outcomes. Lastly,
while relative few in number, the use of qualitativemethods (narratives, focus groups;
Borie et al. 2019; Huck andMonstadt 2019) are adding richness to the understanding
of bottom-up (or locally based visions) of urban resilience.
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What is surprising about the emergingfield of resiliencemeasurement is the lack of
big data andmore sophisticated and innovative geospatial methodologies. The devel-
opment of crisis informatics (Liu and Palen 2010; Palen and Anderson 2016) is now
well-established, but primarily used for emergency response such as during the 2010
Haiti earthquake or more recently in Hurricane Harvey in Houston and Hurricane
Maria in Puerto Rico. A review of remote-sensing-based proxies for urban resilience
(Ghaffarian et al. 2018) highlights the utility of reflectance of building materials and
texture as proxy indicators for resilience (wood versus reinforced concrete structures
in seismic areas, for example), or night-time lights as a proxy for economic resilience,
as was illustrated with Hurricane Maria in Puerto Rico.

There are increasing numbers of analyses employing passive citizen-sensor data
to support measurement of disaster resilience usingmobile-phone or smart-card data.
For example,Wilkin et al. (2019) suggest that the use ofmobile-phone data for social-
network analyses is one unexplored opportunity of big data. Another usage is to track
population movements post-event, which is more focused on disaster recovery than
on risks or resilience (Bengtsson et al. 2011). Experimentally, Wi-Fi signal data
has been used to estimate the location of buried people in a hypothetical building
collapse (Moon et al. 2016). The use of social-media data (with a geospatial digital
trace) is more prevalent, but again primarily focused on emergency preparedness.
Mainly used to show population movements out of mandated hurricane evacuation
zones, Twitter data was used to gauge residential compliance with evacuation orders
(Martín et al. 2017). Despite data access issues for mobile-phone data in near-real
time, and biased demographics and lack of validation of social-media data such as
Twitter, opportunities exist to use such data in better understanding urban resilience
and its visualization (Li et al. 2015; Zou et al. 2018).

13.5 Science Informs Practice and Practice Informs Science

While research on urban resilience continues its previous bifurcations into the
primary schools of thought, there is increasing convergence among them with inte-
gration between research and methods from socio-ecological and socio-technical
systems approaches, largely led by the social sciences working in conjunction with
urban ecologists and engineers. What is absent in much of the work to date is what is
called the implementation gap, or turning the science into practice, mindful of urban
governance, stakeholder engagement, and local value systems. Instead, cities have
moved forward in the resilience space, implementing strategies and projects on their
own, often devoid of any theoretical, conceptual, or methodological understanding
of differences in the academic resilience concept or orthodoxies. At the same time,
transdisciplinary science has been slow to engage practitioners in this arena as well.

One of the largest (and most well funded) of these efforts is the Rockefeller Foun-
dation’s 100 Resilient Cities project. The goal of the project was to embed resilience
into city policies, programs, and practices using a comprehensive resilience strategy.
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Recognizing that cities might be unable to do this alone, the Rockefeller Founda-
tion provided the initial funding for a resilience officer for each of the 100 cities.
The project developed standardized domains for measurement in order to eventu-
ally compare the global cities using locally generated and collected data based on a
top-down matrix of attributes provided by Rockefeller through their City Resilience
Index (Arup 2015). The identification of risks and the hazards they face, and the
pathways to reduce such exposure, provided the basis for prioritizing implementa-
tion projects for enhancing resilience. The entire process was designed to build local
capacity to withstand future shocks and stressors within the cities by the people and
institutions that were located there.

The 100 Resilient Cities effort was not without critics (Fainstein 2018; Leitner
et al. 2018). A mid-term evaluation (5 years into the program) of the experiment
in urban transformation found generally positive results in building cooperation and
adopting the prescriptive resilience strategy and in developing a peer-to-peer network
(Martín et al. 2018). Yet in 2019, the Rockefeller Foundation decided to phase out
the program, as it had grown too costly and no longer aligned with Foundation goals
(Bliss 2019).

Other communities of practice continue to work toward making cities resilient
and measuring progress toward that goal (Table 13.2). The UNDRR has more than
4200 cities participating in its Making Cities Resilient effort, starting with a list
of the ten essentials for making a city resilient. The UNDRR also supports using
the benchmark Disaster Resilient Scorecard for cities to use in resilience planning,
and monitoring progress toward the implementation of the Sendai Framework for
Disaster Risk Reduction. Similarly, the World Bank and the Global Facility for
Disaster Reduction and Recovery (GFDRR) have an urban resilience initiative. They
produced a rapid diagnostic tool to first identify sectoral resilience in cities, and then
procedures for integrating the sectors and other cross-linkages for the entire city.
The tool provides a locally based, bottom-up qualitative assessment for each city.
UNHabitat, through their city resilience profiling tool, provides a framework for data
collection and analysis to create a city profile complete with urban characteristics,
crosscutting issues, internal stressors, and expected shocks and stresses for use in
planning, what-if scenario development, and impact monitoring. Knowledge sharing
is the primary purpose of the ICLEI and US National Academies efforts (Resilient
America). Other efforts to develop specific metrics for resilient cities include the
100 Resilient Cities City Resilience Index (CRI), and ISO standardized indicators
formeasuring resilience in cities for benchmarking and comparisonswith other cities.

Some of these efforts include remote and smart sensing and citizen science
but none is as advanced as New York City’s Climate Action Plan. The current
plan includes an integrated science-stakeholder-community indicator andmonitoring
framework embodied in an operational New York City Climate Change Resilience
Indicators and Monitoring (NYCLIM) system (Rosenzweig and Solecki 2019).
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Table 13.2 Communities of practice focused on assessment and measurement of urban resilience

Group/entity Tool/program Metric URL

UN Office of Disaster Risk
Reduction (UNDRR)

Making cities resilient
campaign

https://www.unisdr.org/cam
paign/resilientcities/assets/too
lkit/documents/UNDRR_Mak
ing%20Cities%20Resilient%
20Report%202019_April2019.
pdf

Disaster resilient scorecard for
cities

https://www.preparecenter.org/
sites/default/files/unisdr_dis
aster_resilience_scorecard_
for_cities_preliminary.pdf

Global Facility for Disaster
Reduction and Recovery
(GFDRR), World Bank

Urban resilience initiative, city
strength diagnostic

https://www.worldbank.org/en/
topic/urbandevelopment/brief/
citystrength

UN Habitat City resilience profiling tool https://urbanresiliencehub.org/
wp-content/uploads/2018/02/
CRPT-Guide.pdf

European Union URBACT Resilient Europe https://urbact.eu/ready-future-
urban-resilience-practice

Rockefeller Foundation 100 resilient cities https://www.100resilientcities.
org/about-us/ and their City
Resilience Index developed by
Arup https://www.cityresilien
ceindex.org/#/resources

International Standards
Organization (ISO)

Indicators for resilient cities
(ISO 37123)

https://www.iso.org/obp/ui#
iso:std:iso:37123:dis:ed-1:
v1:en

ICLEI Resilient cities https://iclei.org/en/publication/
resilient-cities-report-2018

US National Academies Resilient America https://sites.nationalacademies.
org/PGA/resilientamerica/

Urban Land Institute Urban resilience program https://americas.uli.org/res
earch/centers-initiatives/urban-
resilience-program/

Mississippi-Alabama Sea
Grant Consortium

Climate and resilience
community of practice

https://masgc.org/climate-resili
ence-community-of-practice/
about1

Resilience Measurement
Evidence and Learning

Community of practice https://www.measuringresili
ence.org/

C40 Climate Leadership
Group

C40 cities https://www.c40.org/about

Urban Climate Change
Research Network
(UCCRN)

https://uccrn.org/what-we-do/
goals-and-activities/

(continued)

https://www.unisdr.org/campaign/resilientcities/assets/toolkit/documents/UNDRR_Making%20Cities%20Resilient%20Report%202019_April2019.pdf
https://www.preparecenter.org/sites/default/files/unisdr_disaster_resilience_scorecard_for_cities_preliminary.pdf
https://www.worldbank.org/en/topic/urbandevelopment/brief/citystrength
https://urbanresiliencehub.org/wp-content/uploads/2018/02/CRPT-Guide.pdf
https://urbact.eu/ready-future-urban-resilience-practice
https://www.100resilientcities.org/about-us/
https://www.cityresilienceindex.org/#/resources
https://www.iso.org/obp/ui#iso:std:iso:37123:dis:ed-1:v1:en
https://iclei.org/en/publication/resilient-cities-report-2018
https://sites.nationalacademies.org/PGA/resilientamerica/
https://americas.uli.org/research/centers-initiatives/urban-resilience-program/
https://masgc.org/climate-resilience-community-of-practice/about1
https://www.measuringresilience.org/
https://www.c40.org/about
https://uccrn.org/what-we-do/goals-and-activities/
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Table 13.2 (continued)

Group/entity Tool/program Metric URL

Sustainable Development
Solutions Network (SDSN)

Sustainable cities https://unsdsn.org/what-we-do/
thematic-networks/sustainable-
cities-inclusive-resilient-and-
connected/

13.6 Moving Forward

It is quite clear that the present state of knowledge is insufficient in understanding
resilience with its many forms and constructs, especially when applied communities
or more specifically cities. More attention is needed on the details of measuring and
assessing resilience (informatics), but these methodologies must advance quickly to
be of use to cities who want to enhance or build resilience. As stated earlier, the
science of resilience measurement in general, and urban resilience metrics specifi-
cally, must mature rapidly to be of any practical use to cities who are eager to move to
more resilient and sustainable pathways. Efforts to incorporatemixedmethodological
approaches that engage stakeholders and local knowledge (the so-called bottom-up
perspective) with top-down andmore quantitative approaches hold themost promise.
Similarly, locally grounded input data that serve multiple purposes (resilience indi-
cators, general plans, land-use plans, economic development, emergency plans, etc.)
is a must. Aligning city data collection and syntheses with global frameworks such
as the Sendai Framework for Disaster Risk Reduction, the Sustainable Development
Goals, the Paris Agreement on Climate Change, the World Humanitarian Summit’s
Agenda for Humanity, and Habitat III’s New Urban Agenda saves time and effort in
reporting requirements to different entities. It also creates opportunities for enhanced
data collection, as the routine parameters are already collected.

Smart cities should be able to make citizen-sensor and geospatial digital trace
data more accessible for research purposes (while protecting individual privacy) in
near-real time and at a lower cost than at present. Moving from passive to active
sensor data, including the use of remote-sensing technologies and data, is another
source of proxy data on urban risks and resilience that is underutilized.

Finally, it is incumbent upon researchers and practitioners who are interested in
urban risks and resilience to engage more widely beyond their specific and often
limited domains of interest. Not only is the urban system complex and multi-faceted,
but so too is its resilience. Knowledge across the domains and schools of thought is
important, but what is really needed given the complexity and urgency is a new way
of thinking about how to achieve urban resilience. Convergence research, spanning
beyond multi-, inter- or transdisciplinary framings, is one avenue, as long as it truly
integrates societally relevant knowledge, methods, expertise, and values to not only
solve problems, but also to advance scientific discovery and innovation and produce
usable outcomes for cities in the process.

https://unsdsn.org/what-we-do/thematic-networks/sustainable-cities-inclusive-resilient-and-connected/
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Chapter 14
Urban Crime and Security

Tao Cheng and Tongxin Chen

Abstract Scientists have an enduring interest in understanding urban crime and
developing security strategies for mitigating this problem. This chapter reviews the
progress made in this topic from historic criminology to data-driven policing. It first
reviews the broad implications of urban security and its implementation in practice.
Next, it focuses on the tools to prevent urban crime and improve security, from
analytical crime hotspot mapping to police resource allocation. Finally, a manifesto
of data-driven policing is proposed, with its practical demand for efficient security
strategies and the development of big data technologies. It emphasizes that data-
driven strategies could be applied in cities due to their promising effectiveness for
crime prevention and security improvement.

Keywords Urban security · Crime mapping and analysis · Road network · Crime
prediction · Data-driven policing

14.1 Introduction

Crime is largely an urban phenomenon (Baldwin et al. 1976). Globally, crime and
violence are typically more serious in some urban areas than others and are exac-
erbated due to rapid urban growth. According to a UN report (UN Habitat 2007),
though the crime rates have significantly decreased in some developed countries of
North America and Western Europe over the past two decades, in other districts,
such as Africa and Latin America, the total crime rate increased. Specifically, the
report has shown that 60% of urban inhabitants in developing countries have been
victims of crimes and the rate of victimization has reached 70 percent in some cities
of Latin America and Africa over five years (UN Habitat 2007). On the other hand,
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security is usually considered as a concept (Baldwin 1997) that confronts the crime
problem, by incorporating both the policing to implement crime prevention and the
public’s perception of crime and safety. Therefore, understanding urban crime and
security would mitigate urban crime and violence, as well as enhancing the quality
of inhabitants’ life and improving urban sustainability (Cozens 2008).

Conventionally, crime pattern theory, routine-activity theory, and rational-choice
theory—which extensively investigate criminal behaviors to explain how and why
crimes occur—have been the main approaches for crime prevention. Environmental
criminologists have a long and enduring interest in place and its effect on producing
crime (Weisburd et al. 2009). They think that environmental factors have a substantial
influence on criminal behaviors so that crime prevention should focus on solving
the problems at the place of crime. Inspired by such perspective, crime prevention
through environmental design (CPTED) and situational crime prevention (SCP) have
been developed to tackle urban crime problems. Thus, the environmental perspective
can bridge the gap between urban crime occurrence, crime understanding, and crime
mitigation using scientific and effective crime prevention practices.

Recently, big data technology has gainedmuch attention. Such technology enables
a further understanding of the dynamics of crime, and it can lead to developments and
improvements in crime and security analysis tools. These improvements range from
retrospective to prospective approaches, from grid-based to network-based methods,
and from isolated to integrated analysis. For example, network-based crime hotspot
mapping or the online police patrolling deployment toolkit have been developed
and applied in crime prevention. It is difficult to separately discuss urban crime and
urban security due to their interdependence in complex urban environments. From
the viewpoint of intelligent data-driven policing, the whole procedure, from data
collection to policing outcomes, should be addressed when tackling the urban crime
and security issues.

The rest of this chapter is organized as follows. Section 14.2 reviews the develop-
ment of crime studies, including their historic roots in understanding urban crimes
and the latest development of environmental criminology. Section 14.3 presents the
concerns and theories in urban security which is devoted to reducing the urban crime
problems and protecting citizenship. Section 14.4 introduces the improvement of
crime analysis and security applications and the latest tools for tackling the chal-
lenges in security practices. Finally, Sect. 14.5 proposes a holistic and intelligent
data-driven policing system that serves as a synthetical framework for urban crime
prevention and security improvement.

14.2 Urban Crime

As an urban-related issue, crime has been extensively discussed in many research
areas including ecology, sociology, geography, economics, and political science.
For example, income inequality, wage structure, and labor market are considered as
important contributors to the crime rate from the perspective of economics (Freeman
1999). Researches have also shown that there exists a strong relationship between
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crime, the criminal, and the urban environment, which provides an environmental
perspective that can explore and analyze crime at different geographic levels (Wortley
and Mazerolle 2008).

Nowadays, the environmental perspective in criminology has been popular among
many urban and criminological research areas and has gradually shaped a multi-
disciplinary approach: environmental criminology. In this section, wewill first depict
the historical roots of understanding urban crime from an environmental perspective.
We then outline the key concepts and theories in environmental criminology.

14.2.1 Historical Roots in Understanding Urban Crime:
An Environmental Perspective

Traditional criminological research focuses on the criminality of offenders and
explores how biological factors, life-course experiences, and social forces influence
and create criminals. Therefore, the crime is seen as the expression of the offender’s
deviance, influenced by events that occurred in his or her childhood. However, the
concerns of the environmental perspective differ greatly from other criminological
approaches. They argue that the criminal is just one portion of the crime event, and
the concern is the dynamic of crime pattern, such the time, space, victim, and type.

In addition, there has been an enduring interest in place (environmental perspec-
tive) in criminology (Weisburd et al. 2012). Different crime theories explain crime at
different spatial levels, ranging from the country level, province level, city level, and
community level to the street segments level. Brantingham and Brantingham (2017)
suggested three geographic levels of analysis—the macro-level, the meso-level, and
the micro-level—within the domain of environmental criminology.

This classification matches the development of the unit of analysis in geographic
analysis, which also reflects the historical roots of understanding urban crime from
an environmental perspective. Briefly, studies started in the nineteenth century were
mainly referred to as macro-level (e.g., countries, provinces) analysis (Guerry 1833).

Then, the early twentieth century witnessed the urban crime studies led by the
Chicago School, which mainly focused on the meso-level of analysis, such as cities
and big urban areas (e.g., Burgess 1928). Lately, micro-level (e.g., community and
street segments) studies, starting from the late twentieth century, have attempted to
achieve a fine-resolution analysis of urban crime (e.g., Sherman andWeisburd 1995),
which makes crime more predictable than before.

14.2.1.1 Macro-Level Studies

Macro-level studies focus on analyzing crime distribution between countries, states,
or provinces. The world’s first crime map was made by Guerry and Balbi (1829).
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Leveraging the geographic map, they demonstrated that crime in urban areas was
more than that in the rural areas in some provinces in France.

Many interesting findings were obtained based on macro-level studies. For
example, Quetelet (1831) explored the correlations between crime and many factors
(e.g., levels of poverty, ethnicity, the attraction of city) in different cities of different
countries. Especially, in terms of common sense, poverty may cause crime, even
if violent crimes were more prevalent in poorer rural districts, and property-related
crimes showed a higher level in wealthy districts than in rural areas. Such findings
indicated that poverty was not highly associated with property crime, but the oppor-
tunities existed because wealthy provinces contained more valuable targets (Guerry
1833).

After that, similar studies have compared crime between different areas, such
as countries. In the mid- and late nineteenth century, empirical studies in England
showed distinctive differences in crime levels and rates across various counties. This
study also reported higher crime rates in urban and industrialized areas than in rural
areas (Mayhew 1851).

14.2.1.2 Meso-Level Studies

Meso-level studies involve the analysis of crimepatternswithin cities ormetropolises.
Studies at this level investigate crime concentrations based on a medium scale of
geographic areas. For example, concentration tends to exhibit a difference between
central urban areas and suburbs.

In the 1900s, a group of American sociologists known as the Chicago School
took a leadership role in the development of environmental criminology at the meso-
level. They treated crime as a social problem that is spatially distributed in urban
areas. Park (1915) argued that urban life must be studied for crime analysis, such
as “its physical organization, its occupations, and its culture” and especially the
changes therein. Neighborhoods in his view were the elementary form of social
cohesion in urban life. In addition Thomas and Znaniecki (1927), introduced an
important concept of social disorganization, which means a decrease of the influence
of existing social rules of behavior upon individual members of a group. This concept
has drawn attention to communities and neighborhoods. Then, Burgess (1928) split
the city into five concentric rings, and he also suggested that the urban functional
zone strongly shaped the crime pattern. Inspired by the zone model developed by
Burgess (1928), Shaw and Mckay firstly detected the spatial distribution of urban
crime by an original method of crime mapping (Shaw and Mckay 1942). Shaw and
Mckay (1942) also explored the spatial patterns of juvenile delinquency in Chicago
City by comparing the spot maps of delinquency rate with the urban racial zone map
and showed that crime rates varied over the urban area.
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14.2.1.3 Micro-Level Studies

Micro-level studies examine crime patterns based on spatial areas at a fine resolution,
such as the community level, the street level, and prime locations. In the 1980s, urban
crime researchers still focused on using social disorganization theory to explain
the dynamics of crime patterns at the community level. For example, Bursik Jr
(1986) found that long-term crime stability was affected by community stability.
More typically, Sampson et al. (1997) proposed a concept of collective efficacy
which significantly influences crime in different communities. Since then, research
attention has been shifted from macro- or meso-level analysis to micro-level crime
study (Weisburd et al. 2009).

After the emergence of various sophisticated spatial analysis tools (e.g., GIS)
in the late twentieth century, researchers could explore how various environmental
factors influence specific crime locations in practice. These micro-level areas include
buildings, addresses (Sherman et al. 1989), street segments (Johnson and Bowers
2010), or locations (Sherman andWeisburd 1995).Current studies confirm that street-
or location-level analyses about crime sustainably enrich environmental criminology
and make crime more readily forecasted (Cozens 2011).

14.2.2 Theoretical Concepts in Environmental Criminology

Environmental criminology (i.e., the environmental perspective in criminology)
emphasizes the influence of the environment on crime patterns, considering that
crime is the convergence of offenders, victims, and law enforcement at particular
times and places (Wortley and Mazerolle 2008). Research in this area explores the
spatiotemporal patterns of crime events and explains the patterns by referring to the
features from the urban fundamentals—street networks, road segments, buildings,
and so on. Consequently, the strategies of crime prevention derived from the expla-
nations are becoming popular among both urban managers and inhabitants who want
to manage and live in an environmentally friendly city.

Environmental criminology is mainly based on three hypotheses, which have
their own implications for crime prevention (Scott et al. 2008). First, apart from the
offender’s ability or the accessibility of victim information, the instant environment
where crime occurs could significantly affect the offender’s behavior by affecting the
criminal’s person–situation interaction. In this principle, environmental criminology
not only argues that crime is derived from criminogenic individuals but also aims to
explore and explain how the environment affects the offender and why some places
are criminogenic. Second, the spatiotemporal distribution of crime is not random.
Crimes are spatially concentrated at places where the environmental features would
promote crime opportunities. They are also concentrated around the intersection of
routine activities between offenders and victims. Such crime patterns explain why
crime hotspots are stable during extended periods in particular areas, a phenomenon
known as the law of crime concentration (Weisburd 2015). Third, knowledge of the
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criminogenic environment and crime patterns could help law enforcement to allocate
resources to mitigate crime in a particular location. Practically, environmental crimi-
nology could provide new insights into solutions for proactive crime prevention, such
as crime prevention through environmental design, or situational crime prevention,
which will be further discussed in the next section in the context of urban security
implementation issues.

14.3 Urban Security

Security involves various concepts within a complex social system.As Zedner (2010)
suggested, security is a strong emotion carrying multiple meanings simultaneously
arising from individuals. Traditionally, security refers to the supply of private services
to protect people or information fromcrime or violence, and properties for individual-
or community-level safety (Smith and Brooks 2012). Security also relies on the
public policing that is operated by the government or public services, including but
not limited to crime prevention, security technology, and risk management (Brooks
2010). In the context of the urban environment and the aforementioned urban crime,
urban security refers not only to crime prevention practices and implementations but
also to the public perception of crime. In this section, we will review the literature
about the fear of crime in urban areas and about the necessity of studying urban
security, followed by a depiction of contemporary crime prevention.

14.3.1 Fear of Crime in Urban Areas

In the 1960s, a fear of crime emerged in the USAwhere national public opinion polls
started to involve open-ended questions relating to the public perception of crime
(Furstenberg 1971). The national survey reported by The President’s Commission on
Law Enforcement and Administration of Justice (1967) stated that the fear of crime
could influence the basic life-quality of citizens. The report also found that fear of
crime varied with race, income, gender, and the experience of victimization.

However, the results from public opinion polls showed that high levels of fear
were found not only in areas with high crime rates but also in areas with low crime
rates (McIntyre 1967). The mismatch between the fear of crime and crime rates
has been evidenced in public polls in Australia (Borooah and Carcach 1997), New
Zealand (Doeksen 1997), the UK (Smith 1987), and Switzerland (Killias and Clerici
2000) and has aroused the interest of researchers.

Though the fear of crime is possibly irrational and expressed in individual percep-
tions, it still attracts the attention of policymakers. The motivation to study the fear
of crime stems from the belief that the results of these studies could be translated into
practical policies for reducing fear (Box et al. 1988). Such claims are based upon the
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assertion that perceptions of crime are more essential than the actuality in terms of
the influence on urban lives.

14.3.2 Implementation of Crime Prevention

Crime prevention from the perspective of environmental criminology differs from
many other approaches. It focuses on the criminals or the reason for committing a
crime and the places in which crime occurs. Here, we will review two crime preven-
tion approaches: crime prevention through environmental design (CPTED) and situ-
ational crime prevention (SCP), both of which are highly practical and effective ways
of mitigating urban crime.

14.3.2.1 Crime Prevention Through Environmental Design

CPTED, also known as designing out crime, aims at reducing crime through the
design and handling of the built environment in urban areas. It focuses predomi-
nantly upon designing out crime opportunities before they occur (Armitage 2007).
As a multi-disciplinary crime prevention method, CPTED derives strong theoretical
support from environmental criminology, that is, the correlation between crime and
environment. CPTED is concerned about the identification and modification of the
social and physical conditions that potentially may generate criminal opportunities,
in the hope of mitigating urban crime (Brantingham and Faust 1976).

The basis of CPTED is the concept of defensible space proposed by Newman
(1972).Defensible space aims to depict the features bydesign that improves territorial
behaviors, such as by utilizing such space among local residents. ThenPoyner (1983),
developed the principles of CPTED comprising surveillance, movement control,
activity support, and motivational reinforcement. Cozens et al. (2005) extended to
six principles: access control, territoriality, surveillance, target hardening, image, and
activity support.

In practice, the US Department of Housing and Urban Development and the US
Department of Justice both expressed interest in CPTED based on inspiration from
the early research of Newman and Franck (1982). The concept of defensible space
in CPTED is now commonly considered in many processes of urban planning, in
Florida, British Columbia, the Netherlands (Saville and Cleveland 2008), the UK,
South Africa, Australia, and New Zealand (Cozens et al. 2005). In this way, CPTED
linked with urban sustainability is devoted to improving the quality of urban living.
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14.3.2.2 Situational Crime Prevention

SCP is an efficient strategy for analyzing and reducing specific crime issues. Specifi-
cally, it aims to change the situational factors of crime so as to reduce crimeopportuni-
ties. Similar to CPTED, situational prevention is grounded in theoretical perspectives
in environmental criminology and environmental psychology.

In early literature, the situational prevention opportunity was used synonymously
with the situation (Clarke 1980). Nevertheless, later studies concluded that situa-
tions provide not only opportunities for criminals but also temptations, inducements,
and provocations (Wortley 2001). This argument emphasizes that crime is always a
personal choice, which widens the scope of situational prevention. Specifically, the
interaction betweenmotivation obtained and the situation involved must be mediated
in the process of an offender’s decisions making (Cornish 1994).

For crime prevention Clarke (1997), offered a framework for evaluating security
with 25 techniques for SCP under five main headings: increase the effort, increase
the risks, reduce the rewards, reduce provocations, and remove excuses. This discus-
sion of solutions argues that situational prevention could be easier to utilize than
long-term social efforts to change the situation. The effectiveness of situational
prevention is shown in its impact on most property crime, such as burglary, theft, or
vandalism (Smith et al. 2002) and has recently been applied to child abuse (Wortley
and Smallbone 2006) and terrorism (Clarke and Newman 2007).

However, like CPTED, situational prevention provides very simple strategies for
crime prevention so that it simply displaces crime instead of preventing it; that is, it
moves crime somewhere else or changes its form after such intervention. In contrast
Clarke (2008), stated that crime is rarely a compulsion and the displacement is
overstated. It may be credible for some types of crimes, but not for all. For example
Hesseling (1994), found no evidence of crime displacement in 22 of the 55 areas
he examined. In the remaining 33 areas, though some evidence of displacement was
found, the crime displaced was less than what had been prevented in every examined
case.

14.4 Latest Tools in Urban Crime Analysis and Security

Crime analysis is an investigative tool, defined as “the set of systematic, analyt-
ical processes that provide timely, pertinent information about crime patterns and
crime-trend correlations” (Wortley and Mazerolle 2008). It utilizes crime and police
data to examine crime problems, involving the features of crime scenes, offenders,
victims, and crime patterns. Crime analysis aims to provide tactical suggestions to
policing with respect to criminal investigations, deployment of resources, planning,
assessment, and crime prevention strategies.

In this section, we will review the development of the tools that help the police
deter crime and secure the city; in particular, the crime analysis tools of hotspot
mapping and security approaches to online police patrolling.



14 Urban Crime and Security 221

14.4.1 Crime Hotspot Mapping: From Retrospective Analysis
to Prediction

Crime hotspots are small geographic areas with high rates of criminal activity
(Weisburd and Telep 2014). Various studies define the geographical features of
hotspots differently, ranging from street segments to individual addresses. Weisburd
(2015) proposed an essential attribute of a crime hotspot: stability, which suggests
that crime concentrations tend to remain hot over space and time. This provides
an important implication for effective policing: crime problems can be migitated by
gathering appropriate data. Crime hotspotmapping is a spatial technique that concen-
trates on the detection of clusters of crime events across an urban area (Zhao and
Tang 2018). There are several methods to producing crime hotspot maps for different
purposes, such as the standard deviational ellipse, the Getis-Ord Gi* statistic, and
kernel density estimation. Empirically, these analytical methods can evaluate the
concentration effects across various crime types. For example, kernel density esti-
mation (KDE) is a kind of nonparametric spatial statistical approach for calculating
the probability density function of crime incidents. This method is quite popular
for crime mapping owing to its fast parameter inference process. In addition, a
reaction-diffusion-based technique has been proposed to explain the dissipation and
displacement of hotspots (Short et al. 2010).

Traditional methods of crime hotspot mapping mainly aim to generate risk
surfaces that suggest where the crime events have clustered previously. Due to fast
and automatic data acquisition and computation, both the researchers and practi-
tioners are trying to make the traditional methods suitable to predict the crime risk
in customized space and time.

For example, Bowers et al. (2004) proposed amethod of predictive crimemapping
named ProMap. The risk at a location for a particular period could be calculated by
the density function of crime that has occurred at or near that location. Continuously,
empirical studies have shown that the prediction precision of ProMap is reliable
(Johnson et al. 2007). Kennedy et al. (2011) advocated risk terrain modeling (RTM)
to forecast monthly crime risk and focusedmore attention on exploring why crimino-
genic places generate crime rather than the crime itself. To predict crimewithin a short
interval, Mohler et al. (2011) utilized a self-exciting point process (SEPP), which
was initially used to model the propagation of earthquake aftershock or disease, to
predict future crime risk based on grid cells. This approach is capable of forecasting
the next day’s crime risk, and it has been allied in some law enforcement in the
USA. Lately, Rosser et al. (2017) proposed a network-based crime hotspot predic-
tive mapping, and the authors showed that its predictive accuracy outperforms the
state-of-the-art grid-based model. This prospective crime mapping technique based
on the road network provides micro-level prediction results based on which police
resources could be deployed precisely and effectively.



222 T. Cheng and T. Chen

14.4.2 Advanced Police Patrolling Strategies

Police patrols aim to deliver police services to prevent crimes (Novak et al. 2016)
and to make response to crime incidence more rapid. Police patrolling strategies are
of significant importance to improving policing effectiveness and public security.
Nowadays, various models have been developed for police patrolling area allocation
and patrol route planning.

Allocating patrol areas aims to arrange management precincts derived from urban
areas for police officers. Gholami et al. (2015) proposed a computational learning
framework that leveraged a dynamic Bayesian network to connect police officers
with crime events. Further, Mukhopadhyay et al. (2016) developed a bi-level opti-
mization method, including a linear programming patrol response formulation and
Bender’s decomposition, to optimize police patrolling allocation so as to reduce
the expected crime response time. However, offenders may commit new crimes in
different locations and times. To solve this problem, Zhang andBrown (2012) used an
iterative Bender’s decomposition with a discrete-event simulation model to optimize
patrolling area allocation, speed up response, and reduce work variation.

The goal of patrol route planning is to design routes tomake patrolsmore effective,
to deter crime or to make a quick response when crime incidents happen, which
should be more impartial and effective than a random patrolling mode. For instance,
Chen and Yum (2010) proposed an efficient algorithm leveraging cross-entropy for
real-time police patrolling in dynamic environments. However, there exists a time
lag between consecutive patrols and target visits. To solve this issue, a real-time
cooperative routing strategy using online agent-based simulation was introduced to
improve the effectiveness of police patrol (Chen et al. 2017). Furthermore, Chen
et al. (2018) designed a street-network-based patrolling algorithm, which enables
multiple police operators to patrol across different police districts on street networks
and enhances effectiveness and workload balance.

In addition, the assessment of the effectiveness of police patrolling in crime deter-
rence has been studied for decades. It concerns where police officers visit and what
they actually do during patrolling, which is useful to avoid diluting benefits and
to enhance the effectiveness of resource allocation. Sherman and Weisburd (1995)
compared the patrolling time in crime hotspots with associated crime reduction to
assess police strategies. Lastly, Shen and Cheng (2016) proposed a framework to
identify groups of police officers by clustering their GPS trajectories. This approach
helps to synthetically understand police officers’ patrolling behaviors across space
and time, which is essential for the evaluation, planning, and optimization of police
patrolling strategy.
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14.5 Intelligent Data-Driven Policing

Recently, big data and AI technology have changed the traditional structure of indus-
tries such as finance and online retail industries and have been employed in a diverse
range of domains. However, the application of big data technology in policing has
been limited, in sharp contrast to other domains (Babuta et al. 2018).

The use of big data technology could tackle the current difficulties associated with
time-consuming data analysis tasks. It could improve the effectiveness of policing
by automatic or data-driven decision-making, rather than manual experience-based
decision-making. Instead of simply responding to crime events when they occur, this
advanced technologymight allowpolice forces to develop proactive crime prevention
strategies and targeting.

Intelligent data-driven policing is an approach that integrates such techniques
as hotspot policing, intelligence-led policing, and predictive policing (Cheng et al.
2016). In particular, it emphasizes the interactions of crime, policing, and citizens
in space–time. Measuring, modeling, and predicting these interactions may lead to
an intelligent and holistic approach to policing in the big data age. Conceptually,
it includes four inter-related issues that arise in the process from data collection to
policing outcomes (Cheng et al. 2016).

First, data-driven tools must be easy to utilize and must transfer directly into
policing practices. Nevertheless, the outputs of most existing tools are far from suit-
able on these criteria: the current large box or grid hotspots identified by predic-
tive mapping methods, for instance, include many road sections and cannot suggest
precisely where police officers should be deployed. To ensure their suitability, tools
should be explicitly designed with police operation in mind. For this, network-
based crime hotspot mapping tools developed by Rosser et al. (2017) and Zhang
and Cheng (2020) should be deployed to enhance the chance of technology adop-
tion, because these tools pin the crime hotspots to road segments, the fundamental
structure supporting urban life and human activities, as well as police patrolling.

Second, predictive accuracy is paramount if police forces are to adopt the tools, and
thereby to enhance policing efficiency. Accuracy evaluation is important to enhance
the confidence of the application. For example, Adepeju et al. (2016) proposed a
practical evaluation tool in different metrics for spatiotemporal crime prediction.
This requires the refinement of analytical techniques for specific policing contexts,
as well as the selection of appropriate units of analysis, so that police resources
can be effectively deployed. In addition, given that police and offender activities
are constrained by road networks in urban areas, the greater accuracy and precise
methods on road networks will have a higher chance for deployment.

Third, police patrol strategies should be coordinated to enhance the efficiency and
effectiveness of crime deterrence. Police need to deal with emergencies and routine
patrolling, involving themovement and placement of police officers in large numbers
and spatial diversity. It is vital to effectively allocate the tasks and design the routing
(Chen et al. 2018). For this purpose, police resources should be first districted in a
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balancedway, and then a dynamic real-time online dispatch strategy could be adopted
to deal with emergencies and patrolling implementation (Chen et al. 2017).

Finally, it is necessary to evaluate the implementation and refine policing strate-
gies, as part of an intelligent policing system. To evaluate policing implementations,
Davies and Bowers (2015), proposed to compare the supply of policing (i.e., police
activities) and the demand for policing (i.e., call for services) in order to support the
commanding officer’s decision. Examining police patrolling patterns across space
and time could help our understanding of patrolling behaviors (Shen and Cheng
2016). In addition, public confidence in policing is always a top priority of the
government agenda (Skogan 2006). However, public views of data-driven policing
are ambiguous with the advent of big data and artificial intelligence technologies
due to worries about the use of machine decision-making in conducting policing
activities.

To put all these principles together, an end-to-end solution with functions of pre-
diction, online patrolling, and real-time feedback is needed for intelligent policing.
For this purpose, a Web-based prototype has been developed and is shown in
Fig. 14.1. This prototype integrates analysis and evaluation across crime events,
policing strategies, and citizenship, and it establishes an entire framework to secure
the public.

Fig. 14.1 Spatiotemporal patterns formed by crime, policing, and citizenship activity form
dynamic, interdependent networks (Cheng et al. 2016)



14 Urban Crime and Security 225

14.6 Summary

Urban crime and security play a continuing and essential role in the sustainable
development of urban cities and the quality of citizens’ life. In this chapter, we gave
an overview of urban crime and security from a historical and practical perspective.
We first reviewed the theories of environmental criminology and the historical roots
of understanding urban crime, and then the state-of-the-art crime and security appli-
cations; predictive crime hotspot mapping and police patrolling strategies. Finally,
we proposed an intelligent data-driven policing associated with big data and AI, a
comprehensive perspective that ranges from spatial units and accuracy of data anal-
ysis to police patrolling and effectiveness evaluation, leading to an intelligent and
holistic policing system for urban crime prevention and security enforcement.
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Chapter 15
Urban Governance

Alex D. Singleton and Seth E. Spielman

Abstract In this chapter, we discuss how the availability of new urban data has the
potential to transform the governance of cities. Such effects are realized in several
ways: by increasing transparency; creating greater scope to appropriately set and
measure municipal policy outcomes; and by design of well-planned and managed
digital infrastructure, better empower citizens to hold decision-makers to account.
However, such potential is not without risks, and without critical reflection, the
proliferation of new data and their integration into software delivering algorithmic
insight or automation may reproduce or develop new inequalities. We conclude that
for digital urban governance to make a future that we want, it is important that we
reflect upon how and where these technologies are implemented to ensure these are
optimized in favor of the public good.

Keywords Governance · Dashboards · Open Data · Algorithms

15.1 Transparency and City Open Data

Transparency in the processes of city governance both limit the potential for corrup-
tion, while also ensuring that the citizens of urban areas can hold democratically
elected officials to account for their use of public funding. UN Habitat (2004) argues
that greater transparency can reduce urban poverty and enhance civic engagement;
and by promoting engagement through a range of different policy instruments, can
reduce citizen apathy, make service delivery better contribute to poverty reduction,
increase ethical standards, and grow city revenues. Transparency within urban gover-
nance is an expansive topic. However, we focus here on the role of Open Data within
this context.
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Data about our cities are legion and includeboth traditional sources such as surveys
or censuses, and those new forms of data related to other collection mechanisms
such as sensors (e.g., noise, pollutants, etc.), social media, or as an operational by-
product (e.g., meeting minutes, expenses, administrative records). The ownership
and control of access to such data are a key facet of transparency, and much data
about cities are held within the private realm. For example, geolocated Tweets posted
by citizens of urban areas is owned by the private companyTwitter, with public access
restricted to either limited subsets of Tweets or commercially procured full access.
The costs of accessing these data may, however, be prohibitively expensive to all but
a few users. By contrast, Open Data are distributed under very different licensing
conditions, typically enabling data to be supplied without cost, and to be reused and
re-distributed without downstream licensing implications. Within some countries,
an Open Data license has a more formal definition; for example, the UK adopts an
Open Government License (https://www.nationalarchives.gov.uk/doc/open-govern
ment-license/version/3/) for officially defined Open Data.

There are several common rationales given for the release of Open Data. The
first is to provide a resource that can enhance civic engagement in the processes
of governance. For example, through the provision of data about the expenses of
government employees, these are open to scrutiny and oversight. Secondly, Open
Data can be integrated into platforms design to improve aspects of public service
(e.g., school and healthcare comparison). Finally, Open Data can act as a driver for
innovation and has the potential to create both direct and indirect economic benefits.
Despite such diverse potential benefits, the release of Open Data is however not
free, as the preparation, maintenance, and hosting of data assets have costs attributed
(Spielman and Singleton 2015; Johnson et al. 2017). Furthermore, their release or
availability is often governed by complex political data economies. For example, the
permanence of Open Data can be somewhat illusionary, and there are examples of
where Open-Data licenses have been revoked retrospectively and for future releases,
or where guidance associated with such a license has been adapted so that this
constrains future use. In the USA, the removal of the website open.whitehouse.gov
followed the election ofDonald Trump; and in theUK, the LandRegistry switched its
policies for data previously distributed with an Open Government License to terms
that are more restricted.

15.1.1 Open Data Platforms

Withinmanymunicipalities, OpenData are disseminated through online portals, with
two popular platforms including Socrata (https://www.tylertech.com/products/soc
rata) and CKAN (https://ckan.org/). An example of an Open Data platform running
CKAN is shown in Fig. 15.1.

There are a number of reasons why such data portals provide better tools for
transparency over simply sharing data through a static Web site. Most platforms
provide access to search, highlighting the breadth of the available data; and results

https://www.nationalarchives.gov.uk/doc/open-government-license/version/3/
https://www.tylertech.com/products/socrata
https://ckan.org/
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Fig. 15.1 Open Data portal for New York City showing a catalog entry for film permits
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are typically returned alongside detailed metadata, sample extracts and some limited
visualization capability. With many portals, data sit within a database that, in addi-
tion to being presented to the catalog’s visual interface, are often also made available
through publicly accessible application programming interfaces (API), enabling inte-
gration into a wide variety of software and tools. Such API endpoints and associated
document object identifiers (DOIs) provide permanent and direct links to Open Data
that enhance both usability and reproducibility.

However, the extent to which a community can benefit from engagement with
sources ofOpenData or those platforms designed to turn these assets into information
can be variable; and differences may manifest between social, racial, ethnic, and
economic groups. Mitigating access differentiation has to be a priority in urban
governance if the implementation of Open-Data systems is to be maximized in the
interests of the public good.

However, it is important to recognize that the creation of effective Open Data
platforms requires significant investment. Organizationally, it is complex to initiate
buy-in from stakeholder data owners, and additionally to facilitate the creation of
effectivemanagement, storage, dissemination, outreach, and training associated with
such new data infrastructure investments. Glasgow, which is the largest city in Scot-
land, was the recipient of £24 m of government funding to deliver a Future Cities
demonstrator project (Sarf 2015). Around £7 m of this investment was allocated
to build “Open Glasgow,” which is a data platform providing access to numerous
and previously siloed urban data. The project involved making 372 different datasets
available through aCKAN-basedOpenData portal alongside an onlinemapping plat-
form provided by Esri. Around 21 different roles were associated with this project,
and beyond the technical implementation, included additional support for Open Data
development, engagement, and hackathons.

15.1.2 Open Data and Accountability

The growing adoption of Open Data platforms is a positive development, but in and
of themselves these platforms have little impact on the lives of citizens. To have
an impact, Open Data platforms have to be used by people and organizations. This
means that the usability and accessibility of the platform itself are essential, but
more importantly, it means within either the city agencies or the public at large, there
must be constituencies who have the skills and time to transform the data assets into
information.

The potential benefit of Open Data is only realized if certain conditions are met.
We argue that Open Data repositories for urban governance should follow a set of
principles that are accepted by scientific communities. These are sometimes referred
to as the FAIR principles: findable, accessible, interoperable, and reusable.

• Findable: Data are published to stable and publicly accessible URLs. The URL
is advertised and made known within the government and across agencies.
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• Accessible: Data should be published in a usable format with stable and well-
documented procedures for access. For example, pdfs are not a usable format for
data. Access protocols should bewell-documented and standardized; for example,
APIs should remain stable over time. Individual data files should have a static
URL. Data have to be documented and documentation must be maintained.

• Interoperable: Data should be organized such that linkages between data sets,
and/or over time, are possible.

• Reusable: Data should have licensing provisions that allow flexible reuse of data.

In an effort to boost engagement some data-savvy communities sponsor events to
encourage public consumption of the data published on open platforms.A consortium
in New York City regularly organizes events around Open Data. For example, in
Boulder, CO, USA, the city sponsored an “Art of Data” exhibition which encouraged
local artists to create physical works of art from digital data. Some forms of digital
data, such as text, can be difficult to work with in traditional forms of analysis—
in the City of Boulder’s Art of Data Exhibit, one artist built an installation based
on individuals’ test responses to survey questions about safety and other aspects of
city life. Creative use of public data can be strikingly impactful. However, getting
residents or the public, private, and not-for-profit sectors to use Open Data, and
to communicate their findings to a broader audience, can be difficult yet is critical
to closing the loop and allowing Open Data platforms to achieve their potential.
Incentivizing creative use of data seems like a wonderful way to spur innovation;
however, the lack of well-established norms of use and goals for OpenData platforms
inhibits the impact of these resources.

We believe that the most impactful uses of public data focus on accountability;
that is, using data to track progress toward institutional, individual, or collectively
defined goals. However, there are not well-established models around how Open
Data platforms might be integrated with participatory social and political processes
to guide and track progress at the city-scale. Identifying and tracking progress toward
goals can be non-trivial in the urban context.

Cities are large and complex systems bureaucratically, physically, and socially.
Developing an understanding of the components and their interrelationships within
systems is enormously difficult. For the average citizen, it can be hard to knowwhere
a city’s responsibilities begin or end and observing the scope of a city’s operations in
a particular domain can be very difficult. Cities are a patchwork of public and private
land, with city agencies often having overlapping jurisdictions and conflicting prior-
ities. For example, a transportation department might want to increase the number
of vehicles moving through an intersection and the planning department might want
to improve pedestrian safety by reducing traffic volume. Given such organizational
complexity, assessing accountability and progress toward goals can be complex.
Goals may not be shared between various parts of the city’s administrative structure.
Moreover, the institutional goals may not be shared by the residents of the city, and
in some communities, residents may have different priorities than others.

Open Data potentially simplifies some of this complexity by providing citizens
and other interested groups with mechanisms to observe these large systems and to
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understand where cities are, and are not, investing resources. That is, if the right data
are made available at the right level of aggregation, citizens can begin to observe
the city not just as the space within which their daily activities take place but as an
organizational unit.

Here we focus on the conditions required to realize the potential for Open Data to
improve governance and in particular to drive accountability; in this context, using
data systems to track progress toward measurable social and organizational goals.
While ideally, these goals would emerge from participatory public processes, we
omit discussion of these mechanisms here.

15.1.3 Why Are Goals Important?

Simply stated, the concept of accountability as applied to public data is that citizens
(and municipal leaders) can hold public-sector agencies accountable for their work.
However, large and complex projects that are undertaken without clear goals can
be difficult to assess. For example, consider the partnership between Kansas City,
Google, Sprint, and Cisco to develop a highly instrumented corridor with WiFi and
advanced traffic control systems. In spite of millions of dollars in investment, it is
difficult to say whether the project has been successful. The media report that the
project reduced travel time an average of 37 s. Sprint, as a company, harvested data
from thousands of citizens. But did the project achieve its goals? Was it a success? If
so, for whom?Without clearly stated and measurable criteria, it is difficult to answer
such questions.

A framework of accountability can, however, have powerful and positive social
impacts. When police departments around the USA started to publish data about the
racial characteristics of people they stop and question, glaring social inequalitieswere
laid bare. In cities across the USA, data highlighted and confirmed the long-running
perception that racial minorities in the USA are disproportionately targeted by the
police. The use of Open Data to hold police departments accountable for seemingly
biased patterns of enforcement is an excellent example of citizen empowerment
in the challenge of existing doctrines. Our implicit goals in this example refer to
widely held beliefs around how public institutions ought to function; for example,
that enforcement of laws should be uniformly applied, not based on race or class.

15.1.4 Dashboards and Performance Indicators

OpenData dashboards simplymake data or information available tomunicipal stake-
holders. Data in their raw form are only consumable by people with those technical
skills (and time) to both effectively frame questions and then investigate. Dashboard
interfaces provide a more widely accessible visual interface to data. Often, a dash-
board will display indicators that are derived from data. An indicator can be simple
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and direct, such as the number of traffic citations written in the preceding 30 days, or
complex and derived such as the social vulnerability of the population. Kitchin et al.
(2015) document the spread of the dashboard and its increasingly widespread use
around the world. They critically argued that rather than simply “reflecting cities,
[dashboards] actively frame and produce them.” Whether they are mirrors reflecting
data or instruments of power seems secondary to the fact that dashboards are widely
used, and in governance, they can be used productively or unproductively.

In and of themselves, dashboards accomplish very little. They find their utility
through linkage with implicit or explicit social goals and incorporation into some
governmental process that links action (or incentives) to the indicators on the dash-
board.Adashboard that simplydisplayeddata, disconnected frommeaningful admin-
istrative or social goals, would have little impact. For example, to provide insight into
racial bias, the police department inMinneapolis,Minnesota, USA, publishes a dash-
board breaking down police stops by race, location, gender, and age (https://www.ins
idempd.com/datadashboard/); while this dashboard is not linked to explicit goals and
targets, it is squarely addressing implicit social goals. On the other end of the spec-
trum, the City of Boulder, Colorado, USA, uses a dashboard to track progress toward
explicitly stated targets around safety, health, livability, sustainability, housing, and
governance (Fig. 15.2). While rudimentary, the dashboard uses a simple system of
green checks for targets that are met and red exclamation points for missed goals. A
public process determined the indicators to be tracked on the dashboard; these were
derived from the city’s “Sustainability andResilience Framework”whichwas a docu-
ment designed to guide “budgeting and planning processes by providing consistent
goals necessary to achieve Boulder’s vision of a great community and the actions
required to achieve them” (https://www-static.bouldercolorado.gov/docs/Sustainab
ility_+_Resilience_Framework-1-201811061047.pdf).

Fig. 15.2 A goal-based dashboard from the City of Boulder, Colorado, USA

https://www.insidempd.com/datadashboard/
https://www-static.bouldercolorado.gov/docs/Sustainability_+_Resilience_Framework-1-201811061047.pdf


236 A. D. Singleton and S. E. Spielman

The use of quantitative targets, such as those employed byBoulder, is awidespread
practice in the private sector where such indicators are sometimes called key perfor-
mance indicators (KPIs). Performance indicators are powerful tools in so far as
several criteria are met:

• Urban KPIs must measure the right things. That is, they must quantify social,
political, or economic processes of interest to the leaders and residents of the city.

• Urban KPIs must be actionable; measuring things that residents and leaders have
no power to change is of no consequence. Dashboards should in somemeaningful
way drive action.

• Urban KPIs must be correctly measured: Data quality is a serious concern for
public dashboards. Linking data to public goals creates incentives to manipulate
or misreport data.

• Not all goals are quantifiable: It is important that KPIs and dashboards play an
appropriate role. Critical social goals, such as well-being, may be unmeasurable
but this does not mean that public institutions should not strive toward them.

There are, however, critiques of dashboards and urban datamore broadly, notwith-
standing that it seems to us that they are rooted in a genuine effort to provide trans-
parency and accountability.While datamay be imperfect and the social processes that
produce them may be loaded and flawed, we strongly argue that providing access to
information is better than not. Dashboards, when made public, reflect a kind of self-
imposed, publicly stated accountability toward targets.While it is true thatmeasuring
what matters to the residents of a city is a non-trivial exercise, and that data systems
are more likely to reflect things that can be measured than things of direct concern to
residents, there is some meaningful overlap. It is within this space of overlap where
data can help advance the governance of cities.

15.2 Algorithmic Decision-Making

There is a proliferation of increasingly granular measures or insights that can be
extracted fromurban data, which is necessitating newmethods for both theirmanage-
ment and their analysis. Algorithms are computational processes that are designed to
solve a particular problem, which within an urban context can relate to both aspects
of urban analytics (e.g., which communities are best served by green space), or the
implementation of operationalmodels (e.g., traffic light control systems). Algorithms
can also have differing degrees of autonomy through their specification, estimation,
or implementation. The use of computational algorithms within urban contexts is not
new, and they have a lengthy history of application, from models applied to make
predictions about the spatial organization of human activities, to those teasing out
geodemographic structure frommultidimensional spatial data (Webber 1975), along-
side those which have been implemented operationally to guide decision-making
(Foot 1982).
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15.2.1 Positioning Algorithms

The argument is made that the successful implementation of algorithms can augment
or supplant human expertise. For example, a fire inspector may have knowledge of
the city in which he or she works and might choose buildings to inspect based on
his or her expertise. Alternatively, an algorithm might rank buildings based upon
the probability that they contain a building code violation. In one realization of
an algorithmic process, an inspector could be dispatched to all buildings scored as
risky by the algorithm. Alternatively, the algorithm could augment the inspector’s
expertise, providing him or her with a way to guide attention. In either case, the
use of algorithms in law enforcement raises questions about the biases, fairness, and
transparency in algorithms, especially when algorithms are trained or validated based
on historically biased enforcement actions.

We believe that there are three broad use cases for models and algorithms in urban
governance. By models, we mean tools that use learned or estimated parameters
to produce classifications, probabilities, or scores. Algorithms are computational
procedures that may or may not involve data and models. We use the two terms
somewhat interchangeably, preferring the term “algorithmic decision-making” to
refer to the use of computation to augment municipal operations. The use cases for
algorithmic decision-making are:

• Augmentation: This refers to the use of models to guide or enhance human exper-
tise. For example, using machine learning to augment the building inspector’s
expertise and to help focus efforts on buildings likely to contain a violation.

• Replacement: Using an algorithm in place of a human: for example, using combi-
nations of cameras and radar to automate traffic enforcement. In this case, the
machines determine if a violation occurred and take action. The computational
enforcement system replaces a human system.

• Efficiency: Using models or algorithms to manage urban systems. Computation
enables a kind of dynamic optimization that is difficult in the absence of sophis-
ticated systems. For example, heating, ventilation, and air conditioning systems
in buildings may take into account occupancy, outdoor temperatures, historical
norms, and other factors. Transport systemsmaymake small adjustments to signal
timing system-wide in order to continuously adapt to variations in traffic and
demand, thus optimizing flow.

At their best, across these use cases, algorithms potentially present an unbiased
way to improve public welfare and the operation of cities. That is, well-designed
systems can make people safer and urban systems more efficient. Machines poten-
tially remove individual biases and capacities from urban management and enforce-
ment.When algorithms andmodels are transparent and interpretable by humans, they
move decisions out of the subjective and political domain into the public sphere.Open
algorithms and models can also force conversations about principles, such as what
kinds of actions or places should be targeted, or what publicly generated training
or validation data should be used. Such models can then embed these collectively
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generated principles. Enforcement actions are then the result of a public process
around the kinds of factors that contribute to risk or that the community wants to
minimize or maximize.

At their worst, algorithms could become super enforcers of institutional biases
and racism, and reinforce existing structural inequalities, or at the extreme create
new ones. When algorithms replace humans (or are positioned at the extremes of
augmentation), there are valid concerns that the system-automated surveillance that
emerges violates basic human rights to privacy and equal (unbiased) enforcement of
laws. For example, it is not possible to place surveillance cameras everywhere; from
the perspective of a police department, placing cameras in high-crime areas might
be an efficient use of limited resources. However, if algorithmic tools are used to
augment enforcement or replace policing it means that people in high-crime areas
have a higher probability of being found guilty of crimes than those in areas without
cameras, even if algorithms are fair and unbiased.

15.2.2 Challenges for Operationalizing Algorithms

Unlike inferential models that have historically been applied within urban contexts,
many contemporary and emerging methods from the cannon of data science, AI, and
machine learning focus instead on prediction, which produces models with oper-
ational utility, but because the structural manifestations of causal effects are often
hidden, their value can be argued as limited in terms of explaining how processes
operate over time and space, and as such, we have weaker understanding of the
dynamics of systems. Although we may be able to make very good forecasts from
such new modeling paradigms, this is in tension with generalizable models of how
the world functions, and the development of theory.

Additionally, many new algorithms that are used to create predictions rely on
big data that are used to train models, which is the process by which an algorithm
learns from the past to make new or future predictions. However, in doing so, an
analyst has to be certain that there are no systematic biases in such data, and that
any measures taken are likely to be stable over time. The non-compliance of such
issues has been argued as integral to cases where previously successful models stop
making effective predictions: for example, inaccuracies in magnitudes predicted by
Google Flu Trends (Lazer et al. 2014).

Beyond issues of measurement, it has also been noted that most if not all big data
are socially constructed, which also leads to potential bias, and should drive ethical
considerations and framing. If such data are integral to the function of algorithms, and
those decisions that they advise or take, the algorithms themselves can inherit such
same bias; and as such may ensue real-world implications if adopted uncritically
(Kitchin 2014). For example, the content of social-media data is only representa-
tive of those people who generate it, and so may under- or over-represent certain
socioeconomic or demographic characteristics; or for georeferenced data, accuracy
may be impacted by both where the social-media data were collected (e.g., the built
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environment impacting GPS signal reflection) or by people’s prevailing attitudes to
location sharing. More generally, crowdsourcing refers to the process of the public
contributing attributes of observed phenomena for some particular purpose. Such
data collection does not have an a-priori sample design, and as such the data’s under-
lying collection is influenced by those who engage with a project. For example, the
Street Bump (https://www.streetbump.org/) application was created for the city of
Boston, USA, and collected data using the accelerometer in phones when a depres-
sion in a car was recorded as it passed over a pothole. These readings were pooled
and analyzed to identify where remedial action may be required on a street. The
representativeness of such data was, however, bound up in the collection process,
with the application only being available to those with an iPhone, those who could
afford one of these handsets, and additionally a subsection of this population who
would be likely to install the application, and additionally volunteer geolocated infor-
mation. Such a segment of the population may also have particular travel patterns,
and there is additionally potential that only a partial survey of the city is conducted
through such a tool. Understanding such bias and how this might impact algorithmic
governance is a fundamental issue that should be considered by decision-makers.

15.3 Conclusion

In this chapter, we have outlined how the processes and operationalization of urban
governance are being enhanced and challenged through the emergence of new digital
technologies that relate to the instrumentation of cities, how those data being gener-
ated, and how the information derived can be used within urban contexts to enhance
decision-making. For digital urban governance to be effective we posit that the inclu-
sion of stakeholders by design, aligned to principles of transparency and openness,
is essential in order to mitigate risks of associated negative dystopian consequences.
The power of new digital frameworks has great potential to improve the health,
prosperity, inclusivity, and sustainability of cities; yet it is essential that these tech-
nologies do not end up reinforcing past injustices, or at their most extreme create
new inequalities. Future cities will be digitally augmented, and the challenge for us
now is to critically reflect on the impacts that ensue from these new technologies,
and to make sure we plan for a future that we want.

https://www.streetbump.org/
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Chapter 16
Urban Pollution

Janet E. Nichol, Muhammad Bilal, Majid Nazeer, and Man Sing Wong

Abstract This chapter depicts the state of the art in remote sensing for urban pollu-
tion monitoring, including urban heat islands, urban air quality, and water quality
around urban coastlines. Recent developments in spatial and temporal resolutions
of modern sensors, and in retrieval methodologies and gap-filling routines, have
increased the applicability of remote sensing for urban areas. However, capturing
the spatial heterogeneity of urban areas is still challenging, given the spatial reso-
lution limitations of aerosol retrieval algorithms for air-quality monitoring, and of
modern thermal sensors for urban heat island analysis. For urban coastal applications,
water-quality parameters can now be retrieved with adequate spatial and temporal
detail even for localized phenomena such as algal blooms, pollution plumes, and
point pollution sources. The chapter reviews the main sensors used, and develop-
ments in retrieval algorithms. For urban air quality the MODIS Dark Target (DT),
Deep Blue (DB), and the merged DT/DB algorithms are evaluated. For urban heat
island and urban climatic analysis using coarse- and medium- resolution thermal
sensors, MODIS, Landsat, and ASTER are evaluated. For water-quality monitoring,
medium spatial resolution sensors including Landsat, HJ1A/B, and Sentinel 2, are
evaluated as potential replacements for expensive routine ship-borne monitoring.
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16.1 Monitoring Air Quality in Urban Areas

The gathering of air-quality data for urban areas and their source regions is a major
challenge because the large areas involved cannot be represented by ground stations.
Although satellite sensing systems and methodologies have recently been developed
with an adequate spectral and temporal resolution for monitoring aerosols, it is diffi-
cult to obtain fine spatial resolution because the atmospheric signal being sensed is
only a small proportion of the total image reflectance; thus large areas corresponding
to large pixels, giving a higher measurable signal, are required.

The most accessible remotely sensed parameter of air quality is aerosol optical
depth (AOD). This is a unit-less measure of the total amount of aerosol in the
atmospheric column and is based on the opacity of the atmosphere in a partic-
ular waveband. There is no general algorithm which can retrieve aerosol properties
over every kind of surface. Instead, different algorithms have been developed for (i)
water, (ii) dark vegetation, (iii) bright surfaces, and (iv) heterogeneous land surfaces
respectively, the latter two of which include urban surfaces. However, techniques
for retrieving aerosol over low-reflecting surfaces of water and vegetation are better
developed than those over land, because assumptions can be made that the surface
reflectance is either zero or near zero. Based on this, Kaufman and Tanré (1988)
developed an algorithm which first uses the NDVI (Normalized Difference Vegeta-
tion Index) to detect dense dark vegetation (DDV) pixels, then used the short-wave
infrared (SWIR, 2.1µm) band, which is not affected by aerosol, to obtain the surface
reflectance for the DDV pixels. Then based on the relationship

Lsur f0.49 = 0.25 ∗ Lsur f2.1
Lsur f0.66 = 0.5 ∗ Lsur f2.1 (Kaufman and Sendra 1988),

the apparent surface reflectance in the blue (0.49µm) and red (0.66µm) bands can be
obtained. The difference between the actual surface reflectance in these bands and the
observed (top of the atmosphere, TOA) reflectance is assumed to be due to aerosol.
This amount is then fitted to a best-fit aerosol model, with knowledge of the expected
aerosol types in the study area—for example, continental, industrial/urban, biomass
burning, and marine—to arrive at AOD from the image blue and red wavebands.

From this DDV concept, NASA developed the MODIS Dark Target (DT) AOD
product (MOD04; Kaufman and Tanré 1998) covering the globe. Although the DT
product at 10 km spatial resolution only provides meaningful depictions on a broad
regional scale, it is capable of giving an overview of air-quality conditions prevailing
over a city’s region. The expected error (EE) of the DT algorithm is± (0.05+ 0.15×
AOD) (Levy et al. 2013), which represents about 66% of retrievals within the EE on
a global scale (Levy et al. 2010). The most recent version of the DT algorithm is the
MODIS Collection 6.1 (C6.1) AOD product (Bilal et al. 2018a; Gupta et al. 2016).
The C6.1 product addresses uncertainties due to the heterogeneity of urban surfaces,
and updates the surface reflectance ratios using NASA’s MOD09 surface reflectance
product, which newly incorporates information on land cover type for pixels with
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urban cover > 20% (Gupta et al. 2016). TheDeep Blue (DB)AOD retrieval algorithm
(Hsu et al. 2004) provides estimates of AOD over bright urban and desert, as well as
dark surfaces, using the deep blue channels 412 and 470 µm in which these surfaces
appear dark, as well as the red channel (0.65 µm) for dark surfaces. The EE of DB
depends on geometry (Hsu et al. 2013; Sayer et al. 2013). The MODIS C6 product
(including DT and DB algorithms) has been evaluated over urban areas with varying
accuracies. For example, over Beijing, both the DT and DB C6 products (MOD04
and MYD04) were found to overestimate during highly polluted days due to a large
error in the surface reflectance estimation (Bilal and Nichol 2015; Tao et al. 2015).

Within C6, a combined DT/DB algorithm has also been produced at 10 km, which
combines both DT and DB algorithms in the same image, to retrieve AOD over both
dark and bright surfaces including urban areas (Levy et al. 2013). However, accuracy
overAsian citieswas observed to be low,with only 57%of retrievals fallingwithin the
expected error. Bilal et al. (2017) introduced a customized algorithm which specifies
the use of the DB algorithm when NDVI > 0.3, which cancels out the tendency
of the DT and DB algorithms respectively, to under- and overestimate the surface
reflectance, and which improved the percentage of retrievals within the expected
error to 65%.

Although both DT and DB algorithms use MODIS 500 m resolution wavebands,
their AODproducts are produced at the spatial resolution of 10 km because the 500m
pixels are amalgamated into windows of 20 × 20 (400) pixels to increase the signal-
to-noise ratio. Then, to eliminate clouds and water surfaces, dark and bright pixels,
which are unsuitable for retrieval of AOD, are deselected, with at most 120 pixels
remaining. Because the MODIS DT and DB products are unable to resolve city-
level features, the MODIS aerosol team produced a global DT product at 3 km, the
MOD04_3K/MYD04_3K, within the operational C6 aerosol product (Remer et al.
2013). Comparison with AERONET (AErosolROboticNETwork) ground stations
suggests that the MOD_3K is less reliable than the 10 km products (Bilal et al.
2018b). This may be because only a maximum of 11 pixels remain in the deselection
window, making the product noisier than that at 10 km.

Yang et al. (2018) conducted a preliminary investigation of an AOD product at
1 km resolution using the geostationary Advanced Himawari Imager (AHI) satellite,
based on the DT algorithm, with results showing some overestimation compared to
AERONET data, with a correlation coefficient of 0.83 and RMSE of 0.11. Due to the
recent availability of AHI, the AOD retrievals could not be thoroughly evaluated but
are consideredpromising. In viewof the superior temporal resolutionof geostationary
satellites (10-minutes for AHI), along with future improvement in spatial resolution,
semi-continuous monitoring of particulate concentrations at the city district scale
will be possible.

Contributions of the DB and DT retrievals to future global aerosol monitoring
projects such as ESA’s EarthCARE mission (Illingworth et al. 2015), with 10 km
radar and LiDAR,WMO’s GALION project, a ground-based aerosol LiDAR system
(Bösenberg et al. 2008), ESA’s ADM-AEOLUSmission, a space-based wind profiler
system launched in 2018 (Lolli et al. 2013), andNASA’s on-goingCALIPSOmission
with satellite-based aerosol LiDAR (Winker et al. 2010), will be very important.
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As with AOD retrieval, the estimation of other gaseous pollutants from satellite-
image wavebands is constrained by the weakness of the signal relative to the total
image reflectance, thus necessitating large pixel sizes. The MOPITT (Measurement
of Pollution in the Troposphere) sensor, which measures CO emissions from the
Earth’s surface, has 22 km spatial resolution at nadir, and OMI (Ozone Monitoring
Instrument) for ozone and NO2 estimation with a spatial resolution of 13 km ×
24 km, are not readily applicable for retrieval of urban-scale pollutant concentrations.
AlthoughBechle (2013) found that theOMI sensor aboardNASA’sAura satellitewas
able to measure spatial variability in NO2 exposure over a large urban area, detailed
district-level concentrations were constrained by the coarse resolution of the sensor.
These constraints have been lessened somewhat by the TROPOMI sensor onboard
the European Space Agency’s Sentinel 5P satellite launched in October 2017, which
measures ozone, NO2, SO2, methane, and CO at 7 km× 3.5 km resolution. However,
this is still too coarse for application at urban scales, and since algorithms developed
for complex land areas are difficult to apply, the task of deriving accurate air-quality
products for urban areas remains challenging.

16.2 Remote Sensing of the Urban Heat Island

Urban heat islands are caused by the replacement of natural evaporative and porous
land surfaces with non-evaporative human-made surfaces (Chandler 1965). These
disperse a much greater proportion of energy received into the surrounding atmo-
sphere as sensible heat, compared with the predominantly latent heat loss of rural
surfaces. Along with the generally lower albedo of urban surfaces, this results in
significantly higher air temperatures in cities compared with their rural surround-
ings, and the difference (�T (u-r)) reaches a maximum at night. As most cities have
few air-monitoring stations, the level of detail of intra-city temperatures is inade-
quate, whereas satellite thermal data provide a dense grid of continuous and time-
synchronized land surface temperatures (LSTs) over a whole city. Since cities are
identifiable on thermal satellite images for their temperature contrasts, as much as for
their optical differences with surrounding rural areas, many remote-sensing studies
have taken place (Roth et al. 1989;Weng 2009; Zhou et al. 2019). However, there are
numerous constraints to the use of the data in urban climatology, which are discussed
below.
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16.2.1 Spatial Resolution of Satellite Sensors Related
to Scales of Urban Climate

Due to the inverse relationship between wavelength and signal strength, longer-
wavelength thermal infrared sensors generally have a coarse resolution. Therefore
the thermal waveband of MODIS, at 1 km resolution, has only been used for general
temperature-trend analysis over city regions (Bonafoni 2016; Hulley et al. 2014). The
60 m and 90 m resolution sensors of Landsats 5–7/8 and 90 m of ASTER have also
been used for urban climatic analysis at the district and even the street scale within
cities (Nichol 1996a; Nichol et al. 2009; Feng and Myint 2016; Meng et al. 2018).
To overcome the limitation of spatial resolution, various ways of disaggregating the
thermal signal to provide more spatial detail have been presented (Nichol 2009;
Rodriguez-Galliano et al. 2012; Zhou et al. 2019). Figure 16.1 shows the effects
of emissivity modulation on an ASTER thermal image of a suburban area of Hong
Kong. The original resolution of 90 m (Fig. 16.1c) is disaggregated to a 10 m pixel
size (Fig. 16.1a), while correcting for surface emissivity differences (Nichol et al.
2009).

16.2.2 Relationship Between Surface Temperature and Air
Temperature

The conception as well as the usefulness of the UHI concept derives from its repre-
sentation of urban air temperatures which affect human comfort. More specifically
these are air temperatures within the urban canopy layer comprising the space within
streets between the surface and the top of the buildings (Oke 1976). However, satel-
lite thermal sensors measure the surface radiometric temperature or land surface
temperature (LST). Thus, the surface heat island (SUHI) represents the radiometric
temperature difference between urban and non-urban surfaces (Zhou et al. 2019).
Since the satellite-derived heat island is based on LST, the optimum usefulness of
these data depends on defining their relationship to a more conventional view of the
urban heat island, such as screen-level air temperature at the time of imaging (Nichol
et al. 2009; Schwarz et al. 2012; Clay et al. 2016). Li et al. (2018) developed an air-
temperature dataset at 1 km resolution covering the entire USA by combining daily
air-temperature data from weather stations with gap-filled MODIS LST data and
an elevation model. The method proved satisfactory, generating root mean square
errors of 2.1 and 1.9 °C, andR2 of 0.95 and 0.97 for dailyminimum andmaximum air
temperature, respectively. Sun et al. (2015) estimated air temperatures over Beijing
from MODIS LST data combined with vegetation indices, obtaining accuracies of
approximately 2°K compared with weather station data.
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Fig. 16.1 Surface temperatures of a mixed urban/suburban district in Hong Kong from: a ASTER
nighttime thermal image at 10.42 pm on 31.01.07 after emissivity modulation, bAerial photograph
showing land cover types, c Original ASTER thermal image with 90 m resolution
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16.2.3 Time of Imaging in Relation to Heat Island Maximum

Most space-borne thermal sensors such as the Landsat series and ASTER record
mainly during the daytime when densely built, high-rise areas may constitute a heat
sink (Nichol 2005; Rasul et al. 2017). Tropical cities (Nichol 2003) or arid zones
in summertime (Nassar et al. 2016; Rasul et al. 2017) may also exhibit heat sinks
during the day. Furthermore, the timing of the satellite overpass may not be ideal for
detecting temperature differences. Landsat for example at 9.30–10.30 am local time
is near themorning thermal crossover timewhenminimal thermal contrasts would be
expected. Differences in surface temperature are largest during the daytime, thus the
surface heat island based on LST is more pronounced than that of the conventional
UHI based on air temperature, for which the greatest differences are at night (Nichol
2005). Additionally, Sun et al. (2015) observed that LST was more similar to air
temperatures within the urban canopy layer at night but considerably different during
the day. The relationship may even be negative, as LST in urban districts increases
due to early-morning warming, while high-rise urban districts in shadow when the
sun angle is still low may constitute a heat sink (Nichol 2005).

In changing environmental conditions, satellite images taken at a single instant
may be unrepresentative. However, Nichol and To (2012) found that in Hong Kong,
due to a more stable boundary layer at night, nighttime ASTER thermal images
were representative of commonly occurring climatic conditions for a 13-h period
surrounding the image acquisition time, andwere significantly correlatedwith ground
air temperatures over the city, for 93% of hot summer nights.

16.2.4 Anisotropy of the Satellite View

Satellites record the temperature of horizontal surfaces, which may only represent
the complete radiating surface in flat rural areas. The effective (active) surface area
of a city, especially in high-rise areas, and using narrow field-of-view sensors, is
much larger than the equivalent countryside of the same size (Voogt and Oke 1996).
In high-rise housing estates in Singapore, for example, the active surface was found
to be 1.7 times greater than the planimetric (satellite seen) surface (Nichol 1998).
Thus nadir views would be warmer or cooler than off-nadir views depending on the
sun position. Hu et al. (2016) quantified anisotropic effects for two high-rise cities—
New York and Chicago—observing that daytime maximum temperature bias due to
anisotropywas up to 9°K for themost urbanized areas.When averaged over the entire
SUHI as measured byMODIS LST, the UHI magnitude was modified by 2.3°K, that
is, 25–30%, due to surface anisotropy. Voogt and Oke (1996) recommended using
ground-based observations to construction models for the weighting of temperatures
according to area and sun position (see also Nichol et al. 2014).
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16.2.5 The Need for Emissivity and Atmospheric Correction

Although satellite-derived radiance values can readily be converted to equivalent
black-body temperature (or brightness temperature) using Planck’s Law, this under-
estimates the surface radiometric temperature if corrections for emissivity differences
according to the type of land cover are not carried out. For example, a metal roof of
emissivity 0.92, and tile roof of emissivity 0.98, both with a radiometric tempera-
ture of 27 °C, will have brightness temperature (image) values of 20.8 and 25.5 °C
respectively. However for UHI studies, measurement of individual surface tempera-
tures is both impossible and unnecessary, as emitted radiation from each pixel is an
aggregated value of all surfaces within the pixel, and subject to anisotropic effects
according to look angle and the pixel’s horizontal/vertical surface ratio. To address
this, Yang et al. (2015, 2016) developed an urban emissivity model based on the sky
view factor (SVF), which accounted for surface material type and building geometry,
and found that a decrease in SVF was accompanied by increased emissivity due to
multiple scattering among buildings. Another potential source of error in thermal
image values is that they can only be considered accurate in clear, dry atmospheres,
and a further correction using atmospheric data in a radiative transfer model such
as MODRAN (Berk et al. 2014) should be made, if absolute temperatures are desir-
able. In humid atmospheres, energy absorption by atmospheric water vapor may
account for brightness temperatures up to 15 °C cooler than the surface radiometric
temperature (Nichol 1996b).

16.3 Monitoring Water Quality Along Urban Coastlines

Coastal waters are spatially complex, as they comprise a mixture of both saline and
brackish water, as well as containing different types of land runoff. Urban coastlines
are especially complex due to additional anthropogenic inputs, from both point and
non-point sources, with often severe impacts on water quality (WQ). For this reason,
WQ along urban coasts is subject to greater spatial and temporal variability than
other coastlines, andWQmonitoring from remote-sensing platforms requires sensors
with fine spatial as well as temporal resolution. A further challenge is due to the
wide range of organic and inorganic inputs to urban coastal waters making them
optically complex for ocean color monitoring. A common problem in countries with
unregulated drainage is high nutrient inputs from agricultural, industrial, and urban
waste, resulting in eutrophication and algal bloom events. These may be toxic to
humans as well as affecting a wide variety of marine organisms.
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Due to these factors, sensors frequently used for marine applications such as
the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS), the Moderate Resolution
Imaging Spectroradiometer (MODIS), the Visible and Infrared Imager/Radiometer
Suite (VIIRS), the Geostationary Ocean Color Imager (GOCI), and the Ocean and
Land Color Imager (OLCI), with spatial resolutions of several hundred meters, are
unable to resolve the necessary spatial detail, although they may have good temporal
and spectral resolutions. Recent space-based sensors with moderate resolution used
for retrieval of water-quality indicators (WQIs) includeNASA’s Landsat, the Chinese
HJ1 A/B, and ESA’s Sentinel series. The most recent Landsat 8 carries the Opera-
tional Land Imager (OLI), with 9 spectral wavebands, 5 in the optical spectrum from
430–880 nm, which are being used for ocean color monitoring (Franz et al. 2015;
Vanhellemont and Ruddick 2015). OLI has 30 m spatial resolution and a repeat cycle
of 16 days, which is increased to 8 days if combined with Landsat 7. The MultiSpec-
tral Instrument (MSI) on ESA’s Sentinel-2 platform carries 12 wavebands, including
three ocean color bands, blue (490 nm), green (560 nm) and red (665 nm) at 10 m
resolution, and three Near InfraRed (NIR) bands (705–783 nm) at 20 m resolution.
OLI has a 16-day repeat cycle.

Clearwater shows low reflectance in the visible spectrum and absorbsmost energy
in the NIR region, but the optical properties of water are affected by a range of
substances. These have given rise to the concept of ocean color sensing (Morel and
Prieur 1977), as dissolved organic matter (DOM) is strongly absorptive in the blue
(490 nm) spectral region, chlorophyll-a (Chl-a) in phytoplankton and algal pigments
mainly absorbs sunlight in the blue and red regions of the spectrum, and suspended
solids (SS) mainly reflect in the red and NIR regions (600–800 nm). Due to the
difficulty of retrieving an adequate reflected signal from the water column which
absorbs most light energy, the atmospheric component may be dominant unless
it is first removed, thus atmospheric correction is an essential pre-processing step
(Pahlevan et al. 2017). Algorithms for retrieval of WQIs from the water column
have undergone refinement as the spatial and spectral resolutions of space-borne
sensors and computing power have improved. Improvements in temporal resolution
with more satellite sensors and more frequent repeat cycles have released more
data for testing and validation of retrievals, which require close synchronization
with sea-station data (Pahlevan et al. 2019). Algorithms for retrieval of WQPs are
usually based on obtaining a substantial number of synchronous image and station
samples for regression against image wavebands, and a further substantial number
for validating the results.
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For example, a study of water quality around the heavily urbanized coastlines of
Hong Kong and the Pearl River Delta (PRD; Nazeer and Nichol 2016a) was able to
obtain 240 co-located samples of Chl-a and SSwithin two hours of image acquisition
when combining images from Landsat TM/ETM + and HJ1 A/B sensors over a 13-
year period (2000 to 2012). However due to the complexity of the coastal waters,
with PRD river sediments to the west, urban runoff in the central section, and clear
waters of the South China Sea to the east, retrieval algorithms developed across the
whole region were less accurate than those applied to individual water-quality zones
delineated by fuzzy c-means clustering. Thus, for Chl-a a low root mean square error
(RMSE) of 1.61µg/l was obtained for individual water-quality zones compared with
4.59 µg/l when applied to the whole spectrum of different water types across the
region. For SS concentrations, a significant improvement was also observed, with
the RMSE reducing from 2.72 mg/l to 1.19 mg/l when the models were applied to
individual zones.These results are good, considering thewide rangeof concentrations
obtained in the ship-sampled datasets, namely a Chl-a range of 0.30 to 13.0 µg/l and
SS concentration range of 0.5 to 56.0 mg/l, and suggest that space-borne sensors
are capable of providing spatially detailed, accurate, and cost-effective water-quality
status around urban coastlines.

With urbanization of coastlines, an increasing incidence of red tide events caused
by massive algal blooms from high nutrient inputs is being seen around the world,
but especially in rapidly urbanizing parts of Asia such as China and the Philippines
(Azanza et al. 2008;Nazeer et al. 2017). Such events are toxic to themarine ecosystem
and pose dangers to human health; thus, environmental authorities need timely and
detailed information on their occurrence. However, since the occurrence of a red
tide does not usually correspond with routine ship-borne water sampling missions
(monthly in Hong Kong), many go undetected. In Hong Kong, which is a thriving
international port but still has diverse coastal ecosystems, a severe red tide event from
December 2015 to February 2016 saw 220 tons of fish kills reported (SCMP 2016).
A remote sensing study of chlorophyll-a concentrations around the complex coastal
waters of Hong Kong using Landsat TM/ETM + (Fig. 16.2; Nazeer and Nichol
2016b) observed that a ratio of the red (630–690 nm) with the square of the blue
(450–520 nm) bands were most capable of representing actual Chl-a concentrations
due to the differential response of the red and blue wavebands to the Chl-a signal. A
correlation coefficient of 0.89 and mean absolute error (MAE) of 1.02 µg/l obtained
for the study indicated a good degree of confidence in remote sensing for routine
monitoring of red tide events along urban coastlines.
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Fig. 16.2 Red tide along the Chinese coast adjacent to Hong Kong, on 25th November 2014.
a Location of red tide, bAerial photograph of red tide (photo credits Xinhua), c Chl-a concentration
map in µg/l of red-tide-affected area using the ratio of Landsat/HJ1 blue (450–520 nm) and red
bands(630–690 nm)



254 J. E. Nichol et al.

References

Azanza RV, David LT, Borja RT, Baula IU, Fukuyo Y (2008) An extensive Cochlodinium bloom
along the western coast of Palawan, Philippines. Harmful Algae 7:324–330. https://doi.org/10.
1016/J.HAL.2007.12.011

Bechle (2013) Remote sensing of exposure to NO2: satellite versus ground-based measurement in
a large urban area. Atmos Environ 69:345–353

Berk A, Conforti P, Kennett R, Perkins T, Hawes F, van den Bosch J (2014) MODTRAN6: a major
upgrade of the MODTRAN radiative transfer code. In: Proceedings of SPIE 9088, Algorithms
and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery. p. 20: 90880H.
https://doi.org/10.1117/12.2050433

Bilal M, Nichol JE (2015) Evaluation of MODIS aerosol retrieval algorithms over the Beijing-
Tianjin-Hebei region during low to very high pollution events. J Geophy. Res. Atmos 120:7941–
7957. https://doi.org/10.1002/2015JD023082

Bilal M, Nichol JE, Wang L (2017) New customized methods for improvement of the MODIS C6
dark target and deep blue merged aerosol product. Remote Sens 197:115–124. https://doi.org/10.
1016/j.rse.2017.05.028

Bilal M, Nazeer M, Qiu Z, Ding X, Wei J (2018a) Global validation of MODIS C6 and C6.1
merged aerosol products over diverse vegetated surfaces. Remote Sens 10(3):475. https://doi.
org/10.3390/rs10030475

Bilal M, Qiu Z, Campbell JR, Spak S, Shen X, Nazeer M (2018b) A new MODIS C6 dark target
and deep blue merged aerosol product on a 3 km spatial grid. Remote Sens 10:463. https://doi.
org/10.3390/rs10030463

Bonafoni S (2016) Downscaling of Landsat and MODIS land surface temperature over the
heterogeneous urban area of Milan. IEEE J Sel Top. Appl Earth Obs Remote Sens 9:2019–2027

Bösenberg J, Hoff R, Ansmann A, Müller D, Antuña JC, Whiteman D, Sugimoto N, Apituley A,
Hardesty M, Welton Jet al. (2008) GAW aerosol lidarobservation network (GALION). WMO,
Geneva, Switzerland

Chandler TJ (1965) The climate of London. Hutchinson, London
Clay R, Guan H, Wild N, Bennett J, VinodkumarEwenz C (2016) Urban heat island traverses in the
city of Adelaide, South Australia. Urban Clim. 17:89–101

Feng X, Myint SW (2016) Exploring the effect of neighboring land cover pattern on land surface
temperature of central building objects. Build Environ 95:346–354

Franz BA, Bailey SW,KuringN,Werdell PJ (2015) Ocean colormeasurements with theOperational
Land Imager on Landsat-8: implementation and evaluation in SeaDAS. J Appl Remote Sens
9(1):096070. https://doi.org/10.1117/1.JRS.9.096070

Gupta P, Levy RC, Mattoo S, Remer LA, Munchak LA (2016) A surface reflectance scheme for
retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm.
Atmos Meas Tech 9:3293–3308. https://doi.org/10.5194/amt-9-3293-2016

Hsu NC, Tsay SC, King MD, Herman JR (2004) Aerosol properties over bright-reflecting source
regions. IEEE Trans Geosci Remote Sens 42:557–569

Hsu NC Jeong MJ, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, Huang J, Tsay SC (2013)
Enhanced deep blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos
118:9296–3015

Hu L, Monaghan A, Voogt JA, Barlage M (2016) A first satellite-based observational assessment
of urban thermal anisotropy. Remote Sens Environ 181:111–121

Hulley G, Veraverbeke S, Hook S (2014) Thermal-based techniques for land cover change detection
using a new dynamic MODIS multispectral emissivity product (MOD21). Remote Sens Environ
140:755–765

Illingworth AJ, Barker HW, Beljaars A, Ceccaldi M, Chepfer H, Clerbaux N, Cole J, Delanoë J,
Domenech C, Donovan DP et al (2015) The Earthcare satellite: The next step forward in global
measurements of clouds, aerosols, precipitation, and radiation. Bull Am Meteor Soc 96:1311–
1332

https://doi.org/10.1016/J.HAL.2007.12.011
https://doi.org/10.1117/12.2050433
https://doi.org/10.1002/2015JD023082
https://doi.org/10.1016/j.rse.2017.05.028
https://doi.org/10.3390/rs10030475
https://doi.org/10.3390/rs10030463
https://doi.org/10.1117/1.JRS.9.096070
https://doi.org/10.5194/amt-9-3293-2016


16 Urban Pollution 255

Kaufman YJ, Tanré D (1998) Algorithm for remote sensing of tropospheric aerosols fromMODIS.
NASAMODIS algorithm theoretical basis document. Goddard Space Flight Cent 85(1998):3–68

Levy RC, La Remer, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation
of the Collection 5MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–
10420

Levy RC,Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The Collection
6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:2989–3034

LiX, ZhouY,AsrarGR, ZhuZ (2018)Developing a 1 km resolution daily air temperature dataset for
urban and surrounding areas in the conterminous United States. Remote Sens Environ 215:74–84

Lolli S, Delaval A, Loth C, Garnier A, HFP (2013) 0.355-micrometer direct detection wind lidar
under testing during a field campaign in consideration of ESA’s ADM-Aeolus mission. Atmos
Meas Tech 6:3349–3358

Meng Q, Zhang L, Sun Z, Meng F, Wang L, Sun Y (2018) Characterizing spatial and temporal
trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in
Beijing, China. Remote Sens Environ 204:826–837

Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722.
https://doi.org/10.4319/lo.1977.22.4.0709

Nassar AK, Blackburn GA, Whyatt JD (2016) Dynamics and controls of urban heat sink and island
phenomena in a desert city: development of a local climate zone scheme using remotely-sensed
inputs. Int J Appl Earth Obs Geoinf 51:76–90

NazeerM, Nichol JE (2016a) Improved water quality retrieval by identifying optically unique water
classes. J Hydrol 541:1119–1132. https://doi.org/10.1016/j.jhydrol.2016.08.020

NazeerM, Nichol JE (2016b) Development and application of a remote sensing-based Chlorophyll-
a concentration prediction model for complex coastal waters of Hong Kong. J Hydrol 532:80–89.
https://doi.org/10.1016/j.jhydrol.2015.11.037

Nazeer M, Wong MS, Nichol JE (2017) A new approach for the estimation of phytoplankton cell
counts associated with algal blooms. Sci Total Environ 590:125–138. https://doi.org/10.1016/j.
scitotenv.2017.02.182

Nichol JE (1996a) High resolution surface temperature patterns related to urban morphology of in
a tropical city: a satellite-based study. J Appl Meteorol 35(1):135–146

Nichol JE (1996b) Analysis of the urban thermal environment of Singapore using LANDSAT data.
Environ Plan 23:733–747

Nichol JE (1998) Visualisation of urban surface temperatures derived from satellite images. Int J
Remote Sens U.K. 19(9):1639–1649

Nichol JE (2003) Heat island studies in the third world cities using GIS and remote sensing.
Chapter 13. In: MesevV (ed) Remotely sensed cities. Taylor and Francis

Nichol JE (2005) Remote sensing of urban heat islands by day and night. Photogram Eng Remote
Sens 71(5):613–621

Nichol JE (2009) An emissivity modulation method for spatial enhancement of thermal satellite
images in urban heat island analysis. Photogram Eng Remote Sens 75(5):547–556

Nichol JE, FungWY, LamKS,WongMS (2009) Urban heat Island diagnosis using ASTER satellite
images and ‘in situ’ air temperature. Atmos Res 94:276–284

Nichol JE, To PH (2012) Temporal characteristics of thermal satellite images for urban heat stress
and heat island mapping. ISPRS J Photogram Remote Sens 74:152–162

Nichol J, Bilal M, Ashley WWS (2014) Retrieval of Aerosol Optical Thickness (AOT) from urban
shadows using fine resolution WorldView-II images. In: Remote sensing and photogrammetry
society annual conference, Aberystwyth, 02–05 Sept

Oke TR (1976) The distinction between canopy and boundary-layer heat islands. Atmosphere
14:268–277

Pahlevan N, Chittimalli SK, Balasubramanian SV, Vellucci V (2019) Sentinel-2/Landsat-8 product
consistency and implications for monitoring aquatic systems. Remote Sens Environ 220:19–29.
https://doi.org/10.1016/J.RSE.2018.10.027

https://doi.org/10.4319/lo.1977.22.4.0709
https://doi.org/10.1016/j.jhydrol.2016.08.020
https://doi.org/10.1016/j.jhydrol.2015.11.037
https://doi.org/10.1016/j.scitotenv.2017.02.182
https://doi.org/10.1016/J.RSE.2018.10.027


256 J. E. Nichol et al.

Pahlevan N, Schott JR, Franz BA, Zibordi G, Markham B, Bailey S, Schaaf CB, Ondrusek M, Greb
S, Strait CM (2017) Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercom-
parisons, and enhancements. Remote Sens Environ 190:289–301. https://doi.org/10.1016/J.RSE.
2016.12.030

Rasul A, Balzter H, Smith C, Remedios J, Adamu B, Sobrino JA, Srivanit M, Weng Q (2017) A
review on remote sensing of urban heat and cool islands. Land 6:38. https://doi.org/10.3390/lan
d6020038

Remer LA, Mattoo S, Levy RC, Munchak LA (2013) MODIS 3 km aerosol product: algorithm and
global perspective. Atmos Meas Tech 6:1829–1844

Rodriguez-Galiano VF, Pardo-Igúzquiza E, Chica-Olmo M, Mateos J, Juan P, Rigol-Sánchez
JP, Vega M (2012) A comparative assessment of different methods for Landsat 7/ETM +
pansharpening. Int J Remote Sens 33(20):6574–6599. https://doi.org/10.1080/01431161.2012.
691612

Roth M, Oke TR, Emery WJ (1989) Satellite derived urban heat islands from three coastal cities
and the utilisation of such data in urban climatology. Int J Remote Sens 10(11):1699–1720

Sayer AM, Hsu NC, Bettenhausen C, Jeong MJ (2013) Validation and uncertainty estimates for
MODIS collection 6 “deep blue” aerosol data. J Geophys Res Atmos 118:7864–7872

Schwarz N, Schlink U, Franck U, Grossmann K (2012) Relationship of land surface and air temper-
atures and its implications for quantifying urban heat island indicators—An application for the
city of Leipzig (Germany). Ecol Ind 18:693–704

South China Morning Post (SCMP) 2016 Hong Kong fish farmers claim proliferation of red tides
is worst ‘UnnaturalDisaster’ to hit industry in years, 30th April 2016

Sun H, Chen Y, Zhan W (2015) Comparing surface- and canopy-layer urban heat islands over
Beijing using MODIS data. Int J Remote Sens 36:5448–5465

Tao M, Chen L, Wang Z, Tao J, Che H, Wang X, Wang Y (2015) Comparison and evaluation of the
MODIS collection 6 aerosol data in China. J Geophys Res Atmos 120:6992–7005

Vanhellemont Q, Ruddick K (2015) Advantages of high quality SWIR bands for ocean colour
processing: examples from Landsat-8. Remote Sens Environ 161:89–106. https://doi.org/10.
1016/j.rse.2015.02.007

Voogt JA, Oke TR (1996) Complete urban surfacetemperatures. In: Proceedings of the 12th confer-
ence on biometeorology and aerobiology. American Meteorological Society, Atlanta, USA, pp
438–441

Weng Q (2009) Thermal infrared remote sensing for urban climate and environmental studies:
Methods, applications, and trends. ISPRS J Photogram Remote Sens 64:335–344

Winker DM, Pelon JAC Jr, Ackerman SA, Charlson RJ, Colarco PR, Flamant P, Fu Q, Hoff RM,
Kittaka C et al (2010) The calipso mission. Bull Am Meteor Soc 91:1211–1230

Yang F, Wang Y, Tao J, Wang Z, Fan M, de Leeuw G, Chen L (2018) Preliminary investigation of a
new AHI Aerosol Optical Depth (AOD) retrieval algorithm and evaluation with multiple source
AOD measurements in China. Remote Sens 10:848. https://doi.org/10.3390/rs10050748

Yang J, Wong MS, Menenti M, Nichol J (2015) Modeling the effective emissivity of the urban
canopy using sky view factor. ISPRS J Photogram Remote Sens 105:211–219

Yang JX, Wong MS, Menenti M, Nichol JE, Voogt J, Krayenhoff ES (2016) Development of an
improved urban emissivity model based on sky view factor for retrieving effective emissivity and
surface temperature over urban areas. ISPRS J Photogram Remote Sens 122:30–40

Zhou D, Xiao J, Bonafoni S, Berger C, Deilami K, Zhou Y, Frolking S, Yao Y, Qiao Z, Sobrino
JA (2019) Satellite remote sensing of surface urban heat islands: progress, challenges, and
perspectives. Remote Sens 11:48. https://doi.org/10.3390/rs11010048

https://doi.org/10.1016/J.RSE.2016.12.030
https://doi.org/10.3390/land6020038
https://doi.org/10.1080/01431161.2012.691612
https://doi.org/10.1016/j.rse.2015.02.007
https://doi.org/10.3390/rs10050748
https://doi.org/10.3390/rs11010048


16 Urban Pollution 257

Janet E. Nichol is an Applied Geographer, specializing in
Remote Sensing, Geo-Informatics, and Environmental Change.
Her main research interests are in the application of remote
sensing to urban areas and landscape change, especially in the
context of global climatic change. She has previously worked
in universities in Nigeria, the Republic of Ireland, Singapore,
and Hong Kong, and is currently a Visiting Professor at the
University of Sussex, UK.

Muhammad Bilal is a Professor of Remote Sensing at the
Nanjing University of Information Science and Technology
(NUIST), Nanjing, China. In October 2018, the Jiangsu Provin-
cial Education Department conferred on him the special title
of “Distinguished Professor” based on his outstanding research
achievements.

Majid Nazeer is serving as Associate Professor at the Key
Laboratory of Digital Land and Resources, East China Univer-
sity of Technology (ECUT), Nanchang, Jiangxi, China. His
research interests include oceanic remote sensing, land cover
and land use classification, spatial modeling, air pollution, and
atmospheric correction of satellite imagery.



258 J. E. Nichol et al.

Man Sing Wong is an Associate Professor of the Department
of Land Surveying and Geo-Informatics, The Hong Kong Poly-
technic University, and also a NASA’s AERONET Hong Kong
station site manager. He is a chartered member of the Royal
Institution of Chartered Surveyors, the Hong Kong Institute of
Surveyors, and a Fulbright scholar supported by the United
States Department of State. He has published over 100 SCI jour-
nals and received over HKD 58 million of research funding as PI
in the last couple of years.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 17
Urban Health and Wellbeing
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Carsten B. Pedersen, and Jibran Khan

Abstract This chapter explores how the Internet of Things and the utilization of
cutting-edge information technology are shaping global research and discourse on the
health and wellbeing of urban populations. The chapter begins with a review of smart
cities and health and then delves into the types of data available to researchers. The
chapter then discusses innovative methods and techniques, such as machine learning,
personalized sensing, and tracking, that researchers use to examine the health and
wellbeing of urban populations. The applications of these data, methods, and tech-
niques are then illustrated taking examples fromBERTHA (BigDataCentre for Envi-
ronment and Health) based at Aarhus University, Denmark. The chapter concludes
with a discussion on issues of ethics, privacy, and confidentiality surrounding the use
of sensitive and personalized data and tracking or sensing individuals across time
and urban space.

17.1 Smart Cities and Health

Smart cities have become popular in urban discourse, research, and policy envi-
ronments; yet the term remains ambiguous. Here, we conceptualize smart cities as
enabledby the Internet ofThings (IoT),where sensing citizens and authorities employ
information and technology to better navigate their lives and manage resources more
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efficiently. The utilization of information technology presents unique opportunities
for understanding individual behavior and interactions in the urban space and their
implications for human health and wellbeing. Often the aim is to combine the use of
digital technologies and green city planning to optimize wellbeing and at the same
time improve the physical environment and mitigate climate change. Boulos and
Al-Shorbaji (2014) assert that an important component of smart cities is that they
contain the ingredients necessary for improving the quality of life and wellbeing
of residents. The technology and information available to urban residents have the
potential to affect their health positively or negatively.

On the one hand, technology and the interconnection of people via the Internet
present the opportunity for increasing access to health and health-enhancing infor-
mation while reducing the cost of health care, particularly for the socioeconomically
vulnerable (Aborokbah et al. 2018; Solanas et al. 2014). Remote monitoring of indi-
viduals can help quantify individual-level risks and provide vital information for
effective person-centered health care (Aborokbah et al. 2018). For instance, real-
time individual physiological and environmental information could help healthcare
providers understand contextual factors that expose an individual to adverse health
outcomes or improve their health and psychosocial wellbeing (Bryant et al. 2017;
Lomotey et al. 2017; Rocha et al. 2019).

Others talk about the use of technology and information to deliver services to
vulnerable and disadvantaged persons in the urban context with the aim of increasing
their independence and wellbeing (Gilart-Iglesias et al. 2015; Rodrigues et al. 2018;
Turcu and Turcu 2013). Just as studies show the myriad advantages associated with
using personal information and technology in advancing health and wellbeing, they
also highlight their negative effect on health outcomes (Do et al. 2013). The use of
the Internet has opened new health and wellbeing challenges, beyond the traditional
methods of providing and sustaining health and wellbeing, including misinforma-
tion, cyberbullying, cyber-fraud, and victimization. Do et al. (2013) observed that
excessive use of the Internet among adolescents contributes to a higher incidence
or likelihood of reporting depressive symptoms, suicidal thoughts, overweight, and
lower self-reported health status due to sleep deprivation. Likewise, studies also
show that the Internet has given an impetus to anti-vaccination campaigns through
misinformation, contributing to lower acceptance and hesitation in accepting vaccine
(Dubé et al. 2014).

This chapter is structured into four main sections, all considering health and well-
being in an urban context. We begin by discussing data in an informatics era, before
considering existing and emerging analytical techniques and methods. Example
applications are taken from our BERTHA center, before we round off the discussion
with the important issues surrounding privacy and confidentiality.

BERTHA (Big Data Centre for Environment and Health) is our interdisciplinary
research center, based at Aarhus University, Denmark, bringing together urban
geographers, environmental modelers, data scientists, and medical practitioners.
BERTHA aims to muster the huge potential opportunities from the big data revolu-
tion in medical, environmental and population registers, personalized sensors, and
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crowdsourced data mining to disentangle the complex interactions between whole-
life-course environmental and social exposures, and human health. Key to this over-
arching aim is assembling, linking, and analyzing diverse, huge datasets, developing
algorithms, and intelligent data analytics.

17.2 Data

17.2.1 Big Data

There has been a lot of hype and hyperbole in the past decade over the Big Data
paradigm. Big Data from a variety of data sources from government and citizens
can be applied to improve urban health and wellbeing (Fleming et al. 2014). Within
BERTHA, we see Big Data as not just about using large datasets, but critically, the
combination of (huge) datasets to reveal value greater than the sum of the individual
parts. The Big Data term has also been used to encompass the use of predictive data
analytics and the computational analysis of extremely large, multi-source datasets to
reveal patterns, trends, and associations. Thus, we prefer Rich Data rather than Big
Data.

17.2.2 Individual and Population Data

Decisions on the health and wellbeing of a population are often informed by data and
knowledge available on individual citizens. Generally, there are two sources of data
for this decision-making process: individual or population data, and environmental
data. Traditionally, administrative records and censuses were the main sources of
individual or population-level data. While these data sources have their flaws, the
data from some countries, including the Scandinavian countries, contain rich infor-
mation about individuals from the onset of their lives till their demise (Frank 2000).
The data from these registers enable detailed analyses and research on each individual
in the population. The information from the various registers can be linked to each
member of the population through a unique personal identification number. Exam-
ples of such unique identification numbers are Denmark’s Centrale Personregister
(Central Person Register, CPR) number, Norway’s Fødselsnummer (national identi-
fication number), and Sweden’s personnummer. In Denmark, these unique identifiers
enable researchers to link data and information from nearly 200 databases from infor-
mation on places of residence, employment, to medical records and socioeconomic
data on salaries and tax. The records of some databases extend as far back as 1924
(Pedersen 2011; Pedersen et al. 2006), but the critical ones have been digital since
1968. In other countries, the information about individuals fromgovernment registers
and databases can be extracted or linked using social-security numbers; for example,
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Canada’s Social InsuranceNumber (SIN). Similar to the Scandinavian personal iden-
tification numbers, these unique social-security numbers are normally assigned at
birth. Information from the registers and the databases, such as a residential address,
workplace, and school, can also be geocoded, enabling researchers to identify envi-
ronmental exposures over each individual’s total life course (Pedersen 2011). Partic-
ularly in the case of the data from Scandinavian registers, it is possible to define
location histories of each individual in the population, accurately georeferenced to
1 m (Pedersen 2011).

In thedigital era, tracking and sensingof an individual’s activities in urban environ-
ments has become commonplace (Lupton 2013, 2017; Swan 2009, 2012). Advances
in technology and miniaturization have facilitated the ability to track time-activity
patterns of individuals, via GPS-enabled smartphone apps, watches, or proprietary
wearable devices. These digital devices and social-media platforms not only enable
individuals to generate and analyze personalized health data, but also enable them to
share this information directly or indirectly with others (Gimpe et al. 2013; Lupton
2013, 2017). Prior to this, the accepted practice was to use daily research diaries to
record life events and activities. These diaries may be intimate journals with uncen-
sored information about one’s thoughts, opinions, or experiences; or memoirs often
written with an audience in mind; or a log of events and activities that occurred in
one’s life (Elliott 1997).

17.2.3 Environmental Data

Records of air pollution, water quality, housing conditions, recreational space, and
exposure to chemicals traditionally came from field surveys, household surveys, or
stationary observations. However, these data are usually limited in sample size and
are not often available for longitudinal studies. Increasingly, environmental data are
obtained from modeling or simulation, informed from field monitoring.

Remote sensing is a valuable source of environmental data, which are complemen-
tary to survey data and help to capture the dynamics of urban environments. Time-
series satellite images allow understanding of urban sprawl and shrinkage in many
parts of the world. For instance, urban expansion has been investigated with Landsat
time-series images over more than two decades in India (Sharma and Joshi 2013),
the USA (Li et al. 2018; Sexton et al. 2013), Japan (Bagan and Yamagata 2012), and
China (Shi et al. 2017). The variations of urban greenness across the years can also
be monitored via remote-sensing data and used to predict the outbreaks of mosquito-
borne diseases in cities (Chen et al. 2018). On the other hand, building damage and
land-use changes due to environmental disturbances, such as the 2003 Bam earth-
quake in Iran (Chini et al. 2008) and the 2011 Fukushima nuclear disaster in Japan
(Sekizawa et al. 2015), were traced by satellite. In complex human-environment
systems, researchers also utilize satellite images to understand different pathways of
agricultural damage (Chen and Lin 2018).
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Many recent epidemiological studies have evaluated the health impacts of specific
land-cover types and the configuration of urban land use, including commercial, resi-
dential, and recreational areas, green space, agricultural areas, and proximity to blue
space. The literature shows that natural environments, such as green or blue space,
can have health-enhancing (or salutogenic) properties that improve the physical and
psychosocial wellbeing of urban residents (Bornioli et al. 2018; Duarte et al. 2010;
Olsen et al. 2019; Stigsdotter et al. 2017); however, the associations between envi-
ronmental measures and health remain uncertain (Briggs et al. 2009; Wheeler et al.
2015). Other studies have questioned the relationship between salutogenic spaces
and health outcomes (Gren et al. 2018). For instance, while green space may miti-
gate pollution levels through removing pollutants from the air, it is also a source of
pollens, aggravating allergies and increasing particulate-matter counts.

Researchers have also been critical of the proxies used in measuring environ-
mental exposures. Determining exposure metrics of various land covers that poten-
tially impact health is complex. Early work (Pearce et al. 2006) used distance as a
proxy for exposure to green space, by defining either a radius around the residential
home or using the road network distance. Nearly, all studies have focused on the
residential home, or neighborhood, as the location of analysis, often ignoring places
of work or education and the more complex daily-life trajectories (Sabel et al. 2000,
2009; Steinle et al. 2013). However, proximity does not equate to accessibility. The
literature highlights the distinction between the two concepts and stresses that phys-
ical and socioeconomic barriers (including, highways, or gated communities) may
impede the ability of individuals in proximity to these natural environments from
fully benefitting from their health-enhancing properties (Markevych et al. 2017).
More recently, research has moved on to consider the quality and configuration of
urban space, since there is evidence that homogeneous spaces are less beneficial to
health than heterogeneous, biodiverse ones (Wheeler et al. 2015).

Air pollution is traditionally measured by costly devices at fixed-site monitoring
stations. It is absolutely crucial that such devices are advanced and accurate, since
they are usually used in air-pollution monitoring programs legislated by govern-
ments to test compliance with air-quality guidelines. However, it is increasingly
being questioned whether assessing personal exposure to air pollution using fixed-
sitemonitoring datamight provide an error in the individual exposure as the impact of
the mobility pattern is ignored (Buonanno et al. 2014; Steinle et al. 2013). However,
newly developed low-cost, portable sensor nodes provide new options for personal-
exposure monitoring (PEM) by mobile measurements. The sensor nodes can easily
be carried around during our daily life, where we constantly move in time and space
through different environments both indoor and outdoor.We commute between home
andwork, spend time indoors with household activities andwork, andmaybewe play
with our kids at the local playground. Thus, we are constantly exposed to highly vari-
able concentrations of air pollution with documented evidence for negative health
effects. However, these low-cost personal air-pollution sensors are not as robust
scientifically as the fixed-site monitors, and it is still uncertain how measurements
are affected when the sensor nodes are moving: how does it affect the performance
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of the sensors when one moves between different microenvironments, especially
when one moves from indoors to outdoors, exposing the sensor to rapid changes in
temperature and humidity.

17.3 Methods and Techniques

Recent advances in information technology have contributed new sources of indi-
vidual data for researchers in their quest to understand human-environment inter-
actions and their impact on health and wellbeing in urban space. Mobile digital
devices, such as smartphones, smartwatches, tablets, and sensors, together with apps
on the devices, can collect users’ data on physical activity, sporting performance, and
daily routines, as well as demographic and health data. These mobile devices also
simultaneously provide spatiotemporal geolocational data of the user, using GPS or
cellphone-network triangulation. The information from these devices has radically
changed the opportunities for researchers and practitioners within the health and
wellbeing arena. For researchers, it has extended the traditional boundaries and the
methods, techniques, or approaches used in conducting our studies; and also makes
us critical of existing models and concepts of health and wellbeing (Lupton 2013;
Swan 2009). For medical practitioners, the data can provide additional information
about patients, the inclusion of the individual in the healthcare process, and the ability
to provide holistic care for patients (Dingler et al. 2014).

Compared with traditional methods, multi-source big data could be collected
frommany other aspects passively and unconsciously. Wang et al. (2019a, b) in their
survey about sensor-based human activity recognition (HAR) catalog common-used
sensors into four types: (1) Inertial sensors, including accelerometer, gyroscope, and
magnetometer applied in detecting multiple motions; (2) Physical health sensors,
such as electrocardiograms, skin temperature, heart rate, and force sensors, used to
detect people’s health conditions, while new technology products like sports watches
and fitness tracking bracelets have a similar function; (3) Environmental sensors like
temperature, light, and barometer sensors, delivering context information related to
activities; (4) Others: other wearable devices like cameras, microphones, and GPS.
GPS can track people’s routes and record locations simultaneously and is useful
in studies of urban space and people’s behavior (Bohte and Maat 2009). The cell
phone has been applied in public-health studies and can be combined with gyroscope
(Shoaib et al. 2014) and barometer (Muralidharan et al. 2014) to identify physical
activity and sleep quality. Image sensors like wearable cameras have been applied
in recording people’s daily exposure (Wang and Smeaton 2013), including dietary
intake (Zhou et al. 2019), and environmental exposure (Chambers et al. 2017).

The emergence of social media and smartphone technologies more generally has
opened new sources of data for understanding health and wellbeing in the urban
context. However, the data from these sources are subject to potential biases since
users are often not fully representative of society, under-representing persons of lower
socioeconomic status, and older and non-tech savvy persons. It can be argued that
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socioeconomic factors are as important as the physical environment in determining
health impacts on human populations, since a disproportionate share of the burden
of environmental exposure falls on vulnerable groups of society, including low SES,
ethnic minorities, women, and the elderly and young, due partly to issues of envi-
ronmental (in)justice. In addition, SES can explain differences in external exposure
because of the different prevalence of specific behaviors in some groups; for example,
differences in diet between SES groups. Individual health and wellbeing are influ-
enced bymany factors including past and present behavior, healthcare provision, and
wider determinants including social, cultural, and environmental factors. Traditional
sources of data, such as government registers, and demographic and health surveys,
offer information on these broader contextual factors that are often absent in indi-
vidual data from smart technologies. The breadth of the traditional data means they
are relatively less susceptible to selection bias compared to the new sources of data.

Additionally, traditional data also bring the ability to construct area-level expo-
sures and their influence on health and wellbeing, such as to address the context
versus composition debate (Macintyre et al. 2002), regarding the wider question of
which is more important for shaping health: the area in which people live (context) or
the people who make up the inhabitants of that area (composition). Area-level SES
is often estimated by means of a weighted index of factors from published secondary
data, such as the UK Index of Multiple Deprivation (IMD) and the Vancouver Area
Neighborhood Deprivation Index (VANDIX) (Bell and Hayes 2012; Ellaway et al.
2012;Macintyre et al. 2008; Schuurman et al. 2007).Weighted factorsmight typically
include measures of education, income, homeownership, and access to transport.

Another informatics area experiencing fast adoption is using citizens as sensors
(Goodchild 2007) to obtain evidence of citizens’ experiences in the urban landscape
(Zook 2017). An emerging field in the health arena, supported by smartphone tech-
nology, is ecological momentary assessment. Here apps are utilized such as in the
Mappiness project (MacKerron and Mourato 2013; Seresinhe et al. 2019) to ask
people to describe their responses to the environment directly, with the advantage
that input is related to the current location viaGPS. This allows researchers to explore
the more psychological aspects of how people are responding to their environments.

Modeling, as opposed to monitoring, of urban environments has been enabled
by the digital era. As a branch of artificial intelligence, machine learning is a field
of study growing in popularity in urban modeling that provides computers with the
ability to automatically learn and improve their own algorithms from data. Machine-
learning studies often investigate urban dynamics based on remotely sensed data.
The approach of mapping the urban environment with machine-learning methods
goes back to the 1990s. For instance, Gong et al. (1992) used a maximum-likelihood
classifier and USGS Landsat imagery to automate urban land-use mapping. Such
development, however, was slow until the 2000s, when satellite images at 30 m and
finer resolution became affordable and publicly readable (Weng 2012).

Machine learning has the potential to automate the process of urban mapping,
which traditionally relies on intensive labor. Automatic image recognition, from
sources such as Google Streetview, encourages urban scientists to detect more
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nuanced features in cities.With the capability of increasing computation power, deep-
learningmethods, such as convolutional neural networks (CNNs), have increased the
dimension of detectable urban attributes. Because of CNN’s capabilities in recog-
nizing the spatial patterns of image patches, recent studies have applied CNN to
streetview images and aerial photographs for quantifying a sky view of street canyons
(Gong et al. 2018), mapping local climate zones (Qin et al. 2017), and classifying
specific types of urban facilities (e.g., church, park, and garage) (Kang et al. 2018).
Remote sensing and machine learning are complements to urban simulation models
(Batty 2013), which can forecast dynamics and growth, but not represent spatial
details.

Similarly, researchers have also applied machine-learning methods to data from
personalized sensors and streetview images to understand dynamism in the urban
space and its effect on mental health as well as susceptibility to crime (Goin et al.
2018; Helbich 2018; Helbich et al. 2016; Mohr et al. 2017; Wang et al. 2019a, b).
Machine learning can also be used to improve the prediction accuracy of models that
seek to understand the effect of individual and community factors on health outcomes.
Machine-learning approaches, such as least absolute shrinkage and selection operator
(LASSO) and random forest, have been used to identify optimal individual-level and
community-level factors that predict firearm violence in urban communities (Goin
et al. 2018).

17.4 BERTHA Studies

17.4.1 AirGIS

Models are used in academic research to enhance our knowledge of reality by simpli-
fying the complexity of the phenomena we study as researchers. For instance, GIS
models are used to estimate and assess exposure to adverse environmental conditions.
In Denmark, the Danish AirGIS (Jensen et al. 2001) and Operational Street Pollution
Model (OSPM) (Berkowicz 2000) are routinely used to estimate street- or local-scale
air pollution. In an effort to improve this model system and increase its accessi-
bility, researchers in BERTHA developed an open-source GIS model for computing
local-scale air-pollution estimates (Khan et al. 2019a, b). The new model is able
to reproduce both temporal (correlation range: 0.45–0.96) and spatial (correlation
range: 0.32–0.92) variations in observed air pollution, and subsequently to estimate
both short- and long-term exposures to air pollution, which enables researchers to
better understand its duration and effects on human health andwellbeing. TheAirGIS
system is currently being extended to estimate noise mainly originating from urban
transport.

At present, the AirGIS is being further extended to estimate dynamic time-activity
exposure to air pollution by tracking individuals in urban commuting environments,
and making use of measured and modeled air-pollution data (Khan et al. 2019a,
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Fig. 17.1 a Modeled PM10 (µg m−3) at GPS track points of the walking-based activity of the
study participants in Copenhagen, Denmark. The modeled values are for Monday, February 4,
2019, during 7:00–10.00 am b the same for modeled PM2.5 (µg m−3)

b). The focus is on developing a novel exposure assessment framework to facilitate
health-related studies. As an example a walking-based activity was performed in
Copenhagen, Denmark (Khan et al. 2019a, b). At GPS track points, air-pollution
concentrations (NOx, NO2, PM10, and PM2.5 in µg m−3) were calculated using the
AirGIS system to analyze dynamic exposure to modeled air pollution (Fig. 17.1).
Preliminary findings suggest that exposure estimates based on time-activity patterns
of individuals depend on the level of one’s mobility as well as on the location of
one’s workplace relative to home.

17.4.2 Personalized Tracking and Sensing

Wearable devices are practically ubiquitous in the informatics era. Among these
devices, the wearable camera has attracted increasing attention, since it can capture
details of daily life by images or videos, which can enhance researchers’ under-
standing of people’smovements, behaviors, and preferences. Zhang and Long (2019)
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Fig. 17.2 Wearable camera (also appears in Zhang and Long 2019)

conducted research in Beijing, validating applying wearable cameras (Fig. 17.2) in
built-environment studies. Through identifying and analyzing 8598 images collected
from a one-week experiment, they summarized the spatiotemporal characteristics of
the user while wearing the camera, and compared the frequency of greenery (the
ratio of green) and outdoor exposure (the ratio of blue) by means of color identifi-
cation. The images were classified using artificial intelligence, and common image
elements (tags) were identified (Zhang and Long 2019), including building, traffic,
figure, food, digital screen, and greenery. Results showed that as a kind of digital
lifelogging, an individual image database is an effective support for future interdisci-
plinary studies involving the environment and personal wellbeing from amicro-scale
perspective. In the future, as the popularization of IoT technology becomes real, an
increasing number of wearable gadgets such as wristbands (pulse, blood pressure,
and heartbeat), glasses (eyesight, eye pressure, distance to screen) and so on, can be
utilized to build a more comprehensive profile of individual health and exposure.

17.4.3 Personalized Air-Pollution Sensors

Computer and sensor technologies have developed tremendously over the past ten
years, and air-pollution sensors have been miniaturized, are reasonably accurate,
cheap, and have a fine time resolution. This development enables personal-exposure
monitoring, and deploying such measurements might improve our knowledge about
how we are exposed to air pollution during our regular activities. However, person-
alized sensors require a user-friendly interface to ease their use by those who wish
to monitor their daily exposures. This is often done by visualizing data via an app.
However, the design of such apps demands that some decisions be made in advance.
Howmuch information should the user of the app be presented with and how are data
visualized in the most useful way? Will the idea of using different color zones make
air-pollution data more understandable or will it misinform; for example, if green,
yellow, and red are used to indicate low, medium, and high concentration ranges,
then there is a risk that the color red will scare the user and that the color green will
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Fig. 17.3 User interface of
personalized air-pollution
monitoring app

misinform, as low concentrations do not necessarily mean a healthy environment.
Another important thought is whether GPS positions are presented or not and how are
these are secured in accordance with the EU’s General Data Protection Regulation
(GDPR). Our work with the personalized air-pollution sensors focuses on optimizing
sensor performance in a mobile environment, along with app development to convey
data to the users (Fig. 17.3).
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17.4.4 Mental Health

In a nationwide study, researchers in BERTHA have combined data from the Danish
Psychiatric register and green space, measured by NDVI from 30 m by 30 m Landsat
imagery, in Denmark from 1985 to 2013 in order to understand the potential effect
of green space exposure on schizophrenia. The study reveals that individuals with
childhood exposure in placeswith the lowest amount of greens pace have an increased
risk (1.52-fold) of developing schizophrenia (Engemann et al. 2018, 2019). From
Fig. 17.4, the relative risk of schizophrenia was shown to be higher among persons
in urban areas, especially in the capital (Copenhagen) compared to people living in
similar NDVI deciles in other regions of the country.

Fig. 17.4 From Engemann et al. (2018)
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Further ongoing work is investigating a broader range of psychiatric disorders
and natural environment exposure. Initial results suggest that growing up in natural
environments is associated with lower levels of psychiatric disorders.

17.4.5 Physical Activity

BERTHA collaborates with RUNSAFE,1 a non-commercial, multidisciplinary
research group based at Aarhus University Hospital, Denmark. In collaboration with
Garmin, RUNSAFE has launched a worldwide study recruiting runners willing to
monitor their running habits with a Garmin device and report their injury and health
status on a weekly basis over an 18-month period. With other big data, the relation-
ship between running activity, personal characteristics, and risk of running-related
injuries will be investigated (Nielsen et al. 2019). This data source is fundamental for
BERTHA, as the fitness data will be combined with air pollution data to investigate
if physical activity in polluted areas increases the risk of heart-rate variability as a
sign of effects of air quality on the cardiovascular system.

17.4.6 Danish Blood-Donor Study

In combination with personal sensors, we are aiming at a study examining the obsta-
cles and drivers of mobility in different age groups with a special interest in life
periods—children, teenagers, adults, and seniors—as mobility has been shown to
differ between these groups. The Danish blood-donor study is targeting suscepti-
bility factors related to air pollution, taking advantage of the repetitive sampling of
plasma. This enables the study of biomarkers of air pollution in the total population,
or strata related to genetic markers of susceptibility, for example, atopy, gender, and
age (Hansen et al. 2019).

17.5 Privacy

We live in an increasingly monitored world. People can be tracked as they navigate
their urban lives, via cameras, monitoring of their smartphones, or their social media
accounts. Norms and expectations are rapidly evolving. What might be considered
ethically acceptable by young people might be viewed as intrusive for older gener-
ations. While this offers the urban researcher unparalleled data access, there are
important ethical issues to be considered. Particularly in the health and wellbeing

1Garmin RunSafe: Running Health Study (n.d.) Retrieved October 7, 2019. https://garmin-runsafe.
com/.

https://garmin-runsafe.com/
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domain, there are multiple privacy issues to consider. Some of these have been
covered in other chapters, notably Chap. 32, but there are specific issues to consider
when handling personal health information.

Taking the example ofDenmark, but similar procedures apply elsewhere, access to
all individual-level data is regulated by Danish legislation. Research studies needing
additional information directly from study participants also need approval from the
relevant ethical committee, followed by informed consent from study participants.
Updated individual-level information originating from national registers may only
be accessed at secure research platforms, including Statistics Denmark or the Danish
Health Data Authority. All data must comply with the recently introduced EUGDPR
Regulation 2016/679 (General Data Protection Regulation).

Standard epidemiological protocols around ethics, privacy, and confidentiality
also apply to data derived from personalized sensors and smartphone apps. Online
consent is normally sought, for example, when users sign up to a new service, be
it a wearable device or a social-media account. When users sign up, are the users
aware of exactly what they are consenting to? Most apps or devices cannot be used
without agreeing to the often long list of terms and conditions, and many users will
not read the full terms. Once signed up, often the terms and conditions allow the
service provider or sensor developer to store, analyze, make public, or sell for profit,
an individual’s data. Researchers can then legally access these data, often without the
individual’s knowledge. This is particularly challenging in a big data environment,
when users might have given consent individually but may not be aware of the ability
to link data across platforms to infer much more.

Lastly, the public debate around data privacy needs to balance the individual’s
right to privacy versus the opportunities to make new scientific discoveries from
wider data availability. Globally, governments are leaningmore toward the protection
of citizen’s rights over the exciting opportunities that wider data access could offer
to make fundamental scientific breakthroughs.

17.6 Conclusions

This chapter started by sketching the relationship of smart cities and urban infor-
matics to human health and wellbeing. We talked about the how advancement in
information technology and mobile devices has enhanced health and wellbeing for
urban residents through the provision of person-centered solutions to understand
how the social and built environment impacts their lives. The technology and its
associated platforms offer less costly ways for delivering vital health and wellbeing
services to the wider population at a minimal cost. They have also encouraged indi-
viduals to be proactive participants in the healthcare delivering system, as well as
offered them resources for engaging in healthy lifestyles via tracking their health
behavior. Nevertheless, the emergence of these innovative and smart technologies is
not without caveats. Within a rapidly changing technological world, researchers and
policy-makers have to keep abreast of changing behavior and the preferences of the
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population, particularly the urban population who are often at the forefront of this
technological drive. IoT has also exposed people to new forms of health risks, such
as cyber victimization, misinformation, and addiction. As researchers, we need to
develop new tools and techniques (beyond the traditional ones) to understand these
risks and their implications on individuals and the wider population. Researchers
and policymakers also have to maintain a delicate balance between the desire to
improve health and wellbeing (using the newly available technology and data), and
respecting individual privacy (and other ethical considerations). Considering the
sociodemographic characteristics of users of these smart devices and technology,
critical questions also remain about whether the research will perpetrate inequali-
ties in the urban space through the policy and planning of health and wellbeing that
emerge from the new IoT.
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Chapter 18
Urban Energy Systems: Research at Oak
Ridge National Laboratory

Budhendra Bhaduri, Ryan McManamay, Olufemi Omitaomu, Jibo Sanyal,
and Amy Rose

Abstract In the coming decades, our planet will witness unprecedented urban popu-
lation growth in both established and emerging communities. The development and
maintenance of urban infrastructures are highly energy-intensive. Urban areas are
dictated by complex intersections among physical, engineered, and human dimen-
sions that have significant implications for traffic congestion, emissions, and energy
usage. In this chapter, we highlight recent research and development efforts at Oak
Ridge National Laboratory (ORNL), the largest multipurpose science laboratory
within the U.S. Department of Energy’s (DOE) national laboratory system, that char-
acterizes the interactions between the human dynamics and critical infrastructures
in conjunction with the integration of four distinct components: data, critical infras-
tructure models, and scalable computation and visualization, all within the context of
physical and social systems. Discussions focus on four key topical themes: popula-
tion and land use, sustainable mobility, the energy-water nexus, and urban resiliency,
that are mutually aligned with DOE’s mission and ORNL’s signature science and
technology capabilities. Using scalable computing, data visualization, and unique
datasets from a variety of sources, the institute fosters innovative interdisciplinary
research that integrates ORNL expertise in critical infrastructures including energy,
water, transportation, and cyber, and their interactions with the human population.

18.1 Introduction

The Earth is urbanizing rapidly, experiencing an unprecedented rate of population
growth that is increasing demand for energy, food, water, and other natural resources,
and raising concern about environmental impacts andmatters of human security such
as poverty, crime, and pandemics. Urban areas account for 67–76% of global final
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energy consumption, and 71–76% of fossil-fuel-related CO2 emissions (Seto et al.
2014). Increases in urban energy use have mirrored the growing global population,
increasing urbanization promoted by the migration of population from rural to urban
areas for a better quality of life, and rapid evolution of housing, transportation, food,
and water, and other associated infrastructures necessary to support urban lifestyle.
According to a recent estimate by the World Health Organization (WHO 2019), the
urban population in 2014 accounted for 54% of the total global population, up from
34% in 1960. Following this trend, it is widely anticipated that over 70% of the
world’s nine billion population will live in urban areas by 2050. Also, by 2050, there
will be a nearly 50% increase, compared to 2018, in the consumption of energy,water,
transportation, healthcare, urban infrastructure, and food (U.S. EIA 2019). Most of
this growth comes from countries where strong economic growth is driving demand,
particularly inAsia.While generation and consumption of electricity dominate urban
energy use, it is a combined effect of the growing population and per capita electricity
consumption which is higher for developed countries.

Urban areas are characterized by the complex interactions between the crit-
ical infrastructure components, such as buildings, utility networks, and mobility
systems, and their users atmultiple spatial and temporal scales. There are tremendous
opportunities to design optimal, resilient urban systems by exploiting the inherent
complexity of these interactions; for example, assessment of the impact of new
technologies changing the dynamics between energy end-users and distribution and
storage systems. Our ability to observe and measure through direct instrumentation
of our environment and infrastructures from buildings to the planet scale, coupled
with the explosion of data from citizen sensors, provides a unique opportunity to
manage and increase efficiencies of existing built environments as well as design
a more sustainable future. We can take advantage of both the enormous amounts
of spatial and non-spatial data, in traditional and non-traditional forms, as well as
new approaches in data science, particularly in geospatial applications, to answer
questions for which data had previously not available.

With its mission to deliver scientific discoveries and technical breakthroughs that
accelerate the development and deployment of solutions in clean energy and global
security, coupled with leadership-class data and high-performance computing infras-
tructures, the Urban Dynamics Institute (UDI) at ORNL was established in 2014
to develop novel science and technology to observe, measure, analyze, and model
urban dynamics from the city to the global scale. UDI’s research themes focus on
key urban energy issues that drive energy demand, consumption, and efficiency, and
efforts to address questions such as: Howdoes distribution andmorphology of human
settlements and associated population influence energy usage? How do we design
mobility systems that make urban transportation energy efficient? How does water
use for urban energy production impact our ecological systems? How do we design
urban infrastructures that enable cities to reduce energy and environmental costs?
To illustrate some of ORNL’s contributions to the understanding of such complex
urban systems, the following sections are organized into four key themes that reflect
the primary dynamics of urban energy systems and have the potential for data-driven
analysis:
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1. Population and land use: Provide insights into the evolving spatial and sociode-
mographic patterns of human population distribution and activity that respond
to and transform urban landscapes and systems at varying spatial and temporal
scales.

2. Sustainable mobility: Improve transportation sustainability, safety, and accessi-
bility through enhanced understanding of the energy and environmental implica-
tions of emerging transportation systems and their interdependencies with other
critical infrastructures.

3. Energy-water nexus: Maximize the efficiency, sustainability, and resiliency of
interconnected energy and water systems in the planning, development, and
operation of urban infrastructures.

4. Urban resiliency: Enhance understanding of the physical and cyber-risks, chal-
lenges, and opportunities of the integrated framework of population, energy,
water, transportation, and policy to improve reliability and resiliency of infras-
tructure services under changing and extreme climate conditions.

18.2 Population and Land Use

One of the biggest challenges in urban energy applications is the lack of data for
population and land use that would be required to adequately investigate urban issues,
particularly those tied to energy access and use. Further, evenwhen data are available,
the resolution of the analyses we would like to conduct is often much finer than the
data available in support. In this section, recent innovative approaches developed
at the UDI are discussed that address existing data gaps so that energy access and
consumption patternsmay be better modeled and evaluated both locally and globally.

18.2.1 Big Data and GeoAI to Create Population
and Land-Use Data

Urban areas continue to grow both in expanse and magnitude of population, which
heightens the need for increasing environmental awareness. Population distribu-
tion and dynamics data are foundational to assessing energy demand and usage
patterns, which in turn guide energy generation and distribution scenarios. For the
past two decades, ORNL has provided the community with LandScan Global fine-
resolution (1 km) population distribution data for the world utilizing global-scale
remotely sensed data through a smart interpolation technique (Bhaduri et al. 2002).
This approach was further extended to LandScan USA, a 90 m population distri-
bution and dynamics dataset for the USA, that used over sixty different geographic
datasets to create both nighttime residential and daytime population (Bhaduri et al.
2007). Recently, Weber et al. (2018) have demonstrated a further refinement of this
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smart interpolation approach for census-poor regions by developing 90 m popu-
lation distribution estimates for Nigeria, where human-settlement data from fine-
resolution satellite images, categorization of settlements in different land-use classes,
and population-density appraisals from census-independent sources were employed.

Understanding the existing structures of cities and their futures is an impor-
tant component of urban sustainability and resiliency, particularly for assessing
present and future energy usage. Up-to-date and highly resolved land-use maps
allow researchers, policymakers, and other stakeholders to inform the better allo-
cation of resources to communities. However, accurate and complete land-use data
remain scarce for most of the developing world. Even in the developed world, this
information is often geographically disjointed and incomplete. An important step in
addressing this need is to develop robust, scalable, and automated methods to differ-
entiate development patterns in fine-resolution satellite imagery by semantic segmen-
tation. A recent collection of work by ORNL researchers (Arndt et al. 2019; Kurte
et al. 2019; Lunga et al. 2018; Yang et al. 2018) have tackled various challenges asso-
ciated with developing machine-learning models for urban-feature characterization
and extraction. CNN-based deep-learningmethodswere used for automated land-use
classification and to develop a typology for urban land-use data that captures the varia-
tion in structural patternswithin cities. These development patterns, ormoregenerally
land use, can be used to spatialize variables within cities. These variables can include
socioeconomic indicators such as electricity consumption patterns, as discussed later
in this section, which are traditionally difficult to capture. Given that land use is
shaped by human activities, researchers have utilized cellular phone-call data records
(CDR) to infer land use. Using tower-based call data from Dakar, Mao et al. (2017)
analyzed aggregated call volume and applied non-negative matrix factorization to
identify fundamental behavioral classes of human activity patterns, and successfully
inferred two fundamental land-use patterns: commercial/business/industrial (C/B/I)
and residential (Fig. 18.1).

Evaluating energy consumption patterns, particularly in conjunction with highly
resolved maps of settlement types, can be a useful first step in identifying areas that
lack access to energy and other urban services. Many of these areas are considered
slums, housing nearly 1 billion people worldwide (UN Habitat 2016). On a global
scale, locating and monitoring the magnitude and composition of these areas is
critical for making progress toward improving the lives of those who live there. This
goal is the focus of the Millennium Development Goal 7 Target 7D (http://www.un.
org/millenniumgoals/), “to have achieved by 2020 a significant improvement in the
lives of at least 100 million slum dwellers”, as well as a proposed measure of the
Sustainable Development Goal 11 Target 11.1 (https://sustainabledevelopment.un.
org/), “By 2030, ensure access for all to adequate, safe and affordable housing and
basic services and upgrade slums”.

Recent work by Brelsford et al. (2018; and see https://www.youtube.com/watch?
v=YuRjeUkNf9o) shows howmaps of these areas can be put into action. Once slums
are identified, this study shows how we can address the problem of accessibility
in these neighborhoods using topological analysis. Ultimately, the study revealed
that urban slums showed a different topological structure than that of developed

http://www.un.org/millenniumgoals/
https://sustainabledevelopment.un.org/
https://www.youtube.com/watch?v=YuRjeUkNf9o


18 Urban Energy Systems: Research at Oak Ridge National Laboratory 285

Fig. 18.1 Different land use in Johannesburg, South Africa, delineated from deep learning on
fine-resolution satellite imagery. Various residential areas are shown based on different levels of
formality of structures

cities—a critical piece of information to address the problem of accessibility to
services. This work investigates the potential to increase that accessibility in these
areaswithminimal cost by growing road networks in existing slums and demonstrates
its effectiveness through examples in Mumbai, India; Cape Town, South Africa; and
Harare, Zimbabwe.
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18.2.2 Estimating Urban Electricity Use in Data-Poor
Regions

In many parts of the world, sustainable and universal energy access is a persis-
tent challenge. This is particularly problematic considering that urban areas, which
are the most rapidly growing areas of population, presently consume around three-
quarters of the global energy supply. Understanding these urban-energy consumption
patterns would be a strong first step toward addressing challenges as related to urban
sustainability and energy security. Yet the required urban-energy datasets are virtu-
ally non-existent for the developing countries where this information is most critical.
This creates an urgent need to develop new research methods for capturing and
quantifying urban-energy use patterns. Without available urban-level energy statis-
tics, capacity building and accessibility planning and assurance become prohibitive,
particularly in data-poor regions of the world where future urban growth is expected
to be the largest.

In a recent study conducted by Roy Chowdhury et al. (2020), a data-driven
approach to characterize urban settlements based on their formality was conducted to
assess intra-urban-energy consumption in three cities. Since electricity is the fastest-
growing energy fuel, the premise of the study is to evaluate the relationship between
urban settlement types and corresponding nighttime light emission, which is consid-
ered aproxyof electricity consumption.This studypresents an approachable and scal-
able solution to fill the existing data gap to better understand differential electricity
consumption patterns.

Three cities in the developing world—Ndola, Zambia; Sana’a, Yemen; and Johan-
nesburg, South Africa—were used in this study as they collectively displayed consid-
erable variation in population size and socioeconomic characteristics. These varia-
tionswere useful in order to examinewhich characteristicsmay result in distinct elec-
tricity consumption profiles. Following an approach developed by Yuan et al. (2015),
human settlement areas within these cities were classified into different functional
types. Those distinct settlement types were then correlated with nighttime lights
emission from VIIRS DNB (https://earthdata.nasa.gov/viirs-dnb) data following the
assumption that lights are a reasonable socioeconomic indicator and can help us to
understand electricity consumption. In all three study cities, a statistically significant
correlation between human settlement types and nighttime lights emission (consid-
ered as a surrogate of electricity consumption) was discovered, which demonstrates
the potential to develop and generalize this method to other geographic areas in order
to understand energy consumption patterns within cities, specifically when no other
data are available.

The data-driven approach captured in this study not only mitigates issues where
no ground information is available, but the patterns of energy consumption that are
uncovered can be used in myriad analyses, particularly when combined with other
information such as land-usemaps, to inform urban planning where energy resources
may be limited (Fig. 18.2).

https://earthdata.nasa.gov/viirs-dnb
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Fig. 18.2 Clockwise from top-left: Settlement map, settlement classes, settlement classes overlaid
on VIIRS DNB image, and VIIRS (from Roy Chowdhury et al. 2020)
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18.2.3 Estimating Household-Level Energy Consumption

Understanding residential energy consumption patterns is of critical importance since
this sector alone accounts for nearly 30% of all energy consumption worldwide (IEA
2016). One limitation of current approaches tomodel energy consumption is that they
are highly dependent on region-specific data sources requiring building-level detail,
which are generally not openly available. Surveys that capture population andhousing
characteristics are commonly conducted for small segments of the population and
provide household-level or individual-level samples from a single neighborhood,
city, region, or country to provide very detailed information. Although these data
contain considerable sociodemographic depth, they are not available for a full popu-
lation. To address this disparity, synthetic spatial microdata—a high-performance,
data-driven simulation of the American population—for modeling urban dynamics,
termed UrbanPop, were developed at ORNL to simulate the American population
with fine-resolution human demographics (e.g., Census block/block group) that
match aggregate census data at the block, block group, and tract. In other words,
given a set of demographic attributes of interest, the algorithmcan recreate joint distri-
butions of these attributes at the block or block-group level that when aggregated,
return the census results within a certainmargin of error. The algorithms inUrbanPop
consider the full demographic profile of commuters and trace the movements of the
profile from the nighttime (home) and daytime (work).

In a recent study by Morton et al. (2017a, b), a fine-resolution residential elec-
tricity consumption model was developed by merging a dasymetric model with
a complementary machine-learning algorithm. The foundation of this approach is
the use of publicly available data, supporting a model that is applicable to a wide
range of regions. The authors used UrbanPop data to estimate residential energy
consumption, combined with the 2008–2012 household-level Public Use Microdata
Sample (PUMS; https://www.census.gov/programs-surveys/acs/data/pums.html) of
theAmericanCommunitySurvey (ACS), to providedetailed demographic andhouse-
hold characteristics, as well as the average monthly electricity cost per household.
The 2008–2012 ACS summary tables, which contain both tract- and block-group-
level average totals, were used as constraints. The model was tested on three counties
in Tennessee (Anderson, Knox, and Union) by using a dasymetric approach to disag-
gregate a weighted sample of surveyed households into smaller geographic areas and
then using a learning algorithm to estimate electricity consumption for each of the
households. These estimated values at the household-level were then aggregated to
larger areas for analysis.

This approach demonstrated its utility by estimating and evaluating aggregate
block-group-level residential consumption within a growing urban area. Further, it
also provides a well-defined method for handling the uncertainty that enters into
the model via input data sources. The ability to estimate the residential energy
consumption while still capturing measures of uncertainty provides analysts with
an improved set of data to evaluate spatio-demographic factors that may impact
energy use. This deeper understanding can then translate into the implementation of

https://www.census.gov/programs-surveys/acs/data/pums.html
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effective energy-efficiencymeasures, particularly in urban areas that are experiencing
rapid growth.

This study illustrates a practical path forward for estimating highly resolved
energy consumption patterns while overcoming data limitations through the use of
openly available data. Although this specific study does not include a formal vali-
dation process, both internal and external validations have been conducted on the
algorithm used here (Rose and Nagle 2017).

18.3 Sustainable Mobility

In 2018, vehicles moved an estimated 11 billion tons of freight, more than $32 billion
of goods per day, and traveled 3 trillion vehicle miles in the USA according to the
U.S. Department of Energy’s Vehicle Technologies Office. Transportation typically
accounts for about a third of all energy used in the nation, and developing sustainable
transportation solutions is imperative as the nation’s economy expands and the global
economy grows. In recent years, the word mobility is increasingly used to refer to
various aspects of human interactions with transportation systems. Mobility encom-
passes the notion of being inclusive of multi-modal transportation options, smart
connectivity, crowdsourced data-enabled transportation alternatives, ride-hailing and
ride-sharing options, as well as system-scale efficiencies for transportation system
design. Clearly, developing sustainable means of mobility has societal, economic,
as well as environmental benefits (Bigazzi and Bertini 2009). Recent advances in
ubiquitous sensing, big data, social media platforms, and the growth of app-based
mobility options has heralded an unprecedented shift in not just mobility but also
vehicle ownership. Increasingly, people are considering not owning vehicles and
accessing their mobility needs as a provided service.

Significant changes are also here from an infrastructural standpoint. The variety
and types of deployed sensors on and about roadways have gone up. Typically, cities
these days have a number of fine-resolution cameras deployed with real-time video
feeds, radar detector sensors every few hundred yards recording speed and volume
every couple of seconds, induction loops coupled with spherical cameras detecting
stationary queues and turning vehicles, control algorithms to coordinate signals, as
well as Bluetooth sensors to detect flows through urban environments. Coupled with
advances in connected and automated vehicles, opportunities are ripe for data-driven
system-wide approaches for control and optimization.

18.3.1 Human Interactions with Transportation Systems

In complex urban environments, population, transportation, building energy, and
urban climate are interdependent. The modeling of each individual component is
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fairly mature; however, the modeling and simulation of complex urban interac-
tions pose significant challenges. By coupling the individual systems, one moves
from studying different aspects in isolation toward studying a city as a whole.
Active transportation can be defined as any self-propelled, human-powered mode
of transportation, such as walking or bicycling that is often mixed with public trans-
portation and helps to alleviate congestion, reduce energy consumption and green-
house gas emissions, and fight against chronic health conditions such as obesity,
diabetes, heart disease, and stroke. Promoting active transportation modes requires
analysis of factors that substantially influence a transportation mode-choice process.
Each transportation mode has a unique set of influencing factors for individuals,
including sociodemographic attributes, transportation cost and network characteris-
tics, and social interactions. This emphasizes the need to understandmacro aspects of
transportation-mode choices by modeling millions (or even billions) of commuters
and their complex, simultaneous, andmutually dependent decision processes. Agent-
based modeling and simulation (ABM) approaches offer a mechanism to represent
such a complex system as a collection of autonomous agents and their environments,
in which the agents interact with one another and with their environments.

Recent research by Aziz et al. (2018a, b) and Park et al. (2018), explored the
effects of traffic safety, walk-bike network facilities, and land-use attributes on walk
and bicycle mode-choice decision in NewYork City for the home-to-work commute.
Applying the flexible econometric structure of random parameter models, they
captured the heterogeneity in the decision-making process and simulated scenarios
considering the improvements in the walk-bike infrastructure such as sidewalk width
and length of bike lanes. They utilized fine-resolution sociodemographic data from
UrbanPop to estimate likely night and day locations for individualsmatching a demo-
graphic profile, and suggested appropriate origins and destinations (OD pairs) for
synthetic commuters. The determination of ODpairs is a fundamental input for trans-
portation and mobility applications. Using the UrbanPop simulated population, an
agent-based model was implemented on ORNL’s Titan supercomputer (Park et al.
2018) to simulate mode choices for commuters in New York City, and how these
mode choices might be tipped in favor of bike or walking (Park et al. 2018; Morton
et al. 2017a, b). Creating agent-based models from the simulator allows the explo-
ration of how improvements in sidewalk conditions or having bike lanes may impact
commuter choices to bike orwalk instead of driving or using public transit. The results
from the New York City case study indicate that infrastructure investments such
as widening sidewalks and increasing bike lane networks can positively influence
active transportation mode choices (Fig. 18.3). The impact varies with geographic
locations. The ABM simulation results indicate that social promotions focusing on
active transportation can positively reinforce the impacts of infrastructure changes.
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Fig. 18.3 Effect of wider sidewalk and building more bike lanes in the five boroughs of New York
City

18.3.2 Emerging Options for Freight Delivery for Businesses

Freight, and particularly intra-city freight delivery, is a key aspect of the course
of business activity that depends on mobility. Due to the relatively recent shift in
consumer preferences to purchase items online rather than making purchases in
brick-and-mortar stores, and the preference for next-day and same-day delivery,
logisticians and parcel delivery companies have been prompted to search for new
ways to move and deliver parcels to improve efficiency and reduce costs associated
with energy usage. ORNL conducted a study to consider innovative modes of parcel
delivery, and modal configurations involving multiple modes of freight transport,
with a focus on the last mile (Moore 2019). The data for this study consisted of
GPS traces of delivery-truck tours from a portion of the truck fleet at the UPS depot
outside of Columbus, Ohio. Delivery locations were extracted from the dataset and
used along with socioeconomic and land-use data obtained from the metropolitan
planning organization for Columbus, to develop a delivery-demandmodel to estimate
parcel deliveries in areas lacking GPS data.

Alternative scenarios were developed involving the use of electric Class-Six
trucks, electric delivery vans, parcel delivery lockers, the use of drones, as well
as electric passenger vehicles. Energy usage in kilowatt-hour per mile was estimated
for the scenarios and compared with energy estimates for the baseline case involving
the standard Class-Six delivery truck. The findings suggest that electric Class-Six
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delivery trucks paired with parcel delivery lockers reduce energy usage, especially
in suburban neighborhoods. The findings also suggest the use of parcel lockers in
suburban areas, which typically have less connectivity and more cul-de-sacs. Pairing
both electric Class-Six delivery trucks with parcel lockers significantly reduced
energy usage in outlying TAZs (traffic analysis zones) in suburban Columbus. The
scenarios involving drones, on the other hand, were found to be energy-intensive, and
suggest the need for more optimized drone scenarios which consider improved drone
technology, such as increased battery range and payload, and more efficient use of
the technology, possibly including the use of multiple drones, mid-air transfers, and
improved flightpaths.

18.4 Energy–Water Nexus

To date, there is no widely accepted and consistent definition of the energy-
water nexus, although the EWN is broadly conceptualized as the interdependencies
between the energy andwater, such as the water required to produce electricity, or the
amount of electricity required to treat and distribute water. However, when applied to
urban dynamics and informatics, defining the EWNbecomes evenmore obscure. For
instance, in the context of urban systems, the need to expand the EWN to consider
linkages anddependencies amongother sectors, such as agricultural development and
natural and human-built environments, becomes quite apparent. Planning for urban
growth or infrastructure expansions requires understanding complex relationships
and feedbacks among multiple sectors, and the potential consequences of population
growth and climate extremes on infrastructure resilience, operations, and resource
availability and stress. Characterizing these relationships requires consideration of
appropriate scales and overcoming challenges to data and analytical limitations. In
this section, we expand upon research within the Urban Dynamics Institute that has
used informatic-type approaches to explore the urban EWN through consideration
of scale and removing obstacles to data challenges. First, however, we discuss the
importance of scale, and data and analytical challenges, to linking the EWN to urban
informatics.

Scale considerations As with all research that examines the hierarchical
complexity of systems, the difficulty of developing a consistent working defini-
tion of the EWN is a matter of scale (Allen and Star 2017). For example, the
broadest definition of the EWN includes research spanning multiple spatial and
temporal scales, from developing efficient membrane technologies for desalination
(micro-scale) to agent-basedmodeling of electricity andwater use bywater treatment
systems (meso-scale), to the development of plausible socioeconomic scenarios of
future global communities (macro-scale). In this respect, a focus on urban dynamics
actually helps to constrain the scope of the EWN in the following ways. First, an
urban focus imposes a requirement of scales that examine collective behaviors of
more than one human, who might move substantial distances within short periods
of time and utilize a range of resources that impact many sectors that are internal
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and external to urban boundaries. Second, dynamics suggests a need to understand
the behavior of systems, which are composed of multiple interacting parts. Finally, a
central construct for the ORNL Urban Dynamics Institute is that almost all research
has a spatial or mappable component. Hence, when we apply these constraints to
the field of multi-sector research, the scales would indeed be restricted to consider
spatial units no smaller than neighborhood levels (possibly buildings), whereas the
temporal scales remain unrestricted.

Challenges Accurately depicting and characterizing multi-sector relationships
and interdependencies comes with many challenges, primarily related to data. These
include limited data availability for both energy and water infrastructures and use,
mismatches in spatial and temporal scales of data across different sectors, hetero-
geneity in data types, and lack of standards for data collection and availability (US
DOE 2014; Zaidi et al. 2018). For example, Chini and Stillwell (2018) reported that
data on urban water resources are highly limited, and data on energy requirements
for water treatment and distribution are virtually absent. Obviously, this prohibits the
accurate characterization of urban-energy–water dynamics to support infrastructure
investments and predict resiliency under climate uncertainty. Even if data are avail-
able, practitioners and research communities may be unaware of thewealth of analyt-
ical approaches that are available for characterizing urban EWN dynamics (Allen
et al. 2018). Possibly more troublesome is how to integrate the disparate modeling
platforms that are used to characterize patterns and processes within different sectors
(Brewer et al. 2018). Furthermore, the multi-dimensionality and sheer complexity
of the EWN, in conjunction with limited data, may constrain which components and
relationships are evaluated, leaving major gaps of knowledge in understanding the
implications of urban growth for sustainability and resiliency.

EWN interface with Urban Dynamics Institute To address these challenges,
ORNL, through support from the DOEBiological and Environmental Research Inte-
grated Assessment Research Program, developed the Energy–Water Nexus Knowl-
edge Discovery Framework (EWN-KDF) (https://climatemodeling.science.ene
rgy.gov/projects/energy-water-nexus-knowledge-discovery-framework). The KDF
provides a datamanagement and geovisual analytics platform to enable efficient char-
acterization of energy-water relationships and decisionmaking regarding present and
future infrastructures (Bhaduri et al. 2018). As stated previously, obstacles to discov-
ering complex relationships within the EWN relate to time expenditures associated
with the acquisition and storage of data, but also the fusion of disparate data sources
and data types from mismatched spatiotemporal scales. In part, the KDF platform
expedites this process by harnessing Argonne National Laboratory’s Globus cloud-
data transfer service, which bypasses the need for the EWN community to download
andmanipulate data locally. TheKDFalso provides quick access towidely applicable
climate, physical (or physiographic), and socioeconomic datasets. To address the
challenge of accelerating knowledge discovery, the KDF provides real-time coupled
analytic and visualization capabilities for users to explore anomalies or anomalous
behavior in datasets as well as spatiotemporal clustering and trend analysis. As an
example, suppose a user desires to understand complex spatial and temporal rela-
tionships (or tradeoffs) among land and water use in regions experiencing elevated

https://climatemodeling.science.energy.gov/projects/energy-water-nexus-knowledge-discovery-framework
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population growth and water stress. A commonly used dataset available through the
KDF is the US Geological Survey’s Water Use in the United States (USGS 2018),
which provides county-level estimates of surface and groundwater use among eight
major economic sectors from 1985 to 2015. The KDF also assembled land-cover
estimates within counties for the same period of record. To allow users to explore
spatiotemporal patterns, the KDF provides dynamic time warping, which uses algo-
rithms to measure the similarity between temporal sequences, such as water-use
and land-cover changes over time. Similarity matrices are seamlessly incorporated
into clustering algorithms to explore regions or counties that share similarities in
temporal signatures or behaviors. These analytics and visualizations are rendered
in real time, allowing users to quickly explore and understand dynamic patterns; it
would take hours, if not days, to conduct analogous exploration on local machines.
By increasing the rate at which users can observe new phenomena, the KDF creates
a robust learning platform that changes the rate and nature of hypothesis generation
for urban EWN dynamics.

Another application of EWN to urban dynamics is through examining depen-
dencies between cities and their neighboring regions. To support the resource
demands of dense populations, cities rely on expansive infrastructure that supplies
numerous commodities, such as energy, water, food, and material goods and services
(Ruddell et al. 2014). Therefore, city and utility governance must remain cognizant
of these external supply chains, as well as how offsetting their resource burdens to
outside regions induces stress on natural resources, particularly water availability
(McManamay et al. 2017). These increasing stressors are important to quantify,
as limited resource availability makes cities more vulnerable to climate extremes.
However, a significant challenge to effective decision-making across sectoral bound-
aries is that of transcending disparate policies and jurisdictions, since each sector is
governed by different entities, which operate on different scales and rely on different
information. For instance, how does a city planning official translate population
growth and land zoning at the parcel scale into estimates of stress on water intake
and treatment infrastructures at the stream level (i.e., water policies), or stress to
the electricity grid at the power-plant level (i.e., energy policies)? Creating spatially
explicit maps of interconnected infrastructures and relationships between demand
and regional sources of commodities provides transparency and interpolicy coordi-
nation to all parties involved in planning for future urban growth. Of course, for the
reasons stated earlier, capturing these relationships is difficult due to limited data
availability, heterogeneous data, or mismatched scales.

A couple of recent projects through ORNL’s UDI use informatics to overcome
these challenges by developing spatially explicit interconnections between cities and
their regional infrastructures. One example is the development of city energy sheds,
that is, a region outlying an urban center and comprised of the transmission infras-
tructure and electricity production at powerplants that are required to offset high elec-
tricity consumption occurring within urban areas (McManamay et al. 2017; DeRolph
et al. 2019; Fig. 18.4). Over 100US cities have established goals to transition to 100%
renewable energy (Sierra Club 2018); however, detailed strategies for how to make
these transitions effective vary immensely across cities. Furthermore, we surmise
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Fig. 18.4 City energy sheds depicting sources of electricity supplying urban epicenters. Taken and
modified from DeRolph et al. (2019)

that most city governance and sustainability officials are unaware of the electricity
footprint and the magnitude of infrastructural investments required to make these
transitions.Using available information on transmission and substation infrastructure
and electricity production at powerplants, DeRolph et al. (2019) used a market-share
network allocation optimization in ArcMap (Esri, Redlands CA) to balance the elec-
tricity grid for the conterminous USA The grid was amended to include connections
between substations and census block groups, and annual electricity demand was
downscaled from state-level electricity consumption (from the Energy Information
Administration). Such an exercise was computation-intensive: The grid considered
that any one of the nation’s 200,000 block groups could receive electricity from
>5000 power plants weighted by transmission voltage, which creates over 1 billion
unique combinations; however, electrical impedance increased with distance, and
lower transmission voltages were used to constrain the optimization. By isolating
only block groups within urban boundaries, DeRolph et al. (2019) identified the
powerplants providing the majority of a city’s electricity demand (Fig. 18.4). Addi-
tionally, this provides a template to quantify a city’s indirect carbon and water foot-
prints through electricity production. The analysis yielded very important insights:
First, the majority of US cities, especially those with aggressive renewable-energy
transition plans, have energymixes that are far from attaining 100% renewable status.
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Hence, the transitionwill requiremassive infrastructure investments. Secondly, those
cities facing electricity congestion challenges from immense population growth and
electricity demand do not consistently have public support or local and state policies
to enable renewable energy transitions to meet growing demands.

Understanding the implications of city growth on regional water availability is
also critical. Another UDI project examined the fine-resolution impacts of city land
transformation, electricity production, and water supply infrastructure on hydrologic
alteration and biodiversity loss in streams (McManamay et al. 2017). Such an anal-
ysis requires multiple steps to isolate the individual effects of city infrastructures on
aquatic ecosystems experiencing cumulative anthropogenic stress from areas outside
the influence of cities. Furthermore, each step has unique information challenges:
(1) estimating commercial and residential energy and water demands at fine reso-
lutions, (2) mapping detailed infrastructures required to meet those demands, (3)
geospatially summarizing infrastructures in ways meaningful for stream-network
analysis, (4) using statistical models to estimate hydrologic alteration, (5) statisti-
cally isolating roles of individual sectors in contributing to cumulative hydrologic
alteration, and (6) assembling biodiversity occurrence information to estimate species
losses due to urban drivers.We highlight a fewways inwhich informatics approaches
provided opportunities to characterize these complex relationships. Landscape alter-
ations induce up-to-downstream impacts on river systems; therefore, predicting how
infrastructures may alter hydrology required accumulating geospatial information
for dendritic stream networks. Additionally, translating these geospatial variables
into measures of hydrologic alteration requires either calibratingmechanistic models
(i.e., time consuming) or using novel statistical approaches, which are far less time
consuming, but no less accurate. McManamay et al. (2017) summarized geospatial
variables in NHDPlus stream reaches (Horizon Systems Corporation 2019) using the
network analyst in ArcMap, and then assembled discharge information for streams
from the US Geological Survey National Water Information System. After calcu-
lating metrics depicting hydrologic departures from natural or reference conditions,
the authors then usedmachine-learning algorithms (random forests) to relate geospa-
tial characterizations of city infrastructures to hydrologic alterations at the stream-
reach level. Isolating the roles of individual sectors (e.g., electricity production,
water supply) on hydrologic conditions in streams becomes very difficult in situa-
tions of compounded stress fromupstream sources. Hence,McManamay et al. (2017)
extracted partial dependency functions (PDFs) from random forests to estimate how
individual variables (or combinations of variables) associated with a given sector
influence hydrologic conditions. Once sector-specific hydrologic alterations were
isolated in streams, millions of occurrences of aquatic species were organized by
taxa and conservation concern and then overlain with those areas to characterize the
city–aquatic biodiversity nexus.

A remaining challenge of supporting multi-sector decision-making for urban
dynamics is creating user-centric Web-visualization and analytic platforms. As a
brief example, ORNL developed a stream classification Web application to guide
decision-making for stream restoration and mitigation (McManamay and Derolph
2019a, b). Such a tool is highly relevant to urban dynamics, as stream restoration



18 Urban Energy Systems: Research at Oak Ridge National Laboratory 297

in the USA is related to remediating the impacts of urban landscape transformation
(Bernhardt et al. 2005, 2007). The premise of the stream classification is guiding
users to appropriately select reference streams to guide restoration practice, through
the selection of streams that share similar physical typologies (McManamay et al.
2018). The Stream Classification Web-App allows users to query any of the nation’s
2.6 million stream reaches and find streams that share similar natural properties or
anthropogenic disturbance regimes. Unfortunately, seeking more complex platforms
that support urban EWN dynamics induces tradeoffs between flexibility, applica-
tion breadth, and computational expense. For instance, one strategy might provide
highly flexible applications seeking maximum relevance to a wide spectrum of
user groups, but possibly only supporting superficial decision making. The opposite
endpoint might consist of applications with far less flexibility but substantial depth to
support decision making from a narrow user group or a narrow range of applications.
This tradeoff becomes critical when designing platforms for EWN relationships to
urban dynamics, as finding an optimal balance between flexibility and provision of
meaningful outcomes becomes very difficult when considering multiple sectors and
their complex (and uncertain relationships). Nonetheless, platforms that achieve this
optimal balance are in increasing demand from all sectors of government and the
economy.

18.5 Urban Resiliency

Urban resiliency indicates how a city recovers better and stronger after a shock. Such
a shock could be due to natural or humman-made disasters, failure of engineered
infrastructure, economic downturns, and so on. Long-term climatic trends and short-
term extreme weather events (e.g., 2011 earthquake and tsunami in Japan, 2012
Superstorm Sandy in Northeast U.S., 2018 Hurricane Maria in Puerto Rico, 2018
wildfires in Northern California, etc.) have renewed interest in the concept of urban
resiliency. The resiliency of urban water and energy infrastructures is of relevance
in this context. For example, in the longer term, estimating renewable energy poten-
tial, assessing existing renewable energy infrastructures, managing urban flooding
with green infrastructures to minimize energy cost for pumping water out of flooded
areas, reducing energy usage for snow and ice removal, and water-quality impacts
from urban de-icing are of key interest for cities. For near-term disruptions, having
a distributed renewable (solar) energy infrastructure builds resiliency when the elec-
tric grid is disrupted by disasters; and also developing a situational awareness for
the nation’s energy infrastructures is critical during the emergency preparedness,
response, and recovery phases of natural or technological disasters. Consequently,
researchers atORNLare developing newmethods and approaches for building amore
resilient urban infrastructure by utilizing scientific and open-source data resources.
In this section, three approaches are discussed that focus on one of themost important
agendas that decision-makers will be facing in the coming decades—integration of
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resilience thinking into urban planning to improve response to known and unknown
risks.

18.5.1 Renewable Energy-Infrastructure Assessment

Solar photovoltaic (PV) is the fastest-growing source of distributed generation of
renewable energy. In fact, renewable-energy capacity is projected to expand by 50%
between 2019 and 2024, led by solar PV. This increase of 1200 GW is equivalent
to the total installed power capacity of the USA today. Estimating solar potential
in urban environments, namely on building rooftops utilizing LiDAR-derived 3D
elevation models with solar radiation data, has shown to be an effective approach
(Nguyen et al. 2012; Latif et al. 2012; Kodysh et al. 2013). However, data for the
actual spatiotemporal distribution of installed solar panels greatly benefits applica-
tions related to energy policy-making, power systems, and solar PV market analysis
but was not available on a large scale till recently (Yu et al. 2018; Hou et al. 2019).
Recognizing this data challenge, as early as 2012 ORNL researchers were among
the first to develop a machine-learning approach based on a convolutional neural
network (CNN) that exploited large-scale, fine-resolution (0.3 m) aerial imagery to
efficiently and accurately detect rooftop-installed solar panels covering large areas
in two US cities (Bradbury et al. 2016; Yuan et al. 2016).

18.5.2 Optimizing Energy and Safety Through Precision
De-icing

In the USA, more than $1.5 billion is spent every year for winter road mainte-
nance programs. In addition to these direct costs, each state in the country incurred
between $300 and $700 million per year in indirect costs (Transportation Research
Board 1991). As the number and severity of snowfall events grow, the need for
safer urban roads during snowfall events is also growing. In 2014, the Pennsylvania
Department of Transportation dispensed 686,000 tons of salt for road treatment; that
is, 200,000 more tons than was used in the average year (Black and Arking 2014).
While overtreating roads with salt and brine has energy, environmental, and financial
burdens, undertreatment can lead to decreased safety on the roadways as described in
a study that has shown that snow depth correlates with the number of traffic accidents
(Seeherman and Liu 2015).

Road-treatment chemicals, such as brine solutions and common road salt, together
with plowing, are effective tools for snow and ice removal. However, there are two
challenges that impact the resiliency of cities during snowfall events: (1) lack of
enough resources to treat all roads in a city, thus limiting social and economic activ-
ities in the city; and (2) excessive use of road salt increases urban environmental
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impacts. The first challenge is addressed by preselecting roads to be treated based
solely on traffic counts. Thus, streets with high traffic volumes are treated, while
feeder streets, trouble spots, and neighborhood roads often go untreated. Conse-
quently, many residents are unable to safely make it to the treated roads, lowering
the overall utility gained from the treated roads. With enough resources, all the roads
in a city can be treated, thus leading to the second stated challenge.

The impacts of excessive use of road salt are: (i) increase salinity of ground-
water and surface water adjacent to roadways, potentially impacting human health
and resulting in localized decreases in the biodiversity of organisms; (ii) creation of
unfavorable changes in the physical properties of roadside soils leading to increased
surface runoff, erosion, and sedimentation of rivers and streams; (iii) increased
corrosion rates of automobiles, highway components, steel reinforcement bars, and
concrete; (iv) increasing incidence of vehicle-animal accidents—birds andmammals
are attracted to road salt; and (v) decreasing health and vigor of roadside plants due
to water stress and soil nutrient imbalances (Kelting and Laxson 2010).

In order to make more urban roads safer without using excessive road salt,
researchers at ORNL developed a new metric called the Road Vulnerability Index
to snowfall accumulation (RVI). The premise of this index is that road segments
should be classified based on their capacity to melt snowfall quickly and their eleva-
tion value. The behavior of snowmelt in a given situation depends on temperature,
precipitation, humidity, wind, and cloudiness (NRCS 2004). The developed method-
ology divides the urban roads into road segments of 50 m length as suggested in the
literature (e.g., Chapman and Thornes 2011). The rate of snowmelt (RoSM), based
on the thermodynamics of snowmelt, is then calculated for each road segment using
the U.S. Army Corps of Engineers formulation (USACE 1998) during non-rainy
periods and rainy periods. The incident solar radiation data is obtained using the
hemispherical viewshed algorithm and LiDAR (Light Detection and Ranging) data
(Kodysh et al. 2013). Using the rate of snowmelt and slope data, the road segments
are then classified into RVI categories (Chapin et al. 2017) using the classification
rules shown in Table 18.1.

TheRoSMdata are grouped into five classes based on their solar insolation values.
The RVI has four categories: Least Vulnerable (1), LessVulnerable (2),MoreVulner-
able (3), and Most Vulnerable (4) as shown in Table 18.1. A map showing the RVI
categories for the City of Knoxville, Tennessee is shown in Fig. 18.4. The city has
6555 lane miles, of which 722 miles are classified as Categories 1 and 2 roads,
4916 miles are classified as Category 3 roads, and 917 miles are classified as Cate-
gory 4 roads. Using the RVI approach, Category 4 roads need more attention and

Table 18.1 Classification rules for RVI categories

Slope RoSM

1-Sunny 2 3 4 5-Shaded

0—Flat (≤10% grade) 1 2 2 3 3

1—Incline (≥10% grade) 2 2 3 3 4
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Table 18.2 Cost of treating all roads in the city of Knoxville using the current method and the RVI
method

Approach Treatment
option

Lane
miles

Road-treatment
gauge

Treatment cost
per lane mile

Total cost for
treatment

Current
approach

All roads 6555 Full treatment $49.80 $326,415

Proposed
approach

Vulnerable
roads

722 25% of full
treatment

$12.45 $8989

More
vulnerable
roads

4916 50% of full
treatment

$24.90 $122,402

Most
vulnerable
roads

917 Full treatment $49.80 $45,655

All roads 6555 $177, 046

should be given full treatment according to the current practice; Category 3 roads
should remain safer with one-half of the full treatment; and Categories 1 and 2 roads
should not need more than one-quarter of the full treatment to remain motorable. The
simple cost analysis of Table 18.2 shows that using the RVI approach will not only
reduce cost to about 54% of the total cost of treating all roads in the city using the
current approach, but also will significantly decrease the amount of road salt used to
achieve complete treatment (Fig. 18.5).

18.6 Situational Awareness of National Energy
Infrastructure

The ability of the USA to effectively respond to and facilitate the restoration of
energy infrastructures during disaster preparedness, response, and recovery depends
on the ability of local, state, and federal government agencies, and private-sector
electricity and fuel providers, to have access to timely, accurate, and actionable infor-
mation about the status and potential impacts of energy-sector disruptions. Among
themany critical requirements for decision support, two important challenges arise in
(i) effective spatiotemporal representation of dynamic data and (ii) efficient integra-
tion of such data from disparate and distributed sources. This capability is currently
provided by the U.S. Department of Energy (DOE) via its Environment for Anal-
ysis of Geo-Located Energy Information (EAGLE-ITM) system that is developed and
maintained at ORNL. EAGLE-ITM and associated energy-infrastructure awareness
capabilities provides an energy-sector-specific wide-area visualization and serves as
the authoritative federal source for historical and real-time situational awareness for
the nation’s energy infrastructure through the National Outage Map (NOM), which
shows the number of customers without electricity for every county in the USA.
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Fig. 18.5 RVI categories for each 50 m road segments in the city of Knoxville

Most utility companies provide customer outage status information covering their
service regions via their websites. Having an integrated view of outage status across
the nation is crucial for subject matter experts; but it is a challenging task because of
data-source variations and changes, since utility companies may change the URLs
of their outage information data sources and data formats. They may also support
various data granularities such as latitude and longitude, county, zip code, city, census
area, etc., they may change service areas, and they may need to handle too many
utility companies. EAGLE-ITM provides an integrated, NOM system that has been
systematically designed and developed. It is composed of several Python scripts that
scrape data from utility company websites, standardize and store collected informa-
tion into database tables, and track erroneous scripts. This capability incorporates
the most current and relevant data, to provide effective and comprehensive support
for energy-infrastructure awareness and response capabilities (Fig. 18.6).

Timely detection of electricity outage and restoration is a critical component of
situational awareness during disruptive events for utility companies and emergency
responders. Restoration is often slow because of significant delays in gathering effi-
cient power-outage information and problems in allocating limited power resources.
Crowdsourced data from social-media platforms are an attractive source to assess
electricity outage in near-real time. Recent research by Mao et al. (2018) provided a
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Fig. 18.6 Eagle-ITM displaying locations of over 7 million customers who lost electricity as an
aftermath of Hurricane Irma in the southeastern USA during September 2017

novel two-stage framework based on machine learning and deep learning for power-
outage detection from Twitter. First, a probabilistic classification model was applied
to find true power-outage tweets. Subsequently, a new deep-learning method (bidi-
rectional long short-term memory networks) was implemented to extract outage
locations from text. Results showed a promising classification accuracy (86%) in
identifying true power-outage tweets, and approximately 20 timesmore usable tweets
can be located compared with simply relying on geotagged tweets.

18.7 Conclusion

As cities continue to grow and create more demand for resources, it is impera-
tive that scientists and policymakers alike embrace and leverage the power of data
science. This chapter discussed ways in which researchers at the U.S. Department of
Energy’s Oak Ridge National Laboratory are leveraging geographic data at scale to
explore the population and land-use characteristics of cities in order to better inform
urban issues such sustainability, particularly as it pertains to energy accessibility
and consumption. The example of developing a synthetic population to estimate
residential energy consumption at the household level demonstrates a generalizable
method to fill existing data gaps in order to better understand and evaluate patterns
of energy use. This is a useful approach for the USA and potentially other areas
of the developed world where good-quality public-use microdata and complemen-
tary census summary tables exist. Where even those data are scarce, for example, in
much of the developing world, other new approaches are needed. Using machine-
learning algorithms to extract human-settlement areas from fine-resolution imagery



18 Urban Energy Systems: Research at Oak Ridge National Laboratory 303

and then correlating the results with nighttime lights data presents an example of
this. The approach is scalable and provides an understanding of electricity consump-
tion in urban areas where no ground data are available. Further, discerning types of
human settlement can aid efforts to understand where underserved populations live
and target these areas to improve access to basic services. Finally, it is important to
make the connection between the science and how it can be used to make a positive
impact for people and their environment. The example of a topological analysis of
slums to increase the accessibility to services in urban areas is but one. An inter-
disciplinary approach to integrate foundational R&D, operational communities, and
industry is critical for the future success of UDI. By collaborating with public- and
private-sector partners, researchers can connect foundational research and develop-
ment, the operational community, and industry. While urbanization magnifies our
current challenges of energy sustainability, resilience, and efficiency, it also provides
a unique science and technology opportunity to learn from the past, bend the present,
and shape the future of urban systems where our energy, environment, and mobility
goals are collectively achieved.
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Chapter 19
Introduction to Urban Sensing

Wenzhong Shi

Urban sensing can be regarded as the collective of technologies to sense and obtain
information about physical space and human activities in urban areas. The urban
objects to be sensed include, for example, the overall city, its land cover and its
land use, buildings, roads, cars, or individual persons. The properties that can be
sensed include static ones like the existence of a building with its geometry and
other relatively stable features, as well as dynamic ones like the moving trajectory
and speed of a car, or the change of land uses which reflects the change of people’s
activity in the space. Urban sensing can result in spatial, temporal, and attribute data
for an urban area, which will then be used for urban analytics and will finally provide
urban service and urban governance.

The technologies for urban sensing have been developed for a long time and
have progressed very fast in recent years with the advances of sensor technologies
and computation power. Urban objects can be sensed from different perspectives,
sensors, and platforms. These include optical or interferometric synthetic aperture
radar (InSAR) images from satellites in space, light detection and ranging (LiDAR)
or optical images and digital signals from aircraft or unmanned aerial or autonomous
vehicles (UAVs), ground-based laser scanning data from a car with mobile mapping
systems, ground-penetrating radar (GPR) on underground utility information from a
trolley, or sonar signals mapping underwater terrain from a multi-beam sonar sensor
on a boat. For individuals, their indoor or outdoor locations can be obtained based
on information from the sensors in a mobile phone, and their properties like body
temperature can be obtained from wearable devices.

The full set of urban sensing technologies covers a very wide range, especially
with the latest technologies, such as edge computing, the Internet of Things (IoT),
and sensor networks. Part III of this book introduces the urban sensing technologies
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mainly from a geomatics perspective, and more sensing technologies can be further
identified in a full and more comprehensive review.

In Chap. 20, Man SingWong, Xiaolin Zhu, Sawaid Abbas, Coco Yin Tung Kwok,
and Meilian Wang present the history and latest developments in optical remote
sensing, and introduce the representative optical satellite sensors. They elaborate on
the processing of remotely sensed satellite images and update the applications of
optical remote sensing in remotely analyzing the attributes of groups of objects.

Optical satellite images can provide rich attribute and geometric information,
while data produced by synthetic aperture radar (SAR) can produce high-accuracy
geometric data for monitoring deformation. Chapter 21 by Hongyu Liang, Wenbin
Xu, Xiaoli Ding, Lei Zhang, and Songbo Wu introduces the working mechanisms
of SAR and InSAR, as well as the implementation of multitemporal InSAR. InSAR
applications in generating digital elevation models (DEMs) and monitoring subsi-
dence and building deformation are illustrated with various examples, and the advan-
tages of this technology in remote geometric analysis with millimeter-level accuracy
are demonstrated.

LiDAR is another data acquisition method focusing on the geometry of objects.
As one of the most advanced technologies for acquiring quasi-continuous urban
geometric data, airborne laser ranging technology and a machine-learning-based
application in detection and characterizing urban objects are discussed by Wei Yao
and Jianwei Wu in Chap. 22. Multispectral images and airborne LiDAR data are co-
registered to classify buildings, trees, and natural terrain, as well as moving artifacts
along with estimates of their velocity.

Often compared with LiDAR, photogrammetry is one of the most time-honored
surveying techniques. The presence of corresponding texture and common points is
used to create binocular pairs to generate geometric information,while the texture can
be used for prompt texture projection with no extra registration required. In Chap. 23,
Bo Wu presents the history and principles of photogrammetry, its state-of-the-art
developments with computer vision and 3D mapping, and its modern applications
and potential in generating both geometric and texture data of urban environments.

Most of the surveying technologies are based on direct line-of-sight, while there
is no such convenience in underground utility surveying. The objective of using GPR
is to see the unseen underground world. In Chap. 24, Wallace W.L. Lai compares
and discusses the sensors and working principles for detecting invisible underground
objects using electromagnetic induction (EMI) and GPR, as well as the in-line tech-
nologies for direct checking of pipelines. The chapter also introduces future trends
in developing imaging and diagnosis of underground utilities.

In contrast tomost staticmapping technologies that can only provide data captured
at discrete positions, mobile mapping based on sensors embedded on moving plat-
forms has become a highlight of research in recent decades. Conventional surveying
techniques, including GNSS (global navigation satellite system) positioning, inertial
measurement unit (IMU) dead reckoning, LiDAR data acquisition, and photogram-
metry, are synergized to achieve mobile mapping. Chapter 25 by Kai Wei Chiang,
Guang-Je Tsai, and Jhih Cing Zeng introduces the history of mobile mapping and



19 Introduction to Urban Sensing 313

elaborates on its recent developing progress. Also reviewed are the common imple-
mentations and applications of mobile systems in disaster response, indoor mapping,
and autonomous driving, as well as future trends in mobile mapping technology.

With detailed seamless mapping, ubiquitous positioning becomes feasible and
practical. Mobile phones are common platforms to realize ubiquitous positioning.
In Chap. 26, Ruizhi Chen and Liang Chen review indoor positioning technologies
based on radio frequency and built-in sensors, with discussions and comparisons
of their pros and cons in the context of different applications. The difficulties and
future trends of indoor positioning are also presented with a comparison of various
mobile-phone-based indoor positioning technologies.

With the development of computer technology and the widespread installation
of surveillance cameras, data processing and extraction from them also become
research highlights. Deployed on urban facilities, cameras are organic components
of urban sensor networks. Chapter 27 by Fábio Duarte and Carlo Ratti discusses the
applications of computer vision and machine learning in analyzing urban landscape
data to understand the characteristics of humanmobility, moving patterns, and public
spaces.

The technologies presented in Chaps. 20 to 27 mostly produce professionally
generated content. As an important complement, Chaps. 28 and 29 focus on the
emerging approach of urban sensing by user generated content (UGC). In Chap. 28
by Song Gao, Yu Liu, Yuhao Kang, and Fan Zhang, background, definition, and
characteristics of UGC and processing frameworks are introduced systematically.
Applications ofUGC in extracting citizen demographics,mobility patterns, and place
semantics, and uncovering urban spatial structures are also demonstrated.

Based on the UGC acquired, a number of new urban study areas have been
explored, especially those related to individual citizens. In Chap. 29, Wei Tu,
Qingquan Li, Yatao Zhang, and Yang Yue present UGC-driven urban studies within
this general framework. These new urban studies have revealed invisible landscapes
of urban dynamics and demonstrated how urban space is perceived by the public.
Challenges and future directions of UGC-based urban studies are also discussed.

During recent decades, the development of information technology has changed
the surveying and mapping of the real world and raised the urgent needs of urban
informatics. While Part III of this book intends to cover the essential and trending
urban sensing technologies, many technologies are beyond the coverage of this book
due to their large variety, with a few key examples as follows.

Besides indoor positioning, satellite positioning with the Global Positioning
System (GPS) by theUS,GlobalNavigationSatellite System (GLONASS)byRussia,
Galileo by the European Union, Beidou by China, and other regional satellite posi-
tioning systems is a more classical positioning technology and has been widely
adopted in precise measurement in open-sky environments. With an appropriate
differential positioning link established, the accuracy of satellite positioning can
achieve centimeter level.

Wearable devices are also widely used for sensing the properties and movements
of individual persons. These devices monitor the wearer’s physical and emotional
status through embedded sensors, such as IMU, optical sensors, electrodes, force and
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pressure sensors, thermometers, microphones, and GNSS modules. By collecting
physical data like moving acceleration, pose changes, and heart beats, wearable
devices can determine the movement, health, and safety status of the wearer. By
collecting data from a significant number of wearers, implicit moving patterns, living
habits, and urban traffic flows can be revealed and visualized.

Another key technology lies in the Internet of Things (IoT; Chap. 38), which
is a collection of machines, objects, animals, or humans with embedded sensors,
connected by a linked network and transferring data over a network. The embedded
sensors can be connected directly as the components of the sensor network for fluent
exchange and comprehensive management of the data. IoT has been widely applied
to smart traffic, smart home, and public security. A typical example of IoT is the smart
lamp post, where camera, Wi-Fi hotspot, thermometer, decibel meter, and pollutant
sensors are integrated onto a normal lamp post alongside urban streets. It provides
closer monitoring of the environment and better incident response for public safety,
and acts as an effective data source for urban planning.
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Chapter 20
Optical Remote Sensing

Man Sing Wong, Xiaolin Zhu, Sawaid Abbas, Coco Yin Tung Kwok,
and Meilian Wang

Abstract Applications of Earth-observational remote sensing are rapidly increasing
over urban areas. The latest regime shift from conventional urban development
to smart-city development has triggered a rise in smart innovative technologies to
complement spatial and temporal information in new urban design models. Remote
sensing-based Earth-observations provide critical information to close the gaps
between real and virtual models of urban developments. Remote sensing, itself,
has rapidly evolved since the launch of the first Earth-observation satellite, Landsat,
in 1972. Technological advancements over the years have gradually improved the
ground resolution of satellite images, from 80 m in the 1970s to 0.3 m in the 2020s.
Apart from the ground resolution, improvements have been made in many other
aspects of satellite remote sensing. Also, the method and techniques of informa-
tion extraction have advanced. However, to understand the latest developments and
scope of information extraction, it is important to understand background informa-
tion and major techniques of image processing. This chapter briefly describes the
history of optical remote sensing, the basic operation of satellite image processing,
advanced methods of object extraction for modern urban designs, various applica-
tions of remote sensing in urban or peri-urban settings, and future satellite missions
and directions of urban remote sensing.

20.1 Introduction

A major part of the global population now lives in cities; consequently, cities are
growing in complexity and dynamics. For example, a city’s expansion is not restricted
to horizontal expansion as most of the developed cities are now growing vertically
as well. In addition, new urban designs with a variety of construction materials pose
unique environmental challenges. Thus, innovative urban information technologies
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are needed to provide a solution to problems associated with contemporary urban
design and development models, especially in the era of smart cities.

Rapid development and the dynamic growth of urban areas require innovative
technologies to provide a huge amount of increasing information about an urban
landscape. Remote sensing (RS) is defined as the science of collecting, extracting,
and analyzing information about objects, on images obtained without having phys-
ical contact with the objects. Wide spatial coverage from space or airborne remote
sensors complements the information obtained from extensive field-based invento-
ries of urban landscapes. Remote sensing has a strong potential to play a pivotal role
in developing the urban informatics of evolving urban spaces.

Ever-increasing improvements in spatial (from coarse-resolution to fine-
resolution image models) and spectral resolution (from a few spectral bands to
more than a hundred spectral bands) of remote sensing images, along with develop-
ment in cyberinfrastructure and algorithms to extract information from the images,
have accelerated the urban applications of remote sensing. These applications focus
on various domains of urban settings, such as urban geometric and morpholog-
ical models, traffic modeling, 3D urban models, urban noise and pollution manage-
ment, solidwastemanagement, tourism, and rapid-responsemapping for disaster-risk
reduction, and several other environmental and socioeconomic dynamics.

Since the launch of the first Earth-observation satellite in the 1970s, a wide range
of remote sensing satellites has been launched, acquiring Earth-observation data in
the visible (VIS) and near-infrared (NIR) portions of the electromagnetic spectrum.
All the acquired Earth-observation data require that rigorous processing and algo-
rithms are ready for analysis, and then another set of techniques are applied to extract
relevant information from images. Therefore, knowledge of the essential character-
istics of remote sensing platforms and sensors, along with an understanding of the
basic and advanced information extractionmethods, are required to reconstruct urban
models. To this aim, this chapter will focus on providing background information
about the history and the latest developments in optical remote sensing, processing
of remote sensing images to analyze and extract information, examples of remote
sensing applications in urban or peri-urban settings, and a broad outlook on future
directions and the latest developments of remote sensing-based operations in urban
informatics.

20.2 History of Optical Remote Sensing

The term remote sensing (RS) first appeared in 1962, but its origin dates back to
the employment of photography and the development of flight at the beginning
of the nineteenth Century (Olsen 2016). The balloonist Gaspard Tournachon took
photographs of Paris from a balloon in 1859, starting the era of RS. Then awide range
of scientists followed Tournachon’s experiment and made many improvements. For
example, Germans used aerial photographs to measure features and areas in forests.
The Bavarian Pigeon Corps used pigeons to take aerial photos, and Albert Maul
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used a rocket to take an aerial photograph. Until the 1910s, systematic RS and aerial
photography were rapidly developed with the purpose of military surveillance and
photoreconnaissance during World War I. A series of related technologies were also
developed and reached a climax during the war. The most significant development
of RS technology took place in World War II. Several imaging systems, such as
photography using near-infrared and thermal infrared, aiming to differentiate real
vegetation from camouflage, and airborne imaging radar that was used for nighttime
bombing, were also achieved (Blaschke et al. 2011).

After thewar and in the 1950s, RS systems advanced to a global scale and substan-
tial progress in radar development was achieved. The first Earth-observation satellite,
Landsat launched in 1972, began a newRS era. Various Earth-observing and weather
satellites, likeAVHRR,Landsat, andSPOT, provided globalmeasurements of various
data for all kinds of purposes. Attention was also paid to the development of image
processing of satellite imagery and fine-resolution imagery. The first hyperspectral
sensor was developed in 1986 and the first fine-resolution satellite, IKONOS, was
launched in 1999 (Blaschke et al. 2011). Currently, online platforms, such as Google
Earth and Google Maps, collect and store massive satellite images and make them
accessible to the general public, thus accelerating the development of RS technology.

20.3 Latest Developments in Optical Remote Sensing

Over the past decades, extensive research and development in sensor technology
have been carried out, making it possible to collect fine-resolution and hyperspec-
tral imagery. All of the sensors have different spatial, spectral, radiometric, and
temporal resolutions. The major characteristics of the well-known optical RS satel-
lite sensors are summarized in Tables 20.1, 20.2 and 20.3. As shown in Table 20.1 and
Fig. 20.1, most satellites were launched by the USA. There was a total of 791 Earth-
observation and Earth-science satellites in orbit by March 2019, among which 481
were optical/multispectral/hyperspectral imaging satellites (Fig. 20.1; UCS Satellite
Database 2005).

20.3.1 Introduction to Representative Optical Satellite
Sensors

A variety of optical RS satellites have been launched for Earth-observation
applications. A brief description of representative sensors is given in this section.

Since 1972, there have been eight Landsat satellites launched, with Landsat
9 planned to be launched in 2021. Landsat 5 was the longest operating Earth-
observation satellite, continually collecting data for 28 years from its launch in
March 1984 until it was decommissioned in January 2013. Imagery from the series
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Table 20.1 Representative
satellites and launching date

Sensors (Country) Launching date

TIRO (USA) 1960

NIMBUS (USA) 1964, 1966, 1969, 1970, 1972

Landsat (USA) 1972, 1975, 1978, 1982, 1984,
1993, 1999, 2013

METEOSAT (ESA) 1977, 1981, 1988, 1989, 1991,
1993, 1997

SIR (USA) 1981, 1984

SPOT (France) 1985, 1990, 1993, 1998, 2002,
2012, 2014

IRS (India) 1988, 1991, 1995, 1996, 1997,
1999

ERS (ESA) 1991, 1995

JERS (Japan) 1992

Orbview (USA) 1995, 1997, 2003, 2008

QuickSCAT (USA) 1999

IKONOS (USA) 1999

KOMPSAT (South Korea) 1999

MODIS (USA) 1999

Tsinghua (China) 2000

EORS (ESA) 2000

JASON (USA) 2000, 2008, 2016

EOS(USA) 2000, 2002

Quickbird (USA) 2001

ENVISAT (ESA) 2002

GRACE (USA) 2002, 2016

ALOS (Japan) 2003

Worldview (USA) 2007, 2009, 2014, 2016

Sentinel-2 (ESA) 2015, 2017

Hyperion 2000

of Landsat satellites has been archived in the US and at Landsat receiving stations
around the world, providing unique resources for global-change research and appli-
cations in agriculture, cartography, geology, forestry, regional planning, surveillance,
and education; and the data can be accessed through the United States Geological
Survey (USGS) EarthExplorer website.

SPOT (Satellite Pour l‘Observation de la Terre) is a part of the RS program
set up in 1978 by France in collaboration with Belgium and Sweden. Each SPOT
is comprised of two identical fine-resolution optical imaging instruments that can
be operated in either panchromatic or multispectral mode. It has been designed to
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Table 20.2 Characteristics of representative optical satellites

Satellites Spatial resolution (meters) Revisit time (days) Spectral range (µm) and
number of bands

ASTER 15–90 15 0.52–11.65 (15 bands)

Landsat 15–120 16 0.45–12.5 (11 bands)

SPOT 10–20 26 0.45–1.75 (5 bands)

IKONOS 1–4 1–4 0.45–0.90 (5 bands)

MODIS 250–1000 0.25 0.4–14.4 (36 bands)

Quickbird 0.61–0.72 1–6 0.45–0.9 (4 bands)

WorldView-2 0.46–2.4 1.1–3.7 0.4–1.05 (8 bands)

WorldView-3 0.31–30 <1.0–4.5 0.40–23.6 (26 bands)

WorldView-4 0.31–1.24 <1.0–4.5 0.65–0.92 (4 bands)

Pleiades 0.5–2 1 0.47–0.94 (5 bands)

IRS 5.8–70 5–24 0.52–1.7 (4 bands)

Sentinel-2 10–60 5 0.04–2.19 (12 bands)

Hyperion 30 16 0.35–2.58 (220 bands)

ALI 30 16 0.40–2.40 (7 bands)

CHRIS 18–36 7 0.40–1.05 (19 bands)

AVNIR2 10 46 0.42–0.89 (4 bands)

RapidEye 5 5 0.44–0.85 (5 bands)

Gaofen 0.8 2 0.45–0.89 (4 bands)

SkySat 0.8–1 1 0.45–0.90 (4 bands)

Jilin-optical 0.72–2.88 3.3 0.45–0.90 (4 bands)

Jilin-HypSpec 5–150 2–3 0.45–13.5 (28 bands)

TH 2–10 5 0.43–0.90 (4 bands)

Dove 2.7–3.2 1 0.42–0.90 (4 bands)

GeoEye 0.46–1.84 2.1–8.3 0.45–0.92 (4 bands)

SuperView 0.5–2.0 2 0.45–0.89 (4 bands)

explore the Earth’s resources, detect and forecast phenomena involving climatology
and oceanography, and monitor human activities and natural phenomena.

ASTER (the Advanced Spaceborne Thermal Emission and Reflectance
Radiometer) consists of three subsystems: Visible and Near-Infrared (VNIR), Short-
wave Infrared (SWIR), and Thermal Infrared (TIR). ASTER data are often used
to derive maps of land surface temperature, reflectance, and elevation. It also has
many applications, including monitoring vegetation, hazards, geology, land surface,
hydrology, and land-cover change.

IKONOS is the first civilian fine-resolution sensor, providing images with a
comparable resolution to aerial photos. It is useful for applications such as urban
geography, land-use, agriculture, and natural-disaster management due to its fine-
resolution. Quickbird was launched in 2001 and decommissioned in 2015. It has
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Table 20.3 Primary applications of representative optical satellites

Sensor Applications

ASTER Vegetation and ecosystem dynamics, land surface temperature, geology,
hazard monitoring, land-cover change, land surface climatology, hydrology

Landsat Global-change research, agriculture, cartography, geology, forestry, regional
planning, surveillance, education

SPOT Exploring the Earth’s resources, detecting and forecasting phenomena
involving climatology and oceanography, and monitoring human activities
and natural phenomena

IKONOS Urban geography, land-use, agriculture, and natural-disaster management

Quickbird Map publishing, land and asset management, and risk assessment

WorldView Mapping clouds, ice, snow and correcting for aerosol and water vapor

Pleiades Crisis monitoring

Hyperion Hyperspectral land imaging for various applications

PROBA-CHRIS Atmosphere, land, agriculture, and oceans and coasts

ALOS-AVNIR-2 Agriculture, forest, and natural disasters

RapidEye Regional and global agricultural mapping

Sentinel Land and maritime monitoring, emergency management, and surveillance

Gaofen Urban monitoring and precision agriculture

SkySat Defense, agriculture, and environmental monitoring

Jilin-optical Development, urban monitoring, and agriculture

Jilin-HypSpec Environment, agriculture, and forestry

TH Terrain modeling, surveying, and mapping

Dove Urbanization, deforestation, disasters, and agriculture

very-fine-resolution sensors that can acquire images in panchromatic and multispec-
tralmodes concurrently. It is designed to support applications such asmappublishing,
land and asset management, and risk assessment. WorldView consists of very-fine-
resolution satellites with a short average revisit time. WorldView-1, launched in
2007 and still operating today, is only capable of collecting panchromatic imagery
but having the finest resolution of 0.41 meters. WorldView-2, launched in 2009 and
still in operation, has the capabilities to capture eight spectral bands. WorldView-3
was launched in 2014 with fine-resolution imagery captured in sixteen multispectral
bands.WorldView-4, launched in 2016, is amultispectral, fine-resolution commercial
satellite with four multispectral bands and a panchromatic band.

The Indian Remote Sensing (IRS) satellite series was launched to technically
support the development of agriculture, water resources, forest and ecology, geology,
water-conservancy facilities, fisheries, and coastline management in India. Gravity
Recovery and Climate Experiment (GRACE), a collaboration between National
Aeronautics and Space Administration (NASA) and the German Aerospace Center,
is a satellite mission that monitors Earth’s gravitational field. Scientists can infer
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Fig. 20.1 Earth-observation satellites in orbit by March 2019

changes in groundwater by measuring the changes in the gravitational field. The
summary of primary applications of different satellites is shown in Table 20.3.

In recent years, with the development of commercial images and the launch of
satellite-based sensors, hyperspectral imaging is becoming the mainstream in the RS
field. And the rapid development of artificial intelligence may provide a new era of
applications for RS in the future.

20.4 Processing of Remote Sensing Satellite Images

Not all the acquired RS images are ready to use, because there are many distortions
or deviations in raw images. The distortions can be divided into random distortions
(Fig. 20.2) and systematic distortions. Random distortions can be caused by changes
in altitude, attitude, and speed of the sensor platform, atmospheric refraction, or relief
displacement, while systematic distortions are caused by panoramic distortion, skew
distortion (Fig. 20.3), and the Earth’s curvature. Before we use RS images, it is
important to correct these errors.
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Fig. 20.2 A graphical illustration of random distortion

Fig. 20.3 A graphical illustration of skew distortion

Generally, satellite image processing operations can be divided into three stages:
(i) image pre-processing, (ii) image processing, and (iii) image post-processing.
Image pre-processing aims to correct distortion and to reduce noise in the data. The
purpose of image processing is to understand the information stored in remotely
sensed images and to optimize the appearance for the visual system by using or not
using enhancement technology, so the operation involves filtering, and band ratio
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or contrast enhancement to enhance or mask image features or classify images. The
objective of post-processing is to further reduce the errors of image processing based
on expert knowledge and ancillary information.

20.4.1 Image Pre-processing

Primary image pre-processing procedures include image rectification, also known
as a geometric correction, and radiometric correction which deals with atmospheric
error correction and conversion from digital number (DN) to radiance. The process
of rectification is to correct distortions, including image-to-image registration and
image-to-map registration (Fig. 20.4). In this process, the coordinates in an image
match the selected points in a map or an image to derive geometric transformation
coefficients; then these coefficients may be used to rectify the image geometrically.
The root-mean-square error (RMSE) is used to assess the correction accuracy. The
closer the value is to zero, the smaller the residuals, representing a more accurate
correction. The procedure of radiometric correction includes atmospheric correction
and DN-to-radiance conversion. It is used to calibrate the system and reduce the
systematic calibration effect and atmospheric effect. The particles in the atmosphere
can cause scattering and absorption depending upon the physical and chemical char-
acteristics of the atmospheric particles. Atmospheric correction can be conducted
through an empirical method using empirical line calibration, which forces the RS
image data to match the in situ spectral reflectance measurements, and through the
dark pixel method, which finds the minimum pixel value from each band using
histograms, and subtracts that value from all of the pixels in the band.

The pre-processing procedures produce consistent images with high scientific
quality that can be directly used for scientific applications and subsequent analysis.

Fig. 20.4 A typical example of geometric correction of a satellite image; a raw image and
b geometrically corrected image
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20.4.2 Image Processing

Satellite image processing includes: (i) masking or clipping area of interest (AOI),
(ii) contrast enhancement, (iii) spatial filtering, (iv) spectral enhancement, (v) image
classification, and (vi) object recognition and extraction.

Masking of a study area or area of interest is the foremost processing step in which
an image (ormosaic of images) is clipped over a region of interest. The clipping helps
to reduce the size of the image and processing time as well as to focus on the desired
study area or region of interest.

Contrast enhancement is used to transform satellite images for visual enhance-
ment by stretching the input values to the maximum available range. The contrast
enhancement procedures can be applied on the entire image for a better contrast
among different land-cover or land-use types, or it can be used to enhance specific
features in an image to emphasize a specific land-cover or land-use type (e.g., vege-
tation, soil, water, or snow) by diminishing others. Sometimes image displays may
not clearly show all the features, especially when dealing with monochromes. This is
where contrast enhancement comes in. Contrast enhancement is done through spec-
tral featuremanipulation. It canmaximize the contrast between the features according
to the image histogram. The most common method is a linear stretch (Fig. 20.5).

Spatial filtering is a process to emphasize or de-emphasize various spatial frequen-
cies in the image data or tonal variations in an image. An example of spatial enhance-
ment (filtering) is shown in Fig. 20.6. Filtering makes use of kernels, a square matrix
that is moved pixel by pixel and is designed to increase the brightness of the central
pixel, depicted as a single positive value surrounded by negative values. The larger
the kernel, the more blurred the pixels. A low-pass filter emphasizes low-frequency
changes in the brightness and de-emphasizes or smooths local details such as by
taking the mean, while high pass filters de-emphasize more general low-frequency
details and emphasize the high-frequency components by exaggerating local contrast.

Fig. 20.5 Contrast enhancement of an image: a original image and b linearly stretched image
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Fig. 20.6 An example of spatial enhancement (filtering): original image (a) and filtered image (b)

Filters can also be used for edge preservation and noise removal. For example, the
median filter is better at preserving edges on an image, and a model smoothing
filter can remove the “salt and pepper” effect on a classified image, leaving a more
homogeneous output.

Spectral enhancement comprises image transformation processes used to extract
unique spectral information, combine the information in different spectral bands,
and compress information from multiple wavebands into fewer bands.

Once the data have been processed, it is then up to the operator to analyze what
is captured in an image. In order to interpret an image, the operator first has to
detect, identify, and classify the object. Normally, classification methods mainly
follow two approaches: unsupervised classification and supervised classification. The
unsupervised approach clusters pixels based on spectral statistics, without sampling
and training,while the supervised approach employs classifiers based on the results of
sampling and training land-cover classes, and users need to define useful information
about categories and examine the spectral separability before classification.

The information in a satellite image can be extracted and classified at various
processing units of the image; for example, pixel level, a unit defined by the image
spatial resolution; sub-pixel level, a pixel is spectrally unmixed to identify a portion
of a land-cover feature in the pixel; and object-based classification, which is based on
the concept of grouping homogeneous pixels and primarily applied on a very-fine-
resolution image where an object is divided and stored into many pixels. Generally,
sub-pixel and object level (object-based) classification routines are implemented for
information extraction over urban areas. For example, a linear spectral unmixing
model was applied to an IKONOS (4 m spatial resolution) image to estimate the
contribution of trees and grasses in the urban landscape of Hong Kong (Nichol and
Wong 2007).

Supervised techniques rely on user-defined training sites describing the nature
and number of possible land-cover classes (Mather 2011). The most significant and
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conventional decision rules of supervised classification include maximum likelihood
decision rule, nearest neighbor decision rule, and parallelepiped decision rule.

The unsupervised approach is optimal when there is no enough prior ground truth
information about the area of interest (Mather 2011). According to analyst-defined
parameters, unknown image pixels are iteratively clustered until either the proportion
of pixel class values remains unchanged or a maximum number of iterations is
reached (Jensen 2009). The three most commonly used clustering algorithms are:
k-means clustering, fuzzy c-means (or modified k-means), and ISODATA (iterative
self-organizing data analysis technique).

In 1999, with the launch of IKONOS (Goetz et al. 2003), intra-class spectral
variations and inter-class spectral confusion had increased in fine-resolution satellite
imagery. Due to higher pixel-to-pixel variability and information contained in patch-
based landscape structures, classical approaches of image analysis are becoming out
of date. The recently developed object-based image analysis techniques of pattern
recognition overcome these difficulties by first segmenting the image intomulti-pixel
image object primitives according to both spatial and spectral features of groups of
pixels.

Over the past decade, there has been a noticeable shift in the analysis of Earth-
observation (EO) data, from what has been predominantly 30 years of per-pixel
multispectral-based approaches, towards the development and application of multi-
scale object-based analysis.Newconcepts of object-based analysis, such as the fractal
net evolution approach (FNEA), linear scale-space and blob-feature detection (SS),
and multi-scale object-specific segmentation (MOSS) were developed for informa-
tion extraction from RS data stored in the form of digital images (Mallinis et al.
2008).

In addition, a wide range of advanced classification approaches has been devel-
oped in recent years to solve a variety of problems arising with fine-resolution
data sets and complex urban environments. The new methods and approaches from
machine learning and pattern recognition include artificial neural networks (ANN),
deep learning methods, decision trees, support vector machines, extreme learning
machines, an artificial immune system, active learning, semi-supervised learning,
binary tree support vector machine, and random forest. Other modern techniques
also include ensemble learning based on multiple learners, spatial-spectral classi-
fication, multi-kernel support vector machine, wavelet analysis, phenology-based
classification, kernel k-means, and expectation-maximization (Xue et al. 2015; Du
et al. 2012; Fernandez-Delgado et al. 2014; Lu and Weng 2007; Mountrakis et al.
2011; Tan and Du 2011).

Combining multiple RS data sets, advanced urban feature extraction algorithms,
and accurate classification algorithms, an urban information system has been devel-
oped to effectively monitor the rapidly evolving urban areas and their impact on
the environment (Kadhim et al. 2016). Recent urban applications of RS comprise
urban green spaces mapping, aerosol monitoring, urban heat island effect, auto-
matic feature extraction (e.g., roads, buildings, and trees), relationships between
land-use and surface temperature, 3-dimensional geometric models for urban heat
island, urban energy-efficiencymodels, andmappingmigrant housing inmega-urban
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centers (Blaschke et al. 2011; Hamdi 2010; Jin et al. 2011; Hofmann et al. 2011;
Miyazaki et al. 2011; Hermosilla et al. 2011; Rinner and Hussain 2011; Hay et al.
2011; Geiß et al. 2011; Liu and Zhang 2011; d’Oleire-Oltmanns et al. 2011). Also,
some modern urban RS methods are focusing on integrating multiple RS (night light
imagery and multispectral indices) and geolocation datasets using machine learning
approaches for urban informatics application of RS (Xia et al. 2019).

In the past couple of decades, with the advent of very-fine-resolution remote
sensing images (1 m or less), there has been a major shift in information extraction
from conventional pixel-based classification towards object-based classification and
target-object extraction over urban areas. Modern techniques of machine learning
focus on extracting typical urban features such as roads, buildings (more specific
characteristics of buildings), cars, and urban trees, rather than classifying whole
images or mapping urban sprawl.

20.4.3 Image Post-Processing

After determining the classes of image objects, image post-processing procedures
usually includemap production, raster to vector conversion, and image interpretation.
The information on images needs to be converted to land-cover classes. Applying a
majority filter to remove salt and pepper in pixel-based land-cover maps is the most
commonly applied post-classification process. In urban areas, expert knowledge and
ancillary information, such as population density, may be required to distinguish
between spectrally similar high-density residential areas and commercial buildings.
Current technologies have someautomatedprocedures, enabling automateddetection
and identification, but ultimately it would be left up to the operator to interpret the
results.

20.5 Applications of Optical Remote Sensing

Recent advanced technologies have improved what we can do in RS. Since 1995,
RS is no longer restricted to military and government use. And rapidly developing
technologies also allowed for the expansion of applications, such as urban and popu-
lation growth, town planning, weather forecasting, crop prediction, and forecasting,
forest and rangelandmonitoring, air-qualitymonitoring and assessment, and surface-
material detection, just to name a few. Infrared cameras become commercially avail-
able, which can be used to detect the health condition of vegetation, and hand-held
devices can be carried on helicopters to record heat signatures and to monitor the
urban heat island effect.

For coastal water-quality monitoring, RS data sets which combine a synoptic
viewpoint with the ability to measure the reflected energy from the water surface in
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different spectral regions, are increasingly available for coastal water-quality appli-
cations. For example, improved estimation of chlorophyll-a concentrations for the
coastal area of Hong Kong has helped in the detection of algal blooms, including
their intensity and extent. For vegetation monitoring, aerial photographs and fine-
resolution satellite images can be used for mapping secondary vegetation succes-
sion. When dealing with the mapping of deforestation and degradation, medium-
resolution Landsat satellite images can provide satisfactory results, while coarse-
resolution satellite images are required when monitoring the impact of drought on
vegetationmoisture conditions, using photos captured byMODIS.Research on atmo-
spheric aerosols using satellite RS is popular. Aerosols are suspended particles in
the atmosphere emitted from natural and anthropogenic sources. These particles are
responsible for climate change, poor air quality, and atmospheric visibility, and also
associated with public health. Satellite RS is an effective and unique technique for
retrieving spatial aerosol optical thickness over the globe. Different satellite sensors
such as MISR, MODIS, and Visible Infrared Imaging Radiometer Suite (VIIRS) can
retrieve aerosol optical thickness.

20.5.1 Land-Use and Land-Cover Mapping

Land-cover refers to the features on the Earth’s surface, and land-use indicates
the human activities on the particular land parcel (Lillesand et al. 2008). Detailed
land-cover mapping can be utilized in urban planning, land-use monitoring, change-
detection analysis, and policymaking.With the development of RS technology, satel-
lite images achieve a good visual performance and are brought into more practical
applications at local or territory-wide scales, such as for urban land-use classification
(Lu and Weng 2009; Pacifici et al. 2009), environmental monitoring (Knight et al.
2013), and land-cover change detection (Potapov et al. 2017).

20.5.1.1 Multi-scale Object-Oriented Segmentation and Classification
Method (MOOSC)

In order to improve land-use land-cover (LULC) mapping effectively and efficiently,
a study of the multi-scale object-oriented segmentation and classification method
(MOOSC) was developed (Nichol and Wong 2008). This method was implemented
for habitat mapping to study a mountainous and ecologically diverse area of Tai Mo
Shan and Shing Mun Country Parks in Hong Kong using fine-resolution IKONOS
satellite images. The method started with grouping homogeneous pixels into image
objects or segments at their respective scales. Then a five-level decision tree classifi-
cation was constructed to classify each feature or object. Apart from the four native
multispectral bands of the IKONOS images, additional layers of NDVI (Normalized
Difference Vegetation Index), chlorophyll index, digital elevation model (DEM),
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and three texture bands were used in segmentation and classification procedures.
The minimum mapping unit (MMU) of the classification map was about 150 m2.

This study provides appropriate and optimal results to substitute the traditional
methods of mapping using aerial photographs. The major merits of this method
are: (i) the potential to produce more accurate results than traditional classification
due to its wide range of parameters such as spectral information, texture, shape,
and size; (ii) object-based classifications use a segmentation process to identify
and delineate meaningful targets on images (it is important that the segmentation
process is an automated digitizing method for delineating the target boundaries;
the availability of classification outcomes in vector format is considerable merit of
an object-based approach as compared with raster-based maps using conventional
classification methods); and (iii) the developed object-based classification method is
cost-effective since it can achieve accuracy comparable to the manual interpretation
of aerial photographs but at only one-third of the cost.

20.5.1.2 Hybrid Object and Pixel-Based Classification (HOPC)

The object-based classification works well in homogeneous areas with similar spec-
tral signatures, while pixel-based classification works on heterogeneous or fuzzy
areas. Neither of them can be applied alone on broad land-cover classification espe-
cially over vegetation areas. A new approach, hybrid-MOOSC, has been developed
by integratingmulti-scale object-based segmentation, decision tree classification, and
pixel-based classification technologies to classify heterogeneous natural landscapes
of Hong Kong from fine-resolution satellite images. The approach combines SPOT-
6 multispectral images, a fine-resolution DEM, and a digital surface model (DSM).
The rationale of this hybrid-MOOSC is to utilize an object-based approach over
homogeneous areas and a pixel-based approach over fuzzy or uncertain areas. The
individual accuracy of habitat classification of mixed classes such as isolated trees
and shrubs in open grassland has been significantly improved using the approach.
The classification results derived from hybrid-MOOSC, as shown in Fig. 20.7, can be
fully utilized in urban planning, land-use monitoring, and change-detection analysis
in local and territory-wide classification with a promising potential to classify urban
areas from very-fine- and fine-resolution satellite images.

Multi-resolution segmentationwas applied to create objectswith coherent spectral
characteristics. It is a process duringwhich pixelswith similar spectral characteristics
are merged into an image object. Then, classification is conducted on the image
objects by assigning them to specific land-cover types. Ideally, an image object
comprises only one class, but any resolution of satellite image does not void the
availability of similar spectral values frommixed-class objects. Therefore, this study
used a rule-based separation of pure objects and fuzzy objects (decision rules for each
class). The thresholds were defined by analyzing the sampling histograms of various
features (such as NDVI, blue-red ratio, red ratio, and object height) of image objects
corresponding to each land-cover class. Most of the image objects were correctly
classified into corresponding classes, which correspond to the homogeneous classes.
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Fig. 20.7 Land-cover map of the entire territory of Hong Kong using hybrid-MOOSC

However, some image objects cannot be classified efficiently due to overlapping in
their feature properties, such as spectral response, resulting in fuzzy areas.

A fuzzy object contains two ormore classes at a certain spatial scale. For example,
an object may contain both grassland and open shrubs which cannot be separated into
two objects in the multi-resolution segmentation stage. In these fuzzy objects, their
feature properties are averaged over classes that are not distinctive from pure classes,
as their feature properties usually overlap in the sampling histograms. Therefore, for
fuzzy objects, refinement is needed in order to achieve a more accurate classification
result. For this purpose, a pixel-based segmentation was performed on the fuzzy
objects, which is a method of dividing large objects into smaller pixels. When the
objects are broken down into pixels, they will be reclassified into their corresponding
classes. The advantage of the object-based approach is to alleviate the original noise,
while the pixel-wise method is good at preserving the details of ground objects,
especially in fuzzy areas which are transition stages of habitat classes in a landscape.
The proposed HOPC is useful for improving the classification of a fine-resolution
image by combining both approaches.

The high accuracy of the HOPC result may be mainly due to its hybrid approach
which combines the advantages of object-based classification and pixel-based clas-
sification, with flexible expert judgment. The object-based fuzzy areas were further
broken down into pixels and reclassified to the corresponding class. This advanced
method helped to increase the overall accuracy significantly. However, if only pixel-
based classification is adopted, for example, MLC, it does not consider in an object
aspect, so that many homogeneous areas contain inconsistent classes after classifica-
tion, such as the salt and pepper effect. For object-based classification, homogeneous
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objects can be segmented first and then classified, but this does not deal with the
borders of the objects, which usually introduces fuzzy areas.

20.5.2 Urban Vegetation Phenology

Vegetation phenology is the timing of seasonal developmental stages in plant life
cycles. It has been gaining considerable attention due to its implications for water,
carbon, and energy cycles, and even human health. Vegetation phenology is sensitive
to environmental conditions. As we know, urbanization can change environmental
conditions (e.g., alter the local climate and bring more artificial light), and thus
affect vegetation phenology. Studying urbanization-induced vegetation phenology
shifts will provide insights on how vegetation responds to environmental changes.
Considering that urbanization is accelerating around the world, addressing this ques-
tion will further help to investigate future ecosystem scenarios under the pressure
arising from global climate change and growing population.

Several studies have used RS data to investigate the urbanization effects on vege-
tation spring phenology in different cities (Li et al. 2017). These investigations have
reached the same conclusion, that vegetation spring phenology in urban areas occurs
earlier than in surrounding rural areas.

However, the magnitude of this rural-urban difference is quite different among
these studies. Yao et al. applied 2001–2015 MODIS EVI data to study phenology
change in all cities of northeast China and revealed that the spring phenology in
urbanized areas advanced 0.79 days/year more than in rural areas in this period (Yao
et al. 2017). Li et al. used 2003–2012 MODIS EVI data to study phenology change
in more than 4500 urban clusters in the conterminous United States (Li et al. 2017).
They found that phenology changes are related to urban area size. A tenfold increase
in the size of a city could lead to earlier spring phenology of about 1.3 days. More
studies are needed to explore the reasons for these diverse urban effects on vegetation
phenology.

20.5.2.1 Urban Vegetation Phenology of Beijing

A study was conducted to implement phenology-based vegetation monitoring
methods in Beijing city (i) to explore the spatial pattern of vegetation phenology
along the urban–rural gradient; and (ii) to examine the relationship between vegeta-
tion phenology and urban environmental factors including both air temperature and
artificial light (Yao et al. 2017). The data used in this study included MODIS EVI
time series in 2012 (MOD13Q1Version 6, 16-day composite, 250meters), the hourly
air temperature in 2012 from 232 meteorological stations in Beijing, and nighttime
light data from the VIIRS in 2012.

The method proposed by Piao et al. was used to detect the start of the season
(SOS) and end of the season (EOS) from the EVI time series (Piao et al. 2006). This
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method first computes a reference EVI curve by averagingmulti-year EVI curves and
then finds SOS (when 20% of the seasonal amplitude is reached during the green-up
period) and EOS (when 60% of the seasonal amplitude is reached during the brown-
down period) in the reference EVI curve. Next, the EVI values in the reference curve
corresponding to SOS and EOS are selected as thresholds. Then, an EVI curve in
each year is fitted by a polynomial function. Finally, the SOS and EOS of each year
can be detected from the fitted curve and the thresholds.

The result for SOS (Fig. 20.8a) shows a spatial distribution of green-up onset in
2012, fromwhich we can see the onset dates of vegetation green-up in the urban area
occurred earlier than the surroundings. The spatial distribution of EOS (Fig. 20.8b)
shows that the onset date of vegetation dormancy in urban areas is generally later
than the surroundings, especially in the rural area. Besides, both SOS and EOS
in the urban expansion area distribute intricately, indicating that the vegetation in
the urbanization area is heterogeneous.

The correlation analysis between air temperature and phenology shows that SOS
is negatively correlated to spring air temperature (R = −0.23, p-value <0.01) while
EOS is positively correlated with autumn air temperature (R = 0.16, p-value <0.1).
SOS is negatively correlated to nighttime light intensity (R=−0.22, p-value <0.01),
while EOS has no significant correlation with nighttime lights. Above results suggest
that both urban heat island and artificial lights may have impacts on the vegetation
growth in the urban environment, and this effect is more significant in urban centers
and decreases toward rural areas.

20.5.3 Urban Heat Island Mapping

Urban heat island (UHI) refers to the phenomenon that air and surface temperatures
in an urban area are higher than those in rural areas. This temperature difference can
range from 1.5 to 4 °C in summer daytime to 2–6.5 °C in winter daytime. However,
a more significant UHI effect is expected at night and in the early morning. The main
causes of UHI include (i) compact urban structure such as high-rise buildings with
high-density; and (ii) anthropogenic heat released by human activities, for example
from transportation and electricity. Then, heat will be released and trapped, resulting
in a higher temperature in urban areas (for a discussion of the computational issues
of UHI, see Chap. 41).

20.5.3.1 New Emissivity and Land Surface Temperature Retrieval
Method

Hong Kong as a city suffers from the UHI effect due to high-rise buildings and high
building density. Therefore,UHImonitoring is significantly required and studies have
been conducted to improve UHI modeling by developing different sets of algorithms
to enhance the retrieval of heat-relating parameters.
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Fig. 20.8 SOS (a) and EOS (b) of Beijing detected from MODIS EVI time series in 2012
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Fig. 20.9 Validation of effective emissivity derived from the UEM-SVF model

Emissivity, accounting for the percentage of radiation emitted from a surface, is
a crucial parameter in retrieving land surface temperature (LST) and hence accurate
retrieval of emissivity is needed. Yang et al. (2015) proposed a method estimating
the effective emissivity using a sky-view factor. This factor represents the portion of
the sky that can be seen from the ground and is derived from airborne LiDAR data,
land-cover classification data, and building data. This study shows that there exists
a high correlation between effective emissivity and the sky-view factor, attaining a
correlation coefficient of more than 0.90. By additionally considering scattering, that
is, the reflection effect of adjacent pixels, the refined model, named the urban emis-
sivity model based on the sky-view factor (UEM-SVF), was developed to estimate
effective emissivity in an accurate manner. Figure 20.9 shows the validation results
of the emissivity derived from the UEM-SVF model and ASTER satellite images.

In addition to the sky-view factor, more urban geometry factors were included to
improve emissivity retrieval, resulting in an improved urban emissivity model based
on the sky-view factor (IUEM-SVF) (Yang et al. 2015). The new geometrical consid-
eration factors include (i) facet emissionwithin an instantaneousfield of view (IFOV);
(ii) reflection of facet emission due to adjacent facets; and (iii) scattering of emitted
and reflected radiation in 3D space. Temperatures of urban facets in 3-D (TUF-3D), a
microscale radiative transfer code using an energy-balance model, was employed to
assess the accuracy of IUEM-SVF. Results suggested that the inclusion of geomet-
rical considerations could improve the retrieval accuracy of effective emissivity by
showing a good agreement between IUEM-SVF and TUF-3D. However, when there
ismore variance in emissivity, the retrieval accuracy of effective emissivity decreases.

With an accurate determination of effective emissivity, the results could then be
used in several applications such as LST retrieval. Yang et al. (2016) applied the
effective emissivity derived from IUEM-SVF to obtain LST for a nighttime ASTER
satellite image.
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20.5.3.2 Anthropogenic Heat Flux Modeling

Anthropogenic heat modeling is another important area in understanding, UHI since
it is one of the major causes in a city. Wong et al. (2015) developed a novel algorithm
retrieving anthropogenic heat using satellite images over Hong Kong with consid-
eration of the complex land-cover in Hong Kong. The algorithm is based on the
conventional energy-balance model with modification based on the heterogeneous
characteristics of land-cover. The anthropogenic heat flux derived over Hong Kong
on October 11, 2012, is illustrated in Fig. 20.10, and the anthropogenic heat was
found to be correlated to building height and building density (Fig. 20.11 and 20.12).
In urban areas, results showed that commercial areas emit the most anthropogenic
heat flux, followed by industrial areas (Fig. 20.13).

With the modeling of anthropogenic heat flux over entire Hong Kong using
satellite images, firstly, the general pattern of anthropogenic heat can be extracted;
secondly, different relationships between anthropogenic heat and urban geometry and
characteristics can be investigated. These findings can improve our understanding of
the formation, distribution, and magnitude of UHI and can assist different experts in
their decision-making about mitigating the UHI effect.

20.5.4 Rock Outcrops Identification

Rock outcrops are part of the bedrock that is completely exposed on the surface
of terrain, and they are strongly related to geologic hazards, such as landslides and
rockfall. The exposed rock surface is subject to chemical and physical weathering,

Fig. 20.10 Anthropogenic heat flux over Hong Kong on October 11, 2012
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Fig. 20.11 Relationship between anthropogenic heat and building height

Fig. 20.12 Relationship between anthropogenic heat and building density

which increases the risk of landslides or rock falls. In high-density cities, a high
density of buildings and infrastructure developed on steep slopes become a concern
towards the stability of urban infrastructure and city development (Owen and Shaw
2007). The traditional ways to map the rock outcrops include field measurement
and aerial photo interpretation (API). Field measurement can be conducted using
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Fig. 20.13 Comparison of anthropogenic heat with different land-use types

the following approaches: (i) a structural geologist carrying a GPS tracker to locate
the exposed segments; (ii) identification of angle and direction based on clinometer
and geologic compass; (iii) identification of the geological faults and rock types
of each exposed segment based on mineral characteristics, fossils, and geological
ages. However, there are several limitations of the field measurement, including the
accessibility of rock outcrops and the time-consuming work of mapping. To tackle
these problems, API has been used for mapping rock outcrops. The advantage of
using API is that it can locate the rock outcrops in areas that are inaccessible by
fieldworkers. With the extensive coverage of a flight plan, it is able to cover a larger
spatial extent that can be used for mapping rock outcrops of an entire city, such as
Hong Kong. The major issue of using the API method is that it is time-consuming
since rock outcrops are identified based on a knowledge-based process (Outcalt and
Benedict 1965). It is essential in the process of identifying rock outcrops because
the classification is mainly based on the differentiation of colors, tones, shape, and
association (Outcalt and Benedict 1965). Based on human interpretation, there can
be a high rate of misclassification.

20.5.4.1 Deep Learning Method to Identify Rock Outcrops in Hong
Kong

In order to reduce the potential bias from a pixel-based RS application, object-
based techniques have been developed. An innovative methodology combining the
deep learning technique of convolutional neural networks and RS techniques was
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Fig. 20.14 Examples of Rock outcrops

developed to leverage the balance between spatial resolution and spectral resolution
for mapping rock outcrops in Hong Kong.

Five target land-cover types were selected as the training and testing samples in
this study, including rock outcrops, grassland, tree, badland, and urban. The examples
of rock outcrops are shown in Fig. 20.14. Theywere trainedwith a 16-layersVGGNet
(Simonyan and Zisserman 2014) with a pre-trained model from ImageNet. Training
accuracy increases significantly from the first epoch of around 50% to the third epoch
of 80% and increases steadily until the end of the training.While the testing accuracy
increases from the first epoch of 70% to the 20th epoch of 90% and then remains
oscillating between 90 and 92% until the end of the training, it indicates that there is
no more improvement in the testing accuracy after the 20th epochs. Therefore, the
trained network can provide high accuracy for land-cover classification of over 90%
accuracy on both training set and testing set.

After training the model, the trained network was applied to the whole selected
digital orthophoto (DOP) of the whole of the Hong Kong territory. For each of the
DOPs, a 20× 20 m kernel was input into the CNN network for classification and the
probability of that kernel belonging to rock outcrops was predicted. The land-cover
classification map (Fig. 20.15) and rock outcrops probability map (Fig. 20.16) were
then generated, and finally, the rock outcrops map of Hong Kong (Fig. 20.17) was
produced.
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Fig. 20.15 Classification result of High West, Hong Kong Island with the year 2015 DOP

Fig. 20.16 Probability map of rock outcrops of High West, Hong Kong Island with the year 2015
DOP
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Fig. 20.17 A rock outcrops map of Hong Kong

20.6 Summary

Presently, the development of smart cities is highly dependent on spatial information
derived from remote sensing technologies. However, prior to using modern tools and
techniques, knowledge about the characteristics of remote sensing datasets, inter-
pretation theories, automatic extraction of urban objects, and problems associated
with these methods is essential. It has been thoroughly discussed in this chapter.
With the advent of very-fine-resolution images, contemporary research is focused
towards information extraction using big data analytics, due to the huge volume of
data with finer and finer spatial, spectral, and temporal resolution. In addition, anal-
ysis paradigms are shifting towards a high precision of geometric details and vertical
developments; a trade-off between spectral and spatial information of the remote
sensing datasets; the automatic object-oriented feature extraction to update changes
in urban space; the development of urban spectral libraries from image spectroscopy
to detect and classify numerous urban surface materials; cutting-edge technologies
for 3D building generation from LiDAR point clouds; land-use type classification
along the vertical surfaces of skyscrapers; dynamics of urban sprawl and population
migration as a result of economic developments; population estimation from satellite
images; sustainable urban ecology in the context of future development; disaster-risk
reduction in the context of extreme weather events and earthquakes, urban noise
pollution and air-pollution monitoring; urban trees and biodiversity for environ-
mental conservation; and smart transportation systems. Thus, the enormous amount
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of remote sensing data and big data analytics will be the backbone of mandatory
geospatial cyberinfrastructure for the development of future smart cities.
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Chapter 21
Urban Sensing with Spaceborne
Interferometric Synthetic Aperture
Radar

Hongyu Liang, Wenbin Xu, Xiaoli Ding, Lei Zhang, and Songbo Wu

Abstract Synthetic aperture radar (SAR) and interferometric SAR (InSAR) are
state-of-the-art radar remote sensing technologies and are very useful for urban
remote sensing. The technologies have some very special characteristics compared
to optical remote sensing and are especially advantageous in cloudy regions due
to the ability of the microwave radar signals used by the current SAR sensors to
penetrate clouds. This chapter introduces the basic concepts of SAR, differential
InSAR, and multi-temporal InSAR, and their typical applications in urban remote
sensing. Examples of applying the various InSAR techniques in generating DEMs
and monitoring ground and infrastructure deformation are given. The capabilities
and limitations of InSAR techniques in urban remote sensing are briefly discussed.

21.1 Synthetic Aperture Radar

A radar (RAdio Detection and Ranging) system typically sends out electromagnetic
pulses and receives the pulses scattered back by objects. By precisely determining
the time delay and Doppler frequency shift between the emitted and received pulses,
a radar system can measure the distance to, and the moving velocity of, an object
with respect to the radar. Synthetic-aperture radar (SAR) is a commonly used radar
remote sensing technique that achieves finer spatial resolution imaging (i.e., up to
meter level or better), in comparison with the real aperture radar, by taking advantage
of the movement of the radar antenna along a particular trajectory to mathematically
create a virtual radar antenna that has a much larger size than that of the physical
antenna. The radar system is usually mounted on an aircraft or a satellite with a
side-looking imaging geometry (Fig. 21.1). Most spaceborne SAR antennas are 10–
15 m long and result in a ground spatial resolution of 1–20 m by using the SAR
principle. Since the first spaceborne SAR satellite was launched in 1978 by the U.S.
National Aeronautics and Space Administration (NASA), many SAR satellites have
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Fig. 21.1 Typical SAR imaging geometry. The antenna receives the backscattered signal from the
illuminated area. The moving direction of the satellite is called the azimuth direction of the image,
while the direction of radar illumination is referred to as the range direction of the image. H and R
are the height of the satellite and the slant range between the satellite and a ground resolution cell,
respectively. θ represents the look angle

been developed (Table 21.1). Over ten SAR satellites are currently in operation or to
be launched in the near future.

A SAR system obtains information on both the intensity and the phase of the
returned signal from each ground resolution cell, referred to as pixel. The intensity
depends primarily on the roughness and dielectric property of the scattering surface
while the phase is determined by the time delay between signal transmission and
reception. The signal in a pixel can be represented by

y1 = a1 + b1i = A1 · ei∅1 (21.1)

where a1 and b1 are the real and imaginary parts of the complex value; and A1 and
∅1 represent the amplitude and phase of the signal.
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Table 21.1 SAR satellites launched to date

Satellite Operator Band/wavelength (cm) Operational period

Seasat U.S. National
Aeronautics and Space
Administration (NASA)

L/23.5 1978

ERS-1 European Space Agency
(ESA)

C/5.66 1991–2000

JERS-1 Japan Aerospace
Exploration Agency
(JAXA)

L/23.5 1992–1998

ERS-2 European Space Agency
(ESA)

C/5.66 1995–2011

Radarsat-1 Canadian Space Agency
(CSA)

C/5.66 1995–2013

Envisat European Space Agency
(ESA)

C/5.66 2002–2012

ALOS Japan Aerospace
Exploration Agency
(JAXA)

L/23.5 2006–2011

Radarsat-2 Canadian Space Agency
(CSA)

C/5.66 2007–

TerraSAR-X German Aerospace
Center (DLR)

X/3.1 2007–

COSMO-SkyMed
constellation

Italian Space Agency
(ASI)

X/3.1 2007–

TanDEM-X German Aerospace
Center (DLR)

X/3.1 2010–

Sentinel-1A European Space Agency
(ESA)

C/5.66 2014–

ALOS-2 Japan Aerospace
Exploration Agency
(JAXA)

L/23.5 2014–

Sentinel-1B European Space Agency
(ESA)

C/5.66 2016–

Gaofen-3 China National Space
Administration (CNSA)

C/5.66 2016–

PAZ Hisdesat X/3.1 2018–

21.2 Interferometric Synthetic Aperture Radar

Basic interferometric synthetic aperture radar (InSAR) involves a pair of focused
complex SAR images of the same ground area and acquired with the same or similar
imaging geometries, often referred to as single look complex (SLC) images. InSAR
extracts very useful information from the interferometric combination of the twoSAR



348 H. Liang et al.

images separated in space and time. The spatial separation between the two images
is termed the spatial baseline, while the temporal separation forms the temporal
baseline when the SAR images are acquired from repeat-pass orbits using the same
antenna.

After alignment and resampling of the two SAR images into the same geometry,
a complex interferogram is generated by coherent cross-multiplication of the two
SAR images,

v = y1 · y∗
2 = A1A2 · e(i∅1−∅2) (21.2)

where v represents the signal in a pixel of the interferogram. The phase component of
the signal ∅1 −∅2 gives the phase difference between the SAR images. For a single
SAR image, although the phase values appear quite random in space, the difference
between the two images offers very useful information (see Fig. 21.2). The phase
difference ∅1 − ∅2 can be decomposed into two components,

∅ = ∅1 − ∅2 = −4π

λ
(R1 − R2) + (

ψscat,1 − ψscat,2
)

(21.3)

where λ is the wavelength of the radar signal, R1 and R2 are the slant ranges from the
antenna positions to the ground target for two SARacquisitions, andψscat,1 andψscat,2

are related to the interactions between the radar signal and the ground scatterers.

Fig. 21.2 a Phase image of a TerraSAR SLC image acquired on July 22, 2011, over East Asian
Games Dome, Macau. b Phase image of a TerraSAR SLC image acquired on October 7, 2011, over
the same area. c Interferometric phase generated by differencing image a and b; the interferometric
phase values show some regular patterns which contain information about the ground surface
topography, deformation, etc. The units are in π . The phase values of a, b, and c are modulo 2π ,
ranging from −π to π
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Although the interactions are unpredictable in real cases, the scattering will remain
coherent if the spatial and temporal separations between the SAR acquisitions are
small. As a consequence, the phase difference is mainly dependent on the range
difference R1 – R2 as the interaction phase contributions mostly cancel out.

From a geometry perspective, the interferometric phase can also be defined as:

∅ = ∅flat + ∅topo + ∅defo + ∅atm + ∅orb + ∅noise (21.4)

where ∅flat is the flattening phase and is due to the slant range variation with the
elevation of the reference surface; ∅topo is the phase component resulted from the
topography; ∅defo is the phase caused by ground surface displacement; ∅atm is due
to the phase propagation delay when the radar signal travels through the atmosphere;
∅orb is related to the phase induced by inaccurate orbit data, and ∅noise is the phase
caused by the noise. Since the wavelength of the radar signal is normally in the cm
range (see Table 21.1), the phase contributions can be measured to an accuracy of
mm, i.e., a fraction of the wavelength.

In early applications, radar interferometry was primarily used to map land surface
topography, with a comparable accuracy (i.e., meter level) to photogrammetric
methods and capability of working under all weather conditions. It was then soon
demonstrated that repeat-pass interferometry couldmeasure relative surface displace-
ment, yielding a cm to mm accuracy. InSAR has been used extensively to retrieve
ground surface deformation that is related to natural or anthropogenic activities, such
as earthquakes (e.g., Fialko 2004), volcano eruption (e.g., Lu and Dzurisin 2014),
glacier change (e.g., Goldstein et al. 1993), landslides (e.g., Sun et al. 2015), and
land subsidence due to extraction of water or other resources (e.g., Qu et al. 2015).
We will briefly introduce below how to use SAR interferometry to produce a ground
surface deformation map.

The method of using two SAR images to perform interferometry for deformation
mapping is called differential InSAR (DInSAR) (Massonnet and Feigl 1998). Disre-
garding atmospheric propagation delay and satellite orbit errors, before obtaining a
deformation image, the flattening and topographic phase contributions need to be
removed from the interferogram,

∅flat = −4π

λ

B⊥s
R tan θ

∅topo = −4π

λ

B⊥h
R sin θ

(21.5)

where B⊥ is the perpendicular baseline; R is the slant range from the antenna to the
ground point; θ is the incidence angle of the radar signal; and s and h represents the
differences of slant range and elevationwith respect to a reference point, respectively.
These parameters can be obtained from a SAR system configuration. The operation
of removing the flattening phase is called interferogram flattening and the result
is a flattened interferogram (see Fig. 21.3b, c). The removal of the topographic
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Fig. 21.3 aAmplitude image of aPALSAR image acquired on July 3, 2008, overDangxiong,China.
b Original interferogram formed by differencing two PALSAR images acquired from July 3, 2008,
and February 18, 2009, respectively. The fringes with 2π phase-cycle reflect the contributions of the
reference surface, topography, deformation, etc. c Interferogram after flattening. d Interferogram
after flattening and removal of topographic phase. The resulting fringes mainly contain surface
deformation produced by the Mw 6.3 earthquake that occurred on October 6, 2008

phase can be achieved by deploying an external digital elevation model (DEM)
and the InSAR imaging geometry to simulate a synthetic interferogram and then
subtracting the phase contribution from the flattened interferogram (Massonnet and
Feigl 1998). Currently, there are several global DEMdatasets generated based on this
technique, including results from the Shuttle Radar Topographic Mission (SRTM;
Farr et al. 2007) and ALOS Global Digital Surface Model “ALOS World 3D-30m”
(AW3D30m; Tadono et al. 2016). Alternatively, the synthetic interferogram can be
directly formed from other SAR acquisitions of the same area with short temporal
separation and then can be scaled to the spatial baseline of the original interferogram.
The combination of the original interferogramwith a third or fourth SAR acquisition
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is called three-pass or four-pass InSAR (Zebker and Rosen 1994), as the approaches
use additional SAR images to produce the DEM interferogram that is assumed to
solely contain the topographic contribution.

Subtracting flattening and topographic phases from the original interferogram
results in a differential interferogram (see Fig. 21.3d). Since atmospheric propagation
delay and other systematic errors are neglected at this point, the resulting phase
observations can be regarded as the sum of two contributions: (1) the relative ground
displacement that occurs during the time interval between the SAR acquisitions,
and (2) phase noise due to ground scattering characteristics that are related to the
variation of spatial and temporal baselines. The phase noise propagates into the
derived displacement map and degrades the quality of the results. To mitigate the
noise effect, a low-passfilter canbe applied to improve the signal-to-noise ratio (SNR)
of the phase measurement, but at the cost of possible image resolution reduction
(Goldstein and Werner 1998).

The filtered interferogram contains information mainly on the ground motion.
However, it is impossible to directly convert the filtered differential interferogram
into a displacement map as the interferometric phase values are modulo 2π , ranging
from −π toπ . The wrapped phase values require adding the correct multiple of
2π to recover the absolute phase values. This procedure is referred to as phase
unwrapping. Many different phase unwrapping methods have been proposed, such
as the residue cut (Goldstein et al. 1988), least squares (Ghiglia and Romero 1994;
Pritt and Shipman 1994), and minimal cost flow methods (Costantini 1998). Each of
the methods has its own pros and cons and their performance depends on the noise
level, the characteristics of terrain, and other conditions. Once the interferometric
phases are unwrapped, the deformation map in the line-of-sight (LOS) direction can
be obtainedwith respect to a reference point. As a summary, theworkflowofDInSAR
in extracting terrain deformation is shown in Fig. 21.4.

Fig. 21.4 Workflow of DInSAR processing for extracting a deformation map
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21.3 Multi-temporal InSAR (MTInSAR)

The effectiveness of the DInSAR approach is limited by several factors including
errors in the external DEM that are used to remove the topographic phase, atmo-
spheric propagation delays, phase ramps induced by orbit errors, spatial and temporal
decorrelation, and phase unwrapping errors. The limitations have motivated the
development of the multi-temporal InSAR (MTInSAR) technique that attempts to
tackle the aforementioned problems by deploying a time series of SAR images
covering the same area and focusing on scatterers with strong phase stabilities (i.e.,
persistent scatterers or PS).

After about 20 years of development, three categories of MTInSAR techniques
are currently in existence. The first category of methods exploits single master
(SM) interferograms and the methods include, for example, persistent scatterers
InSAR (PSInSAR; e.g., Ferretti et al. 2001), the Stanford method for persistent
scatterers (StaMPS; e.g., Hooper et al. 2004, 2007), and the spatiotemporal unwrap-
ping network method (STUN; e.g., Kampes 2006; Kampes and Hanssen 2004). The
second category of methods attempts to extract deformation information from scat-
terers with moderate phase stabilities (i.e., distributed scatterer or DS), where an
interferogram stack is formed from multiple master (MM) interferograms. Exam-
ples include the small baseline subset (SBAS) technique (e.g., Berardino et al. 2002;
Lanari et al. 2004), coherent point target (CPT; e.g., Mora et al. 2003), and tempo-
rally coherent point InSAR (TCPInSAR; e.g., Zhang et al. 2011a, b, 2014; Liang
et al. 2019). In the third category, some newly developed techniques make use
of all possible interferometric combinations to enhance the phase quality of DS,
and then use the PS and the enhanced phase measurements of the DS to estimate
the deformation information under the SM interferogram framework. The methods
include SqueeSAR (e.g., Ferretti et al. 2011), component extraction and selection
SAR (CAESAR; e.g., Fornaro et al. 2015), phase-decomposition-based InSAR (PD-
PSInSAR; e.g., Cao et al. 2016), and joint-scatterer InSAR (JSInSAR; e.g., Lv et al.
2014).

The innovations of the MTInSAR techniques are three-fold. First, high-quality
coherent points form the foundation of MTInSAR. Methods for identifying such
points have been developed based on different criteria, including the amplitude
dispersion index (ADI; Ferretti et al. 2001), signal-to-clutter ratio (SCR; Adam et al.
2005), spatial phase stability (Hooper et al. 2004), coherence map (Jiang et al. 2015;
Mora et al. 2003), and pixel offsets (Zhang et al. 2011a, b). Second, the various
phase contributions need to be modeled according to the relationships between the
signals and the phase observations. The contributions can be separated either based on
InSAR observation itself (e.g., topographic error, orbital inaccuracy, height-related
tropospheric delays; e.g., Zhang et al. 2014; Liang et al. 2019) or external data (e.g.,
atmospheric delays Jolivet et al. 2014). Finally, ground surface displacement history
can be estimated from the function model. The estimation complexity depends on
the existence of the phase ambiguities. On the one hand, the phase observations after
the spatial unwrapping procedure can be easily solved by least squares. When it
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is challenging to carry out spatial phase unwrapping, temporal unwrapping can be
performed. Typical methods include periodogram method (Ferretti et al. 2001), 3D
phase unwrapping (Hooper et al. 2004), integer least squares (Kampes 2006), and
least squares with outlier detection (Zhang et al. 2011a, b).

21.4 Applications in Urban Areas

It can be seen from the above discussion that the main applications of InSAR are
in DEM generation and surface deformation mapping. It is often necessary to build
3D models of urban areas for purposes such as environmental modeling and urban
planning. Monitoring ground and infrastructure deformation can provide essential
information for bettermanagement of geohazards such as land subsidence, landslides,
and sinkholes, and for ensuring the safety of urban infrastructures such as buildings,
bridges, and road surfaces. We will discuss below applications of InSAR in DEM
generation, land subsidence measurement, and infrastructure monitoring.

21.4.1 Construction of Fine Resolution DEM

Mapping urban topography is essential for a variety of scientific and practical appli-
cations, such as modeling urban heat island effects, urban landscape design, and
urban planning. InSAR techniques can be used to generate DEM products of fine
resolution in metropolitan areas. Especially data from the TanDEM-X mission has
been used for generating accurate and detailed DEMs that cover the global area with
an effective resolution of 6 m (Zhu et al. 2018). Based on the tandem SAR satellites
TerraSAR-X and TanDEM-X, the mission performs single-pass SAR interferom-
etry based on advanced algorithms for phase filtering and unwrapping. The single-
pass bistatic interferogram has the advantage that the derived interferogram does
not suffer from temporal decorrelation and atmospheric artefacts (Rossi and Gern-
hardt 2013), at the cost of spatial resolution due to phase filtering. Alternatively, by
making use of repeat-pass acquisitions with full resolution, the MTInSAR technique
can produce accurate urban DEMs with even finer spatial resolution (Perissin and
Rocca 2006). Figure 21.5 presents the point cloud of a DEM product over Shen-
zhen, China. A total of 79 TerraSAR-X images spanning from May 2008 to May
2013 were used to generate the DEM product. The adopted methodology follows
the MTInSAR processing framework (Wu et al. 2018), which has the characteristics
of limiting atmospheric delays and mitigating decorrelation effects. It can be seen
from Fig. 21.5 that the high-rise buildings (i.e., those higher than 100 m) are clearly
identified with regular spatial patterns. Figure 21.6 presents more detail of the DEM
product, in which the point clouds match well with the 3D model of the buildings
in Google Earth, demonstrating the effectiveness of MTInSAR for mapping urban
topography.
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Fig. 21.5 Surface elevationmodel of part of Shenzhen from 79 TerraSAR-X images andMTInSAR
processing

The InSAR technique is similar to stereophotogrammetry in that both use a pair
of images to infer the target elevation. However, InSAR is also like the LiDAR
technique as they both use range measurements. Compared to other topographic
mapping techniques, the operation cost of InSAR is usually lower.

Theweakness of InSAR inmapping urban topography includes specular reflection
of signals, signal sidelobe, and geometric distortions of SAR images. Specular reflec-
tion of signals occurs when the ground surface is smooth, like a mirror. Little signal
is backscattered in this case, leading to weak signal returns and loss of phase infor-
mation. Sidelobe is caused by strong scatterers that contaminate the phase values of
neighboring pixels. The geometric distortions, due to the oblique viewing geometry
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Fig. 21.6 Geocoded heightmaps of buildings over Shenzhen. a ShenzhenConvention&Exhibition
Center, b Shenzhen Citizen Center. The maps are superimposed on a Google Earth image (© 2019
Google)

of SAR systems, have twomain issues in urban environments, that is, shadowing and
layover. Shadows occur when the radar signals are obscured by buildings or natural
terrain, while layover is the result of superposition of multiple scatterers when terrain
slope exceeds the radar incidence angle. With the development of advanced InSAR
technologies, the effect of geometric distortions can be mitigated to a certain extent.
SAR data from different viewing geometries (i.e., ascending and descending orbits)
can be used complementarily to reduce the areas affected by shadows. For the layover
problem, the elevation and deformation rate of the superimposed scatterers can be
separately estimated by extending InSARmeasurements into 4D (space–time) space.
This operation is called differential SAR tomography (TomoSAR; (e.g., Lombardini
2005; Zhu and Bamler 2010).

21.4.2 Subsidence Measurement

The MTInSAR technique has enabled extraction of urban-area deformation with
unprecedented spatial resolution. Due to the ample persistent scatterers in typical
urban environments (e.g., buildings and other man-made structures), the temporal
decorrelation effect is largelymitigated (Ferretti et al. 2001). The capability of InSAR
in monitoring urban-area deformation has been extensively demonstrated in recent
years.

Land subsidence caused by extracting groundwater is one of the emphases (Qu
et al. 2015). Many areas in the world suffer from water shortages, especially in areas
that are being rapidly urbanized. Figure 21.7 presents the area subsidence due to
overuse of groundwater in Beijing. A total of 12 TerraSAR-X images were used
to retrieve the subsidence field and its temporal evolution. The deformation results
show that the largest deformation rate reaches 1.3 cm/year and the accumulative
subsidence is 2.2 cm from 2010 to 2012. The InSAR derived deformation maps
provide useful information on the amount and location of groundwater extraction.
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Fig. 21.7 a Deformation rate map over Beijing from 12 TerraSAR-X images and MTInSAR
processing; b Deformation time series of ps1; c Deformation time series of ps2; d Deformation
time series of ps3

Due to a shortage of useable land, many coastal cities reclaim land from the
sea to support further urban development. A complex submarine geology can pose
challenges for controlling the stability of reclaimed land (Shi et al. 2018). Figure 21.8
presents the rapid subsidence within only nine days over a man-made island. The
InSAR technique has become a safe and efficient technique to extract terrain-motion
information for analyzing geological stability and managing construction progress.

Subsidence caused by underground construction can be conveniently monitored
by InSAR techniques (e.g., Serrano-Juan et al. 2017). Figure 21.9 shows the subsi-
dence areas along subway lines revealed by processing 50 TerraSAR-X images from
December 2013 to July 2016. Settlement due to the subway construction poses a
potential threat to the surrounding areas. InSAR measurements can be used as input
for analyzing the cause of subsidence.

Other land deformation such as that caused by sinkholes and landslides can also
be monitored with InSAR. The feasibility of InSAR techniques for such applications
depends on the rates of ground subsidence and surface features.
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Fig. 21.8 Deformationmap over aman-made island inMacau from threeCOSMO-SkyMed images
and DInS AR processing

21.4.3 Monitoring Stability of Infrastructures

Urban infrastructures such as buildings and bridges are essential in supporting the
daily lives of urban dwellers. It is important to check the stability of the infrastructures
as any structural failure can lead to hazardous consequences. In-situ sensors such as
accelerometers and traditional survey methods provide useful information on struc-
tural stabilities. It is however expensive tomeasure a large number of urban structures
with these methods. InSAR, in particular MTInSAR, can be used to monitor both
ground and structural deformation over a large area. It is therefore very efficient and
provides very useful complementary information to the existing techniques (Ma and
Lin 2016).
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Fig. 21.9 a Deformation rate map along a metro line in Shenzhen from 50 TerraSAR-X images
and MTInSAR processing; b Deformation time series of Point-A; c Deformation time series of
Point-B; d Deformation time series of Point-C

In general, structural displacement observed with InSAR contains both thermal
dilation and long-term deformation. Thermal dilation is caused by temperature vari-
ation of the measured structures (Crosetto et al. 2015; Qin et al. 2018). Figure 21.10
presents an example of the relationship between structural deformation and temper-
ature for a high-rise building in Hong Kong. The thermal dilation coefficient of a
structure depends on its materials.

Figure 21.11 shows twomean deformation velocitymaps of road viaducts inHong
Kong, obtained by processing 29 TerraSAR-X images from 2013 to 2014. It can be
seen that the deformation rates varied along the longitudinal direction of the roads.
Figure 21.12 presents the deformation rate map of Stonecutter Bridge in Hong Kong
after removing thermal expansion effects. The deformation rate map shows some
clear deforming areas on the bridge deck.

Processing multiple SAR images from a single orbit provides information on the
deformation along the line-of-sight only (Gernhardt and Bamler 2012; Schunert and
Soergel 2012). By fusing multiple tracks of SAR data, infrastructures can be better
observed and different deformation components, for example, the vertical and the
horizontal components, can be resolved (e.g., Hu et al. 2014).
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Fig. 21.10 aGeocoded deformation rate map of part of Kowloon Peninsula of Hong Kong from 80
COSMO-SkyMed images and MTInSAR processing. The map is superimposed on a Google Earth
image (© 2019 Google). b Deformation time series and temperature variations of Point-A

Fig. 21.11 Examples of road viaduct deformation in Hong Kong from 29 TerraSAR-X images and
MTInSAR processing. a Tsing Kwai highway, b Tsing Sha highway
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Fig. 21.12 Deformation rate map of Stonecutters Bridge in Hong Kong from 51 TerraSAR-X
images and MTInSAR processing. The map was derived after removing the thermal dilation effect

21.5 Summary

We have reviewed the basic concepts of SAR, InSAR, and MTInSAR and their
applications in urban environments. InSAR has benefited from the recent advances
in spatial resolution and orbit control of spaceborne radar sensors and has become
a vital technology in generating DEMs and in monitoring deformation phenomena
related to, for example, ground subsidence and instability of infrastructures. InSAR
techniques offer several advantages in such applications. For example, they can be
applied in all weather conditions. This ability is especially useful in cloudy regions.
Spaceborne InSAR technology can easily cover a large ground area with spatial
and temporal resolutions hardly matched by any other technologies. InSAR however
still has some shortcomings in these and other related applications. Further, research
is still necessary to advance technology in terms of developing new SAR sensors,
systems, and data processing algorithms. For example, geostationary satellite SAR
constellations and P-band SAR sensor systems are currently being investigated. It can
be expected that the capability of InSAR technology will be significantly enhanced
in the near future.
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Chapter 22
Airborne LiDAR for Detection
and Characterization of Urban Objects
and Traffic Dynamics

Wei Yao and Jianwei Wu

Abstract In this chapter, we present an advancedmachine learning strategy to detect
objects and characterize traffic dynamics in complex urban areas by airborne LiDAR.
Both static and dynamical properties of large-scale urban areas can be characterized
in a highly automatic way. First, LiDAR point clouds are colorized by co-registration
with images if available. After that, all data points are grid-fitted into the raster format
in order to facilitate acquiring spatial context information per-pixel or per-point.
Then, various spatial-statistical and spectral features can be extracted using a cuboid
volumetric neighborhood. The most important features highlighted by the feature-
relevance assessment, such as LiDAR intensity, NDVI, and planarity or covariance-
based features, are selected to span the feature space for the AdaBoost classifier.
Classification results as labeled points or pixels are acquired based on pre-selected
training data for the objects of building, tree, vehicle, and natural ground. Based
on the urban classification results, traffic-related vehicle motion can further be indi-
cated and determined by analyzing and inverting the motion artifact model pertinent
to airborne LiDAR. The performance of the developed strategy towards detecting
various urban objects is extensively evaluated using both public ISPRS benchmarks
and peculiar experimental datasets, which were acquired across European and Cana-
dian downtown areas. Both semantic and geometric criteria are used to assess the
experimental results at both per-pixel and per-object levels. In the datasets of typical
city areas requiring co-registration of imagery and LiDAR point clouds a priori, the
AdaBoost classifier achieves a detection accuracy of up to 90% for buildings, up to
72% for trees, and up to 80% for natural ground, while a low and robust false-positive
rate is observed for all the test sites regardless of object class to be evaluated. Both
theoretical and simulated studies for performance analysis show that the velocity
estimation of fast-moving vehicles is promising and accurate, whereas slow-moving
ones are hard to distinguish and yet estimated with acceptable velocity accuracy.
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Moreover, the point density of ALS data tends to be related to system performance.
The velocity can be estimated with high accuracy for nearly all possible observa-
tion geometries except for those vehicles moving in or (quasi-)along the track. By
comparative performance analysis of the test sites, the performance and consistent
reliability of the developed strategy for the detection and characterization of urban
objects and traffic dynamics from airborne LiDAR data based on selected features
was validated and achieved.

22.1 Introduction

Urban scene classification and object detection are important topics in the field of
remote sensing. Recently, point cloud data generated by LiDAR sensors and multi-
spectral aerial imagery have become two important data sources for urban scene
analysis. While multispectral aerial imagery with fine resolution provides detailed
spectral texture information about the surface, point cloud data is more capable of
presenting the geometrical characteristics of objects.

LiDAR has become a common active surveying method to directly realize the
digital 3D representation of targets through a laser ranging, positioning, and orien-
tation system (POS). Based on different platforms, LiDAR technology can cover
terrestrial, mobile, airborne, and spaceborne applications. This chapter focuses on
airborne applications. Airborne LiDAR (ALS) has attracted plenty of research atten-
tion formore than twodecades. TheALS technique has beenwidely applied in diverse
fields such as forest mapping (Næsset and Gobakken 2008; Reitberger et al. 2008;
Zhao et al. 2018), coast monitoring (Earlie et al. 2015; Bazzichetto et al. 2016), smart
urban applications (Garnett and Adams 2018) and so on. As it can directly derive
accurate and highly detailed 3D surface information, and because more than one half
of the population resides in urban areas, ALS was able to achieve significant applica-
tions in urban areas such as urban modeling (Zhou and Neumann 2008; Lafarge and
Mallet 2012; Chen et al. 2019), land cover and land use classification (Azadbakht
et al. 2018; Balado et al. 2018; Wang et al. 2019), environment monitoring and tree
mapping (Liu et al. 2017; Degerickx et al. 2018; Lafortezza and Giannico 2019),
urban population estimation (Tomás et al. 2016), energy conservation (Jochem et al.
2009; Dawood et al. 2017) and so on. Urban modeling with ALS data includes the
3D reconstruction of buildings (Bonczak and Kontokosta 2019; Li et al. 2019), roads
(Chen and Lo 2009), bridges (Cheng et al. 2014), powerlines (Wang et al. 2017)
and so on. Very recently, ALS data are also helpful to improve accuracy for urban
mapping and land cover classification. Degerickx et al. (2019) applied ALS data
as an additional data source to enhance the performance of multiple endmember
spectral mixture analysis for urban land-cover classification using hyperspectral and
multispectral images, and found that implementing height distribution information
from ALS data as a basis for additional fraction constraints at the pixel level could
significantly reduce spectral confusion between spectrally similar, but structurally
different land-cover classes. Accurate and highly detailed height information from
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ALS data is also used to enhance urban mapping accuracy based on the 3D rational
polynomial coefficient model (Rizeei and Pradhan 2019).

Besides the above-mentioned applications, ALS can also be used to detect and
monitor dynamic objects. Compared to traditional optical imagery, airborne LiDAR
data are characterizedby involvingnot only rich spatial but also temporal information.
It is theoretically possible to extract vehicles from single-pass airborne LiDAR data,
to identify the vehicle motion, and to derive the vehicle’s velocity and direction
based on the motion artifacts effect. Thus, besides common applications of airborne
LiDAR, it should also be regarded as a demonstrator for traffic monitoring from the
air.

Urban scene analysis can be categorized by different object types, different data
sources, and also algorithms. During the past decades, more work referring to urban
scene analysis has concentrated on the classification or detection of specified objects.
Much marvelous research (Clode et al. 2007; Fauvel 2007; Sohn and Dowman 2007;
Yao and Stilla 2010; Guo et al. 2011; Xiao et al. 2012) has been done in extracting
objects like buildings and roads, while trees and vehicles are also interesting objects
for intelligent monitoring of natural resources and traffic in urban areas (Höfle and
Hollaus 2010; Yao et al. 2011). However, detection and modeling of diverse urban
objects may involve more complicated situations due to the various characteristics
and appearances of the objects. As ALS data became widely available for the task
of creating 3D city models, there was an increasing amount of research on devel-
oping automatic approaches to object detection from images and LiDAR data, which
showed the great potential of 3D target modeling and surface characterization in
urban areas (Schenk and Csatho 2007; Mastin et al. 2009). In this chapter, we focus
on analyzing airborne LiDAR data by the adaptive boosting (AdaBoost) classifica-
tion technique for urban object detection based on selected spatial and radiometric
features. In this chapter, we will develop and validate a robust classification strategy
for urban object detection through fusing LiDAR point clouds and imagery.

Asmentioned above,ALSdata have become an important source for object extrac-
tion and reconstruction for various applications such as urban and vegetation analysis.
However, traffic monitoring remains one of the few fields which are still not inten-
sively analyzed in the LiDAR community. There are several motivations driving us
to perform traffic analysis using airborne LiDAR in urban areas:

• The penetration ability of laser rays towards volume-scattering objects (e.g., trees)
can improve vehicle detection;

• The motion artifacts generated by the linear scanning mechanism of airborne
LiDAR can determine object motion;

• The explicit extraction of vehicles can refine the results of operations such asDTM
filtering and road detection where vehicles are regarded as stubborn disturbances.

The task of detecting moving vehicles with ALS has been addressed in several
scientific publications. The research most relevant to our work came from Toth
and Grejner-Brzezinska (2006). In this chapter, an airborne laser scanner coupled
with a digital frame camera was adopted to analyze transportation corridors and
acquire traffic flow information. However, the testing of this system was limited to a
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motorway; the same problem needs to be investigated in more challenging regions
using the system equipped solely with LiDAR. In the contribution from Yao et al.
(2010a), a context-guided approach based on gridded ALS data was used to delin-
eate single instances of vehicle objects and results demonstrated the feasibility of
extracting vehicles for motion analysis. A vehicle extraction method was presented,
running directly on LiDAR point clouds that integrate height, edge, and point shape
information in a segmentation step to improve the vehicle extraction through object-
based classification (Yao et al. 2011). Based on the extracted vehicles, Yao et al.
(2010b) proposed a complete procedure to distinguish vehicle motion states and to
estimate the velocity ofmoving vehicles by parameterizing, classifying, and inverting
shape deformation features. In contrast to applications monitoring military traffic,
civilian applications includemore constraints regarding the objects to be detected.We
can assume that vehicles are bound to roads on a known road network, which might
not be true in military applications. Such knowledge provides a priori information
for motion estimation.

This chapter concerns the detection of selected urban objects and the characteriza-
tion of traffic dynamics with ALS data. In Sect. 22.2, a robust and efficient supervised
learning method for detecting urban objects is proposed, and the analysis of urban
traffic dynamics is performed in Sect. 22.3. Section 22.4 presents the experiment and
results of detecting urban objects and their dynamics. Finally, conclusions are drawn
in Sect. 22.5.

22.2 Detection of Urban Objects with ALS
and Co-registered Imagery

22.2.1 General Strategy

Theworkflowof the entire strategy for detecting three urban object classes (buildings,
trees, and natural ground) with ALS data and co-registered images is depicted in
Fig. 22.1.

22.2.2 Feature Derivation

In this chapter, we combine point clouds and image data, while multispectral and
LiDAR intensity information is also available. In total 13 features are defined (Wei
et al. 2012).
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Fig. 22.1 Overview of the entire strategy

22.2.2.1 Basic Features

The so-called basic features contain the features that can be directly retrieved from
the point cloud and image data, respectively:

• R,G,B: The three color channels of the digital image. As two data sets are used for
experiments and one of them (named data set Vaihingen) provides color-infrared
images, features R, G, B stand for infrared, red, and green spectra, But in the other
data set (Toronto), the features R, G, and B are normal bands of Red, Green, and
Blue. To avoid confusion, we always use the symbols R, G, B to indicate the three
color channels of the image in order.

• NDVI: Normalized Difference Vegetation Index, defined as:

NDVI = (NIR − VIS)

(NIR + VIS)
(22.1)
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NDVI can assess whether the target being observed contains green vegetation or
not. This feature is specified for data set Vaihingen because it provides color-
infrared imagery.

• Z: The vertical coordinate of each point in the LiDAR data, as the topography of
datasets used here, is assumed to be flat.

• I: Pulse intensity, which is provided by the LiDAR system for each point.

22.2.2.2 Spatial Context Features

Based on the basic features, we intend to extract more features. Therefore, a 3D
cuboid neighborhood is defined with the help of a 2D square with radius of 1.25 m in
horizontal dimension as shown in Fig. 22.2. All points located within the cell volume
will be counted as the neighbors; the value 1.25 m is chosen empirically.

• �Z: Height difference between the highest and lowest points within the cuboid
neighborhood.

• σ Z : standard deviation of height of points within the cuboid neighborhood.
• �I: Intensity difference between points having the highest and lowest intensities

within the cuboid neighborhood.
• σ I : Standard deviation of intensity of points within the cuboid neighborhood.
• E: Entropy, here being different from the normal entropy of images, we

measure the entropy using LiDAR intensities Ik of the points within the cuboid
neighborhood by Eq. 22.2 with K being the number of neighbors:

Fig. 22.2 The 3D cuboid
neighborhood used to
acquire spatial context
features
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E =
K∑

k=1

[
(−Ik) · logIk2

]
(22.2)

The following two features O and P are based on the three eigenvalues of the
covariancematrix from the xyz coordinates of pointswithin the cuboid neighborhood.
The three eigenvalues λ1, λ2, and λ3 are arranged in descending order, and they can
present the local tridimensional structure. This allows us to distinguish between a
linear, a planar, or a volumetric distribution of the points.

• O: Omnivariance, which indicates the distribution of points in the cuboid
neighborhood. It is defined as:

O = 3

√√√√
3∏

i=1

λi (22.3)

• P: Planarity, defined as:

P = (λ2 − λ3)/λ1 (22.4)

P has high value for roofs and ground, but low values for vegetation.

22.2.3 AdaBoost Classification

AdaBoost is an abbreviation for adaptive boosting (Freund andSchapire 1999),which
is an improved version of boosting.AdaBoost is an attractive and powerful supervised
learning algorithm of machine learning and it has been successfully applied in both
classification and regression cases. For classification cases, AdaBoost is adapted to
take full advantage of theweak learners and solves the problemof combining a bundle
of weak classifiers to create a strong classifier which is arbitrarily well correlated
with the true classification. It consists of iteratively learning weak classifiers with
respect to a distribution and adding them to a final strong classifier. Once a weak
learner is added, the data are reweighted according to the weak classifier’s accuracy;
misclassified samples gainweight and correctly classified samples reduceweight. No
other requirement is essential for the weak learners used in the AdaBoost except that
their classification accuracy is better than the random classification, which means
that the weak learners only need to achieve a classification accuracy better than 50%.
In this chapter, we use an open-source AdaBoost toolbox with one tree weak learner
CART (classification and regression tree), more details of which can be found in the
reference (Freund and Schapire 1999).

Like other supervised learning algorithms, AdaBoost contains two phases as well:
training and prediction. In the training phase, it repeatedly trains T weak classi-
fiers through T rounds. In this chapter we implemented the multiclass classification
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task through iterating corresponding binary classifiers, as shown in the following
pseudocode for the binary classification:

I nput-Training Data with m samples: (xi , yi ), yi ∈ Y = {−1, +1}, i ∈ [1,m];
I ni tiali ze:Wi

1 = 1

m
, hi1 = 0;

f or t = 1:T

train the t th weak classi f ier ht with weight vector of sample distribution Wt ;

choose εt =
m∑

i

W i
t ∗ I

(
hit (xi ) �= yi

)
;

αt = ln

(
1 − εt

εt

)
/2;

Zt =
m∑

i=1

Wi
t e

(−αt ht (xi )yi );

Wi
t+1 = Wi

t ∗ e(−αt ht (xi )yi )/Zt ; f or i = 1:m

end

end

The T weak classifiers are combined and output-weighted as follows:

H(x) = sgn

(
T∑

t=1

αtht

)
(22.5)

where the sgn function is defined as:

sgn(x) =
⎧
⎨

⎩

−1, x < 0
0, x = 0
1, x > 0

(22.6)

In the above, pseudocode (xi , yi ) represents the i th training sample with xi
standing for its feature vector and yi for its class type; m represents the amount
of training data; Wi

t is a weight for the i th training sample being selected to train
the t th classifier ht and Wt is a vector of Wi

t ; εt is the weighted prediction error
of ht ; αt is the weight coefficient for updating the sample distribution; the value
of I

(
hit (xi ) �= yi

)
is 1 if hit (xi ) �= yi , else it equals 0; Zt is a normalization factor.

At beginning, each sample is assigned an equal weight equal to Wi
1 = 1/m, which

means that each training sample is selected with the same probability to train h1.
In the t th training round, the AdaBoost algorithm updates Wi

t+1 as follows: training
samples correctly identified by classifier ht are weighted less while those incor-
rectly identified are weighted more. Then when training ht+1, the algorithm tends
to select samples wrongly classified by previous classifiers with higher probability.
After T rounds of training, T-weak classifiers are trained and finally combined into a
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weighted classifier H(x) as the training phase’s output, which has better prediction
performance.

The prediction phase uses the combined classifier for classification. Compared
to boosting, AdaBoost two advantages for learning a more accurate classifier. First,
for each weak classifier’s training, boosting randomly chooses training samples,
while AdaBoost chooses samples misclassified in the previous training rounds with
greater probability. Thus, AdaBoost can better train the classifier. Second, AdaBoost
determines each sample’s classification label through weighting each classifier’s
output, which makes an accurate classifier contribute more to the final classification
result.

22.3 Detection of Urban Traffic Dynamics with ALS Data

In this section, we give a brief review of deriving the theory for detecting object
dynamics in ALS. We refer to the dimension perpendicular to the sensor heading
synonymously as across-track. The dimension along the sensor path will be denoted
by a along-track.

22.3.1 Artifacts Effect of Vehicle Motion in ALS Data

In order to assess the feasibility of extracting information on traffic dynamics from
airborne LiDAR sensors installed on the airborne platform, the main characteris-
tics of the sensor, including the data formation method, should be considered first.
In most airborne LiDAR scanning processes, exclusive of flash LiDAR which are
predominantly based on mechanical scanning, a rotating laser pointer rapidly scans
the Earth’s surface with continuous scan angles during flight. While the sensor is
moving it transmits laser pulses at constant intervals given by the pulse repetition
frequency (PRF) and receives the echoes. With respect to moving objects, the funda-
mental difference between scanning and the frame camera model is the presence of
motion artifacts in the scanner data. Due to short sampling time (camera exposure),
the imagery preserves the shape of moving objects; if the relative speed between
the sensor and the object is significant then increased motion blurring may occur. In
contrast, scanning will always produce motion artifacts, since the distance between
sensor and target is usually calculated based on the stationary-world assumption;
fast-moving objects violate this assumption and therefore image the target incor-
rectly depending on the relative motion between the sensor and the object. The
dependency can be seen by adding the temporal component into the range equation
of the LiDAR sensor. Here, it is assumed that the sampling rate is consistent among
all the vehicles independent of the scan angle. That is to say that all the vehicles are
scanned with enough points to represent their shape artifacts.
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Fig. 22.3 Moving objects undergo the scanning of airborne LiDAR. Copyright © 2010 IEEE,
reproduced by permission

In Fig. 22.3a the geometry of data acquisition is shown. The sensor is flying at a
certain altitude along the dotted arrow. An example of shape artifacts generated by
moving objects is also depicted in Fig. 22.3b, where the black dotted box indicates the
vehicle shape obtained in the scanning process of airborne LiDARwhile the original
vehicle is depicted as a rectangle nearby. It can be perceived that the moving vehicle
is imaged as a stretched parallelogram. Let θv be the intersection angle between the
moving directions of sensor and vehicle where θv ∈ [0◦, 360◦], vL and v the velocity
of aircraft and vehicle respectively, ls and lv the sensed and original lengths of the
vehicle, respectively; and θSA the shearing angle that accounts for the deformation
of the vehicle as a parallelogram. The analytic relations between shape artifacts and
object-movement parameters can be derived as:

ls = lv · vL
vL − v · cos(θv) = lv

1 − v
vL

· cos(θv) (22.7)

θSA = arctan

(
v · sin(θv)

vl − v · cos(θv)
)

+ 90◦ (22.8)

where θSA ∈ (0◦ 180◦) and is found as the left-bottom angle of the observed vehicle.
For the sake of full understanding of the appearance of moving objects in the

airborne LiDAR data, object motions are to be divided into the following different
components and investigated for their respective influences on the data artifacts
generated.

First, the target is assumed to move with constant velocity va following the along-
track direction, which leads to the stretching effect of the object shape depending on
the relative velocity between target and sensor as illustrated in Fig. 22.4.
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Fig. 22.4 Along-track object motion. Copyright © 2010 IEEE, reproduced by permission

The analytic relation between the object velocity in along-track direction va and
the observed stretched length ls thus can be summarized in Eq. 22.9. The relation
in Eq. 22.9 is further modified to Eq. 22.10 which explicitly connects va with the
variation in the aspect ratio of vehicle shape in a mathematical way, thereby making
motion detection and velocity estimation more feasible and reliable:

ls = lv
1 − va

vL

(22.9)

Ars = ls
wv

= Ar

1 − va
vL

(22.10)

where Ars is the sensed aspect ratio of the vehicle in ALS data while Ar is the
original aspect ratio of the vehicle and wv is the width of the vehicle.

Secondly, the target is assumed to move in the across-track direction with a
constant velocity vc. This results in a scanline-wise linear shift of laser footprints that
hit upon the target in the direction of movement when the sensor is sweeping over
so that the observed vehicle shape in ALS data is deformed (sheared) to a certain
extent as illustrated in Fig. 22.5.

Let vc be the across-track motion component of the object velocity. Since vc =
v · sin(θv), Eq. 22.8 can be rewritten as Eq. 22.11 for describing the analytic relation
between the object velocity vc and the observed shearing angle θSA through the sensor
velocity vL and the intersection angle θv:

θSA = arctan
(

1
vL /vc−cot(θv)

)
+ 90◦ where θv �= 0◦/180◦ ∧ vc �= 0

θSA = 90◦ where θv = 0/180◦ ∨ vc = 0
(22.11)
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Fig. 22.5 Across-track object motion. Copyright © 2010 IEEE, reproduced by permission

22.3.2 Detection of Moving Vehicles

All of the effects of moving objects described above can be exploited to not only
detect vehicles’ movement but also measure their velocity. Our scheme for vehicle
motion detection relies on a strategy consisting of two basic modules successively
executed: (1) vehicle extraction; and (2) determination of the motion state.

For vehicle extraction, we used a hybrid strategy (Fig. 22.6) that integrates a
3D segmentation-based classification method with a context-guided approach. For
a detailed analysis of vehicle detection, we refer the readers to Yao et al. (2010a,
2011).

To determine the motion state, a support vector machine (SVM) classification-
based method is adopted. A set of vehicle points can be geometrically described as
a spoke model with control parameters, whose configuration can be formulated as

Raw LiDAR data

Context-guided extraction 3-D segmentation based 
classification

Extracted vehicle points

Elevated road Potential vehicle points

Fig. 22.6 Workflow for vehicle extraction
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X =

⎛

⎜⎜⎝

U1

·
·
Uk

⎞

⎟⎟⎠,Ui =
(

θ i
SA

Ari

)
(22.12)

where k denotes the number of spokes in the model. It can be seen that the vehicle
shape variability can be represented as a two-dimensional feature space (if the number
of spokes k = 1). Thus, the similarity between vehicle instances of different motion
states needs to be measured by a nonlinear metric. The SVM has advantages in
nonlinear recognition problems and finds an optimal linear hyperplane in a higher
dimensional feature space that is nonlinear in the original input space. The trick of
using a kernel avoids direct evaluation in the feature space of higher dimension by
computing it through the kernel function with feature vectors in the input space.
The SVM classifier can be used here again to perform binary classification on those
vehicles which still remain after excluding the ones of uncertain state obtained by
the shape parameterization step. In addition, the classification framework for distin-
guishing 3D shape categories (Fletcher et al. 2003) can be adapted to the motion
classification schema based on exploiting the vehicle shape features.

22.3.3 Concept for Vehicle Velocity Estimation with ALS Data

The estimation of the velocity of detected moving vehicles can be done based on
all motion artifacts effects in a single pass of ALS data by inverting the motion
artifacts model to relate the velocity with other observed and known parameters.
Thus, different measurements and derivations might be used to estimate the velocity.
The estimation scheme can be initially divided into two main categories, depending
on whether the moving direction of vehicles is known or not:

First, given the intersection anglewhich can be further separated into the following
three situations using respective observations to estimate the velocity:

(a) The measure for shearing angle of the detected moving vehicles from their
original orthogonal shape of rectangles;

(b) The measure for the stretching effect of detected moving vehicles from their
original size; and

(c) The combination of the along-track and across-track velocity componentswhich
are estimated based on the above-mentioned effects, respectively.

Second, if the intersection angle is not given:

(a) The solution to a system of bivariate equations constructed by uniting the two
formulas.

The three methods in the first category assume that the moving directions of vehicles
are given beforehand, whereas the last one from the second category does not. To
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estimate the velocity, the first three methods either utilize the shape stretching or
shearing effect or combine them together when applicable. For the last case, the
moving direction of vehicles can be estimated along with the velocity by uniting
the variable of velocity with the variable of the intersection angle to build a system
of bivariate equations and solving it, thereby giving the motion estimation great
flexibility to deal with many arduous cases encountered in real-life scenarios. That
means that not only the quantity but also the direction of vehicles’ motion can be
derived. All possible approaches have their advantages and disadvantages and differ
in the accuracy of their results,which are to be analyzed and evaluated in the following
subsections, respectively.

22.3.3.1 Velocity Estimation Based on the Across-Track Deformation
Effect

The shearing angle ofmoving vehicles caused by the across-track deformation allows
for direct access to the velocity only if the moving direction is known a priori and
input as an observation. Still, information about the orientation of the road axis
relative to the vehicle motion is needed to derive the real velocity of vehicles. The
velocity estimate v of the vehicle based on the shearing effect of its shape is derived
by inverting Eq. 22.8 as

v = vL · tan(θSA − 90◦)
cos θv · tan(θSA − 90◦) + sin(θv)

(22.13)

The value of the intersection angle θv can be determined based on principal axis
measurements of vehicle points as the flight direction of the airborne LiDAR sensor
can always be assumed to be known thanks to sustained navigation systems. Given
Eq. 22.13 which shows that the accuracy of the velocity estimate based on the across-
track deformation effect σ c

v is a function of the quality of the moving vehicle’s
heading angle relative to the sensor flight path θv and the accuracy of the shearing
angle measurement θSA, the standard deviation of the velocity estimate is calculated
using the error propagation law (Wolf and Ghilani 1997) and derived as

σ c
v =

√(
∂v

∂θv

)2

σ 2
θv

+
(

∂v

∂θSA

)
σ 2

θSA

=

√√√√√√

(
vL ·tan(θSA−90◦)·(cos(θv)−tan(θSA−90◦)·sin(θv))

(sin(θv)+tan(θSA−90◦)·cos(θv))2
)2

σ 2
θv

+
(

2vL ·sin(θv)(tan(90◦−θSA)2+1)
cos(2θv)·tan(90◦−θSA)2−2 sin(2θv)·tan(90◦−θSA)−cos(2θv)+tan(90◦−θSA)2+1

)2
σ 2

θSA

(22.14)

with vL being the instantaneous flying velocity of the sensor system.
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22.3.3.2 Velocity Estimation Based on Along-Track Stretching Effect

Besides the above mentioned approach, the velocity of a moving vehicle can be
derived by measuring its along-track stretching effect from its original vehicle size.
The functional relation is given by:

v = (1 − Ar/Ars) · vL
cos(θv)

(22.15)

where Ars = ls/wv is the sensed aspect ratio of the moving vehicle, while Ar is
the original aspect ratio and assumed to be constant. The accuracy of the velocity
estimate based on the along-track stretching effect σ a

v is a function of the quality of
the aspect ratio measurement for detected moving vehicles and the accuracy of the
vehicle’s heading relative to the sensor flight path. σ a

v can be calculated by the error
propagation law as follows:

σ a
v =

√(
∂v

∂θv

)2

σ 2
θv

+
(

∂v

∂Ars

)2

σ 2
Ars

=
√(

−vL · sin(θv) · (Ar/Ars − 1)

cos(θv)
2

)2

σ 2
θv

+
(

Ar · vL
Ar2s · cos(θv)

)
σ 2
Ars (22.16)

22.3.3.3 Velocity Estimation Based on Combining Two Velocity
Components

Both estimation methods presented above might fail to give a reliable velocity esti-
mate if vehicles are moving in such a direction that generated deformation effects for
the vehicle shape are not dominated by either one of what the two moving compo-
nents account for (e.g., amoving vehiclewith intersection angle θv = 35° and velocity
v = 40 km/h). To fill this gap and enable a velocity estimate in an arbitrary traffic
environment, it is proposed to use both shape deformation effects for estimating
velocities. The functional dependence of the velocity estimate can be given by the
sum of squares of the two motion components, which are derived based on two the
shape deformation parameters Ars and θSA, respectively:

v =
√

(va)
2 + (vc)

2 (22.17)

where

⎧
⎨

⎩
va = vL ·

(
1 − Ar

Ars

)

vc = vL
cot(θSA−90◦)+cot(θv)

(22.18)
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and where va and vc are along and across-track motion components. The accuracy of
the velocity estimate based on combining the two components σ a+c

v is a function of
the quality of the along-track and across-track motion measurements for the detected
moving vehicle and σ a+c

v can be first calculated with respect to these two motion
components by the error propagation law as:

σ a+c
v =

√(
∂v

∂va

)2

∂2va +
(

∂v

∂vc

)2

∂2vc

=
√

v2a
v2a + v2c

σ 2
va + v2c

v2a + v2c
σ 2
vc (22.19)

where σva and σvc are the standard deviations of along- and across-track motion
derivations, respectively. They can be further decomposed into the accuracy with
respect to the three observations concerning the vehicle shape andmotion parameters
based on Eq. 22.18. Using the error propagation law, σva and σvc are inferred as:

σva = ∂va
∂Ars

σArs = Ar · vL
Ar2s

σArs (22.20)

σvc =
√(

∂vc
∂θv

)2
σ2
θv

+
(

∂v

∂θSA

)
σ2
θSA

=

√√√√√√√√

⎛

⎜⎝
vL ·

(
cot(θv)2 + 1

)

(
cot

(
90◦ − θSA

)
− cot(θv)

)2

⎞

⎟⎠

2

σ2
θv

+

⎛

⎜⎜⎝

vL ·
(
cot

(
90◦ − θSA

)2 + 1

)

(
cot

(
90◦ − θSA

)
− cot(θv)

)2

⎞

⎟⎟⎠

2

σ2
θSA

(22.21)

Finally, after substituting Eqs. 22.20 and 22.21 into Eq. 22.19, the error prop-
agation relation for the velocity estimate is based on combining the two velocity
components with respect to the three variables Ars, θSA, and θv is derived.

22.3.3.4 Joint Estimation of Vehicle Velocity and Direction by Solving
Simultaneous Equations

So far, all of the estimation methods are not able to give velocity estimates if they
are moving in an unknown direction or their moving detections cannot be accurately
determined in advance. To solve this problem, we propose to jointly consider veloc-
ities and the intersection angle θv as unknown parameters simultaneously, with the
variables describing the deformation effects caused by the motion components as
observations. Actually, two analytic formulas for the motion artifacts model can be
directly viewed as an equation system to which the velocity and the intersection
angle are formulated as a set of solutions. This system of bivariate equations relating
unknown parameters to observations is given by:
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{
θSA − 90

◦ = arctan
(

v·sin(θv)
vL−v·cos(θv)

)

1 − v
vL

· cos(θv) = Ar
Ars

(22.22)

The system is to be solved using the substitution method. First, transform the
second sub-equation of Eq. 22.22 into

v = vL
cos(θv)

·
(
1 − Ar

Ars

)
(22.23)

and substitute it into the first sub-equation of Eq. 22.22, which has been converted
into a more solution-friendly expression in advance:

tan(θSA − 90◦) · vL = v · (tan(θSA − 90◦) · cos(θv) + sin(θv)) (22.24)

After substitution, the expression of Eq. 22.24 can be rewritten as:

tan(θSA − 90◦) · vL = vL

(
1 − Ar

Ars

)
· tan(θSA − 90◦)

+ tan(θv) · vL ·
(
1 − Ar

Ars

)
(22.25)

Further, we transform to facilitate the solution and get:

tan(θv) =
tan

(
θSA − 90

◦) ·
[(

1 −
(
1 − Ar

Ars

))]

1 − Ar
Ars

= tan
(
θSA − 90

◦)
(

Ars
Ars − Ar

− 1

)

⇒ θv = arctan

[
tan

(
θSA − 90

◦) ·
(

Ars
Ars − Ar

− 1

)]
(22.26)

Finally, substitute the second sub-equation in Eq. 22.26 into Eq. 22.23 again and
the velocity estimate of the moving vehicle v can be derived as follows:

v = vL ·
(
1 − Ar

Ars

)
· sec

{
arctan

[
tan(θSA − 90◦) ·

(
Ars

Ars − Ar
− 1

)]}
(22.27)

It can be seen that the velocity of a moving vehicle can be directly estimated
based on the shape deformation parameters without the need to know the intersection
angle θv a priori. θv can be estimated as an intermediate variable solely based on two
shape deformation parameters Ars, and θSA and is independent of the sensor flight
velocity vL. For accuracy analysis, two accuracy measures can be estimated, namely
the moving direction and the velocity. The accuracies of the intersection angle σθv

and the velocity estimate σv can be derived as functions of the quality of the along-
track stretching and across-track shearing measures. Equivalently, σθv and σv can be
calculated with respect to the two deformation parameters by the error propagation
law as:
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σθv =
√(

δθv

δArs

)2

σ 2
Ars

+
(

δθv

δArθSA

)
σ 2

θSA

=

√√√√√

(
Ar ·tan(90◦−θSA)

Ar2·tan(90◦−θSA)2 · (Ar−Ars )
2

)2
σ 2
Ars

+ Ar ·(tan(90◦−θSA)2+1)+(Ar−Ars )

Ar2·tan(90◦−θSA)2+(Ar−Ars )
2 σ 2

θSA

(22.28)

σv =
√(

δv

δArs

)2

σ 2
Ars

+
(

δv

δθSA
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σ 2
θSA

=
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⎛
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√

Ar2 tan(90◦−θSA)2+(Ar−Ars )2
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⎞

⎠
2

σ 2
θSA

(22.29)

The empirical error values for two observations σArs and σθSA was also assessed
to the same values as used in the preceding methods. The accuracies of intersection
angle σθv and velocity estimates σv based on the joint estimation of moving velocity
and direction are derived by inserting the empirical errors for the observations into
Eqs. 22.28 and 22.29. The error of intersection angle σθv is shown in Fig. 22.7a as
a function of vehicle velocity and relative angle between vehicle heading and the
sensor flying path; the relative error is indicated in Fig. 22.7b. The (relative) velocity
errors σv and σv/v are shown in Fig. 22.8 as a function of vehicle velocity v and
intersection angle θv. It can be seen from the plots that most of the vehicles on
road sections of urban areas could not allow for high accuracy of moving direction

Fig. 22.7 a Relative error of the intersection angle σθv/θv of intersection angles obtained based on
the joint estimation of velocity and heading as a function of target velocity v and the intersection
angle θv , σθv/θv is given in %; b Vehicle velocity v (given in km/h) as a function of σθv/θv and θv
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Fig. 22.8 a Relative velocity error σv/v of vehicle velocities obtained based on the joint estimation
of velocity and heading as a function of target velocity v and the intersection angle θv , σv/v is given
in %; b Vehicle velocity v (given in km/h) as a function of σv/v and θv .

estimation (σθv/θv < 25%) unless they move a little bit faster (>70 km/h). The high
accuracy of velocity estimates could be only guaranteed for vehicles that obviously
don’t travel in an across-track direction (θv < 75%). The overall accuracy of velocity
estimation derived in this way is slightly degraded compared to other solutions where
the moving direction is given beforehand.

22.4 Experiments and Results

22.4.1 Detection of Urban Objects with ALS Data Associated
with Aerial Imagery

22.4.1.1 Experimental Data for Urban Objects Detection

Two datasets were used in this chapter for an urban scene object detection test, which
both include aerial images and airborne LiDAR data. The first dataset (yellow areas
in Fig. 22.9) was captured over Vaihingen in Germany and is a subset of the data
used for the test of digital aerial cameras carried out by the German Association
of Photogrammetry and Remote Sensing (DGPF; Cramer 2010). The other dataset
covers an area of about 1.45 km2 in the central area of the City of Toronto in Canada
(red areas in Fig. 22.10).
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Fig. 22.9 Three test sites in Vaihingen: a Area 1; b Area 2; c Area 3

(a) (b) 

Fig. 22.10 Two test sites in Toronto: a Area 4; b Area 5

22.4.1.2 Experimental Design for Urban Objects Detection

The following steps are considered in this experiment:
Data preprocessing. For both datasets, the aerial images and airborne LiDAR

data were acquired at different times. Thus, they are co-registered by geometrical
back-projecting the point cloud into the image domain with available orientation
parameters. After that, all data points are grid-fitted into the raster format in order
to facilitate acquiring spatial context information per-pixel or point. We apply grid-
fitting using an interval of 0.5 m on the ground, ensuring that each resampled pixel
can be allocated at least with one LiDAR point.
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Feature selection. For Dataset 1, as color-infrared images, point cloud data
including intensity information are available. All 13 features (R, G, B, NDVI, Z,
I,ΔZ, σ Z , ΔI, σ I , E, O, and P) introduced in Sect. 2.2 are extracted and used for
the object detection test. For Dataset 2, there is no infrared band image and thus 12
features are used in the experiment only, without NDVI.

Training samples’ selection. Since training samples are essential and important
for supervised learning classification, it is necessary to adopt a suitable approach
to derive valid samples considering the characteristics of the used classifier. In
this chapter, AdaBoost using the one tree weak learner (CART) is adopted as the
final strong classifier (Freund and Schapire 1999), which chooses training samples
randomly to some extent. Therefore, for each test site, we first classify the whole test
area manually and then randomly choose 10% of the whole test area’s corresponding
labeled samples as input training samples for the AdaBoost classifier.

Classifier control and classification procedure. This chapter uses the binary
AdaBoost classifier to detect buildings, natural ground, and trees from the urban
scene. To do so, the binary AdaBoost classifier is iteratively generated and applied:
(1) the classifier for detecting building is generated by training the randomly chosen
building samples and non-building samples corresponding to 10% of the whole data
amount, and applied to classify the building from the urban scene; (2) 10%natural and
non-natural ground samples are randomly selected to train and generate the classifier
for natural ground detection, which is then used to separate the natural ground from
the complex urban scene; (3) tree detection proceeds by using the binary AdaBoost
classifier which is trained on the randomly selected 10% tree and non-tree samples.
To test and validate the methods, several areas are chosen for the object detection test
according to the actual urban scene. For the building detection, all the five test areas
(three in Vaihingen and two in downtown Toronto) are used, whereas Areas 1–4 are
used to test the detection of natural ground. And finally, Areas 1–3 in Dataset 1 are
used for the detection of trees. The implementation code of the AdaBoost classifier
used in this chapter was adapted from that published by Vezhnevets (2005).

Evaluation methods. The evaluation of object detection results is obtained from
the ISPRS Test Project on Urban Classification and 3D Building Reconstruction,
which conducts the evaluation based on the method described by Rutzinger et al.
(2009) and Rottensteiner et al. (2005). The software used for evaluation reads in
the reference and the object detection results, converts them into a label image, and
then carries out the evaluation as described by Rottensteiner et al. (2013). Since
the output of binary AdaBoost classifiers consists of samples labeled by class but
not segmented objects, the topological clarification for detected objects described
by Rutzinger et al. (2009) is applied to perform the object-based evaluation, which
was automatically implemented by the evaluation software. The evaluation output
consists of a text file containing the evaluation results and a few images that visu-
alize these results, which includemany accuracy indexes such as geometric accuracy,
pixel-based completeness, and correctness, object-based completeness, and correct-
ness, balanced completeness and correctness, etc., and themiddle evaluation includes
attributes like an evaluation on a per-object level as a function of the object area, etc.
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This chapter applies the binary AdaBoost classifier by fusing the image and
LiDAR features to detect buildings, natural ground, and trees in several different
complex urban scenes. The detection accuracies of buildings, natural ground, and
trees are presented in Tables 22.1, 22.2, and 22.3, respectively. In these tables pixel-
based evaluation accuracy (Compl area [%], Corr area [%], Pix-Quality [%]), object-
based evaluation accuracy (Compl obj [%], Corr obj [%], obj-Quality [%]), balanced
evaluation accuracy (Compl obj 50 [%], Corr obj 50 [%], obj-Quality 50 [%]), and
detected objects’ geometric accuracy (RMS [m]) are listed for evaluating the detec-
tion result of buildings in Areas 1–5, natural ground in Areas 1–4, and trees in Areas
1–3, respectively.

22.4.1.3 Results of Urban Objects Detection

As stated in Sect. 22.2, this chapter applies the binary AdaBoost classifier by fusing
the image and LiDAR features to detect buildings, natural ground, and trees in several
different complex urban scenes. The detection accuracy of buildings, natural ground,
and trees are presented in Table 22.1, Table 22.2, and Table 22.3 respectively. In
Tables 22.1, 22.2 and 22.3, pixel-based evaluation accuracy (Compl area [%],Corr
area [%], Pix-Quality [%]), object-based evaluation accuracy(Compl obj [%],Corr
obj [%], obj-Quality [%]), balanced evaluation accuracy (Compl obj 50 [%], Corr
obj 50 [%], obj-Quality 50 [%]) and detected objects’ geometric accuracy (RMS
[m]) are listed for evaluating the detection result of buildings in Areas 1–5, natural
ground in Areas 1–4, and trees in Areas 1–3, respectively.

Building detection result. It can be noticed from Table 22.1 that all the five
test sites obtain 85% or higher pixel-based completeness, while the object-based
completeness is lower due to the area of overlap of objects, especially for Test Sites
2 and 3 with object-based completeness of less than 80%.With regard to correctness,
the three test sites in Dataset 1 perform better than the two test sites in Dataset 2 with
respect to all evaluation aspects: evaluation methods of pixel-based, object-based,
and pixel-object balanced. Thus, it can conclude that the building detection ofDataset
1 is more robust than that of Dataset 2. Concerning the geometric aspect, Test Area 2
obtained the best geometric accuracy of RMS 0.9 m, followed by Area 3 with RMS
1.0 m, and Area 1 with RMS 1.2 m, while both test sites in Dataset 2 obtain the worst
geometric accuracy with RMS 1.6 m. Among the five test sites, Area 2 achieved
the best overall building detection accuracy completeness of 92.5%, correctness of
93.9%, detection quality of 87.2% using pixel-based evaluation, completeness of
100%, correctness of 100%, and detection quality of 100% based on evaluation
balanced between pixels and objects, correctness of 100% based on object-based
evaluation, and geometric accuracy of RMS 0.9 m. Due to the small number of
buildings, three false negatives on detected objects gave Test Site 2 lower complete-
ness than Test Sites 1, 4, and 5 based on object-based evaluation, even though there
are more false negatives.
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Natural Ground Detection Result. The results of Dataset 1 are better than those of
Dataset 2 on all indexes. Concerning the pixel-based evaluation result, the detection
completeness is lower than the correctness for all the test sites, while it is the same
for the object-based evaluation result except for Test Site 4. For this test site, the
object-based correctness is very low compared to the pixel-based correctness, which
shows that the natural ground of Test Site 4 is fragmented and cannot be detected
well at the object level. Regarding the geometric aspect, Areas 2 and 3 obtain the best
geometric accuracy of RMS 1.1 m, followed by Area 1 with RMS 1.3 m, while test
site 4 in Dataset 2 obtains the worst geometric accuracy with RMS 1.7 m. Among
the four test sites, Site 2 achieves the best overall natural ground detection accuracy
with completeness of 80.5%, correctness of 85.7%, detection quality of 71.0% based
on pixel-based evaluation, completeness of 83.3%, correctness of 100%, detection
quality of 83.3% based on a balanced evaluation of pixels and objects, and geometric
accuracy of RMS 1.1 m. Due to the larger number of small-sized natural ground
objects and fewer larger ones, Test Site 2 obtains lower detection accuracy using
object-based evaluation.

Tree-detection result. Only Dataset 1 was tested. From Table 22.3, it can be
noticed that the tree-detection accuracy is lower than 80%, being lower than that
of building detection in the same test site. Although the accuracy indexes obtained
based on both pixel-based and object-based evaluation are not so good, this is related
to the definition of trees in the reference data since the balanced accuracy is good.
On the geometric aspect, Area 3 obtains the best geometric accuracy of RMS 1.3 m,
followed by Area 1 and 2 with RMS 1.4 m. The geometric accuracy for tree detection
is worse than that of both buildings and natural ground, due to the more complex
shape of trees in 2D and 3D. Among the three test sites, Area 2 achieves the best
overall tree-detection accuracywith the completeness of 72.0%, correctness of 78.5%
based on pixel-based evaluation, completeness of 63.0%, correctness of 82.4% based
on object-based evaluation, completeness of 89.3%, and correctness of 98.6% using
the balanced evaluation of pixels and objects, and geometric accuracy of RMS 1.4 m.

The detection results presented above show that the proposed AdaBoost-based
strategy can detect objects very well in complex urban areas based on relevant
spatial and spectral features that have been obtained by combining point clouds
and image data. First, most detected objects only suffer from errors in boundary
regions, especially with respect to buildings in Test Sites 1–3, which means that the
proposed method can successfully separate desirable objects from the background
using the combined spatial-spectral features. Second, the trees and natural ground
can be discriminated efficiently in Dataset 1 in spite of similar spectral features,
which demonstrates that the method can take full use of the advantages of fusing
features and an ensemble classifier. Third, the detection achieves the best geometric
accuracy for buildings, with RMS 0.9 m, partly biased by data co-registration error,
which demonstrates the proposed high accuracy of the method. Fourth, larger-sized
objects achieve better detection completeness and correctness; for example, all the
buildingswith area larger than 87.5m2 are detected correctly for Test Sites 1–3, while
some smaller buildings are omitted due to being classified as false positives, which
justifies the reliability of the AdaBoost-based strategy for urban objects detection.
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22.4.2 Accuracy Prediction for Vehicle Velocity Estimation
Using ALS Aata

To demonstrate the quality of the velocity estimation for real-life scenarios and
to deliver quantitative guidance on the planning of LiDAR flight campaigns for
traffic analysis, real road networks in urban areas will be used in an experiment to
simulate the prediction of velocity and estimate its accuracy. This will be useful for
exploiting boundary conditions in applying the proposed strategy in real airborne
LiDAR campaigns for traffic analysis. Generally, it can be stated that this simulation
has been designed by considering the following points:

• Validate the feasibility and repeatability of velocity estimation results;
• Verify the velocity estimation scheme, which provides rational results with

sufficient accuracy in a wide range of datasets acquired over urban areas; and
• Demonstrate the potential of velocity-accuracy analysis to provide valuable

guidance on optimizing flight planning for traffic monitoring.

The accuracy of the estimated velocity σv is simulated for two road network
sections north of Munich which represent the most typical scenarios in urban areas.
In this area, several main roads and large express roads are situated and are highly
frequented during rush hours. For each test site, two general schemes are assumed to
exist, where the four different velocity estimators presented above are applied: First,
the moving direction of a vehicle relative to the sensor flight path is known (here the
moving direction is derived based on the road orientation); and second, the moving
direction of the vehicle relative to the sensor flight path is unknown.

As three methods within the first scheme complement each other concerning
performance, we finally combined the estimators depending on the relative orienta-
tion between the vehicle heading and the sensor flight path to get optimal results. For
every relative orientation the estimator that provides the best results is chosen. That
means that the maximum of estimated velocity accuracies is assumed to be selected
as the accuracy value for a velocity estimate at that road location. Parameters of real
flying using the Riegl LMSQ560 sensor have been used in this simulation and an
average speed of 120 km/h was assumed (concrete configurations can be found in
Table 22.4). The average velocity of moving vehicles on the roads is set to 60 km/h.

Table 22.4 Parameters of
typical airborne topographic
LiDAR

Flight height h 420 m

Pulse repetition rate PRR 110 kHz

Sensor velocity vL 120 km/h

Scan angle αs 60°

Point density PD 4 points/m2

Swath Sw 450 m

View mode Nadir

Scan pattern Parallel line
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The error measures for the shearing angle and intersection angle of moving vehicles
can be assessed empirically from shape parameterization: for our case, σArs = 0.4,
σθSA = 2°, and σθv = 2°. The orientation of the roads relative to the planned flying
path and the resulting σv values obtained by combining the estimators in the first
scheme are shown in Fig. 22.11a, c, while the resulting values of σv using second
scheme for the same sites are shown in Fig. 22.11b, d. σv is given in % of the
absolute velocity. With the algorithm described earlier, velocities can be estimated
with an accuracy better than 10% for about 80% of the investigated road networks.
Figure 22.12 indicates which estimator is chosen in which parts of the road network.
It shows that the across-track shearing-based estimator (Method 1) provides the best

        (a)                                                                                 (b) 

        (c)                                                                                (d) 

Sensor
heading 

Sensor
heading 

Fig. 22.11 Simulation of σv for two road networks north of Munich using the velocity estimation
schemes: a The estimation accuracy for the first road network in% of the absolute velocity using the
second scheme; b The estimation accuracy for the first road network in % of the absolute velocity
using the first scheme; c The estimation accuracy for the second road network in % of the absolute
velocity using the first scheme; d The estimation accuracy for the second road network in % of the
absolute velocity using the second scheme
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(a) (b)

Method I Method II Method III

Fig. 22.12 Indication of velocity estimation methods used for the two road networks under the first
scheme for velocity estimation (moving direction relative to sensor flight is known): a Indicating
which estimation method is chosen in which parts of the first road network; b Indicating which
estimation method is chosen in which parts of the second road network

results for large parts of the road network. The along-track stretching-based (Method
2) and combined (Method 3) estimators outperform the across-track shearing-based
approach only in areas where the road is extended roughly in the along-track direc-
tion (i.e., ∀ θv ≤ 25◦). For example, in the second test site (Fig. 22.12b), Dachauer
Street (in the bottom-left part) requires Method 3 to be used for velocity estimation,
whereas one part of Ackermann Street (curved, in the top-left part) requiresMethod 2
to be used. Moreover, in most parts of the road network, the accuracy of velocity esti-
mation using the first scheme is generally higher than that obtained using the second
scheme, especially when vehicles move along a direction that is close to across-track.
This is due to the fact that the joint estimation of velocity and moving direction angle
can incorporate additional error sources caused by the unknown moving direction of
vehicles relative to the sensor flight path, leading to an accumulative error for final
velocity estimates.

22.5 Summary

This chapter is concernedwith detecting urban objects and traffic dynamics fromALS
data. Urban object detection in complex scenes is still a challenging problem for the
communities of both photogrammetry and computer vision. Since LiDAR data and
image data are complementary for information extraction, relevant spatial-spectral
features extracted from ALS point clouds and image data can be jointly applied to
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detect urban objects like buildings, natural ground objects, and trees in complex urban
environments. To obtain good object detection results, an AdaBoost-based strategy
was presented in this chapter. It includes: First, co-registering LiDAR point clouds
with images by back-projection with available orientation parameters; Second, grid-
fitting of data points into the raster format to facilitate acquiring spatial context infor-
mation; Third, extracting various spatial-statistical and radiometric features using a
cuboid neighborhood; and Fourth, detecting objects including buildings, trees, and
natural ground by the trained AdaBoost classifier whose output consists of labeled
grids.

The performance of the developed strategy towards detecting buildings, natural
ground, and trees in urban areaswas comprehensively evaluated using the benchmark
datasets provided by ISPRSWGIII/4. Both semantic and geometric criteriawere used
to assess the experimental results. From the detection results, it can be concluded
that the AdaBoost-based classification strategy can detect urban objects reliably and
accurately, achieving the best detection accuracy for buildings with completeness of
92.5% and correctness of 93.9%, for natural ground with completeness of 80.5% and
correctness of 85.7%, and for tree detection with completeness of 72.5% and correct-
ness of 78.5% based on per-pixel evaluation. The quality indexes for the detection of
tree and natural ground, evaluated on per-object level, seem not to be as high as for
buildings. Nevertheless, the overall accuracy is high for such complex urban scenes,
as can be concluded from the balanced evaluation of pixels and objects. With further
research, the detection results might be refinedwith graph-based optimization, which
is expected to improve the detection accuracy by accounting for label smoothness
both locally and globally. Moreover, in order to further ensure the reliability of object
detection, we still need to refine the co-registration accuracy of multimodal data via
hierarchical feature matching and optimize alterable parameters through sensitivity
analysis.

For characterizing urban traffic dynamics, a method to identify vehicle movement
from airborne LiDAR data and to estimate respective velocities has been developed.
Besides a description of the developed methods, theoretical and simulation studies
for performance analysis were shown in detail. The detection and velocity estimation
of fast-moving vehicles seems to be promising and accurate, whereas slow-moving
vehicles are harder to distinguish from non-moving ones and it is harder to obtain
estimates with acceptable accuracy. Moreover, the point density of LiDAR datasets
tends to be directly proportional to the performance of motion detection. The esti-
mation of the velocity of detected vehicles can be done with high accuracy for nearly
all possible observation geometries except for those ones which are moving in the
(quasi-)along-track direction while sensors are sweeping over instantaneously.

Although the results shown in this chapter cannot directly be compared with
those of induction loops or bridge sensors, they show nonetheless great potential to
support trafficmonitoring applications. Thebig advantages ofALSdata are their large
coverage and certain penetrability through trees, and thus, the possibility to derive
traffic data throughout an extended road network that may be occluded by trees on the
roadsides. Evidently, this complements the accurate but sparsely sampled measure-
ments of fixedmounted sensors. A natural extension of the presented approachwould
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be an integration of the accurate, sparsely sampled traffic information with the less
accurate but area-wide data collected from space or air-borne sensors. Existing traffic
flow models would provide a framework to do this.
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Chapter 23
Photogrammetry for 3D Mapping
in Urban Areas

Bo Wu

Abstract Photogrammetry is the technology for obtaining 3D geometric informa-
tion from photographs or images. This chapter describes the fundamental knowl-
edge and latest advances in photogrammetry for 3D mapping in urban areas. First,
the key fundamental techniques in photogrammetry for deriving 3D information
from imagery are presented. Then, the latest advances in photogrammetry for 3D
mapping in urban areas, including structure-from-motion (SfM), multi-view stereo
(MVS), and integrated 3D mapping from multiple-source data, are described and
discussed. Examples of using photogrammetry for 3D mapping and modeling in
urban applications are presented. Finally, concluding remarks and future outlooks
are addressed.

23.1 Introduction

Photogrammetry is the science and technology for obtaining reliable 3D geometric
and physical information about objects and the environment from photographic
images (ASPRS 1998). Practically, photogrammetry allows 3D measurements of
geometric information of objects (e.g., positions, orientations, shapes, and sizes)
from photographs.

Photogrammetry has a long history and can be dated back to the 1850s (Konecny
1985). In its earlier stage, the main purpose of photogrammetry was map generation
from aerial photographs. Since the 1960s, the emerging of satellite and close-range
imaging and measurements has facilitated the application of photogrammetry to
various areas, such as 3D mapping and modeling, industrial inspection, architecture,
robotics, civil engineering, and hazardmonitoring. Advances in photogrammetry had
been insignificant over the past 50 years until the recent decade. The latest advances
from the photogrammetry and computer vision communities, such as aerial oblique
photogrammetry, structure-from-motion (SfM) and multi-view stereo (MVS), and
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integrated 3Dmapping, have facilitated the development of photogrammetry towards
a more automatic solution for 3D mapping and modeling, with better quality, even
for challenging cases such as in urban areas.

This chapter first describes the key fundamental knowledge for obtaining 3D
information from images through photogrammetry. Then, the latest advances in
photogrammetry for 3Dmapping in urban areas, including SfM,MVS, and integrated
3D mapping from multiple-source data, are described and discussed. Examples of
using photogrammetry for 3Dmapping andmodeling inHongKong and other typical
urban areas are presented. Finally, summary remarks are given and future outlooks
are discussed.

23.2 Fundamentals of Photogrammetry

The following describes the fundamental techniques for obtaining 3D information
from images via photogrammetry, including image orientation, bundle adjustment,
and image matching.

23.2.1 Image Orientation

Image orientation is the procedure of recovering the positional and orientation infor-
mation of the optical ray when the image is collected. Image orientation includes
two consecutive steps: interior orientation (IO) and exterior orientation (EO).

IO defines the transformation from the pixel coordinatesmeasured on the image to
the image-space coordinates referring to the focal plane. Taking a traditional aerial
image as an example, typically, there are four to eight fiducial marks distributed
in the corners and along the edges of the image. Their pixel coordinates can be
directly measured on the image. Also, the coordinates of these fiducial marks in the
image-space coordinate system are usually known. They can be used to determine
the principal point (x0, y0) in the image-space coordinate system. They can also
be used to derive a 2D transformation model between the image-space coordinates
and the image measurements, and then the 2D transformation model can be used
to transform any other pixel coordinates measured on the image to the image-space
coordinates.

The coordinates of the principal point (x0, y0) and the principal distance (or focal
length) f are the intrinsic parameters of the camera. The camera intrinsic param-
eters normally do not change. However, there are usually distortions existing on
images, such as lens distortions, different pixel spacing, and stretching or shrinkage
of the images. They have to be calibrated before using the images for 3D mapping.
Errors in these parameters will lead to errors in the IO process and the subsequent
3D measurement. These parameters and distortions can be calibrated using a partic-
ular control field with calibration targets precisely measured by a total station or
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differential GPS. They can also be computed during the 3D mapping task through
self-calibration approaches (Wu 2017).

EO defines the transformation from the image-space coordinates to the 3D
object space coordinates, which can be formulated using the following co-linearity
equations (Wang 1998):

x − x0 = − f
m11(X − XS) + m12(Y − YS) + m13(Z − ZS)

m31(X − XS) + m32(Y − YS) + m33(Z − ZS)

y − y0 = − f
m21(X − XS) + m22(Y − YS) + m23(Z − ZS)

m31(X − XS) + m32(Y − YS) + m33(Z − ZS)
(23.1)

The co-linearity equations connect a point (x, y) on the image and its corresponding
position (X, Y, Z) in the 3D object space. (XS , YS , ZS) represent the coordinates of
the camera perspective center in the object space when the image is taken. mij are
the components of a rotation matrix, which is derived from three rotation angles (ϕ,
ω, κ) of the camera frame referring to the object space. These six parameters—three
positions (XS , YS , ZS) and three rotation angles (ϕ, ω, κ)—are called EO parameters.

Each set of co-linearity equations represents a straight line that links an image
point, the camera perspective center, and a 3D point in the object space. To determine
the object point’s 3D position, at least two straight lines are necessary to form an
intersection. In other words, a pair of corresponding points measured on a stereo pair
of images will be necessary to compute their corresponding 3D position in the object
space. This process is called space intersection.

The EO parameters of each image can be measured by sensors (e.g., GPS and
IMU)mounted on the same platform as the camera when it takes the image so that 3D
measurements can be achieved by using at least two images together with their EO
parameters. However, direct measurement of the EO parameters by the sensors will
usually have errors and sometimes no direct measurement of the EO parameters will
be provided. Therefore, in photogrammetry, the EO parameters are usually derived or
improved in one of three ways: space resection, relative orientation (RO) followed by
absolute orientation (AO), or simultaneous orientation through bundle adjustment.

Space resection is based on the above co-linearity equations. If three control points
(their coordinates in the image-space and object space are known) are available, they
offer six observations based on the co-linearity equations and provide a unique solu-
tion to the six EO parameters. Normally, more control points are used to calculate the
EO parameters through the least-squares adjustment for improved accuracy. Usually,
space resection is used to determine the EO parameters of a single image. For an
image block, other methods are used as they require fewer control points.

RO is used to determine the internal relationship between two images. RO is able
to generate a scale-free 3D model of the imaged scene within an arbitrary coordinate
system. Before the 3Dmodel obtained from RO can be used for actual measurement,
it must be scaled, rotated, and translated to the actual coordinate system in object
space. This is the procedure of AO. AO uses 3D transformations (e.g., 3D conformal
transformation) to convert the model coordinates obtained by RO into real object
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coordinates. The RO and AO can be performed on a single stereo pair or on large
image blocks.

23.2.2 Bundle Adjustment

Bundle adjustment (BA) is an alternativemethod to the aboveROandAOprocedures.
Based on the principles of the co-linearity equations, an optical ray can be defined
that starts from the image point, passes through the perspective center of the camera,
and finally reaches the 3D point in the object space. This produces an observation
based on the co-linearity equations. Giving some tie points matched on a stereo pair
of images ormultiple images, a bundle of optical rays determined by the tie points can
link the images together, and subsequently link the image-space to the object space.
In the ideal situation, the optical rays from the tie points on different images should
exactly intersect at the same object point. However, this will usually not be true in
the reality due to uncertainties and errors of different levels in the image orientation
parameters. Therefore, BA is used to improve the image orientation parameters,
from which the bundle of optical rays can intersect at the 3D point in the object
space correctly.

BA is based on the least-squares principle. Usually, four types of observation
equations can be formulated in a BA system, as listed in the following.

Av + B� = f

vx − I� = fx
Acvc + C�c = fc
Aapvap + D�ap = fap (23.2)

The first observation equation is for the image measurements (tie points matched
on the images), which is based on the co-linearity equations that connect the image
measurements with their 3D coordinates. � is the vector of the unknown EO param-
eters. A is the matrix of observation coefficients. B is the matrix of parameter coeffi-
cients. v is the vector of residuals. The secondobservation equation is for the unknown
EO parameters and the 3D object coordinates of the tie points to be calculated. The
third observation equation is for constraints of the parameters. For instance, a stereo
camera system with a fixed camera base can provide a constraint that the distance
between the three positional EO parameters of the left image and those of the right
image should equal to the length of the camera base. The fourth observation equation
is for self-calibration, of which the additional parameters (e.g., principal distance,
lens distortions) can be solved simultaneously in the BA system.

Based on the observation equations and provided with a small number of 3D
control points and a large number of tie points matched on the images, BA is able to
compute the unknown parameters and the 3D object coordinates of tie points simulta-
neously. BA is actually the simultaneous process of space resection and intersection
as described previously. In the BA system, different weights can be assigned to
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different types of observations based on their a priori precision or practical analysis,
so that the contributions of different observations can be controlled. For example,
observations with higher precision (less uncertainty) will be assigned with higher
weights, so that they will contribute more and be adjusted less in the BA system.
Observations with less knowledge (large uncertainties) will be assigned with lower
weights so that they will contribute less and be adjusted more. BA is fully rigorous
through corrections for systematic errors and provides abundant statistical informa-
tion. The residuals of all parameters can be calculated and they can be used to evaluate
the performance of BA.

23.2.3 Image Matching

Image matching is for identifying image correspondences in two or more images
with overlapping coverages. The corresponding points on images represent the same
point in the object space. They usually have similar appearances on different images.
Generally, image matching is based on finding the similarities in grey levels of small
local patches on images or matching an image patch with an image template. Image
matching may be implemented on a pixel-by-pixel basis, known as dense matching,
or by matching individual point or pattern features, which is called feature matching.

In the photogrammetry and computer vision communities, much research has
been done regarding image matching. A straightforward image matching method is
the normalized cross-correlation (NCC) matching (Lhuillier and Quan 2002). NCC
directly examines the level of similarity between two small image patches or local
windows by calculating their cross-correlation score in terms of the grey levels. A
significant development about feature point matching is the scale-invariant feature
transform (SIFT) method (Lowe 2004) in the computer vision community. SIFT first
detects feature points based on the local extrema in the scale space that are invariant
to scale changes and distortions, and then matches the feature points according to the
descriptors constructed based on their gradients in local regions. However, SIFT only
provides sparse feature matching results. Semiglobal matching (SGM; Hirschmuller
2008) is another important development in dense image matching. SGM combines
global and local methods for pixel-wise matching through optimization of an energy
function. SGM is able to produce dense matching results; however, the global opti-
mization strategy used in SGMmay lead to an over-smoothing problem in 3D surface
reconstruction.

Wu et al. (2011, 2012) presented a hierarchical image matching method, named
self-adaptive triangulation-constrained matching (SATM). SATM includes a feature
matching step followed by a dense matching step. It uses triangulations to constrain
thematching of feature points and edges, of which the triangulations are dynamically
updated along with the matching process by inserting the newly matched points and
edges into the triangulations.Densematching is conducted during the densification of
the triangulations. In the matching propagation process, the most distinctive features
are always successfully matched first; therefore, the densification of triangulations
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self-adapts to the textural pattern on the image, and provides robust constraints for
reliable feature matching and dense matching. Ye and Wu (2018) further extended
the SATM algorithm by incorporating image segmentation into the image matching
framework to solve the surface discontinuity problem for dense and reliablematching
of images in urban areas. Figure 23.1 shows an example of the matching results using
SATM and SGM for a stereo pair of aerial images for generating a digital surface
model (DSM) in an urban area. As can be seen from the DSMs generated by SATM
(Fig. 23.1b) and SGM (Fig. 23.1c), the former performs better than the latter in terms
of feature preservation and recovery of building boundaries.

(a) A pair of aerial images with the matched results using SATM marked in red

(b) The generated DSM from SATM (c) The generated DSM from SGM

Fig. 23.1 An example of the image matching algorithms SATM and SGM for DSM generation in
urban areas
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23.3 Advances in Photogrammetry for 3D Mapping
in Urban Areas

Traditional photogrammetry has limited use for 3D mapping and modeling in urban
areas (Qiao et al. 2010; Ye and Wu 2018). This is mainly due to the fact that tradi-
tional photogrammetry usually captures near-nadir images by cameras mounted on
aircraft, and image matching in urban areas is particularly challenging. Most tradi-
tional photogrammetry systems require tremendous human labor to process images
in urban areas, especially in metropolitan regions with tall buildings that are densely
located. With the development of hardware and software in data acquisition and
image processing in recent years, the image quality, automation degree, efficiency,
and accuracy of photogrammetry have been boosted extensively in the past decade
(Rupnik et al. 2015). The state-of-the-art oblique photogrammetry systems collect
aerial oblique images in urban areas with high redundancy (e.g., with every ground
point visible in over five ormore images), which significantly improves the automatic
image matching in urban areas and also provides information on building façades.
Off-the-shelf solutions for 3D city modeling from aerial oblique images include two
key steps: structure from motion (SfM) (Gerke et al. 2016) and multi-view stereo
(MVS) (Galliani et al. 2015).

23.3.1 Structure from Motion and Multi-view Stereo

In the SfM method, feature points are used to obtain tie points between overlapped
views of images automatically. For structured aerial images that are captured with
designed flight plans, the connectivity between different images could be estimated
accordingly. However, if the images are unordered, trying out all the possible image
pairs is exhaustive for large datasets. Hence, image retrieval algorithms based on
vocabulary trees (Gálvez-López and Tardos 2012) are used to find the putative image
pairs that are similar and may have overlaps. After that, the initial orientation param-
eters are estimated and then refined by BA. BA approaches are typically divided
into three categories in SfM, namely sequential, hierarchical, and global adjustment
(Schonberger and Frahm 2016). Sequential adjustment methods start from aminimal
image cluster (such as two or three well-connected images) and incrementally add
new images to the existing clusters. The computation cost of this approach increases
with each increment in reconstruction. Hence, a divide-and-conquer strategy can be
adopted to reduce computation cost, which performs the BA hierarchically (Snavely
et al. 2008). The scene graph is divided into several clusters first, and then these
clusters are reconstructed individually. After that, these clusters are merged by a
transformation with 7 degrees of freedom (DoF). Global methods normally estimate
relative orientations of all the images at the same time, and estimate global rotation
and translation separately (Toldo et al. 2015). However, it might be difficult for global
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optimization algorithms to achieve convergence, requiring good initial estimations
and robust outlier detection and removal.

The resulting image orientation parameters and the scene graph of SfM serve as
the foundation for the MVS (Schonberger and Frahm 2016). However, the sparse
point clouds obtained by BA do not contain any solid geometry about the scene.
Hence, MVS algorithms are employed to turn oriented 2D images into dense 3D
point clouds using multiple images (Musialski et al. 2013). An example of the
widely adopted MVS algorithm in the photogrammetry community is the patch-
based multi-view stereo (PMVS) invented by Furukawa and Ponce (2010). In this
method, corresponding points in multiple images are used to construct an initial
set of patches to represent the scene, and the patches are repeatedly expanded to
improve their density through enforcing photometric consistency and global visi-
bility constraints to improve reconstruction accuracy. Based on the oriented images
and the corresponding dense point clouds, a 3D mesh model of the surface can be
reconstructed and textured using algorithms such as the Poisson reconstruction algo-
rithm (Waechter et al. 2014), which produces watertight surfaces from oriented point
clouds. Figure 23.2 is an example of automatically generated 3D models in Central
Hong Kong using aerial oblique images based on SfM and MVS.

23.3.2 Integrated 3D Mapping from Multiple-Source Data

Apart from the above advances in oblique photogrammetry, there is a trend of
integrating multiple-source images and laser-scanning data collected from different
remote sensing platforms—for example, satellite, aircraft, unmanned aerial vehicle
(UAV), and mobile mapping systems (MMS)—for better 3D mapping and modeling
in urban areas (Wu et al. 2015, 2018).

Images and laser-scanning point clouds collected by different types of remote
sensing platforms are widely used for 3D mapping and modeling. However, the 3D
mapping results derived from different sensors and platforms usually show incon-
sistencies in the same area. Wu et al. (2015) presented an integrated 3D mapping
model for the integrated processing of satellite imagery and airborne LiDAR data.
In this model, the EO parameters of images, tie points matched in the overlapping
images, and selected LiDAR points are used as inputs for a combined adjustment,
and local constraints, including a vertical constraint and a horizontal constraint, are
applied to ensure the consistency between these two types of data. After the inte-
grated processing, the inconsistencies between the two types of data are reduced and
the geometric accuracies of the mapping results are improved.

The integrated 3Dmapping model was further extended for integrated processing
of images and laser scanning point clouds collected from UAV and MMS platforms
(Wu et al. 2018). Aerial oblique photogrammetry offers promising solutions for
3D mapping and modeling in urban areas. However, in metropolitan areas such
as Hong Kong, where high-rise buildings are densely distributed, there are usually
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(a) Aerial oblique images collected in Central, Hong Kong

(b) Automatically generated 3D models from the aerial oblique images

Fig. 23.2 SfM and MVS for automatic 3D modeling from aerial oblique images

geometric defects in the 3D models generated from aerial oblique imagery, and
the textures on building façades are usually blurred. These problems are related
to the common occlusion situations and large camera tilt angles of aerial oblique
imagery. Meanwhile, MMS can collect ground images and laser scanning point
clouds on the ground, which provides a dataset complementary to the aerial data.
The integrated processing of images and laser scanning data collected fromUAV and
MMS platforms offers promising opportunities to optimize 3D modeling in urban
areas. The integrated 3D mapping of aerial and ground datasets includes three main
steps: (1) automatic feature matching between the aerial and ground images to link
these two types of data; (2) combined adjustment of aerial and ground data to remove
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their geometric inconsistencies; and (3) optimal selection of aerial and ground data
for the best textural quality and minimum occlusions. Figure 23.3 shows an example
of the integrated 3D mapping from UAV and MMS images collected in Kowloon
Bay, Hong Kong. Figure 23.3 indicates that the integration of aerial and ground data

(a) 3D models from UAV images

(b) 3D models from integrated processing of UAV and MMS images

Fig. 23.3 Integrated 3D mapping of UAV and MMS images in Kowloon Bay, Hong Kong
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shows a promising solution for generating 3D city models of the best geometry and
quality. With the MMS data, the geometry and quality of the 3D mesh models at the
street level are significantly improved, compared with those from aerial images only.

23.4 Summary

Photogrammetry is themost robust, efficient, economical, and flexiblemethod for 3D
mapping andmodeling, regardless of the challenges ahead. Photogrammetry has been
and will continue to be the representative and influential technology for obtaining
3D information. The latest advances in photogrammetry such as SfM, MVS, and
integrated 3Dmapping, offer great potential for optimized and enhanced 3Dmapping
and modeling in urban areas at both city scale and street level. Photogrammetry can
be used as the primary technology to create the 3D spatial-data infrastructure for
a digital city, which can be widely used to support applications in, for example,
urban planning and design, urban management, urban environmental studies, and
the development of smart cities.
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Chapter 24
Underground Utilities Imaging
and Diagnosis

Wallace Wai-Lok Lai

Abstract The invisible and congested world of underground utilities (UU) is an
indispensable mystery to the general public because their existence is invisible until
problems happen. Their growth aligns with the continuous development of cities
and the ever-increasing demand for energy and quality of life. To satisfy a variety
of modern requirements like emergency or routine repair, safe dig and excavation,
monitoring, maintenance, and upscaling of the network, two basic tasks are always
required. They are mapping and imaging (where?), and diagnosis (how healthy?).
This chapter gives a review of the current state of the art of these two core topics, and
their levels of expected survey accuracy, and looks forward to future trends of research
and development (Sects. 24.1 and 24.2). From the point of view of physics, a large
range of survey technologies is central to imaging and diagnosis, having originated
from electromagnetic- and acoustic-based near-surface geophysical and nondestruc-
tive testing methods. To date, survey technologies have been further extended by
multi-disciplinary task forces in various disciplines (Sect. 24.3). First, it involves
sending and retrieving mechanical robots to survey the internal confined spaces
of utilities using careful system control and seamless communication electronics.
Secondly, the captured data and signals of various kinds are positioned, processed,
and in the future, pattern-recognized with a database to robustly trace the location
and diagnose the conditions of any particular type of utilities. Thirdly, such a pattern-
recognized database of various types of defects can be regarded as a learning process
through repeated validation in the laboratory, simulation, and ground-truthing in the
field. This chapter is concluded by briefly introducing the human-factor or psycho-
logical and cognitive biases, which are in most cases neglected in any imaging and
diagnostic work (Sect. 24.4). In short, the very challenging nature and large demand
for utility imaging and diagnostics have been gradually evolving from the tradi-
tional visual inspection to a new era of multi-disciplinary surveying and engineering
professions and even towards the psychological part of human–machine interaction.
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24.1 Mapping and Imaging

One day, a patient visits a doctor describing a body pain. How does the doctor react?
Will he or she immediately perform surgery or suggest a scan first to diagnose a
serious health problem? Of course, the latter is the standard protocol when it comes
to a doctor evaluating a patient. Unfortunately, the choice of surgery first dominates in
construction work that can involve costly infrastructures such as bridges, buildings,
heritage, foundations, road pavement, tunnel liners, and underground utilities. Even
at home, it is not rare that someone might drill without a scan, and then inadvertently
hit a gas pipe which may be damaged or even explode. An important difference
between a patient and infrastructure is that a patient is more likely to take proper
steps for taking care of themselves and seek out expert diagnosis, whereas the care
of infrastructure which is shared by many (with most unaware of the risks and costs)
is often neglected. Since the first X-ray image was captured in 1895, the diagnostic
science of medicine has changed completely and become very advanced. No one
would question the power of medical imaging for diagnosis and medication. But in
the infrastructure world, modern scanning, mapping, and imaging methods are still
not regularly practiced.

According to the Highways Department in Hong Kong, there is about 47 km
of UU per kilometer of road. Such density is probably the greatest in the world.
More than 20 utility companies are continually developing the underground utility
network, but they occupy only the first few meters of urban underground space. In
comparison with other cities, the density of underground pipelines in Hong Kong’s
utility network is 3.5 times greater than that of Singapore, 24 times denser than that of
England, and 85 times denser than that of theUnited States (Wong 2014). HongKong
and other compact cities and mega-cities probably have one of the most challenging
environments for near-surface geophysical survey, mapping, imaging, and diagnosis.
If the problems of UU detection in the dense environment can be solved for Hong
Kong by new innovative solutions, the underground mapping problems for the rest of
the world, which has the less dense underground infrastructure, will be much easier
to solve.

UU accidents cause not only loss of money or valuable water resources, but also
casualties such as the case of the Kaohsiung underground gas explosion in 2014 in
Taiwan and the fatal Kwun Ling Lau landslide in 1994 in Hong Kong. The lack
of visibility of UU and poor updating of records, in the long run, affect the design,
construction, andmaintenance stages of any building projects. Failures to identify the
existence ofUUat an early-stage can cause later design faults, leading to construction
delays. The maintenance and rehabilitation of underground utilities have become
difficult tasks due to the unknown location, complexity, aging, and negligence from
a commonly-held mindset of “out of sight, out of mind.” These factors are time
bombs and increase the risk of UU damage during excavation.

In an urban area, utilities are mostly laid in a complicated manner under carriage-
ways between buildings and pedestrian footpaths. Geophysical and non-destructive
utilities surveys are always needed in the design, construction, or maintenance
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stages of urban development and redevelopment projects in order to avoid damage
to existing UU. Several international specifications or standards are currently in
use. In 2003, the American Society of Civil Engineers (ASCE) published a Stan-
dard Guideline for the collection and depiction of existing subsurface utility data
in the United States (ASCE 2002). Four different quality levels for detection are
stated (QL-D to QL-A), which indicate the different levels of effort required. For
example, QL-D refers to a statutory record search, while QL-A refers to exposing a
utility through trial holes or trenches. QL-B means geophysical surveys using equip-
ment such as electromagnetic locators (EML) and ground-penetrating radar (GPR)
(Anspach 2002).

Each of the four different quality levels represents different levels of required
accuracy in defining the location of underground infrastructure. These different
levels are also subdivided further into finer location requirements. There are two
ways to express accuracy based on which error is greater, as shown in Tables 24.1,
24.2 and 24.3 (ICE 2014). The table indicates the reduction of location accuracy with
increasing depth. Some of the higher quality levels require an absolute value of accu-
racywithout any concern for depth. An example of the former is the British Standards
Institution (BSI) which published the PAS 128:2014 standard for supplementing
ASCE 38-02. Similarly, there are four quality levels for underground utility detection
in the PAS 128:2014 standard. At aminimum,GPR and EML techniques are required
for the quality level QL-B (ICE 2014) in Tables 24.1, 24.2 and 24.3. Another example
of such expression can be found in the Competent Person Performance Monitoring
Point System of the Electrical and Mechanical Services Department of the HKSAR
government (EMSD). Horizontal accuracy of live power cable detection is required
to be within 25% of depth. The second expression is an alternative that requires an
absolute accuracy; for example, ±150 mm, ±250 mm, and ±500 mm in QL-B as
shown in Tables 24.1, 24.2 and 24.3. This expression is designed for shallow utilities
like telecommunication cables buried at a depth in the scale of tens of centimeters.
In such cases, depth-dependent accuracy would be unnecessarily stringent, given the
shallow buried depth. In terms of implementation, the quality levels used to express
the accuracy of detection are somehow dependent on a clients’ expectation. A recent
initiative inHongKong established a specificationwith simplified accuracy levels for
all types of utility detection, including pipes and cables, using only PCL/EML (LSGI
2019a). The specification also follows the rationale of both expressions of accuracy,
that is, a utility survey is only declared reliable if it is within the range ±150 mm or
±15% of detected depth, whichever is greater. Uncertainties outside this range are
declared unreliable. This accuracy level reflects a compromise after three rounds of
consultation, and the need to balance technical constraints and expectations among
different service providers, consultants, and clients of utility surveys.
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Table 24.1 Quality level standard for underground utility detection in PAS 128:2014

Quality level on
detection

Location accuracy Supporting data

Horizontal Vertical

Verification

QL-A ±50 mm ±25 mm Exposed the utility on
verification

Detection

QL-B1 ±150 mm or ±15% of
detected depth
whichever is greater

±15% of detected
depth

Horizontal and
vertical location of
the utility detected by
multiple geophysical
techniques

QL-B2 ±250 mm or ±40% of
detected depth
whichever is greater

±40% of detected
depth

Horizontal and
vertical location of the
utility detected by one
of the geophysical
techniques used

QL-B3 ±500 mm Undefined Horizontal and
vertical location of the
utility detected by one
of the geophysical
techniques used

QL-B4 Undefined Undefined A utility segment
which is suspected to
exist but has not been
detected and is
therefore shown as an
assumed route

Site reconnaissance

QL-C Undefined Undefined A segment of utility
whose location is
demonstrated by
visual reference to
street furniture,
topographical
features, or evidence
of previous street
work

Desktop utility records search

QL-D Undefined Undefined Desk study of the
record drawings
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Table 24.2 Recommended quality levels and accuracies of PCL/EML test/survey (LSGI 2019a)

Survey mode Quality level Location accuracy

Horizontal Vertical

Active Reliable ±150 mm or ±15% of
detected depth whichever
is greater

±15% of detected depth
for utility buried shallower
than or equal to 3 m

Survey unreliable
(SU)

Undefined Undefined

Survey not successful
(SNS)

Passive Reliable Undefined Undefined

Survey unreliable
(SU)

Survey not successful
(SNS)

Table 24.3 Recommended quality levels and accuracies of GPR tests and surveys (LSGI 2019b)

Quality level Horizontal location accuracy

Reliable ±150 mm or ±15% of detected depth whichever is greater. This
accuracy level is only valid if the alignment of the utility is
continuously observed in C-scan

Survey unreliable (SU) Undefined

Survey not successful (SNS)

24.1.1 EMI/PCL

Given the worldwide use of these specifications and standards, the quality levels
and accuracies required in many projects are part of contract negotiations with the
clients. The actual site constraints, such as overlaid materials and interference from
neighboring utilities can impact the actual quality levels that can be achieved at a
site and are not considered. For example, horizontal and vertical resolution limits
of the survey are rarely studied, not to mention cases for instance, like steel bars
in concrete masking the EM induction signal. Siu and Lai (2019) aims to assess
such subsurface conditions as well as EM coupling effects as a major source of
uncertainty in electromagnetic induction studies of UU positioning. The induced
electromagnetic fields fromneighboring current-carrying utilities crossing each other
causes interference with the detected magnetic field, as shown in Fig. 24.1.

The results of this work can provide a reference for a better understanding of the
complexity of UU mapping using EML. It provides information for UU design and
survey, such as minimum clearance distances between live power-supply cables and
nearby metallic utilities for the sake of later positioning.
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Distance (mm)

Ground level

Power cable
Galvanized iron pipe

Fig. 24.1 a Experimental setup in HK PolyU’s underground utility survey lab: X: horizontal sepa-
ration (350, 550, 750, or 950 mm) Y: vertical position (150, 300, or 450 mm); b estimated magnetic
field shape for a cable at 150 mm depth and separated horizontally from the pipe by 350 mm

24.1.2 GPR

The second means of detection is GPR, composed of a transmitter emitting and
receiving radio waves in materials at a frequency of hundreds of MHz. The basic
received signals are called an A-scan waveform, and B- and C-scans are used for
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GPR data presentation in two and three dimensions, respectively. A C-scan images
any horizontal plane at a specified depth below the ground surface. B-scan images are
vertical depth sections, and both scans provide details of the reflected wave charac-
teristics in the medium, such as phase changes, energy attenuation, and propagation
velocity. These characteristics are controlled by the properties of the host medium.
Through forward and inverse modeling, the subsurface world can then be recon-
structed. Normally for data collection, a series of adjacent GPR profiles have to be
collected in order to determine the positions and sizes of any subsurface target. 3D
C-scans are increasingly useful as they provide a straightforward and easily under-
standable presentation. Furthermore, other forms of 3D GPR representations were
developed recently, for instance, iso-surfaces, semantic images based on energy or
similarity, and feature enhancements (Böniger and Tronicke 2010a, b; Leckebusch
2003). They are all derivative presentations of fully covered measurements in 3D.
A sequence of high-quality C-scans with accurate geo-referencing is essential for
correctly imaging underground. However, its first use was in the 1990s (Goodman
et al. 1995; Lai et al. 2018a). The parameters used for the generation of slices are
mainly determined by the experience of operators, leading to inevitable human bias
(Millington andCassidy 2010) because the choice of different parameter settingsmay
result in completely different images. GPR 3D imaging has been widely applied in
diverse fields of civil engineering: for example, in mapping underground utilities
(Birken et al. 2002; Lai et al. 2016; Metwaly 2015); measuring change of phys-
ical properties in materials (Kowalsky et al. 2005; Léger et al. 2014; Leucci et al.
2003); and inspecting structural conditions (Alani et al. 2013; Baker et al. 1997; Lai
et al. 2012, 2013). Goodman et al. (1995) summarized the processing flow of 3D
time-slice reconstruction from a series of radargrams (B-scans) and focused on three
major steps: setting up the survey grid, cutting slices, and interpolation, as shown in
Fig. 24.2.

But a more rigorous workflow, likewise in 2D processing (Jol 2009), was devel-
oped empirically by Luo et al. (2019) after 25 sets of field and lab experiments
with ground-truthing or known object arrangements. This work established a bridge
connecting GPR theories and survey practice, and balance among physical princi-
ples and constraints, acceptable imaging quality, and survey workload based on the

Fig. 24.2 a GPR profile spacing with a linear object: profile may be perpendicular or parallel to
the object orientation; b illustration of slice thickness; c illustrations of profile spacing and radius
of associated bilinear or linear interpolation, with SRmax and SRmin representing maximum and
minimum acceptable search radii, respectively, while SRy and SRx denote the long axis and short
axis of the elliptical search radius in linear interpolation, respectively (Luo et al. 2019)
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Fig. 24.3 3D GPR imaging workflow based on empirical experiments. Remarks: (1) based on
Eq. (24.1), where v can be determined by common offset velocity analysis (Sham and Lai 2016),
f can be determined bywavelet transform (Lai et al. 2013); (2) a feature spread (�) denotes feature’s
maximum spread along a traverse

work of Jol (2009). It is necessary because unlike remote sensing from satellite-
based images, the features present in GPR responses are indeed a proxy of their true
appearance. Post-processing and interpretation are needed in order to reconstruct
an approximation of the real feature geometry. Basically, an underground feature
can be categorized into two main groups: continuous features with linear shapes,
or local features with round or irregular shapes, as shown in Fig. 24.3. Continuous
reflections of linear features must appear at traverses across a series of parallel radar-
grams. Underground utilities and rebars in concrete are two examples of buried linear
features. These linear features appear as continuous reflections in C-scan displays.
Local features are non-continuous structures, such as small voids or cracks, which
appear in GPR radargrams as discrete reflections. The most critical factor in identi-
fying local features from GPR C-scans is the known or estimated feature size, and
if not available, estimated GPR wavelength in the medium. A good slice imaging
depends also on the adequate dielectric contrast between the two materials to record
a reflection.

24.1.3 Comparison Between EMI/PCL and GPR

Two of the most important and useful EM technologies for undergroundmapping are
EMI/PCL and GPR. Compared to the most often used mechanical waves methods
such as impact echo and ultrasonic, EM-based EMI and GPR technologies are supe-
rior in terms of fast data acquisition in shallow (<6 m) underground characteriza-
tion. The advantages of these methods are that they do not require physical contact
with the surface during measurement, unlike mechanical wave methods, which also
require much longer survey times. GPR and EMI are complementary to each other
(Table 24.4).
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Table 24.4 Comparison of horizontal and vertical accuracy requirement in different specifications
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24.2 Diagnosis

Utility service lives are limited due to deterioration; and proactive assessment and
diagnosis are necessary before any accidents occur. However, accidents can occur
without visible signs or warnings. For example, leakage from a sewage pipe or water
pipe triggers soil erosion and causes a road to collapse (Hadjmeliani 2015), or the gas
leak may cause an explosion (McKirdy 2014). Such problems disturb our daily life,
such as the cutting off of services. Therefore, studies are necessary for developing
different technologies for condition assessment and diagnosis of underground util-
ities. Condition assessment results help diagnosis, which is critical to maintenance
schedules and rehabilitation work for underground utilities.

Thanks to the exponential growth of computation power, many technologies have
been developed and used for condition assessment of underground utilities in the past
decade. Some examples are (1) high-definition videos by closed-circuit television
(CCTV); (2) an advanced visual method specifically for pipeline condition assess-
ment: sewer scanning and evaluation technology; (3) acoustic methods such as sonar
techniques; and more recently (4) laser-based scanning and (5) ground-penetrating
radar; (6) in-line acoustic survey.

24.2.1 Ground-Based Technologies

24.2.1.1 Ground-Based Noise Logging for Leak Localization

Apart from imaging as reported in Sect. 24.1.2, GPR is also sensitive to changes in
water content in the subsurface. It can detect early-stage water leakages in different
pipe materials, not limited to PVC pipes and metallic pipes, as found in different
lab-scale experiments (Ayala-Cabrera et al. 2011; Bimpas et al. 2010; Cataldo et al.
2014; Crocco et al. 2009; Demirci et al. 2012; Glaser et al. 2012; Goulet et al.
2013; Lai et al. 2016, 2017b; Ocaña-Levario et al. 2018). GPR is widely used as a
non-destructive method for detection and mapping of buried, near-surface utilities
(e.g., Metwaly 2015; Prego et al. 2017; Sagnard et al. 2016). The primary reason
for GPR being used in the detection of pipe-water leakages is the mechanism of
dielectric polarization, where water molecules in free form contained in a material
are polarized by an incident GPR wave, thus reducing GPR wave velocity. In our
present research, this mechanism is used to study underground water leakages. GPR
also allows efficient and fine-resolution assessment of hazards like subsurface voids
and washouts (e.g., Cassidy et al. 2011; Lai et al. 2017a; Nobes 2017). This is
because the physical contact between the sensors and the objects is not required in
GPR, in contrast to some acoustic methods such as leak-noise correlator or pipe cable
detectors (Liu and Kleiner 2013). With the wide frequency ranges that are available,
various GPR antennae allow applications addressing numerous physical properties
and structures in the underground environment. GPR has been used on different
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pavement materials including asphalt, concrete pavements, and block pavements in
road networks in most densely populated cities (e.g., Cassidy et al. 2011; Fernandes
et al. 2017; Loizos and Plati 2007; Metwaly 2015; Shangguan et al. 2014; Tosti et al.
2016, 2018; Yehia et al. 2014).

The mapping of water leakage through scanning of GPR data in sliced horizontal
planes is a tested approach. Because electromagnetic waves attenuate more with
increasing free-water content, horizontal scans of GPR data have proven to be useful
in locating leakages in water pipes in materials like sand and concrete (e.g., Lai et al.
2016, 2017b). However, the complex subsurface environment is usually densely
packed with various utilities. This makes tracing the leakage or seepage of water
pipes in such an environment a challenging task.

For GPR data, different velocity-estimation approaches have been proposed,
including those utilizing the depth to a known reflector, velocity sounding, hyper-
bolic curve-fitting approaches, and estimation of GPR wave velocity assuming the
value of the dielectric constant (ASTMD6432 2011). The approach of velocity anal-
ysis used in this research provides arguably a better diagnostic because it involves
a comparison of wave velocities before and after the water leakage. The hyperbolic
fitting method can be used to estimate GPR wave velocity from data acquired in a
common offset transmitter–receiver configuration, as in ASTM D6432-11 (2011):

D = x√(
tx
t0

)2 − 1

; (24.1)

v =
(
2

t0

)
⎡
⎢⎢⎣ x√(

tx
t0

)2 − 1

⎤
⎥⎥⎦, (24.2)

where tx is the two-way travel time of the transmitted electromagnetic wave to the
target and back to the antenna, t0 is the two-way travel time of the transmitted
electromagnetic wave to the target and back to the antenna, x is the distance between
the two positions along the ground surface, and v is wave velocity (in m/ns).

Cheung and Lai (2019) compared the radargrams and velocity changes before and
after the pressurized tests, to indicate if a leakage exists or not. A 10% reduction of
wavevelocity using amidfrequencyGPRantenna (e.g., 600MHz) is likely to be a sign
of water leakage spreading upward, and a significant reverberation underneath the
first arriving reflection from a buried pipe would be a sign of water leakage spreading
downward. Second, for water pipes that are already in service but water leakage is
suspected, if the measurements before water leakage are not available, then an exam-
ination of lateral changes in the pipeline reflections of GPR waves and changes in
wave velocity would permit tracing the location of upward- or downward-spreading
water leakages. This approach is based on the assumption that water leakage does
not occur everywhere along the length of the pipe, and that the changes in GPR wave
velocity are detectable using the equation (Sham and Lai 2016).
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Noise loggers record the amplitude distribution of acoustic levels in dB. The
graph record of a logger showing a sharp peak when compared with the background
noise level can usually identify a point closest to the location of a possible leak.
Comparing the results of multiple noise loggers at minimum flow at 2–4 am can
localize the suspected leak area and extent but the exact pinpointing of the leak
requires the following leak locating and pinpointing methods.

24.2.1.2 Ground-Based Leak Noise Correlation (LNC) for Leak
Locating and Leak Pinpointing

A leak noise correlator is an electronic device used for pinpointing leak(s) in pres-
surized water or gas lines. Typically, two or more microphones or acoustic sound
sensors are put in contact with the pipe at two or multiple points of access. The
device records the sound emitted by a leak (e.g., a hissing noise) between the contact
points by using the pipe as an acoustic waveguide. The sound data is processed to
correlate the two recordings to determine the time difference that the noise takes to
travel from one sensor to the others. Distance between the sensors is required to be
known in advance for estimating the leak point. The cross-correlation signal of one
continuous function with another is defined as

( f ∗ g)(t) =
∞∫

−∞
f ∗ (τ )g(t + τ), (24.3)

where f ∗ is the complex conjugate of f , and f and g are the two sound recordings
of the noise produced by the leak, if any. The time delay can be found by estimating
the time offset for which the cross-correlation product ( f ∗g)(t) reaches a maximum.
When more than two sensors are used, the correlation process can be conducted at
multiple sensor stations. This approach is accurate as long as the sound of the leak
received at each sensor is adequately similar over a period of time, say a fewminutes.
After estimating the time delay of a leak, any leak correlators require (1) the sound
travel velocity and (2) the prior measured length between the two access points, for
identifying the exact distance of the leak from the sensors. For leak localization, the
sound velocity depends on the size and material types of the pipe, which are standard
inputs in most LNC devices. For leak pinpointing, it requires that the alignment of
the pipe is determined by another method: pipe cable locating or electromagnetic
locating. Leak detection is only accurate when these twomethods provide a confident
cross-correlation.

Leak noise correlator (LNC) and pipe pigging are widely adopted methods to
detect water leakages by calculating the variances in time delay and predicting the
speed of acoustic waves in the pressurized water pipe networks (Hao et al. 2012).
LNC requires recording of leakage-induced noises under circumstances where sound
and vibrational disturbances are negligible during the detection process. The LNC



24 Underground Utilities Imaging and Diagnosis 427

method, like all non-destructive testingmethods, is limited due to a number of factors
such as limited coupling of the pipe with the surroundings, inadequate pressure, and
variation in pipe material and pipe size (Gao et al. 2005; Hao et al. 2012). In some
cases, such as in the early-stage water leakages in gravity pipes, leaking pipes that
have lost pressure or large-diameter trunk pipes, where acoustic wave transmission
is considered to be unfavorable, the location of leakage points has not been possible
(Gao et al. 2005; Hao et al. 2012; Liu and Kleiner 2013).

24.2.2 In-Line Technologies

In-line technologies mean putting sensors directly inside the utilities and letting
the fluid (water and gas) drive the sensors automatically. These technologies avoid
attenuation due to increasing depth and loss of resolution in the ground-based tech-
nologies. There are several methods for in-line condition assessment of pipelines
available in the market. The following section will focus on those used by the largest
group of agencies in the pipeline industry. The riskiestmethod is always that requiring
human entry into the underground environment, and the application of the following
methods reduces that need.

24.2.2.1 Closed-Circuit Television (CCTV)

Closed-circuit television (CCTV) is the commonest technique for pipeline condi-
tion assessment. The apparent advantage of CCTV is that it is a technically simple
method that can directly capture illuminated images of defects on the pipe’s interior
wall. When necessary, the captured images can be examined in detail by further
zooming the camera from different angles by controlling the tractor. CCTV was first
introduced in the 1960s for the inspection of pipe interiors, and it consists of a small
optical camera mounted on a tractor, which is a self-propelled platform with wheels.
Nowadays, high-definition cameras permit the capture of better images for interpre-
tation, and the system is remotely controlled by an operator on the ground surface.
The natural limitation of CCTV is that it can only be applied above the water’s
surface, and the movements of CCTV tractor along the pipe may affect the quality
of captured images (Kirkham et al. 2000). Besides, it can only determine defects
that are already exposed on the surface of the pipe’s interior wall. The interpretation
of collected images is highly subjective, largely depending on the experience of the
interpreter; any factors such as uneven and inadequate lighting may also affect the
interpretation. About 2% of the main sewer network in the UK had been inspected
by 2004 and at least 20% of those observations obtained by CCTV inspection were
thought to be inaccurate (OFWAT 2004).
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24.2.2.2 Sonar Techniques

Sonic techniques can be used to measure mass loss of exposed steel due to corrosion,
and can also identify the deformation of pipes and the volume of debris inside a
pipeline. The basic principle of sonar techniques is that a sound wave is excited
from a transmitter, and the time for transmission and reflection is measured. The
distance between the transmitter and the target can then be estimated by using the
speed of sound traveling in the medium, for example, water; from this information, a
sonar profiling image of a pipe’s interior condition can be constructed and assessed
(Hao et al. 2012). The advantage of sonar techniques is that they are not limited
to pipelines that are free of fluids, which largely removes the cost of dewatering
and reduces the possibility of uninspected pipelines (Schrock 1994). It is important
to note that sonar images captured above and below the water surface should be
constructed and interpreted separately because the traveling speeds of sound in air
and water are different (Eiswirth et al. 2000).

24.2.2.3 Sewer Scanning and Evaluation Technology (SSET)

Optical scanner and gyroscope techniques were adapted for pipe-interior inspection
in the late 1990s, integrated as sewer scanning and evaluation technology (SSET),
and specially developed for pipe-interior condition assessment. Unlike CCTV, SSET
allows defect interpretation after the device has finished running through the whole
length of the pipe. There are studies in the literature on automating the assessment
process in order to increase the efficiency and interpretation accuracy (Chae and
Abraham 2001). Similar to CCTV, SSET also involves the interpretation of visual
images collected by the device and only surface defects can be assessed. Therefore,
SSET has recently been combined with other inspection techniques such as ground-
penetrating radar (GPR; Koo and Ariaratnam 2006).

24.2.2.4 Laser-Based Scanning

Laser-based scanning started to be employed for pipeline inspection in the early
twenty-first century. The basic principle of laser-based scanning is that it will contin-
uously generate a laser beam,which is projected around the pipe-interior. It highlights
and profiles the crown shape at each point along the pipe alignment (Read 2004). The
limitation of laser-based scanning survey is that it can only be used reliably above
the water surface. Recently, 3D laser scanning and modeling have been developed,
which makes it possible to provide a 3D profile of the pipe (Garvey 2012).

24.2.2.5 Infrared Thermography

Sham et al. (2019) presented a first case study of customizing an in-pipe infrared
thermographic system built in-house (IPITS). It makes use of thermo-images for
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imaging and diagnosis of pipe crown conditions in underground sewer pipelines.
Active and passive infrared thermography (IRT) was attempted in two gravity sewer
pipes in Singapore in July 2017. The results show that images captured with active
IRT (with heating) can reveal the invisible lining defects not readily revealed by
traditional visual inspection using CCTV. These defects include delamination and
bubbles, water seepage, wrinkling, or construction details (like anchor knobs in the
inspectedHDPEmaterial), forwhich sizeswere estimated using an image-processing
algorithm customized in an in-house program. The results are believed to pave the
way for parallel inspections using a combination of CCTV and infrared cameras in
composite-lined pipelines.

24.3 Future Trends of Research and Development

24.3.1 Multi-array and Fully Automated GPR

The single-channel GPR system discussed above is restricted by its limited under-
ground footprint over a particular traverse; hence multiple traverses in x–y planes
are required to generate an underground 3D image. With the advent of instrumen-
tation and improved computer processing power, antenna arrays can be formed by
aligning multiple antennae to cover a larger footprint. The advantage of this setup
is that it allows the survey of a wide section in a single traverse, which can even be
accomplished at highway speeds; thus it avoids tedious temporary traffic blockage
and bureaucratic procedures as required in single-channel GPR imaging. Also, the
configuration of the array is flexible, and spacing between antenna and number of
channels can be user-defined to achieve the necessary resolution required for a survey.
In addition, while the traditional pulse-GPR used a fixed center frequency and was
limited to a certain bandwidth, new GPR arrays include step frequency continuous
wave (SFCW) technology, which generates almost a flat response over a wide band-
width (e.g., 10–1500 MHz). This newer setup can image satisfactorily at multiple
depths and multiple resolutions in a single traverse.

24.3.2 In-Line Robotic Imaging with Micro-robots Carrying
Small Sensors in Pressurized and Gravity Utilities

An increasingly popular type of in-line technology for condition diagnosis uses
an installed inspection tool as an alternative for minor leaks and seepages that are
not detectable by ground-based technologies in a pressurized utility, such as in-line
acoustic emission (AE). When AE sensors are inserted in any pressurized water
utility, leaks and defects can be detected following the same principle as the noise
logger and LNC. This overcomes most of the ground-based AE’s limitations and
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can reach the defective area directly. The in-line AE tool may consist of an acoustic
hydrophone,magnetometer, gyroscope, accelerometer, and an internal power-supply,
or in some cases, may employ free-swimming within the utility without power. The
in-line AE tool, with appropriate water-proof and dust-proof housing, is conveyed
through the utility and is driven by the flowing current without disrupting normal
service. The quality of the in-line AE tool, the transport medium, and the current
(water or gas) transmission velocity control the sensitivity. For an exact pinpointing
of the leak or defect within the utility, the in-line AE tool is driven by the flow current,
in which chainage is measured by an odometer wheel or regular time tag. The start
(insertion), intermediate (tracking), and end (extraction) nodes (e.g., air valves) must
be geo-referenced with GPS or topographic surveys.

24.3.3 Multi-disciplinary Research on Sensors, Robotics,
Electronics, Pattern Recognition, and Change
Detection

For any successful utility mapping, imaging, and diagnosis, there are three key
technological elements:

Physics Sensors such as an antenna array, an induction coil, a piezoelectric device,
CCD, a laser, or an echo sounder have to be designed to compromise (1) the survey
purposes of imaging and diagnosis, and (2) its interaction with the utility material
properties or media around the utility, such as attenuation, resolution, scattering,
and environment. Results should be within reasonable ranges of uncertainty and
acceptable levels of accuracy in the above-mentioned two modes of the survey: (1)
ground-based technologies where the sensors and the utilities are remotely separated
by materials like soil, and (2) in-line technologies where the sensors are directly
driven by fluid flow along with the utilities.

Robots and electronics Current surveys have limited efficiency because of insuffi-
cient sampling of data resulting from themanual nature of the operation. For full-field
utility imaging and diagnosis, the underground’s confined space and its large volume
of captured data require robots carrying sensors and electronics for seamless posi-
tionings, like an inertia motion unit (IMU), simultaneous localization and mapping
(SLAM), and wire or wireless communication between the ground control station
and the sensors.

Pattern recognition and change detection Comprehensive databases of signatures
of subsurface defects are required to define defects as diagnostics for pattern recog-
nition. Matching of physical methods and failure modes due to utilities are required:
for example, GPR and void, IR and delamination, PCL/EML and pipe alignment,
CCTV and surface defects, etc. With the matching defined in a database, operators
will be liberated from the massive amount of data interpretation. Next, change detec-
tion enables establishment of a medical record of underground utilities with a series
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of time-lapse utility imaging and diagnosis, for extracting development of poten-
tial subsurface defects longitudinally rather than when failure happens. A successful
pattern recognition system should be able to distinguish (1) true positive (TP; i.e.,
identified defects do exist) and false negative (FN; no defects identified and confirmed
after ground-truthing); and (2) false alarm: true negative (TN; i.e., identified defects
do not exist) or false positive (FP; defects exist but are not identified).

24.3.4 Utility Lab

An underground utility survey lab is very much in need for research on these topics.
In theDepartment of Land Survey andGeoInformatics of theHongKongPolytechnic
University, a lab was designed and built and has been in operation since July 2014.
Scale-down networks and a matrix consisting of metallic and non-metallic fresh
and saltwater supply pipes, drainage, and sewerage pipes connected with manholes,
power cables, and gas cables, and valve chambers of various kinds are embedded
in a big tank in the lab. These networks of underground utilities and back-filled soil
serve as a scaled-downmodel comparable to actual field conditions. The lab provides
an indoor and controllable environment where orientations, depths, sizes, material
types, and coordinates of various utility networks are carefully designed and recorded.
All these attributes are geo-referenced and integrated into a geographic information
system.

Students and practitioners can operate various survey instruments to position and
map the networks and the matrix of underground utilities and other objects, as well
as to carry out condition surveys, and assessment and monitoring with advanced
nondestructive instrumentation and software. The instrumentation includes ground-
penetrating radar, electromagnetic induction, acoustic leak-noise correlation, noise
logger, etc. The software consists of commercial and programs developed in-house,
which support signal processing and multi-dimensional subsurface imaging of the
collected electromagnetic, acoustic, and thermographic signals. In the lab, users
can practice with the survey instruments, software, and standard survey procedures;
understand what can and what cannot be done; and understand the relationships
between accuracies and uncertainties of each survey method and any particular
problem. Such an indoor and controlled environment enhances the confidence of
students and practitioners who carry out underground utilities surveys, assessment,
and monitoring in actual site environments, where most utilities are unseen and
accuracies of records are not guaranteed.

The lab also serves as a hub to validate non-standardized survey methods and
procedures for particular problems in two categories. The first is positioning and
mapping, such as orientations, depths, sizes, and material types of utilities. The
second is condition survey, assessment, andmonitoring, including the effects ofwater
leaks, subsurface voids, soil types, and moisture content, and coverage of concrete
and asphalt structures for various types of survey signals. Each individual validation
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between any particular survey technology and any particular problem characterizes
itself via the provision of the signal fingerprints. These validated fingerprints in
the lab serve as a basis for pattern matching in actual field surveys. The lab is an
essential step to substantiate any interpretation of imaging and diagnostic findings.
The setting in the lab provides an ideal environment for such a validation process
for better interpretation of positioning, mapping, condition survey, assessment, and
monitoring of the very complicated and congested underground utilities in urban
areas (Fig. 24.4).

24.4 Conclusion and the Way Forward

This chapter has reviewed the current state of the art’s technologies of under-
ground utility mapping, imaging, and diagnosis, and future trends of development,
namely sensor physics, robotics and electronics, and pattern recognition and change
detection. These are all still relatively new areas for practical imaging and diagnosis.

A literature review always tells of the successful rather than failed case studies
of utility imaging and diagnostic applications in various underground problems.
However, in reality, it is very normal for survey results to be less than satisfac-
tory, especially when the introduced technologies are inappropriately carried out in
commercial contracts. If one attempts to look beyond the successes, one finds that
at least one or a combination of the following five factors (abbreviated to 4M1E)
account for the outcome of those unsatisfactory results.

• Men (and women): qualified personnel who are trained and experienced
• Methods: procedures of data collection, processing, and interpretation
• Machines: functions, calibration, and verification in a fixed period of time
• Material: wave attenuation, resolution limits, wave scattering, etc.
• Environment: temperature, humidity, visibility, site constraints, etc.

These problems give rise to many opportunities for research and develop-
ment, and can loosely be divided into the human (24.4.1) and technological
(24.4.2) perspectives corresponding to 4M1E, leading to research and development
opportunities.

24.4.1 Human-Factor Perspective

The first and the most important reason for the less than satisfactory cases is the first
M, the staffing factor, which is more or less related to human factors and associated
errors; for example, manipulation of an intensity scale for drawing favorable but not
genuine conclusions. Urban geophysics for underground object imaging is becoming
a regular technology, rather than one carried out by a small group of elite researchers.
Its nature is similar to the function of radiographers assisting medical doctors in
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making diagnoses for patients. But these crucial yet arbitrary functions always require
indirect evidence and human judgement, which are heavily dependent on perception
of the tasks and cognitive biases. They are often the least considered factor in the
scientific community and in practice.

Yet they can be more important than, or at least as important as, the other uncer-
tainties in other Ms and E. So, a blind test is the most efficient method for evaluating
the capability of staff (Lai et al. 2018b). Research on the blind test’s rationale aims
(1) to identify and understand the common cognitive biases in the blind test systemat-
ically, (2) to investigate the effect of corresponding cognitive biases on the quality of
decision-making, and (3) to establish a bias-alleviation model and guideline with de-
biasing techniques specific for the blind test exercise on any tasks in utility imaging
and diagnosis. In practice, regular certification and accreditation of service providers
can also help to alleviate part of these problems.

24.4.2 Technological Perspective

Biases from human judgment or survey setting can be reduced but not completely,
and therefore doubts arise about imaging and diagnostic purpose. Apart from
multi-disciplinary hardware research (sensors, robotics, and electronics), system-
atic, bias-free, automatic, or semi-automatic workflow for urban underground diag-
nosis based on forward and inverse methods is surely the way forward. Develop-
ment of methods integrated with image processing algorithms for extracting spatial
and temporal features (i.e., hazards) from utility-surveying methods are of utmost
importance because of the large amount of data and point clouds. The process
imitates the decision-making process normally made by skilled professionals but
in a semi-automatic and more robust fashion, especially when even the most skilled
professionals would fall short in their ability to handling huge volumes of data.

This initiative contributes to the research, engineering, and surveying community
in the following four aspects for each of the utility imaging and diagnostic methods
described in the sections above. First, object- or hazard-oriented workflow for gener-
alizing reliable images should be developed, with empirical, statistical, or learned
thresholds and ranges of identified and crucial parameters. The workflow should
be validated after comparing images and reality through ground truth. Secondly,
the responses of underground hazards, for example, void, leak, pipe wall thinning,
should be quantitatively analyzed with laboratory and fieldwork. Thirdly, a workflow
integrating pattern recognition techniques should be developed to identify hazards
automatically or semi-automatically and suggest rates of true positives. Last, develop-
ment of a workflow is required to identify temporal changes from time-lapse datasets
with change detection techniques commonly used in remote sensing, for example,
k-means clustering to classify pixels into changed or unchanged. These four direc-
tions provide a gateway towards reliable and consistent imaging and diagnosis, and a
basis of time-lapsed comparisonwith awell-established pattern recognition database.
In short, this research and development direction, if implemented in practice, will
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establish a healthy diagnostic approach for the urban underground, so that human
subjective interventions and other unfavorable factors in 4M1E are reduced as much
as possible.

References

Alani AM, Aboutalebi M, Kilic G (2013) Applications of ground penetrating radar (GPR) in bridge
deck monitoring and assessment. J Appl Geophys 97:45–54

Anspach JH (2002) Standard guideline for the collection and depiction of existing subsurface utility
data. In: Pipelines 2002: beneath our feet: challenges and solutions, p 1

ASCE (2002) Standard guidelines for the collection and depiction of existing subsurface utility
data. Reston

ASTM (2011) Standard guide for using the surface ground penetrating radar method for subsurface
investigation. D6432

Ayala-Cabrera D, Herrera M, Izquierdo J, Pérez-García R (2011) Location of buried plastic pipes
using multi-agent support based on GPR images. J Appl Geophys 75(4):679–686. https://doi.org/
10.1016/j.jappgeo.2011.09.024

Baker JA, Anderson NL, Pilles PJ (1997) Ground-penetrating radar surveying in support of
archeological site investigations. Comput Geosci 23(10):1093–1099

BimpasM,AmditisA,UzunogluN (2010)Detection ofwater leaks in supply pipes using continuous
wave sensor operating at 2.45 GHz. J Appl Geophys 70(3):226–236. https://doi.org/10.1016/j.
jappgeo.2010.01.003

Birken R, Miller DE, Burns M, Albats P, Casadonte R, Deming R, Oristaglio M et al (2002)
Efficient large-scale underground utility mapping in NewYork City using a multichannel ground-
penetrating imaging radar system. Paper presented at the ninth international conference on ground
penetrating radar (GPR 2002)

Böniger U, Tronicke J (2010a) On the potential of kinematic GPR surveying using a self-
tracking total station: evaluating system crosstalk and latency. IEEE Trans Geosci Remote Sens
48(10):3792–3798

Böniger U, Tronicke J (2010b) Symmetry based 3DGPR feature enhancement and extraction. Paper
presented at the 13th international conference on ground penetrating radar (GPR)

Cassidy NJ, Eddies R, Dods S (2011) Void detection beneath reinforced concrete sections: the
practical application of ground-penetrating radar and ultrasonic techniques. J Appl Geophys
74(4):263–276. https://doi.org/10.1016/j.jappgeo.2011.06.003

Cataldo A, De Benedetto E, Cannazza G, Giaquinto N, Savino M, Adamo F (2014) Leak detection
through microwave reflectometry: from laboratory to practical implementation. Measurement
47:963–970. https://doi.org/10.1016/j.measurement.2013.09.010

Chae MJ, Abraham DM (2001) Neuro-fuzzy approaches for sanitary sewer pipeline condition
assessment. J Comput Civ Eng 15(1):4–14

Cheung BW-Y, Lai WW-L (2019) Field validation of water-pipe leakage detection through spatial
and time-lapse analysis of GPR wave velocity. Near Surf Geophys 17(3):231–346

Crocco L, Prisco G, Soldovieri F, Cassidy NJ (2009) Early-stage leaking pipes GPRmonitoring via
microwave tomographic inversion. J Appl Geophys 67(4):270–277. https://doi.org/10.1016/j.jap
pgeo.2008.09.006

Demirci S, Yigit E, Eskidemir IH (2012) Ground penetrating radar imaging of water leaks from
buried pipes based on back-projection method. Non-Destruct Test Eval Int 47:35–42. https://doi.
org/10.1016/j.ndteint.2011.12.008

Eiswirth M, Heske C, Hötzl H, Schneider T, Burn L (2000) Pipe defect characterisation by multi-
sensor systems. In: Proceedings of 18th international conference of no-dig, Oct 2000

https://doi.org/10.1016/j.jappgeo.2011.09.024
https://doi.org/10.1016/j.jappgeo.2010.01.003
https://doi.org/10.1016/j.jappgeo.2011.06.003
https://doi.org/10.1016/j.measurement.2013.09.010
https://doi.org/10.1016/j.jappgeo.2008.09.006
https://doi.org/10.1016/j.ndteint.2011.12.008


436 W. W.-L. Lai

Fernandes FM, Fernandes A, Pais J (2017) Assessment of the density and moisture content of
asphalt mixtures of road pavements. Constr Build Mater 154:1216–1225

GaoY, BrennanMJ, Joseph P,Muggleton J, Hunaidi O (2005) On the selection of acoustic/vibration
sensors for leak detection in plastic water pipes. J Sound Vib 283(3–5):927–941

GarveyM (2012) 3D laser scanning technology benefits pipeline design: theworld isn’t flat. Pipeline
Gas J 239(10):32–38

Glaser DR, Werkema DD, Versteeg RJ, Henderson RD, Rucker DF (2012) Temporal GPR imaging
of an ethanol release within a laboratory-scaled sand tank. J Appl Geophys 86:133–145. https://
doi.org/10.1016/j.jappgeo.2012.07.016

Goodman D, Nishimura Y, Rogers JD (1995) GPR (ground penetrating radar) time slices in
archaeological prospection. Archaeol Prospect 2:85–89

Goulet J-A, Coutu S, Smith IFC (2013) Model falsification diagnosis and sensor placement for leak
detection in pressurized pipe networks. Adv Eng Inform 27(2):261–269. https://doi.org/10.1016/
j.aei.2013.01.001

Hadjmeliani M (2015) Degradation of sewage pipe caused sinkhole: a real case study in a main
road. Paper presented at the Congrès Français de Mécanique

Hao T, Rogers CDF,Metje N, ChapmanDN,Muggleton JM, FooKY, Saul AJ et al (2012) Condition
assessment of the buried utility service infrastructure. Tunn Undergr Space Technol 28:331–344.
https://doi.org/10.1016/j.tust.2011.10.011

Institute of Civil Engineers (2014) PAS 128:2014 British standard: specification for underground
utility detection, verification and location

Jol HM (2009) Ground penetrating radar theory and applications. Elsevier, Oxford
Kirkham R, Kearney PD, Rogers KJ, Mashford J (2000) PIRAT—a system for quantitative sewer
pipe assessment. Int J Robot Res 19(11):1033–1053

Koo D-H, Ariaratnam ST (2006) Innovative method for assessment of underground sewer pipe
condition. Autom Construct 15(4):479–488

Kowalsky MB, Finsterle S, Peterson J, Hubbard S, Rubin Y, Majer E, Gee G et al (2005) Estima-
tion of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and
hydrological data. Water Resour Res 41(11)

Lai WL, Kou SC, Poon CS (2012) Unsaturated zone characterization in soil through transient
wetting and drying using GPR joint time–frequency analysis and grayscale images. J Hydrol
452–453:1–13. https://doi.org/10.1016/j.jhydrol.2012.03.044

LaiWL, Kind T, Stoppel M,Wiggenhauser H (2013) Measurement of accelerated steel corrosion in
concrete using ground-penetrating radar and a modified half-cell potential method. J Infrastruct
Syst 19(2):205–220. https://doi.org/10.1061/(asce)is.1943-555x.0000083

Lai WWL, Chang RKW, Sham JFC, Pang K (2016) Perturbation mapping of water leak in buried
water pipes via laboratory validation experiments with high-frequency ground penetrating radar
(GPR). Tunn Undergr Space Technol 52:157–167. https://doi.org/10.1016/j.tust.2015.10.017

Lai WW, Chang RK, Sham JF (2017a) Detection and imaging of city’s underground void by
GPR. Paper presented at 2017 9th international workshop on advanced ground penetrating radar
(IWAGPR)

Lai WW, Ho ML-Y, Chang RK, Sham JF, Poon CS (2017b) Tracing and imaging minor water
seepage of concealed PVC pipe in a reinforced concrete wall by high-frequency ground
penetrating radar. Construct Build Mater 151:840–847

Lai WWL, Dérobert X, Annan P (2018a) A review of ground penetrating radar application in civil
engineering: a 30-year journey from locating and testing to imaging and diagnosis. Non-Destruct
Test Eval Int 96:58–78

Lai WLW, Chang KWR, Sham JFC (2018b) A blind test of nondestructive underground void
detection by ground penetrating radar (GPR). J Appl Geophys 149:10–17

Leckebusch J (2003) Ground-penetrating radar: a modern three-dimensional prospection method.
Archaeol Prospect 10(4):213–240

https://doi.org/10.1016/j.jappgeo.2012.07.016
https://doi.org/10.1016/j.aei.2013.01.001
https://doi.org/10.1016/j.tust.2011.10.011
https://doi.org/10.1016/j.jhydrol.2012.03.044
https://doi.org/10.1061/(asce)is.1943-555x.0000083
https://doi.org/10.1016/j.tust.2015.10.017


24 Underground Utilities Imaging and Diagnosis 437

Léger E, Saintenoy A, Coquet Y (2014) Hydrodynamic parameters of a sandy soil determined by
ground-penetrating radar inside a single ring infiltrometer. Water Resour Res 50(7):5459–5474.
https://doi.org/10.1002/2013wr014226

Leucci G, Negri S, Carrozzo MT (2003) Ground penetrating radar (GPR): an application for
evaluating the state of maintenance of the building coating. Ann Geophys 46(3)

Liu Z, Kleiner Y (2013) State of the art review of inspection technologies for condition assessment
of water pipes. Measurement 46(1):1–15. https://doi.org/10.1016/j.measurement.2012.05.032

Loizos A, Plati C (2007) Accuracy of pavement thicknesses estimation using different ground
penetrating radar analysis approaches. Non-Destruct Test Eval Int 40(2):147–157. https://doi.
org/10.1016/j.ndteint.2006.09.001

LuoTX, LaiWW,ChangRK,GoodmanD (2019)GPR imaging criteria. J ApplGeophys 165:37–48
McKirdy EE (2014) Dozens dead as Taiwan gas explosions tear up streets. CNN
MetwalyM (2015) Application of GPR technique for subsurface utility mapping: a case study from
urban area of Holy Mecca, Saudi Arabia. Measurement 60:139–145. https://doi.org/10.1016/j.
measurement.2014.09.064

MillingtonTM,CassidyNJ (2010)OptimisingGPRmodelling: a practical,multi-threaded approach
to 3D FDTD numerical modelling. Comput Geosci 36(9):1135–1144

Nobes DC (2017) Ground penetrating radar response from voids: a demonstration using a simple
model. Non-Destruct Test Eval Int 91:47–53

Ocaña-Levario SJ, Carreño-Alvarado EP, Ayala-Cabrera D, Izquierdo J (2018) GPR image analysis
to locate water leaks from buried pipes by applying variance filters. J Appl Geophys 152:236–247

OFWAT (2004) Out of sight—not out of mind. In: 13th report of session
Prego F, Solla M, Puente I, Arias P (2017) Efficient GPR data acquisition to detect underground
pipes. Non-Destruct Test Eval Int 91:22–31

Read GF (2004) Sewers: replacement and new construction. Elsevier
Sagnard F, Norgeot C, Derobert X, Baltazart V, Merliot E, Derkx F, Lebental B (2016) Utility
detection and positioning on the urban site sense-city using ground-penetrating radar systems.
Measurement 88:318–330. https://doi.org/10.1016/j.measurement.2016.03.044

Schrock B (1994) Existing sewer evaluation and rehabilitation. In: ASCE manual and report on
engineering practice 62

ShamJFC,LaiWWL(2016)Development of a newalgorithm for accurate estimation ofGPR’swave
propagation velocity by common-offset survey method. Non-Destruct Test Eval Int 83:104–113.
https://doi.org/10.1016/j.ndteint.2016.05.002

Sham JF, LaiWW, ChanW, Koh CL (2019) Imaging and condition diagnosis of underground sewer
liners via active and passive infrared thermography: a case study in Singapore. Tunn Undergr
Space Technol 84:440–450

Shangguan P, Al-Qadi IL, Lahouar S (2014) Pattern recognition algorithms for density estimation
of asphalt pavement during compaction: a simulation study. J Appl Geophys 107:8–15. https://
doi.org/10.1016/j.jappgeo.2014.05.001

Siu K, LaiWW (2019) A lab study of coupling effects of electromagnetic induction on underground
utilities. J Appl Geophys 164:26–39

Tosti F, Benedetto A, Ciampoli LB, Lambot S, Patriarca C, Slob EC (2016) GPR analysis of clayey
soil behaviour in unsaturated conditions for pavement engineering and geoscience applications.
Near Surf Geophys 14(2):127–144

Tosti F, Ciampoli LB, Calvi A, Alani AM, Benedetto A (2018) An investigation into the railway
ballast dielectric properties using different GPR antennas and frequency systems. Non-Destruct
Test Eval Int 93:131–140

UUS-SPEC (2019a) Specification for nondestructive testing, surveying, imaging and diagnosis for
underground utilities (NDTSID-UU) 1.1 pipe cable locating/eletromagnetic locating. Department
of Land Surveying and Geo-informatics, The Hong Kong Polytechnic University

UUS-SPEC (2019b) Specification for nondestructive testing, surveying, imaging and diagnosis for
underground utilities (NDTSID-UU) 1.2 ground penetrating radar.Department of LandSurveying
and Geo-informatics, The Hong Kong Polytechnic University

https://doi.org/10.1002/2013wr014226
https://doi.org/10.1016/j.measurement.2012.05.032
https://doi.org/10.1016/j.ndteint.2006.09.001
https://doi.org/10.1016/j.measurement.2014.09.064
https://doi.org/10.1016/j.measurement.2016.03.044
https://doi.org/10.1016/j.ndteint.2016.05.002
https://doi.org/10.1016/j.jappgeo.2014.05.001


438 W. W.-L. Lai

Wong O (2014) A small army of specialists struggles to keep Hong Kongers safe from labyrinth of
pipes and cables. South China Morning Post

Yehia S, Qaddoumi N, Farrag S, Hamzeh L (2014) Investigation of concrete mix variations and
environmental conditions on defect detection ability using GPR. Non-Destruct Test Eval Int
65:35–46. https://doi.org/10.1016/j.ndteint.2014.03.006

Wallace W. L. Lai is an Associate Professor of the Department
of Land Surveying and Geo-informatics at The Hong Kong Poly-
technic University, and also a Visiting Scientist at the Federal
Institute of Research and Testing of Materials in Berlin. His
research and teaching interest is in the engineering and near-
surface geophysics of the urban underground world.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.ndteint.2014.03.006
http://creativecommons.org/licenses/by/4.0/


Chapter 25
Mobile Mapping Technologies

Kai Wei Chiang, Guang-Je Tsai, and Jhih Cing Zeng

Abstract This chapter introduces the historic development as well as the latest
progress of mobile mapping systems. First, mobile mapping technologies, including
the introduction of positioning and mapping sensors, and how they can be inte-
grated together, are briefly reviewed. Then the development of land-based, aerial,
marine, and mobile portable mapping platforms is presented. The latest progress in
mobile-mapping technologies is further discussed, alongwith sensor fusion schemes,
seamless indoor and outdoor mapping strategies, and disaster response applica-
tions. In addition, this chapter explores future and potential applications, such as
high-definition (HD) maps and autonomous mapping with autonomous systems.

25.1 Introduction

The recent growing market for geospatial data and its applications has increased the
demand for collecting geospatial data efficiently and economically. Mobile mapping
technologies, including multi-sensor integration and multi-platform mapping tech-
nology, have clearly established a modern framework moving towards efficient
geospatial data acquisition for various applications such as conventional mapping
scenarios, rapid disaster response, smart city, and autonomous vehicle applications.
Among those applications, applying mobile mapping systems to build indoor maps
for pedestrian navigation and high-definition (HD)maps for autonomous vehicles are
the most popular topics driven by the booming business opportunities in geospatial
communities.

Mobile mapping refers to a means of collecting geospatial data using mapping
sensors mounted on a moving platform (El-Sheimy 1996). The original idea of
adopting mobile mapping technologies was limited to applications that allowed
the determination of exterior orientation parameters using existing ground control
points. This procedure is known as georeferencing. In fact, the concept of mobile
mapping has been rooted in the geomatics communities ever since photogrammetry
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was adopted. Research concerning mobile mapping was mainly driven by the need
for highway infrastructure mapping and transportation corridor inventories in the
late 1980s (El-Sheimy 1996).

Over the next decades, advances in satellite navigation and inertial sensing tech-
nology altered the development of mobile mapping in a different way. The trajec-
tory and attitude of the mobile mapper are now determined directly, instead of using
ground control points as references for positioning and orienting the images in space.
The determination of time-variable position and orientation parameters for a mobile
digital imager is known as direct geo-referencing (DG), which is the core ingredient
of modern mobile mapping technology (El-Sheimy 1996). Figure 25.1 illustrates the
evolution of georeferencing technology over the past decades.

Cameras and laser scanners or light detection and ranging (LiDAR), along with
positioning and orientation sensors, are integrated and mounted on a moving plat-
form for mapping purposes. Objects of interest can be directly measured andmapped
from georeferenced images or point clouds. The most common technologies used
for this purpose today are satellite positioning using global navigation satellite
systems (GNSS) and inertial navigation using an inertial measuring unit (IMU).
They are usually integrated to provide seamless time-variable position and orien-
tation parameters for mobile mapping systems. Figure 25.2 illustrates the scope
of mobile mapping technology, including components, platforms, and applications,
respectively. Figure 25.3 illustrates the example of sensors applied by an image-based
mobile mapping system and their functions, respectively.

Fig. 25.1 The evolution of georeferencing technology
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Fig. 25.2 The scope of mobile mapping technologies

Fig. 25.3 Sensor functions
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25.2 Roadmap of Mobile Mapping Technologies

Pilot demonstrations of land-based mobile mapping technology date back to the
demand for a mobile highway inventory system (MHIS) proposed by some Cana-
dian provincial governments and US state governments in the early 1980s. Since
the 1980s, at least 1000 land-based mobile mapping systems (including street-view
cars) are currently practicing around the world to perform rapid geospatial informa-
tion acquisition for various applications. The important milestones in this process
can be divided into three stages: The first stage is the pre-INS period, from 1983 to
1993; the second stage is the post-INS period, from 1993 to 2000, and the last stage
is the LiDAR period, from 2000 to the present. To meet the demands of different
users, land-based mobile mapping technology has changed significantly in terms of
its positioning and orientation systems over the past 30 years. The first representa-
tive system of the pre-INS era is the Alberta MHIS developed jointly by the Alberta
Government ofCanada and theUniversity ofCalgary (Schwarz andEl-Sheimy2008).
Early land-based mobile mapping technology adopted dead-reckoning sensors such
as gyroscopes, accelerometers, and odometers to derive positioning solutions using
the principle of relative positioning, where in the 1980s, the imaging sensors utilized
were mostly analog cameras. The images taken recorded the status of the road facil-
ities and provide near-real-time road information for maintenance agencies. The
second representative system during this period was a land-based mobile mapping
systemcalledGPSVan from theCenter forMapping at TheOhioStateUniversity. The
system used the Global Positioning System (GPS) and odometers to provide navi-
gation parameters, as illustrated in Fig. 25.4. The primary imaging sensors were two
cameras that could continuously capture stereo pairs. The three-dimensional coordi-
nates of the features were obtained by the principle of close-range photogrammetry.
The positioning accuracy of GPSVan was 0.3–3 m (Grejner-Brzezinska 2001).

The representative system of the post-INS era was the VISAT series developed by
theUniversity ofCalgary,Canada.The school has beendeveloping land-basedmobile
mapping technology for nearly 40 years. First, the INS/GPS systemwas successfully
integrated into the Alberta MHIS in 1994. The first generation of mobile mapping

Fig. 25.4 The first land-based mobile mapping technology
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technology architecture, called the first generation of VISAT Van (Shin 2005), is
shown in Fig. 25.4.

The second generation of VISAT was a complete architecture, for example,
INS/GPS integrated systems, odometers, and color charge-coupled device (CCD)
cameras (El-Sheimy 1996). This system was the first in the world to introduce a
navigation-grade INS (a gyro drift of less than 0.01°/h) using a ring laser gyroscope
(RLG) with a positioning accuracy of 0.1–1 m. The system features an adjustable
shooting interval at high moving speed (100 km/h). The LiDAR period began in
the 2000s, and compared to the mobile mapping technology in the first two stages,
the primary difference is the addition of LiDAR in the imaging-sensor component.
Numerous geospatial information-associated companies around the world, such as
Google, Apple, and their competitors, are adopting mobile mapping technology
and building a solid digital foundation of countless exciting applications driven by
geospatial information for the coming decades.

In addition to Google’s sustained development of various applications based on
Street View technology, Apple also implemented the development of independent
mobile mapping technology in 2014 and developed the exclusive Apple Van to catch
upwith the progress ofGoogle’s geospatial information technology.At the same time,
Finland’s Nokia-funded world-class navigation map maker, Here, also developed its
ownmobile mapping technology, whichwas also acquired byGermany’s threemajor
automakers to produce accurate navigation maps to meet the demands of the auto-
motive industry. Even Toyota exhibited a map-production technology for passenger
cars at CES 2016. Therefore, mobile mapping technology plays an important role in
the development of autonomous driving technology as it provides the digital world to
meet the navigation safety requirements of future autonomous-vehicle applications.

The development of airborne mobile mapping technology dates back to the early
1990s, similar to the development of land-based mobile mapping technology. The
important milestones can be divided into three stages as well: The first stage is the
pre-INS period, from 1985 to 1995; the second stage is the post-INS period, from
1995 to 2000; and the last stage is the LiDAR period, from 2000 to the present. In
the pre-INS period, many researchers in Europe and America proposed providing
the orientation parameters for aircraft using a GPS multi-antenna array (Cohen and
Parkinson 1992; El-Mowafy and Schwarz 1994), but the accuracy provided (0.1–
0.03°) was limited by the baseline (2–10 m) of the multi-antenna array placed on the
aerial survey aircraft and the solution of the GPS integer ambiguity values.

Since the early 1990s, many researchers in Europe and the United States have
recognized the necessity of INS for the development of airborne mobile mapping
technology (Cannon and Schwarz 1990). The earliest configuration of airborne
mobile mapping technology with an INS was developed by the Department of
Geomatics Engineering at theUniversity of Calgary, Canada (Skaloud et al. 1996). Its
DG accuracy without using ground control points was about 30–40 cm. The reason
why the development of the airborne system lags behind the land-based system is
the acquisition of high-precision INS. Most of the land-based systems developed in
the early 1990s applied odometers and gyroscopes, while the demand for accurate
orientation parameters using an INS for an airborne system is higher than that of a
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land-based system. The first land-based system using an INS was deployed in 1993.
Therefore, it is not difficult to understand why the development of airborne mobile
mapping technology was slightly behind that of land-based systems.

At the same time, the Center for Mapping at Ohio State University developed a
similar Airborne Integrated Mapping System (AIMS) in 1998 with a DG accuracy
of about 20–30 cm (Grejner-Brzezinska 2001). The operational flexibility of the
DG mode was greatly enhanced, and its practical costs were considerably reduced,
especially in applications where few or no ground control points are available for
airborne applications. Ip et al. (2004) combined the traditional aerial triangulation
using ground control points andDG to develop an integrated sensor orientation (ISO)
procedure to improve the stability of airborne mobile mapping systems using limited
ground control points. The last stage is the LiDAR period. Compared to the first
two stages of the airborne mobile mapping technology, the main difference is the
addition of a LiDAR system as an additional imaging sensor. The earliest experiment
on airborne scanners dates back to the 1970s and 1980s, but only since the maturity
of the data-processing and hardware technologies related to LiDAR- and INS/GPS-
integrated positioning and orientation systems, have such airborne mobile mapping
systems been widely applied in geomatics communities since 1996 (Axelsson 1999).

However, there are some limitations to conventional airborne mobile mapping
systems. The expenses for practicing aerial photogrammetry are high, and there
are strict regulations for the permits necessary to practice airborne surveys in most
countries. Numerous studies have been conducted to adopt unmanned aerial vehicles
(UAVs) for photogrammetry applications. For small and remote-areamapping,UAVs
provide an appropriate and inexpensive platform, especially in developing countries.
In recent years, more and more UAV-based photogrammetric platforms have been
developed, and their performance has been proven in certain scenarios (Chiang et al.
2012).

Nagai et al. (2008) first proposed a UAV-borne mapping system using an
unmanned helicopter as the platform equipped with an INS/GPS system to facilitate
the DG capability, as shown in Fig. 25.5.

Chiang et al. (2012) developed aDG-basedUAVphotogrammetric platformwhere
an INS/GPS integrated POS system was implemented to provide the DG capability
of the platform. Rehak et al. (2013) developed a low-cost UAV for direct geo-
referencing. The advantage of such a system lies in its high maneuverability and
operation flexibility as well as its ability to acquire image data without the need to
establish GCPs.

Chiang et al. (2017) proposed a LiDAR-based unmanned aerial vehicle (UAV).
The UAV integrates an IMU, a GNSS receiver, and low-cost LiDAR, as illustrated
in Fig. 25.6. An unmanned helicopter was introduced, and a multi-sensor payload
architecture for direct georeferencing was designed to improve the capabilities of the
vehicle.

The development of shipborne mobile mapping technology dates back to 2005
(Zach et al. 2011). Its primary system architecture follows that of the land-based
mobile mapping system and adds a stabilizer function to overcome the walrus’ accu-
racy. Zach et al. (2011) applied a shipborne system using the RIGEL VMX-250 with
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Fig. 25.5 An example of a DG-ready UAV helicopter-based photogrammetric platform. Adopted
from Nagai et al. (2008, p. 1217)

Fig. 25.6 An unmanned helicopter-based LiDAR mapping system
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a GNSS receiver and a tactical-grade IMU to scan the relevant monuments along
a canal in Venice, Italy. The objects on both sides of the river were scanned and
recorded along the driving track.

The development of portablemobilemapping technology can be traced back to the
early 2000s. The Department of Geomatics Engineering at the University of Calgary
in Canada developed a prototype of a lightweight and low-cost personal mobile
mapping system. The DG horizontal positioning accuracy of the system without
control points was about 20 cm, and the vertical positioning accuracy was about
10 cm (Ellum 2001). This prototype utilized a digital magnetic compass instead
of an IMU to provide attitude information; however, a digital magnetic compass is
vulnerable tomagnetic-field interference in urban areas and is unstable (Ellum 2001).
A portablemapping system is especially beneficial for disaster response applications.
The disadvantage of a land-based system is the discontinuity of image acquisition
due to the limitations of road-network connections in some narrow lanes. There-
fore, portable mobile mapping systems are designed to cope with such situations, as
illustrated in Fig. 25.7.

Fig. 25.7 Example of portable mobile mapping systems
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25.3 Recent Progress on Mobile Mapping Technology

Amobile mapping system comprises digital imaging systems, positioning and orien-
tation systems, and various practicing platforms and application scenarios, as illus-
trated in Fig. 25.1. On the other hand, the development, hardware cost, and accuracy
requirements of mobile mapping systems are highly correlated. In recent years, due
to increasing demand for automation ofmapping processes in the geospatial informa-
tion industry, mobile mapping systems have gradually become commercially viable
products, since the prototype development stage performed by professional research
institutions before 2005 enabled an innovative solution in the geospatial informa-
tion industry. Besides, the robotics industry also extensively applies similar concepts
and sensors to develop perception technologies to navigate robots in unknown envi-
ronments. Compared with the current mobile mapping systems developed by the
geospatial information industry, the environmental perception technology developed
by the robotic industry has the advantage of low prices, but its accuracy is not suffi-
cient to meet the demands for geospatial applications. The development of mobile
mapping technology in these two areas will definitely stimulate a lot of interest
and further expand the penetration of geospatial information in other communi-
ties. Therefore, mobile mapping technology will continue to evolve based on the
fundamental requirements of users, who are pursuing lower hardware costs, higher
accuracy, and higher profits. Therefore, future development trends can be discussed
according to the evolution of different levels of digital imaging systems, positioning
and orientation systems, different operating platforms, and application scenarios.

25.3.1 Digital Imaging Systems

Current mobile mapping systems have fully adopted image sensors for digital
electronic components. These image sensors include digital cameras using image
frames, multi-spectral line scanners using line-scan technology, and optical and
IFSAR/INSAR. The development of mobile mapping systems is closely related to
the progress of digital imaging technology. Among imaging sensors, the evolution of
image-based digital cameras has played themost important role. These cameras are in
line with the development of LiDARmobile mapping systems, but due to the limited
resolution of CCD cameras used in the 1990s, these CCD digital cameras were used
for land-based mapping systems because the distance of effective measurement in
a land-based scenario is much smaller than the altitude requirements of airborne
applications.

In recent years, the resolution and image size of CCD cameras have gradually
improved. Numerous high-performance digital reflex cameras with single lenses
have been developed and tested for airborne mobile mapping systems, and the results
are quite encouraging. The advantages of using a digital camera are obvious. The
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user does not have to scan a film negative to improve mapping efficiency; the digital
image processing technology improves the automation of feature extraction, and the
updating and storage of digital images are easier.

In the evolution of these digital imaging systems, the IFSAR airborne mapping
systemhas receivedmore attention in the geospatial information community in recent
years (see Chap. 21). It is characterized by rapid deployment, a nearly weather-
free operation mode, and effective penetration of clouds. Another important devel-
opment of digital imaging technology with an airborne mapping system is the
airborne hyperspectral imaging system. Through a combination of different spectral
images,many important features canbederived toprovide environmentalmonitoring,
mining exploration, vegetation inspection, disaster prevention, and land-resource
management.

Recently, sensors adopted in low-cost mobile mapping systems have gradually
been replaced by Kinect’s depth cameras. For indoor scenes, such systems have the
advantage of being low cost and offering mass production for the consumer market.
Google and Apple are competing to develop inertial sensing, depth cameras, and
CCD cameras to create indoor 3D models with mobile devices.

25.3.2 Positioning and Orientation Systems

GPS is a navigation satellite positioning system developed by the United States in the
late 1970s. Currently, 32 satellites operate in orbits about 20,000 km from the Earth’s
surface. Since the design has been around for 30 years, the United States has imple-
mented a GPS modernization plan, adding new, improved quality measurements to
meet the demands of the coming years. More importantly, the GPS modernization
plan upgrades the original dual-frequency system to a tri-frequency system.

In 2001, the Russian government decided to continue to maintain the operation
of GLONASS and proposed a plan similar to GPS modernization. The program
added 24 new satellites by the end of 2010 in order to provide accurate navigation
services worldwide. Like the modernized GPS, the future GLONASS can provide
tri-frequency civilian signals for accurate positioning, navigation, and time-related
applications.

The Beidou Navigation Satellite System is the GNSS developed by China. It is
committed to providing fine-precision positioning, navigation, and time services to
users around the world, and can further provide services to authorized users with
high accuracy requirements for both military and civilian users.

The Galileo system is the GNSS built by the European Union. After the US
GPS, Russia’s GLONASS, and China’s Beidou system, it is the fourth system to
provide civilian global satellite navigation services. The primary purpose of the
Galileo system is to provide civilian navigation, which is different from the three
systems mentioned earlier.
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The GPS Block IIF satellites and the new generations of GPS III that are currently
being launched are capable of transmitting tri-frequency signals, and theGLONASS-
M and the GLONASS-K introduced after 2014 have also added the third frequency.
After the completion of the Galileo and Beidou systems, the multi-frequency obser-
vation using multi-system GNSS is bound to bring higher satellite visibility and
improved accuracy to mobile mappers around the world. In the future, whether it is
real-time kinematic positioning for navigation purposes or post-processing kinematic
or static-baseline solutions for geodetic requirements, users can use multi-system
GNSS receivers to enjoy better positioning results. It is expected that after 2020,
a general user will be able to use the multi-frequency measurements provided by
GNSS to achieve improved positioning accuracy.

At present, e-GPS or e-RTK technology for kinematic positioning with virtual
reference stations has been widely used in the geomatics community. For mobile
mapping applications, the real-time information transfer for high-speed motion plat-
forms required by RTK is a challenge; therefore, e-GPS or e-RTK is not a viable
option for mobile mapping applications at the present time. Therefore, in the future,
in terms of the multi-sensor positioning and orientation software used in the mobile
mapping system, determining how to achieve differential kinematic positioning using
GNSS virtual reference stations in the post-processing architecture is an important
issue.

The development of the mobile mapping system was highly correlated with the
development of strapdown inertial sensing technology. From a DG perspective, there
would be no boomingmobile-mapping-related industrieswithout the advancement of
inertial sensing technology. In principle, an IMUhas three gyroscopes and accelerom-
eters, and it provides compensated raw measurements, including velocity changes
and orientation changes in three directions of its body frame. Those who require
real-time navigation solutions with the use of an IMU require an external computer
that has inertial navigation mechanization algorithms. On the other hand, an INS is
an IMU combined with a navigation computer to provide navigation solutions in the
chosen navigation frame directly in real-time. In addition, it also provides compen-
sated raw measurements. Therefore, the main distinction between an IMU and INS
is the ability to provide real-time navigation solutions. The former only provides
compensated inertial measurements while the latter can provide real-time navigation
solutions as well as compensated inertial measurements.

For mobile mapping system applications, the standard operating procedure in
the calculation of the precise positioning and orientation solution through the post-
processing procedure. Taking the same measurements as an example, in the same
GNSS signal outage period, the positioning accuracy obtained by the post-processing
software using smoothing algorithms is nearly 60% better than the real-time solu-
tion with filtering algorithms. Therefore, the IMU is suitable for mobile mapping
applications.

In recent years, the rapid evolution of inertial sensing technology using micro-
electro-mechanical systems (MEMS) has led to another advance in the sustainable
development of mobile mapping technology. The MEMS IMU is low cost and
provides acceptable performance compared to an IMU with a fiber optic gyroscope
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(FOG) with the same specifications. The price is only one half of its counterpart with
FOG, and the stability of the MEMS IMU will continue to improve over time. At
present, MEMS IMUs with gyroscopes with a drift of 0.5°/h are available for mobile
mapping applications.

25.3.3 Sensor Fusion Algorithms

The Kalman filter (KF) approach has been widely recognized as the standard optimal
estimation tool for current sensor-fusion schemes. However, the major inadequacy
related to the utilization of KF for sensor fusion is the necessity to have a prede-
fined accurate stochastic model for each of the sensor errors. Furthermore, prior
information about the covariance values of each sensor measurement as well as
the statistical properties (i.e., the variance and the correlation time) of each sensor
system must be accurately known (Schwarz and El-Sheimy 2008). Furthermore,
for mobile mapping applications (where the process and measurement models are
nonlinear), the extended Kalman filter (EKF) operates under the assumption that the
state variables behave as Gaussian random variables. Naturally, the EKF may also
work for nonlinear dynamic systems with non-Gaussian distributions, except in the
case of heavily skewed nonlinear dynamic systems, where the EKF may experience
problems (Chiang et al. 2009).

When compared to real-time filtering, post-processing has the advantage of
utilizing an entire data set to estimate a trajectory. This is not possible when using
filtering because only a fraction of the data is available at each sample instance.When
filtering is used in the first step, an optimal smoothingmethod, such as a Rauch-Tung-
Striebel (RTS) backward smoother, can be applied (Chiang et al. 2009). For most of
the surveying applications that require superior accuracy, only data acquisition has
to be implemented in real-time, and data processing and analysis are post-processed.
The procedures for general mobile mapping applications include data acquisition,
georeferencing, measurement, and GIS processing. Only real-time data acquisition
is desired for acquiring IMU, GNSS, CCD image data, and LiDAR point clouds.
For georeferencing processes that put position and orientation stamps on images,
and measurement processes that obtain 3-D coordinates of all important features
and store them in a GIS database, only post-mission processing can be implemented
based on the accuracy requirements of these processes (El-Sheimy 1996).

According to Chiang et al. (2009), the development of the multi-sensor fusion
algorithms for mobile mapping applications can be divided into the following
categories:

• Sampling filter approach: The main feature is to establish an error dynamic model
and sensor error model based on the statistical characteristics according to the
concept of the traditional KF; the nonlinear INS/GNSS integration problem is
linearized when the KF is used. On the contrary, most of these new sampling filter
algorithmsuse nonlinearmodels to dealwith navigation andpositioning problems.
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The traditional KF provides the best solution for the approximate model, and such
sampling filters can provide approximate solutions for accurate models.

• Artificial intelligence approach: The main common feature of such algorithms is
to establish nonlinearity by imitating human learning, where the dynamic models
are approximated with artificial intelligence.

• Hybrid approach: Such fusion algorithms mainly combine the current KF
smoother-based algorithms with AI to develop a hybrid algorithm.

25.3.4 Collaborative Mobile Mapping Schemes

The shortcomings of airborne mobile mapping technologies are similar to those of
traditional aerial survey technologies such as weather dependence and limitations
related to operating ranges. Compared to traditional surveying technologies, land-
based mobile mapping technologies are less intrusive and provide better efficiency
in geospatial information acquisition. While the land-based mobile mapping system
can operate under poor weather conditions, it is sensitive to the quality of the GNSS
signal, and its operating environment is also limited by the existing road network.
The mobility of portable mobile mapping technology is much higher than the other
two referred to above, and it has better operating flexibility.

Land-based mobile mapping systems can conduct control surveying, surface
feature collection, rapid mapping, and image-database updating. The ability to
directly georeferencing an image with an airborne mobile mapping system can
provide the features of the surface entities under observation. Through the images
provided by the vehicle, the user can quickly complete the mapping process and
establish a large volume of attribute data required by the GIS for further analysis.
At the same time, the portable system provides fast property updates to maintain
the correctness of terrain features and database properties. In other words, mobile
mapping technologies with collaborative mapping schemes are able to complete
the mapping process rapidly, compared to a large amount of manpower and cost
required to perform the same task using an aerial survey or geodetic survey. There-
fore, the savings in manpower and operational costs are considerable with collabo-
rative mobile mapping schemes. Figure 25.8 illustrates an example of collaborative
mobile mapping with airborne and land-based mobile mapping technologies.

25.3.5 Mobile Mapping Technology for Rapid Disaster
Response Applications

In recent years, numerous natural disasters have occurred due to drastic climate
changes at the global level. It is very important to rapidly obtain geospatial infor-
mation in disaster areas to provide subsequent analysis and decision-making. In this
situation, collaborativemobilemapping technology can provide sufficient capacity to
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Fig. 25.8 An example of collaborative mobile mapping

solve this problem. Therefore, the development of low-cost, high-mobility mapping
systems for timely intelligence acquisition and processing for disaster response is an
attractive research theme among the geomatics community.

Satellite imagery has many limitations, such as weather conditions, overlap
percentages, spatial and temporal resolution, and price. Aerial vehicles such as
airplanes, helicopters, hot air balloons, and unmanned aircraft are relatively inex-
pensive options, especially with the recent development of airborne mobile mapping
technology. Unmanned aerial mobile-mapping systems have high mobility in small
areas. In the case of post-disaster rescue and assessment, they can be used to provide
timely information that is necessary to cope with emergency situations. Today, high-
resolution satellite imagery is still used to improve disaster response and relief.
However, unmanned aerial vehicles are the best choice for small-area surveys,
especially in developing countries.

On the one hand, mobile devices are popular, and their built-in sensors are
quite suitable for certain mobile mapping applications. They usually include GNSS
receivers, IMUs, and high-definition cameras. Mobile devices have the advantages
of being low cost and popular compared to the classic mobile mapping systems, thus
providing considerable convenience for rapid data acquisition missions, as shown in
Fig. 25.9. The achievable 2Dpositioning accuracy of the smartphonemobilemapping
system shown in Fig. 25.9 using commercial smartphones is around 1 m with object
distances ranging from 10 to 15 m.

Such devices are suitable for disaster response applications with low accuracy
requirements because their high penetration rate can efficiently accelerate disaster
relief efforts. Therefore, future of mobile mapping technologies utilizing mobile
devices will have considerable economic benefits and business potential.
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Fig. 25.9 Smartphone mobile mapping technology

25.3.6 Mobile Mapping Technology for Indoor Mapping
Applications

Geospatial information is becoming increasingly popular with the penetration of
mobile devices into daily life.With the expanding demands of location-based services
(LBS), the geospatial information industry’s attention is shifting from outdoor to
indoor environments. In buildings, more business opportunities can be discovered
at the same time. Google, Microsoft, and their competitors around the world are
showing high interest in indoor mapping and navigation applications. Google is
currently implementing indoor business maps in the United States, Australia, Japan,
andTaiwan,which has aroused high interest within the industry. However, the biggest
technical challenge of indoor mapping systems lies in the lack of a unified source of
maps, unlike an outdoor map, which can be obtained through the existing collabora-
tive mobile mapping systems. Another major problem is the frequency of updating
indoormaps. For example, counters in department stores change frequently, resulting
in maintenance difficulties. The main methods of building indoor maps include the
use of architectural blueprints or traditional surveying processes, but this method is
time-consuming and laborious, and it is difficult to achieve the relevant standards.
Therefore, the application of collaborative mobile mapping can be extended to the
development of indoor mobile mapping technologies, such as the use of pedestrians
and strollers as platforms for indoor mapping applications. Figure 25.10 illustrates
a map of indoor parking lots produced with an indoor mapping cart that has electric
power. The 3D positioning accuracy of this map is 30 cm.

In addition, LiDAR-based indoor mapping platforms can be applied for under-
ground environmental exploration in the field of mining as well as underground
facility inspections.
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Fig. 25.10 Indoor mobile mapping technology

25.3.7 Mobile Mapping Technology for Autonomous Vehicle
Applications

Autonomous driving vehicles, or self-driving cars, have made enormous progress
in recent years. According to the classification method proposed by the Society of
Automotive Engineers (SAE) International, the driving system can be divided into
six levels. The first level (Level 0) is the most primitive system. The driver controls
the mechanical and physical functions of the vehicle without any automatic driving
intervention. In order to improve the overall driving feeling and driving safety, indi-
vidual functions or devices, such as the electronic stability program (ESP) or anti-
lock braking system (ABS), are added to improve driving safety. This system can
be upgraded to Level 1; high-intermediate model vehicles are mainly controlled by
the driver, but additional automation functions are added to reduce the user’s oper-
ating burden. For example, the adaptive cruise control (ACC) system automatically
adjusts a safe distance from vehicles ahead and warns about lane departures. The
autonomous emergency braking (AEB) system combines blind-spot detection and
the technologies of the collision avoidance system to reduce vehicle accidents caused
by collisions. The system belongs to Level 2. Level 3 is conditional automation, that
is, the driver must still be involved at any time in case of emergency; Level 4 or
above is a fully automated driving category; and Level 5 has the best car communi-
cation system for communication between vehicles. However, in order to achieve a
fully autonomous driving level, self-driving cars still face the following three major
challenges:

• Autonomous vehicles must know their location and navigation information
• Overcoming the problemof in-vehicle sensors on autonomous vehicles that cannot

be perceived due to obscuration or distance
• Connecting the autonomous vehicles with other vehicles to ensure road safety.
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In order to achieve Level 4 or higher functional safety, obtaining the precise
position information of the vehicle on the road is the most basic requirement for
autonomous vehicles to be able to drive on the correct road in a known environment.
In addition, according to advanced vehicle-safety research, if navigation equipment
needs to be upgraded to the level of autonomous driving, it is necessary to improve the
navigation accuracy of the vehicle to the sub-meter level or higher. Due to the limited
shading or reflection of satellite reception in urban areas, autonomous vehicles cannot
be accurately positioned in the right lane. With advances in computing and sensor
technologies, onboard systems, the integrated system of cameras, LiDAR, GNSS,
INS, and other perception sensors, can deal with a large amount of data and achieve
real-time processes continuously and accurately. These systems also handle several
specialized functional schemes such as positioning, mapping, perception, motion
planning, and control. These key components are essential for the vehicle to achieve
fully autonomous operation. On the other hand, taking the safety and hardware costs
into considerations, the maps with navigation information for autonomous vehicles
can provide reliable and robust prior information on the environment. The maps are
calledHDmaps and are essential for the operation of autonomous driving technology.

Comparedwith the 2D digital navigationmaps based on human visual viewpoints,
autonomous vehicles need to make real-time decisions through map feedback during
driving to allow passengers to reach their destinations safely. HD maps provide
detailed map information for navigating autonomous vehicles to ensure navigation
safety.Themap itself serves as an additional pseudo-sensor in the car and significantly
enhances the performance and accuracy of the perception and positioning algorithms
necessary for the vehicle to drive autonomously. The difference between HD maps
and current 2D digital navigation maps is that the use of the map is transferred from
a person to a machine. The mapping accuracy and the road attributes on the map, and
even the geometrical relationships of lanes, traffic signs, and roads, must be precisely
defined to meet the safety requirements of autonomous vehicles. Thus, the current
mapping specifications for producing navigation maps can no longer meet the needs
of production, maintenance, and inspection in the case of HD maps. The conditions
and definitions required for HD maps are given below:

• HD maps need to achieve sub-meter accuracy or better.
• All map information must be in 3D with sufficient accuracy.
• Features (including lanes, road boundaries, traffic signs, etc.) in the real world

must be clearly defined on the map, and detailed attribute data should be attached.
• The scale of the HD maps must be consistent with the real world; that is, there

can be no tolerance for scale problems.
• The maps must provide dynamic map information for the vehicle to make driving

decisions.

Thus, the navigation system can accurately guide the vehicle and handle the
situation, such as the non-planar places, viaducts, and underpasses. Figure 25.11
shows the difference and accuracy requirements of the digital map used by the land
vehicle system, the ADAS map used by the advanced driver assistance system, HD
maps for autonomous vehicles, and the requirements of accuracy.
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Fig. 25.11 Difference between existing navigation maps and HD maps

To produce HDmaps, multi-sensor integration schemes are necessary to perceive
the surrounding scenes, which can be divided into active and passive sensing compo-
nents. Active components will actively emit laser waves to obtain the distance from
the target. As in LiDAR and radar, it is more limited in terms of range but is less
sensitive to the external environment. Passive sensors only need to receive external
information, such as integrated navigation devices with GNSS, IMU, and visual
odometers that use cameras to navigate. Multi-sensor integrated schemes are most
commonly used in stationary terrestrial laser scanners (STLSs), mobile terrestrial
laser scanners (MTLSs), and aerial laser scanners (ALSs). Their characteristics are
illustrated in Table 25.1. Among them, the accuracy of STLS is consistent with HD
map production, but the cost of practicing mapping and collecting road information
in a large area with STLS is too high; the ALS can be free of road obstacles to
complete the collection of urban HD maps, but it is still dangerous to fly in cities
with a lot of high-rise buildings, and its resolution is not sufficient for producing
HD maps; therefore, the most suitable option for an HD map production scheme is
MTLS. Google, Apple, Here, and their competitors around the world are applying
land-based mobile mapping technologies with MTLS to map the high definition
digital world for autonomous vehicles (Fig. 25.12).

25.3.8 The Latest Developments of HD Maps
for Autonomous Driving Applications in Taiwan

The 3D coordinates of lanemarkers, traffic signs, and other relevant parameters, such
as curvature and slope, in HD maps, are essential for controlling driving behavior.
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Table 25.1 Sensor matrices for building HD maps (after Farrell et al. 2016)

Technology Purpose for
inclusion in sensor
suite

ECEF accuracy Feature detection
capability

Individual sensor
technologies

INS Bandwidth, sample
rate, continuity

N/A No

GNSS ECEF accuracy cm No

Camera Feature detection
and photolog

N/A Yes

LiDAR Feature detection,
accurate feature
georectification

N/A Yes

Sensor suites STLS GPS, camera,
LiDAR

cm Yes

MTLS INS, GPS, camera,
LiDAR

cm Yes

ALS INS, GPS, camera,
LiDAR

Submeter Yes

Fig. 25.12 HD map production with mobile mapping technology (Chiang et al. 2019)

They are the last reference information when the vision or radar-based vehicle envi-
ronment sensing systems are failed. Moreover, they provide important multiple guar-
antees for the safe driving of vehicles. When machines surpass humans’ ability to
sense, reason, make decisions in real-time, and artificial intelligence technology
guides vehicles safely and comfortably, then HD Maps may not be needed in the
long run. However, it is necessary to be aware of the navigation, research, and devel-
opment of autonomous vehicles through HD maps at the present time. Table 25.2
illustrates the list of autonomous driving classifications, required map types, and
accuracy requirements according to Fig. 25.11 and the SAE classification of the
driving system, respectively.

In terms of industry trends, since the huge business opportunities of autonomous
driving andmapping technologies are promising in the future, internationalmanufac-
turers have successively conducted preliminary arrangement competitions. In addi-
tion to Google’s continued development of various applications based on Street
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Table 25.2 Classification and map types requirement of autonomous driving

Grade Title Map Accuracy of map Typical conditions

Driver scenario

1 (DA) Driver
assistance

ADAS map Submeter level Optional

2 (PA) Partial
automation

ADAS map Submeter level Optional

Automatic
driving system
(“system”)
scenario

ADAS map +
HD map

Submeter level Optional

3 (CA) Conditional
automation

Centimeter level

4 (HA) High
automation

ADAS map +
HD map

Submeter level
Centimeter level

Required

5 (FA) Full
automation

HD map Centimeter level Required (update
automatically)

View technology, Apple also implemented its own development of mobile mapping
technology in 2014 and developed an exclusive Apple Van to complement its disad-
vantages in spatial information compared to Google. The original mapping company
HERE, owned by Nokia of Finland, supplies a chain of products and services that
includes data collection, a map information office, and user map design. It has more
than 300 surveying and mapping vehicles in the world to synchronously generate
HDmaps. It is the main map supplier to traditional car manufacturers such as BMW,
Benz, Audi, for the development of autonomous driving technology. One of the map
suppliers, TomTom, has more than 150 countries worldwide with vehicle graphics
resources totaling more than 60 million kilometers, which includes existing busi-
ness areas such as map authorization and cooperation with the automotive industry.
In recent years, TomTom has focused on the production of HD maps based on the
needs of autonomous driving navigation technology, and has proposed 3D mapping
technology known as RoadDNA to construct and update HDmaps. In Japan, with the
support of the resources of the national government, a dynamic mapping platform
(DMP) was established by the electronic information industry in partnership with
domestic automakers to quickly achieve the demands of HD maps for the automo-
tive industry in Japan. To sum up, at present, major international mapping companies
and car manufacturers utilize MMS to generate HD maps based on their mapping
technology and autonomous driving technology requirements.

The Department of Land Administration of the Ministry of the Interior in Taiwan
proposes the Taiwan HD maps infrastructure that consists of three major pillars
including qualified point clouds, qualified digital vector maps, and a Taiwan HD
map format composed of the Opendrive format with local extension modules. In
addition to the concept of an open base map, this architecture possesses interoper-
ability between various HD map formats, as it is designed to provide map makers



25 Mobile Mapping Technologies 459

Fig. 25.13 The construction of Taiwan HD maps

and autonomous driving operators with an exchange format to facilitate added-value
applications for the conversion to specific formats used by different autonomous
vehicle platforms. In addition, it is also designed to support non-autonomous driving
applications, such as disaster prevention, asset management, and the traditional
surveying and mapping industry through verified fine-precision point clouds and
diversified vector layer designs to achieve the concept of data sharing. Figure 25.13
illustrates the overall structure of Taiwan HD maps as well as certain formats used
by different end-users (Chiang et al. 2019).

Currently, most of the Taiwanese autonomous driving platforms apply HD maps
from Autoware, developed by the Tier 4 Company in Japan as well as the Open
drive format. Therefore the Department of Land Administration of the Ministry of
the Interior has been producing two HD map formats, Taiwan HD map format, and
Autoware map format, for two primary autonomous vehicle test facilities in Taiwan
in order to meet the growing demands for HD maps from various end-users. At
the same time, the conversion tools between Taiwan HD Maps and certain end-user
formats listed in Fig. 25.13 are also under development by the Land Department of
the Ministry of the Interior (Chiang et al. 2019).

The scenarios for HD maps applications in Taiwan are proposed based on the
concept of a local dynamic map (LDM; Shimada et al. 2015), as shown in Fig. 25.14.
The exchange of time data (such as the signal transformation of traffic lights) and
geospatial data (such as GNSS location information) of traffic participants can
provide real-time information through communication sensors to improve the safety,
efficiency, and comfort of the transportation system, and reduce the impact of traffic
on the environment. This allows for the integration of static, temporary, and dynamic
traffic information and the input of data with time-stamped and geo-referenced
information into LDM as an integrated platform.

The LDM is a database that integrates real-time autonomous vehicles and traffic
information into HD maps to achieve dynamic map data sharing. The meaning of
local derives from the demand for geospatial information for the autonomous vehicle
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Fig. 25.14 The scenario of HD maps application

since it is close to the points of interest; the meaning of dynamic derives from the
requirements of using dynamic traffic information to avoid collisions in a very short
time. Therefore, the data requires the timestamp; the meaning of map depends on
the association with a map. Local dynamic maps contain (Shimada et al. 2015):

• Static information and permanent static data: The first layer comes from
geographic information system (GIS)map providers, including roads, lanes, inter-
sections, road signs, traffic signs, road facilities, and points of interest (POI), phase
data, and building location information, which are created by using a professional
mobile mapping system. Update frequency is at least once a month.

• Semi-static information and transient static data: This layer mainly contains infor-
mation about roadside infrastructure, including traffic regulations, traffic control
schedules, road engineering traffic attributes, and area weather forecasts provided
by the road-traffic control department. The information is obtained from outside
the autonomous vehicle. Updating frequency of this information is at least once
an hour.

• Semi-dynamic information and transient dynamic data: This mainly includes
temporary regional traffic information, traffic control information, accident infor-
mation, congestion information, phase conditions of traffic lights on roads or
traffic signs, and local weather. The information is obtained from outside the
autonomous vehicle. Updating frequency is at least once per minute.

• Dynamic information (highly dynamic data): This layer contains information
detected by dynamic communication node V2X information, real-time status
information such as traffic participants, surrounding vehicles, pedestrians, and
the timing of traffic signals. The information is updated in real-time. Dynamic
information is composed of the environmental information and the road-ahead
information provided by an intelligent transportation system (ITS).
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Fig. 25.15 Taiwan HD maps production procedure

In order to extend the spectrum of local development in the mapping and
autonomous drivingmarket, it is urgent to establish autonomous vehicle testing facil-
ities and implement a unified HD maps format standard and regulation in Taiwan.
The format standard for the static HDmap layer is the primary task at the present time
in Taiwan. The ultimate task is to build a static map to provide rich semantic infor-
mation with sufficient accuracy to restrict and control vehicle behavior. This mainly
includes the lane network, transportation facilities, the road network, and the posi-
tioning layer. Therefore, the LandDepartment of theMinistry of the Interior proposes
to implement the production process of static layers of Taiwan HD maps using a
professional mobile mapping system, as shown in Fig. 25.15, to meet the require-
ments for the production, maintenance, verification, and correctness according to
“HD Maps Field Practice Guidelines v2,” “Quality Verification Guidelines for HD
Maps,” and “HDMaps Data Contents and Formats Standard,” to be published by the
Taiwan Association of Information and Communication Standards soon.

Meanwhile, the applicability of HD maps is further evaluated by autonomous
vehicle simulators and real vehicles to further ensure that the TaiwanHDmaps format
standards and services satisfy the requirements of autonomous vehicle applications
in Taiwan and are in line with international standards (Chiang et al. 2019).

25.4 Future Trends in Mobile Mapping Technology

The recent big data market boom and deep-learning-related applications have been
fueled by geospatial intelligence. Thus the importance of multi-platform mobile
mapping technologies is being recognized by various communities. In fact, the
widespread ofmobilemapping technologies among various communities, such as the
geospatial, robotics, computer vision, artificial intelligence, and navigation commu-
nities, is exceeding the expectation of the pioneers from the geospatial community
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who initially developed such technologies thirty years ago and continue to promote
them even now.

Geospatial data are collected with mapping sensors mounted on various human-
controlled or unmanned platforms, such as aircraft or helicopters, land vehicles,
marine vessels, strollers, and those hand-carried by individuals. Therefore, mobile
mapping systems certainly play a crucial role in urban informatics applications since
timely and accurate geospatial data are the key ingredient in implementing the digital
infrastructure serving the backbone of urban informatics. Figure 25.16 depicts an
indoor mapping scenario to build a floorplan with a robot and indoor UAV, respec-
tively, where the 3D positioning accuracy achieved was around 1–1.5 m based on
the scenario.

Ultimately, the future technological trends in mobile mapping that will advance
urban informatics applications can be characterized by (1) fulfilling seamless
mapping scenarios; (2) increasing use of low-cost direct georeferencing devices;
(3) increasing use with artificial intelligence; and (4) increasing use with unmanned
multi-platforms for collaborative mapping.

Fig. 25.16 An example of unmanned mobile mapping technology
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25.5 Conclusion

This chapter has comprehensively discussedmobile mapping technologies. From the
labor-consuming indirect georeferencing to the efficient DG, it is clear that evolu-
tion has been rapid and that researchers have contributed to the development of this
technology. Nowadays, this technology also plays an important role in future appli-
cations, such as autonomous driving and rapid disaster response. In other words,
accurate geospatial data become one of the game-changers in the future. It is worth
mentioning that the individual components of mobile mapping technologies take
part in every geospatial technology for data acquisition, such as computer vision,
simultaneous localization and mapping (SLAM), and robotic mapping. In the fore-
seeable future, we are likely to see the ever-increasing importance ofmobilemapping
technologies.
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Chapter 26
Smartphone-Based Indoor Positioning
Technologies

Ruizhi Chen and Liang Chen

Abstract Global Navigation Satellite Systems (GNSS) have achieved great success
in providing localization information in outdoor open areas. However, due to the
weakness of the signal, GNSS signals cannot be received well indoors. Currently,
indoor positioningplays a significant role inmanyareas, such as the Internet ofThings
(IoT) and artificial intelligence (AI), but given the complexity of indoor spaces and
topology, it is still challenging to achieve an accurate, effective, full coverage and real-
time positioning solution indoors. With the development of information technology,
the smartphone has become more and more popular. With a large number of sensors
embedded in smartphones, it is thus possible to achieve low cost, continuity, and
high usability for indoor positioning. In this chapter, we focus on indoor positioning
technologies with smartphones, and in particular, emphasize the technologies based
on radio frequency (RF) and built-in sensors. The pros and cons of the technologies
are reviewed and discussed in the context of different applications. Moreover, the
challenges of indoor positioning are pointed out and the directions for the future
development of this area are discussed.

26.1 Introduction

Positioning is one of the core technologies of location-based services (LBS). It also
plays a significant role in many applications of the Internet of Things (IoT) and
artificial intelligence (AI). With the extensive urban development of recent years,
indoor positioning is becoming more and more important. According to a report
by the U.S. Environmental Protection Agency, people spend 70–90% of their time
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indoors (Weiser 2002). A wide area of applications has emerged for indoor emer-
gency rescue (Federal Communications Commission 2015), precision marketing in
shopping malls, asset management and tracking in the smart factory, mobile health
services, virtual reality games, and location-based social media (Sakpere et al. 2017;
Davidson and Piché 2016; Ali et al. 2019). By 2025, the global indoor LBS market
is expected to reach USD 18.74 billion (Globe Newswire 2019).

Global navigation satellite systems (GNSS) have achieved great success in posi-
tioning in outdoor open areas, and positioning accuracy is able to achieve a sub-meter
level with various assisted technologies (Kaplan and Hegarty 2005). However, due
to the weakness of signal power, GNSS signals cannot be received indoors suffi-
ciently to provide continuous and reliable positioning. In many cases, especially
in deep indoor areas, GNSS signals can even be totally blocked. Although various
technologies have been developed for indoor positioning, which includesWiFi, Blue-
tooth, ultra-wideband (UWB), pseudolites, magnetic fields, sound and ultrasound,
and pedestrian dead reckoning (PDR), it is still challenging to achieve an accurate,
effective, full coverage and real-time positioning solution indoors (Maghdid et al.
2016). The main reasons are the constraints of spatial layout, topology, and the
complex signal environment indoors (Zafari et al. 2019). To be more specific, the
reasons are summarized as follows.

The indoor environment is complex and radio waves are often reflected, refracted,
or scattered by obstacles indoors, which leads to non-line-of-sight (NLOS) propa-
gation. NLOS propagation can cause a large deviation error in the positioning and
seriously affect the localization accuracy.

Indoor space layout and topology are frequently changed and the number of
people in the indoor space varies, for example, between peak and off-peak hours.
Thus, signal propagation and the fields of sound, light, electricity, and magnetism
can all be changed accordingly. Such changes will greatly affect the results when
using the positioning methods with the feature or field matching.

The unpredictability of indoor pedestrian motions, such as frequent changes in
speed and direction (Morrison et al. 2012), and motion without any predefined paths
(Saeedi 2013) also increases the difficulty of continuous estimation of pedestrian
position.

With the development of information technology, the smartphone has become
more and more popular. As shown in Fig. 26.1, the smartphone has a large number
of built-in sensors, such as accelerometers, gyroscopes, magnetometers, barometers,
light sensors, microphones, speakers, and cameras, as well as Bluetooth chips and
WiFi chips. Such sensors were not originally developed for the use of the positioning.
Nevertheless, for applications in the mass market, it is promising to achieve low cost,
continuity, and high usability mode for indoor positioning with the built-in sensors
in a smartphone with appropriate technology (Davidson and Piché 2016).

In this chapter, we present a survey of indoor positioningwith smartphone sensors.
The state-of-the-art technologieswill be reviewed.Wewill comprehensively compare
the accuracy, complexity, robustness, scalability, and cost of different technologies,
and comment on the pros and cons of the technologies in the context of different
application scenarios. Moreover, from the perspective of developing the technology
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Fig. 26.1 Multiple sensors embedded in the smartphone

with high accuracy, high usability, high durability, and at low cost, we further discuss
the directions of future development in this area.

The organization of the book chapter is as follows: in Sect. 26.2 we review the
technologies of the smartphone for indoor positioning in detail. In Sect. 26.3 we
summarize the difficulties in indoor positioning. In Sect. 26.4 potential future trends
in smartphone indoor positioning are discussed. Conclusions are drawn in Sect. 26.5.

26.2 The State-of-the-Art Indoor Positioning
with Smartphones

This section focuses on the state of the art of indoor positioning technology with
smartphone sensors. The positioning technology can be classified into two categories:
positioning with RF and positioning with built-in sensors.
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26.2.1 Positioning Technology of RF Signals

Currently,WiFi, Bluetooth, andwireless cellular communication signals are themain
radio-frequency signals that smartphones support for the purpose of data transmis-
sion. The methods of indoor positioning vary due to differences in carrier frequency,
signal strength, and the effective transmission distance of the signals.

26.2.1.1 WiFi Positioning Technology

WiFi is a wireless local area network (WLAN) technology based on the IEEE 802.11
family of standards (IEEE Standard for Information Technology 2013). With the
advantages of flexibility, convenience, rapid deployment, and low cost, WiFi tech-
nologies have now been widely deployed indoors and have been used for indoor
positioning. There are basically two methods used for positioning withWiFi signals:
triangulation and fingerprinting.

In the triangulation method, the smartphone measures the received signal strength
index (RSSI) of each of multiple WiFi access points (APs), and then estimates the
distances between the smartphone and each of theAPs using amodel of long-distance
path loss (Liu et al. 2007). The model is a radio-propagation model that predicts the
path loss a signal encounters inside a building or densely populated area. However,
due to the strong reflections and scattering conditions indoors, RSSI measurements
are seriously attenuated bymultipath and NLOS signal propagation. Therefore, it is a
challenging task to accurately estimate the position with RSSI measurements and the
path loss model has given the various fading effects. In the method of triangulation,
the other way to get the distance between the transceivers is to measure the time of
flight (TOF; Schauer et al. 2013). Tests have shown that indoor multipath and the
time-varying interruption service in WLAN have a great impact on the accuracy of
TOF measurement. Ranging accuracy can be improved by proper design of filters
and by smoothing of the raw measurements.

In the fingerprint positioning method (Bahl and Padmanabhan 2000), the basic
idea is to match elements in a database to particular signal-strength fingerprints in the
area at hand. The method operates in two phases: the training phase and the online
positioning phase. In the training phase, a radio map is created based on the reference
points within the area of interest. The radio map implicitly characterizes the RSSI
position relationship through the training measurements at the reference points with
known coordinates. In the online positioning phase, the smartphone measures RSSI
observations and the positioning system uses the radio map to obtain a position esti-
mate. The advantage of the method is that it does not need to know either the exact
model of the channel attenuation between the transceivers or the coordinates of the
WiFi APs. The disadvantage is that the signal is easily modified by the surroundings,
the mismatch rate is relatively high in the open space indoors, and to build and update
the fingerprint database is a time-consuming process. The fingerprinting method has
been widely investigated in the literature. Recent surveys of the RSSI fingerprint
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method can be found by Khalajmehrabadi et al. (2017), He and Chan (2015), and
Davidson and Piché (2016). In general, the methods can be divided into three types:
deterministic approaches, probabilistic methods, and pattern-recognition methods.
The main factors affecting the accuracy of WiFi positioning include inter-channel
interference from different APs (Pei et al. 2012) and hardware differences in smart-
phones (Schmitt et al. 2014). Khalajmehrabadi et al. (2017), He andChan (2015), and
Davidson and Piché (2016) give a thorough summary of the factors that affect WiFi
fingerprint positioning. Currently, WiFi positioning systems using RSSI fingerprints
include RADAR (Bahl and Padmanabhan 2000), Ekahau (ekahau.com), and Horus
(Youssef and Agrawala 2008), and the positioning accuracy is about 2–5 m.

Benefiting from the performance improvement of the WiFi receivers, commer-
cial WiFi receiver modules are now able to provide channel state information (CSI;
Wang et al. 2016). CSI givesmore details on themultipath information of the channel
attenuation than the RSSI measurements, which only provide the power measure-
ment of a received radio signal. Research shows that using CSI information to build
the fingerprint database can effectively improve the accuracy of indoor positioning
(Wang et al. 2015b; Wu et al. 2012).

With the ratification of IEEE 802.11n standardization, the technology of multiple
antennae has been introduced to WiFi transmission. Thus, angle of arrival (AOA)
can be estimated in the WiFi positioning. The literature (Vasisht et al. 2016; Kotaru
et al. 2015) simultaneously estimates the AOA and the time of arrival (TOA) to
achieve positioning results with an accuracy of decimeter or centimeter, respectively.
However, such methods are applied in the AP base station and are not applicable to a
user-centric positioning with smartphones, in which only one antenna is embedded.

The main factor that limits WiFi fingerprint positioning in massive applications
is the difficulty in effectively constructing and adaptively updating the radio map,
which is both time and labor-consuming. The methods for reducing the costs of
building and updating the radio map include crowdsourcing (Zhuang et al. 2015),
LiDAR-based simultaneous localization andmapping (SLAM; Tang et al. 2015), and
the use of interpolation (Zhao et al. 2016). In addition, with the increasing attention
to the issues of information security and personal privacy (Chen et al. 2017), the
scanning rate of WiFi signals have been adjusted to 1/30 Hz or even lower, which
increases the latency for the positioning.

26.2.1.2 Bluetooth Positioning Technology

Bluetooth is a radio-frequency signal based on the IEEE 802.15.1 protocol, which
is mainly developed for wireless personal area networks (WPAN). It operates in the
2400–2483.5 MHz range within the same ISM 2.4 GHz frequency band as WiFi
IEEE 802.11 b/g. The transmission data is split into packets and exchanged through
one of 79 designated Bluetooth channels, each of which has 1 MHz in bandwidth.
Positioning with Bluetooth Classic (prespecification4.0) has used various techniques
from proximity to trilateration to fingerprinting. The positioning accuracy is about
4 m (Chen et al. 2011a, 2013, 2015). However, in the specification, the scanning
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interval of a mobile handset to the nearby Bluetooth beacons can be more than 10 s,
within which time the indoor pedestrian could travel 15 m or more. Due to the low
scan rate, positioning using Bluetooth Classic has not proved popular (Faragher and
Harle 2015).

In 2011,BluetoothLowEnergy (BLE),whichwas originally branded asBluetooth
4.0, was created. Compared to classic Bluetooth, BLE provides an improved data rate
of 24 Mbps and coverage range of 70–100 m with higher energy efficiency (Zafari
et al. 2015). BLE also has a very short connection time (only a few milliseconds)
and then goes into sleep mode until a connection is reestablished, which achieves
low power consumption. With this property, BLE can be powered by a single battery
which could last up to five years. Compared with WiFi, which is typically placed
near power outlets, BLE, with its own batteries, is thus free to place beacons to
provide good signal geometry with optimized signal coverage. In addition, with a
much higher scan rate thanWiFi, BLE can average out the occasional outliers caused
by interference or multipath effects, and improve the tracking accuracy.

At the moment, the most popular BLE beacon ecosystems are Apple’s iBeacon,
Google’s URI Beacon and Eddystone, and Radius Networks’ Alt Beacon. Apple’s
iBeacon system (Apple 2014), based on RSSI ranging, has a positioning accuracy of
2–3 m in a typical office environment. A Bluetooth antenna array system, developed
by Quuppa(2020), can achieve a sub-meters positioning accuracy. In January 2019,
a new specification of Bluetooth 5.1 enhances location services with its new feature
of direction-finding. With this new feature, it is possible that Bluetooth devices will
be able to pinpoint physical location to centimeter accuracy indoors (How-To Geek
2019).

26.2.1.3 Cellular Positioning Technology

The cellular network is originally designed for dedicated mobile communication
systems. Nevertheless, the large cellular communication infrastructure can still be
reused for positioning purposes, providing an added value to network management
and services (Del Peral-Rosado et al. 2017). In 2G/3G/4G mobile communication
systems, cellular positioning is achieved by a localization module implemented in
the base station, which is also known as the RAN (radio access network) posi-
tioning method. The most significant advantage of cellular positioning technology
is to achieve seamless indoor and outdoor positioning, while the disadvantage is that
the positioning accuracy is relatively low, generally in tens of meters to hundreds
of meters (Zhao 2002; Lakmali and Dias 2008). Ericsson uses a long-term evolu-
tion (LTE) signal to adopt the OTDOA (observed time difference of arrival) method,
and the positioning accuracy can reach 50 m, with a reliability of 97% (Ericsson
Research Blog 2015). But the positioning results cannot meet the needs of most
indoor positioning applications.

The upcoming fifth-generation (5G) of mobile communication systems are
expected to improve positioning accuracy in cellular networks, which is a benefit
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of the key features of 5G, such as small cells, device-to-device (D2D) communica-
tion, heterogeneous networks (Het-Net), massive multi-input multi-output (MIMO),
and millimeter-wave (mm-Wave) communication (Talvitie et al. 2017). In partic-
ular, through D2D communications, mobile stations or smartphones can determine
their locations in a cooperative manner, which would not only increase the local-
ization accuracy but also decrease the time delay. The massive MIMO technologies
will offer more possibilities for accurate directional measurements. Dense networks
with small cells will lead to a large number of line-of-sight (LOS) links, and higher
signal bandwidths will improve the accuracy of range measurements, and increase
the resolution of multipath.

26.2.2 Positioning Technology Based on Embedded Sensors

Built-in sensors for smartphones include accelerometers, gyroscopes, magnetome-
ters, barometers, light intensity sensors, cameras, microphones, etc. These sensors
are not designed for positioning, but measurements from such sensors can be
used for indoor positioning with proprietary methods. The methods include PDR,
geomagnetic matching, visual positioning, audio, and sound positioning.

26.2.2.1 Pedestrian Dead Reckoning

With the advances in micro-electro-mechanical system (MEMS) technology, more
and more low-cost inertial measurement units (IMUs) are integrated into smart-
phones. Accelerometers, gyroscopes, and magnetometers are among the most
popular sensors embedded; due to their low cost, their stability and measurement
accuracies are relatively low. It is therefore difficult to use the strap-down inertial
navigationmethod. As an alternative, PDR can be applied in indoor positioning using
themeasurements from low-costMEMS sensors (Robert 2013). Inmore details, PDR
uses an accelerometer to detect the number of steps, measures the walking speed,
and determines the heading by magnetometer and gyroscope, and then calculates the
relative position of the pedestrian by computing the speed and heading (Chen et al.
2011b; Deng et al. 2016).

The PDR algorithm (Fig. 26.2) is able to provide continuous positioning results.
Without the process of integration, it is a relatively simple but effective method to use
the raw measurements from the low-cost sensors. The difficulty of PDR lies in the
heading estimation, which is affected bymagnetic interference in the indoor environ-
ment. It is, therefore, necessary to integrate with other positioning algorithms, such
as WiFi, BLE, or geomagnetic matching, which are able to provide absolute posi-
tioning results, to improve the heading estimate as well as to reduce the accumulating
errors of relative positioning from PDR (Deng et al. 2016).
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Fig. 26.2 PDR system block diagram

26.2.2.2 Magnetic Matching (MM) Positioning Technology

MMpositioning technology takes themagnetic field as the signal for a fingerprint and
fulfills the indoor positioning by matching characteristics of the magnetic field in the
indoor environment. Similar to the process of WiFi fingerprinting, MM positioning
is also divided into two steps: to set up a geomagnetic fingerprint database, and to
match geomagnetic features for positioning. Because of the spatial correlation of the
magnetic field, contour matching, for example, dynamic time warping, can be used
in the MM to achieve more robust matching results. At present, most smartphones
are integrated with magnetometers, and the magnetic field can be obtained when
the phone is turned on. So, MM positioning technology is suitable for smartphone
positioning. However, indoor magnetic field signals often change, so it is difficult to
build an accurate fingerprint database of magnetic fields in practice. The University
of Oulu in Finland proposed an indoor positioning system, named Indoor Atlas,
which combines magnetic fields with built-in sensors (Thompson 2020), which is
able to achieve a positioning accuracy of 0.1–2 m.

26.2.2.3 Visual Positioning Technology

The visual positioning for smartphones is mainly based on monocular vision since
smartphones commonly use a monocular camera. One method is based on image
matching, where the positioning is computed by matching the current photos with
the photos stored in the image database. The methods of density matching and struc-
ture frommotion (SFM) can be used to match the image features in the image feature



26 Smartphone-Based Indoor Positioning Technologies 475

database. Another method is based on visual gyroscopes and visual odometer tech-
nology (Ruotsalainen 2012; Ruotsalainen et al. 2013). The visual gyroscope uses a
monocular camera to obtain a vanishing point of each image and uses a vanishing
point change of two adjacent images to obtain the heading change rate. The visual
odometer obtains the relative translation of pedestrians by matching photos taken
in time series. The challenges of using the monocular camera as a visual gyroscope
and visual odometer are in the sharp turns for the pedestrian where there are fewer
feature points for matching in photos. The literature (Ruotsalainen et al. 2016) lists
methods for merging visual gyroscopes and visual odometers with other IMUs.

Visual positioning technology can achieve decimeter-level or even centimeter-
level accuracy in scenarios with sufficient light and image features. When an optical
camera is combined with depth cameras (such as Google’s Tango technology), the
positioning accuracy can be further increased. But, in general, the algorithm of
visual positioning is computationally complex and has high power consumption.
With further improvement in the computation performance and storage capacity of
smartphones, the method is promising in pedestrian navigation.

26.2.2.4 LED Visible Positioning Technology

Visible light positioning can be divided into two categories: the first is to locate a
specific optical signal by modulating the light source. For example, an LED lamp
emits a high-frequency flicker signal that is invisible to the naked eye, and the LED
light signal is received by the smartphone sensors to calculate pedestrian position
information. The byte light positioning system (Ganick and Ryan 2012) is based
on such a principle, and the positioning accuracy can reach the one-meter level. The
second is basedon the pattern-matchingmethod,whichuses the time–frequency char-
acteristics of ambient light to establish the environmental light fingerprint database in
advance. In the real-time positioning phase, the measured light intensity is matched
with the ambient light fingerprint database to achieve positioning (Liu et al. 2014).
The built-in camera of the smartphone can sense light intensity and high-frequency
light information, so the above optical positioning technology can be easily applied
to indoor positioning of smartphones.

26.2.2.5 Ultrasonic Positioning Technology

Ultrasonic positioning technology uses the method of round-trip time ranging. The
most popular ultrasonic positioning systems are the Active Bat system (Ward and
Jones 1997) and the Cricket system (Priyantha et al. 2000). The positioning accuracy
of the Active Bat system is within 9 cm with a 95% confidence interval. Although
the ultrasonic positioning system has high positioning accuracy, the current smart-
phones have not been equipped with dedicated ultrasonic modules for transmitting or
receiving ultrasound signals. However, the microphones in the current smartphones
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can monitor ultrasonic signals with the frequency ranging from 16 to 22 kHz. Deter-
mining the user’s location with such ultrasonic signals has already attracted much
attention in the area of smartphone positioning (Ijaz et al. 2013). In order to improve
the accuracy of ultrasound indoor positioning, the main effort is to mitigate the echo
signals, which have severe effects on the TOA detection of ultrasound.

26.2.3 Positioning Technology of Multi-source Fusion

As seen from the above, different positioning methods have their pros and cons in
different scenarios of indoor positioning. For example, RF signals may have large
coverage, however multipath interference, which is common indoors, will cause
large positioning errors. Pedestrian-track estimation based on built-in sensors does
not depend on the infrastructure indoors, but the errors from the IMUs accumulate
over time. Currently, there has not yet been any method based on a single tech-
nology that suits all different scenarios of indoor positioning. Table 26.1 compares
the performance of various technologies for the smartphone positioning in terms of
positioning accuracy, complexity, robustness, scalability, and cost. Although there
are many sources available for indoor positionings, such as sound, light, electrical
signals, and magnetic fields, different positioning sources have their own limits and
the usability depends on the actual environment in reality. For example, the method
of WiFi fingerprinting requires a wide coverage of the signals with more APs and
less radio interference, while the method of magnetic field matching requires signif-
icant magnetic features in the place of interest, where magnetic interference benefits
positioning to some extent. As to the visual positioning, it works well in a bright
environment, while it cannot work effectively in dark places.

With the improvement of computing performance and storage capacity on smart-
phones, the sensor fusion technology to integrate multiple positioning technologies
has been a hot research topic in the field of indoor positioning with smartphones.
The methods are broadly divided into loosely coupled and tightly coupled. The basic
idea of the loosely coupled method is to fuse all the positioning results from different
sensors and get the estimate of the position at a time epoch. This kind of fusion is easy
to implement, but due to the heterogeneity of sensors in the smartphone positioning,
it is difficult to analytically compute the weights on the position estimation from
different sensors, which are sent to the sensor-fusion module. The tightly coupled
method is to fuse different parameters estimated from different types of sensors
and get the positioning estimate. At present, an effective way to implement tightly
coupled fusion is based on Bayesian inference, which includes Kalman filtering (KF;
Zhang et al. 2013), unscented Kalman filter (UKF; Chen et al. 2011c), and particle
filter (PF; Quigley et al. 2010). In these methods, the state model and the measure-
ment equations are first set up, and the moving states (position and velocity) of the
pedestrian have been inferred in sequence based on the parameters estimated from
different sensors, such as position, velocity, heading angle, and step size. The liter-
ature on sensor-fusion research includes: the hybrid positioning system with WiFi
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Table 26.1 Comparison of different positioning technologies of smartphone sensors

Source Precision Robustness Complexity Scalability Cost

WiFi 2–5 m with the
fingerprint
method, while
the
triangulation
method is
affected by
different
environments

Vulnerable to
environmental,
human body,
and other
interference

Time- and
labor-consuming
in building the
fingerprint
database

High Using
existed
facilities
with no
additional
cost

Bluetooth Fingerprint
method 2–5 m,
iBeacon,
antenna array
mode <1 m

Vulnerable to
environmental
interference

Fingerprint
matching is
time-consuming
and
labor-intensive

High,
iBeacon
distance
Less than
5 m

The cost of
antenna is
relatively
high, but
low cost
with beacon
technology

Infrared One to several
meters

Direct path
required

Medium High Medium
cost. It is
necessary to
set up an
additional
receiver
Hair device

LED 1–5 m Medium Medium High Low

Ultrasonic Centimeter High Low Low Medium,
extra
receiving
module
needed

Inertial
navigation

Depending on
the
characteristics
of the sensors,
there are
cumulative
errors over time

High Medium High Low

Geomagnetic 2–5 m Vulnerable to
environmental
changes

High High Low

Computer
vision

A few
centimeters to
several meters
depending on
the methods
applied

Medium,
affected by the
strength of the
ambient light

Very high High Medium
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magnetic field and cellular signal (Kim et al. 2014); WiFi positioning fused with
PDR results (Karlsson et al. 2015; Li et al. 2016); Bluetooth module, accelerom-
eters, and barometers used for 3D indoor positioning (Jeon et al. 2015); and WiFi
fingerprinting with PDR and magnetic field matching (Zhang et al. 2017). In addi-
tion, indoor maps are commonly used to assist indoor positioning. The positioning
system can reliably achieve meter-level accuracy by integrating the map-constrained
information with WiFi fingerprint and PDR positioning results (Wang et al. 2015a).
Ruotsalainen et al. (2016) provide a solution to infrastructure-free indoor navigation
by fusing the observations from IMUs, cameras, ultrasonic sensors, and barometer
with the PF algorithm. The average positioning accuracy is about 3m.Various sensor-
fusion positioning methods are compared in Table 26.2. The test results have already
shown that the accuracy and stability of the sensor-fusion systems are better than an
indoor-positioning system with a single technology.

26.3 Difficulties in Indoor Positioning

Using the method of sensor fusion, the positioning accuracy of a smartphone is able
to reach 2–5m, and it is possible to achievewithin 1m in some specific environments.
However, in general, it is still challenging to develop a technology with low cost,
fine precision, and high usability for indoor and outdoor seamless positioning. The
main difficulties of smartphone indoor positioning are summarized as follows.

26.3.1 Complex Channel Transmission and Spatial Topology
in Indoor Environments

For the positioning with RF signals, multipath interference and NLOS transmission
are the main errors for TOA-based measurements. However, due to the complex
topology of the indoor environment, the multipath effect and the NLOS conditions
are common andmore severe indoors,which introduces large positioning errorswhen
applying traditional RF positioning technologies developed for outdoor positioning.
For example, the relocation of the appliances and furniture indoors, the increase or
decrease of goods on shelves, and variations in the layout of the venue all affect the
signal transmission and the magnetic field of the indoor environment. Such changes
are the main difficulty for indoor positioning systems to maintain high accuracy. It
is challenging to automatically sense and recognize the changes of the radio and
magnetic fields incurred by the spatial and temporal changes of indoor topology, and
thus improve the self-learning and self-adaptive ability of the positioning environ-
ment by updating the positioning database, including the WiFi fingerprint database,
the geomagnetic fingerprint database, the image feature database, and the landmark
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Table 26.2 Comparison of various available sensor-fusion positioning methods

Fusion methods References Advantages Disadvantages

WiFi/PDR Karlsson et al.
(2015), Li et al.
(2016), Wang
et al. (2015b)

Solve the instability
problems, overcome
positioning error,
and thus improve
the reliability and
robustness of indoor
positioning

The workload of
constructing the
WiFi fingerprint
database is large

WiFi/magnetic field/cellular signal Kim et al.
(2014)

Reduced cost and
labor consumption
because magnetic
fields do not require
any pre-installed
infrastructure

Magnetic field is
affected by the
environment

Bluetooth
module/accelerometers/barometers

Jeon et al.
(2015)

It realizes 3D
positioning and
achieves a
significant
improvement of the
positioning
accuracy compared
to the use of the
Bluetooth RSSI
alone

Errors
accumulate over
time

WiFi/PDR/magnetic field Zhang et al.
(2017)

The positioning
accuracy and
system robustness
are greatly
improved

The sampling
time needs to be
controlled

IMUs/camera/ultrasonic/barometer Ruotsalainen
et al. (2016)

The method
provides beyond the
state-of-the-art
performance and is
anticipated to result
in a SLAM solution

It is affected by
the light
environment

information database. Automatic update for such metrics is still a problem that has
not been solved in the field of indoor positioning.

26.3.2 Heterogeneous Source of Positioning

As shown in Fig. 26.1, there are over 12 types of sensors embedded in smartphones,
including GNSS receiver modules, short-range RF transmitters, WiFi and Bluetooth
modules, or receivers and other embedded sensors, such as accelerometers, magne-
tometers, gyroscopes, barometers, light-intensity sensors, microphones, speakers,
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and cameras. However, except for the GNSS receiver modules, other sensors and
RF signal modules are not specifically designed for the purpose of positioning.
Although many methods have been developed for these sensors to estimate the
parameters of positioning, these measurements from different sensors are in essence
heterogeneous, due to the fact that they observe different parameters of positioning
(e.g., position, velocity, heading rate), different sampling rates, and different noise,
which are in essence heterogeneous. As discussed in Sect. 26.3.1, it is possible to
integrate different sensors that are embedded in the smartphone for indoor posi-
tioning. However, in order to achieve an optimal solution to sensor fusion for indoor
positioning, the following problems have to be tackled.

26.3.2.1 Synchronization of Signal Measurements

Different smartphone sensors work independently and may have different sampling
rates. For example, the scanning rate of the WiFi RSSI signal ranges from 1/3 to
1/30 Hz, while the sampling frequency of the accelerometer can reach 180 Hz. Even
with the same sampling rate, the sampling time instant may be different too. There-
fore, in order to compute position with the sensor-fusion algorithm, a synchronized
measurement obtained from different sensors in different time instants has to be
aligned to a specific time baseline. The baseline can be the main clock time of the
smartphones in the user-centric positioning or the network time of the cloud server
in a solution of network-centric positioning. To meet the requirement of most indoor
location services, the update rate of indoor location should be greater than or equal to
1 Hz. The interpolation method works well on the time alignment of asynchronized
measurements when the user is in the low-speed motion state (the motion speed is
less than 2 m/s), which suits the scenarios of pedestrian indoor navigation.

26.3.2.2 Different Accuracy of Sensor Measurements

There are over 12 types of sensors embedded in smartphones. Different sensors have
different measurement noise and quantification errors. Besides, there are different
methods for different sensors to measure the positioning parameters, and thus, the
measurement accuracy consequently varies. For example, MEMS sensors embedded
in smartphones are low cost, and the measurement accuracy of such sensors is very
poor, so they cannot be directly used in strap-down inertial navigation. But they can
be used in step detection, and provide walking speed and length with acceptable
accuracy. The indoor environment also has a different effect on different sensors.
Some sensors or modules, such as a Bluetooth antenna array, visual positioning, or
audio positioning, can provide fine-precision measurements of distances and angles
in small-scale indoor spaces. In large-scale areas indoors, these sensors may have
much larger measurement errors, whichmight lead to the failure of the positioning. It
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is therefore important to develop positioning algorithms that have enough flexibility
to intelligently integrate different sensors with different observation accuracies.

26.3.2.3 Inconsistency in Different Smartphone Terminals

Different smartphone manufacturers may use different chipsets or components for
the receiver modules or embedded sensors. Thus, the measurements from different
smartphones may be biased due to the differences in the hardware of terminals. For
example, different mobile phones have differences in the signal strength measure-
ment of the same WiFi base station. Some deviations are actually quite large, which
largely affects the positioning accuracy for fingerprinting-based positioning. Such
inconsistencies also happen to cameras andMEMS sensors in different smartphones.
A process of self-calibration can improve the consistency of the measurements from
different smartphones to someextent.However, suchdifference or deviation is critical
when considering fine-precision indoor positioning with accuracy within 1 m.

26.3.3 Limited Computing Resources on Mobile Terminals

As a handset, a smartphone is limited in its computing and storage capacity and
power supply. Although the computing performance of smartphones has recently
been increasing in accordance with Moore’s Law, smartphones already perform
multiple functions—phone calls, positioning, assistance with daily work, recreation,
etc.—all of which demand a portion of computing and power resources. From the
point of view of energy saving, it is therefore not suitable for the smartphone to keep
running complicated positioning algorithms for a long time. Though some complex
positioning algorithms such as visual positioning and particle filter are gradually
implemented in smartphones, more complicated algorithms related to deep learning
and AI are still inappropriate for the handset platform and will need continuing
upgrade of the computation resources in smartphones in the future.

26.4 The Development Trends of Indoor Positioning
Technology

Indoor positioning is one of the hot research topics in academia and industry. Google,
as one of the leading IT companies, has promoted visual positioning service (VPS) as
its core technology, which fully demonstrates the importance of indoor positioning
in the future application of AI. Other internationally renowned IT companies, such
as Apple, Baidu, Huawei, and Alibaba, have all listed indoor positioning as one
of their strategic technologies. From the perspective of developing the technology



482 R. Chen and L. Chen

with high accuracy, high utility, and low cost, the future directions of smartphone
indoor positioning may include new positioning sources, effective fusion methods
on heterogeneous positioning technologies, and cooperative positioning based on
geographic information systems (GIS).

26.4.1 Explore New Positioning Sources for Fine-Precision,
High-Utility Smartphone Indoor Positioning

More andmore sensors are integrated into smartphones, providing the opportunity to
develop new positioning technologies. Among them, audio positioning is one of the
promising methods to achieve high-accuracy indoor positioning with smartphones.
The position is determined bymeasuring the TDOA from the sound transmitter to the
smartphone. The frequency for audio positioning can be set between 16 and 21 kHz,
which is within the working frequency of the microphone, while above the frequency
of audible sound. The advantage of sound positioning is that the requirement for time
synchronization is not as strict as that for RF positioning. Because the speed of sound
in the air is about 340m/s, the time difference between acoustic transmitters is within
0.1 ms. At this time, the error of acoustic positioning is within 3.4 cm, although that
is a quite large error for RF positioning.

Light-source coding and positioning is another candidate method for high-
accuracy positioning with smartphones. The location of the smartphone is deter-
mined based on an LED light installed on the ceiling with on/off signals as the
positioning source. By rotating the LED light, such a code has a unique pattern
in each sector, which can be utilized by smartphone light sensors for positioning
(Fig. 26.3). By measuring the relative position of the mobile phone in the sector,
positioning accuracy of 5–10 cm can be achieved without changing the hardware of
the mobile phone.

In terms of RF signal, Bluetooth 5.1 and 5G signals will play an important role
in indoor positioning. Bluetooth technology has the characteristic of low power
consumption, andBLE5.1 has enhanced the indoor positioningwith an angle-finding
property, which will achieve sub-meter. 5G-based wireless positioning technology
is likely to become one of the core technologies for future indoor positioning, as
it has explicitly announced indoor and outdoor positioning accuracy to be better
than 1 m (Koivisto et al. 2017; Laoudias et al. 2018). UWB signals have recently
been integrated into Apple’s smartphone. It is believed that UWB positioning in
smartphones will attract more interest in applications.

Visual positioning based on cameras is still a promising method to achieve high
accuracy with decimeter-level or even centimeter-level positioning errors, provided
that the ambient lights and image features are sufficient. By integration with a depth
camera, the visual positioning accuracy can be further improved, which has been
verified inGoogle’s Tango technology.However, the computation complexity is high,
in particular in the processes of feature detection, image matching, and AI-related
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Fig. 26.3 Positioning with light coding

algorithms. With the 5G wireless communication systems coming into operation,
their property of large bandwidth and low latency will allow smartphones to upload
their photos to a cloud server, and get the positioning results from the server in real-
time. It is, therefore, possible that all complicated algorithms will be computed in a
high-performance cloud server.

Table 26.3 briefly analyzes the promising indoor positioning technologies
mentioned above. Affected by the complex environment of indoor positioning,
different positioning methods have their advantages and disadvantages in terms of
positioning accuracy, reliability, availability, etc. In order to achieve continuous posi-
tioning estimates, fine-precision positioning technologies should intelligently fuse
with each other.

26.4.2 Fusion of Heterogeneous Positioning Sources

At present, the technical development trend in the field of indoor positioning is to
use a reliable estimation method to effectively integrate two or more positioning
sources, to improve the accuracy and availability of the smartphone positioning
system. In terms of the sensor fusion for indoor positioning, a complete solution
needs to be developed, which should integrate the steps of heterogeneous hardware
calibration, high-accuracy position estimation from a single technology, and the
intelligent sensor-fusion method with the heterogeneous smartphone sensors. One
possible way is to consider using the control points in the tightly coupled fusion
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Table 26.3 Characteristics and function of future technologies for indoor positioning

Advanced technology Characteristics Function Accuracy

Visual positioning It is basically
SLAM
technology and
able to perceive
changes in
surroundings and
image features. It
needs ambient
lights and
sufficient features

It provides
fine-precision
positioning and
attitude
estimation for
multi-source
hybrid
positioning and
provides initial
information for
PDR. It is also
able to update the
database from
crowdsourcing

Decimeter
accuracy in the
scenarios of
significant image
features

RGB-D depth camera positioning The depth
information can
be obtained and
by using the
method of angle
and distance
intersection, it is
able to achieve
decimeter level
positioning
The current price
and power
consumption are
high, but in the
future, it is likely
to be more
popular in mobile
phones

The reliance on
ambient light and
image features is
reduced. So, it
can be used as a
complement to
visual
positioning with
optical cameras

Decimeter

Light-source code positioning Fine precision
and low power
consumption on
the smartphone
side, and suitable
for indoor open
areas

As one of the
main methods
for smartphone
positioning in
open areas
indoors

Decimeter

Fine-precision positioning based on
new RF signals

Wide coverage
and high
availability, but
suffers severely
from multipath
and NLOS errors

Provides
fine-precision
positioning
results in a large
space and the
mainstream
method of
positioning with
high availability

Sub-meter

(continued)
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Table 26.3 (continued)

Advanced technology Characteristics Function Accuracy

Sound indoor positioning Independent of
lighting and
wireless base
station; but needs
special sound
transmitters for
positioning

Complement to
the technology
with visual and
RF positioning.
But not effective
for car parking in
the underground
where the sound
cannot penetrate
into cars

Decimeter

method, where the control points are estimated from the high-accuracy positioning
techniques mentioned in Sect. 26.2. To achieve a hybrid positioning solution with
stability and reliability, it is also important to design appropriate filteringmethods and
cross-validation methods to identify the errors from heterogeneous measurements,
in the case that the positioning sources are sufficient.

26.4.3 GIS-Based Semantic Constraint Location
and Semantic Cognitive Collaboration Positioning

Currently, the research topics of GIS have gradually shifted from outdoors to indoors.
Indoor GIS can on the one hand enhance the position estimates with indoor maps and
indoor features, and on the other hand, fully utilize the potential value of indoor land-
marks, providing semantic positioning capabilities with space constraints. However,
all these supports are insufficient due to the lack of high-accuracy coordinates in
current indoor GIS. Therefore, to establish a basic indoor GIS for a fine-precision
intelligent indoor positioning system, the following key technologies need to be
considered and properly addressed: (1) an indoor GIS model with a unified space–
time reference system; (2) a simultaneous indoor modeling and positioning method
with high-accuracy real-time coordinate computation; (3) an automatic update and
instantaneous modeling method for maps using crowdsourcing; and (4) real-time
visual positioning and 3D modeling with indoor semantics. At present, a new direc-
tion of indoor GIS research includes GIS-based semantic constraint positioning and
semantic cognitive positioning.

26.5 Conclusions

Indoor positioning is one of the core technologies in the era of IoT, AI, and
future super-AI (robots + human). Currently, smartphone-based indoor positioning
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technologies include RF positioning and sensor-based positioning. Many different
methods have been developed for indoor positioning. However, all these technolo-
gies developed so far have their own shortcomings because they are affected by the
complexity of space topologies, the heterogeneous data, and the limited computation
capability from mobile terminals, and thus, are limited for developing a ubiquitous
positioning solution. In order to meet the requirements of low cost, high accuracy,
high usability, and high durability for mainstream applications, it is necessary to
develop precise positioning solutions that are capable of adaptively fusing accurate
observables, including visual images, light signals, acoustic signals, and RF signals.
These precise locations can serve as the control points to prevent the propagation of
positioning errors. To achieve full coverage, positioning solutions such as pedestrian
dead reckoning and magnetic matching are needed to be integrated with the system.
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Chapter 27
What Urban Cameras Reveal About
the City: The Work of the Senseable City
Lab

Fábio Duarte and Carlo Ratti

Abstract Cameras are part of the urban landscape and a testimony to our social
interactions with city. Deployed on buildings and street lights as surveillance tools,
carried by billions of people daily, or as an assistive technology in vehicles, we rely
on this abundance of images to interact with the city. Making sense of such large
visual datasets is the key to understanding and managing contemporary cities. In this
chapter, we focus on techniques such as computer vision and machine learning to
understand different aspects of the city. Here, we discuss how these visual data can
help us to measure legibility of space, quantify different aspects of urban life, and
design responsive environments. The chapter is based on the work of the Senseable
City Lab, including the use of Google Street View images to measure green canopy
in urban areas, the use of thermal images to actively measure heat leaks in buildings,
and the use of computer vision and machine learning techniques to analyze urban
imagery in order to understand how people move in and use public spaces.

27.1 Introduction

Cameras have become part of the urban landscape and a testimony of our social inter-
actions with the city. They are deployed on buildings and street lights as surveillance
tools, carried by billions of people daily, or as an assistive technology in vehicles
with different levels of self-driving capabilities. We rely on this abundance of images
to interact with the city.

In fact, 2.5 quintillion bytes of data are created each day by billions of people
using the Internet. Increasingly, socialmedia are heavily based on visual data. Among
the top social media channels, several are overwhelmingly and exclusively based
on images: YouTube has 1.5 billion users and Instagram has 1 billion users—as a
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comparison, Facebook has 2.3 billion users. Such visually based social interactions
are also extended to the interactions we have in our cities. In the USA, on average,
a person is caught on camera 75 times per day, and over 300 times in London.
Also, disruptive urban technologies such as autonomous vehicles use cameras. The
challenge is to make sense of the amount of visual data generated daily in our cities
in meaningful ways, beyond surveillance purposes.

In this chapter, we are not interested in the abundance of visual data available
online collected by individuals and widely available on social media. The previous
work used geotagged photographs available online to measure urban attractiveness
(Paldino et al. 2016) or to assess the aesthetic appeal of the urban environment
based on user-generated image (Saiz et al. 2018), and the visual discrepancy and
heterogeneity of different cities around the world (Zhang et al. 2019). The focus
of this chapter is not on the visual data produced by cameras carried by people for
personal uses, but rather on the images collected by cameras specifically designed
and deployed to gather visual data about the city—which we call here urban cameras.

Cameras deployed and controlled by a range of public and private organizations
in urban areas are counted by the dozens of thousands in cities, from London and
Beijing to New York and Rio de Janeiro. As an example, a Londoner is captured on
camera more than 300 times every day; and during the same period, the UK captures
over 30 million plate numbers (Kitchin 2016). Additionally, private companies, such
as Google, collect and make available online hundreds of thousands of images of
hundreds of cities worldwide.

Making sense of such large visual datasets is the key to understanding and
managing contemporary cities. There are still many technical issues to be solved to
make the use of such huge visual datasets actionable. Challenges include cloud versus
local storage and processing; architecture integration, ontology building, semantic
annotation, and search; and online real-time analysis and offline batch processing of
large-scale video data (Shao et al. 2018; Xu et al. 2014; Zhang et al. 2015).

Besides the technical challenges, there are also ethical issues. The most prevalent
among social scientists is the narrow understanding of cities when urban phenomena
are equaled to available data, heading the operationalization of the urban (Luque-
Ayala and Marvin 2015), mainly when “portions of the urban public space that are
shadowed by the gaze of private cameras and security systems” (Firmino and Duarte
2015 p. 743) become subject to the datafication of the city, often leading to “social
sorting and anticipatory governance” (Kitchin 2016 p. 4). Closed-circuit television
(CCTV), deployed on public areas and aimed to assist police patrols with crime
prevention, using video analytics to identify abnormal behaviors, fosters predictive
policing by the profiling of subjects and places, and frequently triggers false alarms
due to biases embedded in the algorithms (Vanolo 2016).

We are aware of these issues and have contributed ourselves to the literature on
the risks of oversurveillance based on the abundance of data about people’s behavior
in public spaces. But, in this chapter, we would like to discuss the other side of this
phenomenon: how novel computational techniques can be used to make sense of
the huge amount of visual data generated about cities, and how such results reveal
aspects of urban life that can contribute to better understanding and design of cities.
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The projects discussed in this chapter are part of the extensive work using urban
cameras done by the Senseable City Lab, at the Massachusetts Institute of Tech-
nology. These works can be divided into two types: the use of visual urban data
available online, and the capture of visual data by the Lab with specifically designed
devices.

In the first type, we take advantage of the visual urban data available online and
develop machine learning techniques to make sense of these data. The datasets used
in this research are Google Street View images, whichwe have been using tomeasure
a critical aspect of cities with rapid urbanization: the quantification of green canopy
in urban areas using a standard method that can be deployed cheaply, and that makes
possible comparisons among hundreds of cities worldwide. And, at the same time, it
provides a fine-grained analysis of greenery at the street level, allowing citizens and
municipalities to assess tree coverage in different neighborhoods.

In the second type, we design specific devices to collect images and deploy
them ourselves. In one example, we started by using thermal cameras mounted on
vehicles to measure heat leaks in buildings. Using the same devices, we developed
other techniques to use thermal data to quantify and track people’s movements in
indoor and outdoor areas. Besides the technical advantages of the method in terms
of data transmission and processing, it also addresses an important concern about
the use of cameras in public spaces: Thermal cameras allow us to have accurate data
about people’s behavior without revealing their identities, therefore avoiding privacy
concerns. Also, as part of this type of research, we address the problem of indoor
navigability in large public areas. It is a well-known problem that users often have
difficulty in navigating areas such as shopping malls, university campuses, and train
stations, due either to their labyrinthic design or to the repetitiveness of visual cues.
Here, we collected thousands of images on the MIT campus and in train stations in
Paris and trained a neural network to measure the easiness to navigate these spaces,
comparing the results with a survey with users.

Visual data about cities will tend to increase in the coming years, with personal
photographs and videos that people use to register their daily routines in cities posted
on social media, the deployment of cameras for surveillance not only for policing
purposes but also for traffic management and infrastructure monitoring, and the fact
that visual data will be crucial in technologies such as self-driving cars. All work
dealing with visual big data needs to overcome the hurdles of manually processing
thismassive amount of information and generating useful empirical metrics on visual
structure and perception. In this chapter, we propose to discuss how the development
of novel computation methods used to analyze the abundance of visual urban data
can help us to better understand urban phenomena.
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27.2 Computer Vision and the City: Google Street View
Images

Some of the most prolific sources of spatial data are Google Maps, Earth, and Street
View. These products offer Web mapping, rendering of satellite imagery onto a 3D
representation of the Earth, terrain and street maps, and 360° panoramic views of
hundreds of cities around the world. GSV in particular has several advantages that
allow a quantitative study of the visual features of cities, including the availability
of images in hundreds of cities in more than 80 countries, the use of similar photo-
graphic equipment everywhere, all images being georeferenced, and all images are
available for download. As an example of the amount of visual urban data in GSV
datasets, in NewYork City, there are approximately 100,000 sampling points: It sums
up to approximately 600,000 images, since GSV captures six photographs at each
sampling point. GSV and similar services have made available an unprecedented
visual database of cities around the world with comparable characteristics.

Several researchers have been using GSV to analyze cities. Khosla, An, Lim et al.
(2014) have analyzed 8 million GSV images from eight cities in different countries
in order to compare how accurately humans and computers can predict crime rates
and economic performance. Convolutional neural networks have been used by many
researchers interested in measuring how physical features of cities affect different
aspects of urban life, such as chronic diseases, the presence of crosswalks, building
type, and vegetation coverage (Nguyen et al. 2018; Zhang al. 2019). GSV images
have also used to quantify urban perception and safety (Dubey et al. 2016; Naik
et al. 2014), to detect and count pedestrians (Yin et al. 2015), to infer landmarks in
cities (Lander et al. 2017), and to quantify the connection between visual features
and sense of place, based on perceptual indicators (Zhang et al. 2018).

Since 2015, the MIT Senseable City Lab has been using GSV to measure green
canopy in cities. Xiaojiang Li pioneered this research with the Lab, using deep
convolutional neural networks to quantify the amount of green areas at the street
level. In this research initiative, called Treepedia, the focus is on the pedestrian
exposure to trees and other green areas along the streets. Streets are the most active
spaces in the city, where people see and feel the urban environment in their daily
lives. Street-level images have a similar view angle with to pedestrians and can be
used as proxies of physical appearance of streets as perceived by humans.

Li et al. (2015) and Seiferling et al. (2017) calculated the percentage of green
vegetation in streets based on large GSV datasets. The process begins by creating
sample sites, usually every 100 meters along the streets, and then collecting GSV
metadata, static images, and panoramas. The basic technique involves the use of
computer vision and DCNN to detect green pixels in each image. Once green pixels
are detected, all the remaining part is subtracted, giving a general quantification of
greenery. Thus, the percentage of the total green pixels from six images taken at each
site to the total pixel numbers of the six images gives the Green View Index (Li et al.
2018).
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Recent development in deep learning models allows us to improve the method-
ology to calculate the GVI. Initiated by Bill Cai (Cai et al. 2018), another researcher
with the Senseable City Lab, the goal here is to quantify what is actually vegetation
in GSV images, rather than using the ratio of green pixels as proxies to street-level
greenery. The process begins by labeling images in a small-scale validation dataset.
In this case, five cities with different climatic conditions were selected: Cambridge
(Massachusetts, USA), Johannesburg (South Africa), Oslo (Norway), São Paulo
(Brazil), and Singapore. One hundred images were randomly selected for each city,
and vegetation was manually labeled. The DCNN model was then trained using the
pixel-labeled Cityscapes dataset. Researchers also used a gradient-weighted class
activation map (Grad-CAM) to interpret the features used by the model to identify
vegetation. Results show that the DCNN models outperform the original Treepedia
unsupervised segmentation model significantly, decreasing the mean absolute error
from 10% to 4.7%.

The Treepedia Web site counts the Green View Index for 27 cities, and we have
recently released an open-source Python library that allows anyone to calculate the
GVI for a city where GSV images are available.

27.3 Thermals Images of the City

The richness of urban understanding that can be derived from video cameras is
well known in urban studies. In groundbreaking research in the 1970s, William
Whyte (2009) employed time-lapse cameras to understand people’s behavior in
public spaces and used this information to inform design. The negative reactions
triggered by the deployment of cameras in public areas frequently happen due to a
narrow understanding of their purposes (surveillance and policing) and poor analyt-
ical techniques, often based on officers watching footage (Luque-Ayala and Marvin
2015; Firmino and Duarte 2015).

In recent years, in research initiated by Amin Amjonshooa, the MIT Senseable
City Lab has been addressing these three problems related to the deployment of
cameras in urban areas. We do this by widening the spectrum of urban phenomena
that we can understand using cameras, developing image processing techniques that
are novel to urban studies, and employing cameras that by design do not capture
people’s identity features. Here, we discuss the quantification of traffic-related heat
loss and people’s trajectories in space using cameras mounted on street lights, and
the assessment of building heat loss using cameras deployed on vehicles.

Human activities generate heat. Cooling and heating systems and transportation,
to stay with examples that are part of our daily lives, generate anthropogenic heat and
release it into the ambient environment. They are major sources of low-grade energy
that have direct and indirect impacts on human health. Cars alone, either powered
by gasoline or diesel, release 65% of the heat produced by engines into the urban
environment. In order to assess vehicular heat emissions at the street level, andmatch
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such emissions to the number of pedestrians directly exposed, we have been using
thermal cameras deployed in the existing infrastructures.

Thermal cameras capture wavelengths and measure the infrared radiation emitted
from objects. They have a single channel, and thermal images have lower resolution,
which makes thermal data much smaller in size, in comparison with RGB visual
images. Smaller data size allows faster and better data transmission and processing,
being less computational intensive. Thermal data only look like images when we
apply the appropriate color maps.

The previous work has used thermal cameras to identify space occupancy and
count people. Qi al. (2016) proposed the use of thermal images as a sparse repre-
sentation for pedestrian detection. Gade et al. (2016) developed a system to auto-
matically detect and quantify people in sport arenas, by counting pixel differences
between two successive frames. Interestingly, they also showed that based on the
movements captured by thermal cameras, they were able to differentiate the sport
modality people are playing, based on the position, concentration, and trajectories
of people in space.

We deployed FLIR Lepton micro thermal cameras on street lights next to MIT, in
Cambridge, MA, with the goals of quantifying traffic-related heat loss and tracking
pedestrian movements.

Internal combustion vehicles are one of the major sources of heat in cities. Based
on the analysis of thermal images captured at this high-traffic intersection, we were
able to quantify and visualize both heat intensity and traffic load. Thermal cameras
showed another advantage in relation to RGB cameras: Besides the counting of
vehicles and simple identification (motorcycles, cars, trucks, buses), thermal images
also allowed us to measure whether the vehicle had been running for a short or long
period before being scanned (Anjomshoaa et al. 2016). This analysis generated a
thermal fingerprint of traffic flow at the intersection.

For the analysis of the thermal images,we propose amethod based on accumulated
Radon Transform, which computes the projection of images along various angles.
The Radon Transform of thermal images reveals the warmer objects and at the same
time preserves their locations. We used the same dataset to count pedestrians passing
on the sidewalk near traffic. In order to optimize data transmission and processing,
we limited the target area to a sidewalk segment next to the pedestrian crossing. It
also helped us to eliminate the high thermal flux of cars, whichwould otherwisemake
detecting pedestrian thermal flux harder. With this research, we were able to study
the exposure of pedestrians to various anthropogenic pollutants caused by internal
combustion vehicles. Also, by detecting thermal peaks, we were able to differentiate
between single individuals and groups of individuals; and by learning from many
hours of image analysis and the varying amplitude of the peaks, we were able to
estimate the number of people in the scene.

In the project called City Scanner, the Lab has been developing a drive-by solution
in which we mount a modular sensing platform on ordinary urban vehicles—such
as school buses and taxis—to scan the city. The advantage of this approach is that
it does not require specially equipped vehicles, since our modular sensing platform
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can be deployed virtually on any vehicle. To prove this concept, in Cambridge, MA,
we deployed the sensing platform on trash trucks (Anjomshoaa et al. 2018).

Among the sensors scanning the city for a period of eight months, we had two
thermal cameras capturing data from the two sides of streets. These were non-
radiometric thermal cameras, in which case the thermal output is not the scene
temperature, but only a display of temperature fields. Scanning the thermal signature
of all street segments of the city over different seasons, we created a thermal signature
of the built environment in Cambridge. With these data and continuous scanning,
any anomaly in the thermal difference between neighboring buildings might trigger a
detailed analysis by city officials. In the case of Cambridge, a city that has programs
to help residents to improve house insulation, this constant scanning can help the
public authorities to be responsive when heat leaks are detected.

27.4 Navigating Urban Spaces Using Computer Vision

The explosion of big visual data is offering new sources of data that can overcome
spatial and resource constraints that are common in studies of perception and legi-
bility of urban spaces. At the Senseable City Lab, we have been using computer
vision and deep convolutional neural networks to understand how people perceive,
locate themselves, and navigate spaces.

As we have explained elsewhere (Wang et al. 2019), DCNN is based on proba-
bilistic program induction, achieved by a bank of filters whose weights are adjusted
during the training phase, with the goal of obtaining the key features of the images
and, more importantly, the interplay of these features.

Here, we are particularly interested in addressing the problem of indoor naviga-
bility in large public areas. It is a well-known problem that users often have difficulty
in navigating areas such as shopping malls, university campuses, and train stations,
due to either their labyrinthic design or to the repetitiveness of visual cues.

In order to address this challenge, we have collected hundreds of thousands of
images in two space types: university campuses and train stations. We trained a deep
convolutional neural network to measure the easiness to navigate these spaces, and
in the case of the train stations, we compared the results with a survey of users.

We first decided to test navigability on the MIT campus—in particular in a
quite bland and disorienting space: the so-called infinite corridor, the interconnected
indoors corridors and atriums that links several MIT buildings. The goal was to test
DCNN to recognize different locations based on spatial features. Led by Fan Zhang
(Zhang, Duarte, Ma et al. 2016), the study was based on 600,000 images extracted
from video footage which we took using a GoPro camera for the training dataset,
and 1,697 images taken with a smartphone for the test dataset. We compared our
model with two commonly used in DCNN, and regarding the location in space, we
achieved 96.90% top-1 accuracy on the validation dataset—higher than the other
available models. We also proposed an evaluation method to assess how distinc-
tive an indoor place is, when compared with all other spaces in the study area, and
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produced a distinctiveness map of buildings on the MIT campus, which might help
to explain how people find their way (or get lost) in the infinite corridors of MIT.

Another indoor public space that might be disorienting is the train station (Wang,
Liang, Duarte et al. 2019). In this research, we measured space legibility in two train
stations in Paris: Gare de Lyon andGare St. Lazare, each receivingmore than 250,000
passengers daily. Legibility influences the ability of people to locate themselves and
find their way—or navigate space (Herzog and Leverich 2003). We developed a
device composed of a LiDAR sensor and a 360 camera. After the projection trans-
formation, we cropped hundreds of thousands of images from panoramic images
from each station to train our DCNN.

In our DCNN, we have removed the final labeling part of the neural network,
because our goal was not to identify what objects are present in each image, but to
understand how visual properties are used to navigate space based on visual similar-
ities. For Gare de Lyon, we tested the model on 88,869 images and achieved 97.11%
prediction accuracy of its top-1 choice, and 97.23% for Gare St. Lazare.

Although the model performed very well (more than 97% top-1 accuracy) overall,
we noticed discrepancies in accuracy among different spaces in different floors and
related to different uses, which could reflect different spatial legibility. Research
using computer vision frequently employs surveys to test results. On one setting,
in their study to compare how accurately humans and computers can predict the
existence of nearby establishments, crime rates, and economic performance of urban
areas, Khosla et al. (2014) used Amazon Mechanical Turk and asked participants to
guess where are some establishments; on another setting, they trained the computer
to recognize five visual features of the images. Their results show humans and
computers with similar performance.

Thus, to prove the validity of our model, we deployed a survey on Amazon
Mechanical Turk, collecting 4,015 samples. The human samples showed a similar
behavior pattern andmechanismas theDCNNmodels.A10-second videowas shown
to all participants on a Web-based survey. On the next page, we displayed one image
snippet from the spatial segment shown in the video, in addition to three images (one
from the same scene). From these three images, participantswere asked to choose one
that matched the same scene and were asked to point out three features that helped
them to make the decision. We compared these results with the activation layer,
which is the fully connected layer of the DCNN model. We created heatmaps of the
main features used by the model and by humans to read spaces. Although in several
situations both have focused on the same areas, discrepancies are also important: One
example is that participants often used objects, such as TV screens or advertisement
boards, to help recognize spaces and locate themselves—indicating that semantic
values play an important role in spatial legibility, in addition to spatial features and
visual cues. More importantly, the research showed that computer vision techniques
can help us to understand space legibility even closer to how humans read space.
Since the deployment of cameras is more easily reproducible than doing surveys,
computer vision and DCNN are opening new avenues in the study of space legibility
that can inform wayfinding and space design.
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27.5 Conclusion

In this chapter, we discussed three initiatives by the Senseable City Lab, in which we
proposed special devices, designed experiments, and developed machine learning
methods to analyze visual urban data. Either by taking advantage of urban imagery
available online or by collecting RGB and thermal images in urban areas, the goal is
to demonstrate how thesemultiple images can help us to reveal different aspects of the
city. It is only by creating novel approaches to understand the visual data generated in
cities that we will be able to understand contemporary urban phenomena and inform
design in innovative ways.

The abundance of images certainly raises several problems, mainly regarding
individual privacy—and this topic must be taken seriously. However, we should
raise other questions regarding ownership and proper use of images collected in
urban areas. For example, plenty of breakthrough research has been done in the
fields of urban design, computer science, and sociology, using the urban scenes
available online in platforms such as Google Street View. This was done with the
tacit understanding that a private company was taking pictures of public spaces and
making them available for non-commercial use—including scientific research. It was
almost a trade-off:We allowGoogle to put online images of the façades of our houses,
our backyards, and our cars when parked on the streets, and, in exchange, we could
use these images for the common good of deepening our understanding of cities.
Recently, Google changed its rules and now forbids almost any use of Google Street
View images, including for academic purposes. Thus, should we accept quietly that
a private company can take millions of images of public spaces and make money
out of it? And even of our private properties? The question of privacy is essential in
an era of overabundance of images; but, likewise, is the question of allowing private
companies to profit from common goods—and the cities are the essential common
good of the modern age.

Another important aspect of the future of urban ambient sensing is that sensors
will be increasingly embedded in our buildings and carried by people in different
formats. In this chapter, we discussed research based on the collection of passive
data from our cities: images. More and more, construction materials have sensors
as their components, sensors that not only feel the environment, but also react to it.
Fully transparent glass panels embedded with photovoltaic cells measure the amount
of light, change the opacity to adjust to the luminosity set by the users, and, at the
same time, generate energy. On the personal side, if we currently carry sensors in our
cellphones, these sensors are also becoming the constituent material of our clothes,
for instance. Theymeasure the body temperature, the ambient temperature, and adjust
the clothing to our optimal comfort. At the same time that glass panels or clothing
are sensing and actuating at the individual level with building or user, they are also
generating data that can help us to better understand the relations established between
people, the built environment, and nature. Exploring newmethods to understand these
relations is the key to foster innovative urban design.
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Chapter 28
User-Generated Content: A Promising
Data Source for Urban Informatics

Song Gao, Yu Liu, Yuhao Kang, and Fan Zhang

Abstract This chapter summarizes different types of user-generated content (UGC)
in urban informatics and then gives a systematic review of their data sources, method-
ologies, and applications. Case studies in three genres are interpreted to demonstrate
the effectiveness of UGC. First, we use geotagged social media data, a type of single-
sourced UGC, to extract citizen demographics, mobility patterns, and place seman-
tics associated with various urban functional regions. Second, we bridge UGC and
professional-generated content (PGC), in order to take advantage of both sides. The
third application links multi-sourced UGC to uncover urban spatial structures and
human dynamics. We suggest that UGC data contain rich information in diverse
aspects. In addition, analysis of sentiment from geotagged texts and photos, along
with the state-of-the-art artificial intelligence methods, is discussed to help under-
stand the linkage between human emotions and surrounding environments. Drawing
on the analyses,we summarize a number of future research areas that call for attention
in urban informatics.

28.1 Introduction

The urbanization process is accelerating in world cities and attracting large-scale job
opportunities, human flows, business, and social activities. With the rapid develop-
ment of information and communication technologies (ICT), location-aware devices,
and sensor networks, the emergence of multi-source geospatial big data brings
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new opportunities to understand the rich semantics of space and place and asso-
ciated human activities in urban areas using large-scale user-generated content
(UGC) and crowdsourcing data streams, such as geotagged social media posts,
travel blogs, mobile phone data, smart card data from transportation, GPS-enabled
ridesharing services, and so forth. In this chapter, we review state-of-the-art research
in UGC-based urban informatics using crowdsourced geographic information.

28.1.1 Background and Definition

Following the development of Web technologies and mobile devices, people can
easily produce large numbers of data and rich information irrespective of their exper-
tise. This is known as user-generated content (UGC), which is a form of content
created by users of a system or a service and made available publicly on that system.
UGC ranges from social media data and crowdsourced GPS trajectory data, to smart
card data andmobile location data from a variety of apps. UGCmaximizes the oppor-
tunity to understand multiple facets of the cities that we inhabit. The uniqueness and
potential of UGC are mainly demonstrated in two ways. On the one hand, UGC
can be viewed as the complement of professional-generated content (PGC), as it is
decentralized and can be collected from the bottom up and through citizen science
(Goodchild 2007; See et al. 2016). Therefore, it can be utilized to capture public
opinions and further be leveraged to understand place-based contexts and sociocul-
tural perceptions. On the other hand, UGC can be produced in an economical yet
effective manner, and individuals as sensors largely expand the data coverage within
cities.

Generally speaking, UGC in geographic information applications can be cate-
gorized in two types. One is collaborative mapping platforms, such as Wikimapia
and OpenStreetMap (OSM), in which volunteers create and contribute geographic
features and detailed descriptions to the Web, where the entries are synthesized into
databases and made available to both public and private sectors. This type of UGC is
also known as volunteered geographic information (VGI; Goodchild 2007) and has
lowered the barriers for the general public to not only consume geographic informa-
tion but also to contribute to the platform. Different organizations can also produce,
customize, and render the data sources based on their own preferences of map styles
and application requirements, such as in natural disaster management and emergency
routing (Longueville et al. 2010; De Albuquerque et al. 2015; Han et al. 2019). VGI
demonstrates how geographic data, information, and knowledge are produced and
circulated in practice among different communities and in society at large (Sui et al.
2012). In the past decade, there exist a couple of studies comparing the data quality
of VGI to the authoritative mapping sources and proprietary geodata in different
regions and countries (Haklay 2010; Girres and Touya 2010; Zielstra and Zipf 2010;
Neis et al. 2012; Forghani and Delavar 2014; Yamashita et al. 2019; Tian et al.
2019), where developed countries generally had a better coverage and data quality
compared to developing countries. And in some regions, OSM data had geograph-
ically imbalanced coverage and were missing various types of information such as
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roads, points of interest (POI), and land uses (Dorn et al. 2015; Kashian et al. 2019).
The second type of UGC is socially constructed data streams from users, that is, data
entries constructed from mobile phone apps including diverse social media sources,
crowdsourcing, and location-based services (Facebook, Twitter, Weibo, Foursquare,
Yelp, Flickr, Instagram, Waze, Uber, Lyft, Didi, etc.), where the general public use
locations, place names, and geographic contexts to search for information, consume
the service, describe their sense of place, and share diverse opinions and comments
according to their experiences (Li et al. 2013;Liu et al.2015;Gao et al. 2017; Janowicz
et al. 2019). Harvey (2013) argues that this would be more precisely labeled as user
contributed data, since people may not consciously volunteer their data, but generate
it in the process of using the platforms for their particular purposes.

In cities, as the most populated areas on the Earth, there have been increasing
amounts of UGC data streams generated every day from social media platforms,
location-based services, crowdsourcing, and sensor networks, which help in sensing
and addressing the urban problems and challenges in the regional economy and in
globalization (Martinez-Fernandez et al. 2012; Cheshire and Hay 2017), and also
drive the new paradigm in urban analytics (Batty 2019) that combine big data,
urban planning and design, and spatial information theory for future development of
sustainable cities.

28.2 Characteristics of UGC

User-generated data have their own pros and cons (Martí et al. 2019). In urban studies,
although researchers have successfully utilized this emerging source for assessing
urban spatial structure and functional regions (Gao et al. 2017; Tu et al. 2017; Xu
et al. 2019), analyzing humanmobility patterns and transportation infrastructure (Cho
et al. 2011; Noulas et al. 2012; Hawelka et al. 2014; Liu et al. 2014; Yue et al. 2014)
and supporting the design of new urban development rules, a good understanding of
the key characteristics of UGC data is a prerequisite for preventing the abuse of such
data. Compared to traditional data sources (e.g. survey) used in urban studies, UGC
data have the following advantages.

First, UGC has the five Vs (volume, velocity, variety, veracity, and value) char-
acteristic of big data (Marr 2015; Yang et al. 2017). Millions of users from different
countries and regions in theworld are posting all kinds of information per second (Hu
et al. 2015; Liu et al. 2015; Martí et al. 2019). For instance, on Twitter, as one of the
most widely used social media platforms, there are more than 500million tweets sent
daily by 100 million active users from 160 countries (Aslam 2019). UGC covers all
kinds of topics including news, sports, entertainment, education, economics, tech-
nology, travels, and lifestyle and provides various perspectives in sensing urban
environments and human dynamics (Sagl et al. 2012). People share comments about
their lives, surrounding environments, and nearby events. As social media records
include the timestamps of users’ contents and activities automatically, they provide
valuable information for time-series data analytics and time-geography applications
(Chen et al. 2016; Tirunillai and Tellis 2012; Kang et al. 2017; Li et al. 2016). More-
over, the UGC data-collection process for a large geographic area is faster, and the
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cost is reduced compared to traditional surveys (Li et al. 2013; Gao et al. 2014; Jiang,
Li, and Ye 2019). Moreover, the resolution of UGC can be zoomed into the detailed
individual level (Yue et al. 2014; Liu et al. 2015) rather than the aggregation level
such as census data; and the data update period of UGC (i.e. seconds, minutes, hours,
or days) is usually shorter than that of official surveys (i.e. months or years).

Second, UGC data are contributed by the users voluntarily or are collected from
the users who use a service and agree to share their data. It is worth noting that
some references may only use a strict definition of actively generated data or crowd-
sourcing. Citizens monitoring their surrounding urban environment can be consid-
ered as sensors (Goodchild 2007) in terms of expressions, perceptions, and behav-
iors, while producing streams of data on social media Web sites, which can help
reveal different aspects of their own lives and their environment (Arribas-Bel 2014).
Conventional data collectionmethods for urban studies usually require large commu-
nity surveys, long-period observations, and high labor costs using questionnaires and
fieldwork (Nawrath, Kowarik, and Fischer 2019; Oliveira and Campolargo 2015). In
contrast, UGC is produced through the motivation of both the organizations and the
individuals, for various purposes such as providing and using location-based services
(Yap et al. 2012), and the desire to share with others to promote friendships and social
connections (Ames and Naaman 2007; Hollenstein and Purves 2010). Through this
procedure, massive data can be collected unobtrusively in which the response bias
in traditional methods may be eliminated (Quercia et al. 2015).

While UGC offers promising opportunities, several internal challenges and
limitations of the UGC should be addressed for urban studies as follows.

First, although large volumes of content are contributed bymillions of users every
second, we may get a very sparse data matrix (e.g. Lee et al. 2015) after slicing the
UGC data into a fine spatiotemporal resolution (e.g. a city-block spatial unit with
hourly temporal window), which is crucial in solving some urban problems such
as transportation planning and traffic congestion control. The spatiotemporal data
sparsity issue becomes more prominent in the regions with limited numbers of active
users. Due to the reduced data volume, the uncertainty in each slice may increase
when analyzing the data (Bao et al. 2012).

Second, a common concern about UGC refers to the lack of standardization for
users in the data generation process, which causes poor data quality and low trustwor-
thiness, as well as high uncertainty (Senaratne et al. 2017). Users produce geographic
data based on their local knowledge and their perception of the place, which may
vary across different users (Stephens 2013). And due to the vagueness and uncer-
tainty in human conceptualization of location, space, and place, it is hard for users
to express some geographic regions and spatial relations precisely (Montello et al.
2003; Goodchild and Li 2012). Thus, an approach driven by data synthesis (Gao
et al. 2017b), combining UGC with an approach informed by fuzzy-set theory (Wu
et al. 2019), and combining UGC with survey-based behavior approaches (Twaroch
et al. 2019) has been proposed to address the abovementioned concerns. For instance,
users may have different perceptions and cognitions for the same place, which can
cause incorrect tagging behaviors for social media photos (Hollenstein and Purves
2010).
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The third issue concerns the representativeness of UGC,which refers to the degree
to which UGC observation samples can represent the actual population (Zhang and
Zhu 2018). The results may be biased by data sampling. The existing studies have
figured out that the information shared on social media platforms usually follows a
power-law distribution, indicating that only a small proportion of users contribute
most of the content online (Kwak et al. 2010; Longley and Adnan 2016; Gao
et al. 2017a). Therefore, the content collected might be dominated by some specific
features and can be another source of bias. Besides, the demographic bias in contrib-
utors also impedes the representativeness (Hecht and Stephens 2014). Not all people
in the real world use social media frequently. People who have limited access to
social media, such as the elderly and users in developing countries, may be less
sampled by UGC. For example, the average age of users in Twitter is 28 (Longley
and Adnan 2016), and most photos in the Yahoo Flickr Creative Commons (YFCC)
dataset released by the Yahoo Labs are uploaded by users in USA (Thomee et al.
2015; Kang et al. 2018) and several other developed countries. It is worth noting
that the users who send geotagged tweets are also not randomly distributed over the
population but create bias in subtle ways (Malik et al. 2015).

Despite the existence of data bias, research driven by UGC data has achieved
great success as a result of validation or through comparison with studies using
traditional data sources (Al-ghamdi and Al-Harigi 2015; Blaschke et al. 2018; Gao
et al. 2017b; Liu et al. 2016). Opportunities have arisen for urban studies using UGC
data because of the abovementioned advantages: (1) big datawith low collection cost;
(2) fast data generation and update velocity; (3) high penetration rate among users.
The next part of this chapter summarizes various examples of UGC-driven urban
informatics research and applications and with a focus on the topics of urban spatial
structure, urban functional regions, place semantics, and user sentiment analysis. We
will first introduce an analytical and computational framework to process large-scale
crowdsourced data, and followed this with various applications and case studies in
the literature.

28.3 Analytical and Computational Framework to Process
UGC Data

A general analytical and computational framework to process and analyze UGC data
is shown in Fig. 28.1. It consists of three parts from the bottom up. First, researchers
collect various sources of UGC datasets including Twitter, Weibo, Instagram, Face-
book, Foursquare, Yelp, and Dianping and store the data (including structured table
records and unstructured texts, images, and videos) in the computer server or a cloud
data center with master server and data nodes. Second, the raw data must be cleaned,
filtered, processed, and enriched to further extract the information about users, loca-
tions, and content (more details in Sect. 28.3). Lastly, spatiotemporal analyses, statis-
tical methods, andmachine learningmodels are employed to support urban analytics,
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Fig. 28.1 A general analytical and computational framework to process and analyze UGC data

diagnostics, knowledge discovery, modeling, prediction, and decision-making appli-
cations. During this process, multi-source UGC and crowdsourced data can be inte-
grated and fused. High-performance computing infrastructure (Cao et al. 2015; Gao
et al. 2017; Yang et al. 2017) and open-source analysis toolkits as well as machine
learning frameworks such as scikit-learn, r-spatial, PySAL, and Tensorflow can be
utilized to facilitate the data processing and advanced analysis.

28.4 Single-Source UGC-Based Urban Studies

28.4.1 User Information and Citizen Demographics

User information in UGC refers to the metadata or the profile of a user, including the
place of residence, name, gender, age, ethnicity, hobby, friends, and social connec-
tions, and so on. Users are the main entities who generate content. There are two
ways to collect user information from UGC. On the one hand, some basic user infor-
mation can be directly obtained from the public profile which users provide on social
mediaWeb sites. When they were registering and creating a new account, users were
required to enter such information by filling out online forms. For example, some
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basic demographic information such as nationality, gender, and age can be directly
extracted from the user profiles (Longley et al. 2015; Kang et al. 2018). Researchers
can further utilize such demographic information about citizens to better under-
stand the flow of people from different geo-demographic groups in cities (Longley
and Adnan 2016; Huang and Wong 2016). In addition, the follower and friendship
connections in social media platforms can also be obtained and have been used to
examine theories in the social sciences (Sloan andMorgan 2015; Ugander et al. 2011;
Hodas et al. 2013).

On the other hand, some missing user information may not be retrieved directly
from the user profile but can be inferred by combining other data sources and further
analyses. For instance, the gender, age, and ethnicity information can be inferred
from the user identifiers with the forename–surname pairs (Chang et al. 2010;Mateos
et al. 2011; Mislove et al. 2011; Longley et al. 2015; Luo et al. 2016). By tracking
the location and time of user postings, residents and visitors can be identified and
distinguished (García-Palomares et al. 2015; Liu et al. 2018; Su et al. 2016).

28.4.2 Human Mobility, Urban Spatial Structure,
and Transportation

Understanding human mobility patterns is important for the planning and manage-
ment of urban land use and transportation. The work location, the home location, and
even social activity locations of UGC users can be identified through their geotagged
posts and their activity patterns detected in socialmedia platforms (Gao et al. 2014; Li
et al. 2014; Yang et al. 2015; Wu et al. 2015; Liu, Huang, and Gao 2019). The home-
to-job commuting trips and non-commuting trips can be extracted and aggregated for
traffic analysis zones (TAZs) to support urban transportation analysis. For example,
as shown in Fig. 28.2, researchers detected over 24,000 daily commuting tripswith an
estimated average commuting time of about 32 min and average commuting distance

Fig. 28.2 Spatial and distance distributions of the detected commuting trips using geotaggedTwitter
data
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of about 56 km in the Greater Los Angeles Area using millions of geotagged tweets
(Gao et al. 2014). Moreover, when survey data and geotagged Twitter data were
compared, the Pearson correlation coefficient of trips on weekdays was 0.91, and
the correlation between detected trips using geotagged tweets and using a traditional
travel demand model was 0.839 (Lee et al. 2015). While these correlations are far
from perfect, the conclusions are nevertheless beneficial for urban transportation
research.

Another benefit of using location-based check-in data from social networks is
having access to information on place types (e.g. shops, offices, restaurants) for user
activities, which is important to understand the spatial, temporal, and thematic distri-
butions of human activities and activity-type transitions in cities (Noulas et al. 2011;
Wu et al. 2014; McKenzie et al. 2015). For example, Wu et al. (2014) analyzed large-
scale user check-in statistics in a location-based social-network platform in China
and found different spatiotemporal activity transition probabilities among different
types of places, including transportation facilities. Such activity-based transition
patterns can also be extracted with pattern mining methods from call-detail-record
data from mobile phones, allowing at-home, in-work, and social activity types to be
annotated at each stay location (Cao et al. 2019). In addition, by combining infor-
mation on user demographics, researchers found different movement patterns when
comparing tourists and local residents (Chua et al. 2016; Liu et al. 2018), which could
help transportation planning and management such as traffic congestion control and
transportation regulations during events in cities.Moreover, the linkage between land
use and urban dynamics can be identified through UGC and crowdsourcing data. For
example, researchers found that human activities tended to decrease throughout the
day for most land uses (e.g. offices, education, health) but remained constant in
parks and increased in retail and residential zones (García-Palomares et al. 2018).
Ren et al. (2019) examined the effect of land-use function complementarity on intra-
urban spatial interactions using metro smart card records for different time periods
and directions in the city of Shenzhen, China, which also demonstrates the trending
use of individual-level big data in travel behavior studies in cities (Yue et al. 2014;
Liu et al. 2015).

28.4.3 Place Semantics and Sentiments

Semantic signatures including the spatial, temporal, and thematic posed byMcKenzie
et al. (2015) and Janowicz et al. (2019) to extract and share high-dimensional data
about types of places and neighborhoods. In contrast to spatial statistics, place-based
analyses focus more on describing the topological and hierarchical relations between
places and understanding various human perceptions and cognition at places (Li and
Goodchild 2012; Gao et al. 2013; Zhu et al. 2016; Wu et al. 2019). Understanding
the semantics of urban space and place could derive from the spatial, temporal,
and thematic perspectives using geotagged texts, photos, and videos. These crowd-
sourced geographic data could also help the identification of vibrant neighborhoods
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(Cranshaw et al. 2012; Zhang et al. 2013) and urban areas of interest (AOI), which
refers to the regions within an urban environment that attract people’s attention
(Hu et al. 2015). Urban AOIs often have high exposure to the general public and
receive a large number of visits. UGC such as geotagged photos can reveal the
visit popularity and scenery information for city planners, transportation analysts,
and location-based service providers to plan new businesses. Besides, the existing
studies have utilized POI information and user check-ins in location-based social
networking platforms (such as Foursquare, Yelp, Jiepang, and Weibo) to inves-
tigate various urban informatics issues. For example, a location-distortion model
was proposed to improve reverse geocoding (i.e. convert a latitude/longitude to a
POI address) using behavior-driven temporal signatures (McKenzie and Janowicz
2015). Another Place2Vec model derives the reasoning about place type similarity
and relatedness by learning embeddings from augmented spatial contexts and user
check-in information (Yan et al. 2017). By combining the user check-in informa-
tion in Foursquare with topic modeling approaches, researchers derived urban func-
tional regions in the ten most populated US cities (Gao et al. 2017), which demon-
strates a bottom-up data-driven perspective. In contrast, researchers also developed
a top-down theory-informed approach to extracting urban functional regions. For
example, a composition-pattern-based knowledge model was proposed to extract
urban functional regions (Papadakis et al. 2019a). In this model, places are formal-
ized as “patterns” which are defined as sets of components, composition rules, and
functional implications. For example, a shopping plaza should consist of not only
shopping stores but also restaurants, parking lots, and other facilities. Recently, an
improvedmodel was proposed using theoretical, empirical, and probabilistic patterns
(Papadakis et al. 2019b) to enrich the knowledge-based model.

In addition, with advances in artificial intelligence (AI) technologies and open-
source processing platforms as well as deep learning methods in the domains of
natural language processing (NLP) and computer vision (CV), the extraction of
human emotions (e.g. happiness, fear, anger, sadness, and surprise) and sentiments
(i.e. positive, neutral, or negative) at different places and environments has become
more accessible. For example, researchers applied advanced text mining techniques
with spatial analysis to detect depressed Twitter users and their spatial clusters in
US metropolitan areas. Socioeconomic variables from the Bureau of the Census and
climate risk factors were found to have an impact on the prevalence of depression
but may vary seasonally in different regions (Yang and Mu 2015; Yang et al. 2015).
Human sentiment scores and their spatial distribution were extracted and explored
in the city of Nanjing, China, using Weibo data (Zhen et al. 2018). High levels of
air pollution were found to contribute to the urban population’s reported low level
of happiness in social media based on the analysis of over 210 million geotagged
Weibo posts in China (Zheng et al. 2019). A semantic-specific sentiment analysis
was conducted on Web-based neighborhood textual reviews in the city of New York
for understanding the perceptions of citizens toward their living environments (Hu
et al. 2019). As for image-based urban studies, researchers have used facial expres-
sion extraction techniques to explore human–environment interactions (as shown in
Fig. 28.3) especially for the relationship between emotions and environments.Aposi-
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Fig. 28.3 Spatial distribution of smiling and no-smiling faces extracted from geotagged Flickr
photos in Paris, France, and the associated word cloud of most frequent textual tags in these photos
(Facial Expression subfigure was modified from the demo image of Face++ at https://www.facepl
usplus.com/face-detection/)

tive correlation was found between the happiness score and the presence of natural
environments such as water bodies and green vegetation in different types of place
(Svoray et al. 2018; Kang et al. 2019). As another source of ambient sensing data,
street view images can also be utilized to analyze human perceptions of places. For
example, a data-drivenmachine learning approachwith scene elementswas proposed
to measure how people perceive a place (including safe, lively, beautiful, wealthy,
depressing, and boring) using street view images (Zhang et al. 2018a; Zhang et al.
2018b).

28.5 Multi-source Data-Driven Urban Studies

28.5.1 Fusion of Multiple UGC Sources

In traditional urban strategic planning or the classification results of remote sensing,
many places in urban areas may be labeled as single land-use type; however, these
areas may in reality contain multiple functions and land uses. In order to capture
citywide dynamics of both human activities and urban functions at finer resolutions,
multi-source UGC and crowdsourced information are combined to overcome their
own limitations and to enrich the understanding of urban spatial structure and neigh-
borhood demographics. Both mobile phone data and taxi trajectories usually cover
large numbers of users and contain rich location information (and social network

https://www.faceplusplus.com/face-detection/
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connections for mobile phone data) but lack place semantics (Liu et al. 2015). Social
media data are sparsely distributed in space and time but contain rich content (Huang
and Wong 2016; Martí et al. 2019). By combining both mobile phone data and
social media, it is possible to extract citizen’s home–job locations and social activity
dynamics more effectively in space and time in cities (Tu et al. 2017). Also, by the
integration of mobile-phone data and crowdsourced taxi trajectories, or the fusion of
POI data and crowdsourced taxi trajectories, researchers have uncovered substantial
differences between taxi trips and mobile-phone-based human movements in terms
of spatial distribution and distance-decay effects (Kang et al. 2013) and explored
the intensity of spatial interactions among different functional regions based on taxi
origin–destination flows (Wang et al. 2018). In addition, researchers have used an
online restaurant review platform with rich crowdsourced user-generated reviews
and extracted machine learning features to further infer urban neighborhoods’ popu-
lation distribution and socioeconomic attributes in nine Chinese cities. They found a
high predictability, in which the distributions of daytime and nighttime populations
are estimated by mobile phone location data (Dong et al. 2019). UGC data can also
be used to validate the urban spatial structure and place semantics extracted from
ambient sensing and to reflect various urban environmental contexts. For example,
as shown in Fig. 28.4, given only a certain number of street view images of a street,
a deep learning model was trained to accurately estimate the hourly variation of
human mobility patterns approximated by taxi trips along the streets (Zhang et al.
2019). In another study, researchers developed a mixed-use decomposition model
based on temporal activity signatures extracted from social media check-in data, and
taxi origin and destination (OD) trip data over one year were used to validate the
land-use mixing results (Wu et al. 2019).

Fig. 28.4 A Predicting hourly variation of taxi trips using street view images; B Spatiotemporal
variation of human mobility patterns approximated by taxi trips along the streets
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28.5.2 Fusion of UGC and PGC

Compared to UGC, professional-generated content (PGC) mainly comes from
domain experts and organizations who have the expertise and knowledge of study
subjects, or the authority to collect and publish data, which is more trustworthy in
social media platforms and in news media. The fusion of UGC and PGC can take
advantages of both sides, to uncover urban spatial structures and dynamics, and to
provide valuable information in the emergency management or disaster response
scenarios. For example, crowdsourced geotagged photos and videos from social
media users, volunteered geographic data, and authoritative storm surge data created
by the U.S. Federal Emergency Management Agency (FEMA) were fused together
to create a more accurate estimate of urban flood damage and updated road accessi-
bility mapping in New York City during Hurricane Sandy (Schnebele et al. 2014). In
urban planning and development, the integration of public participation from UGC
big data sources together with the PGC-based expert design may provide a holistic
approach through the process of idea generation, feedback, and evaluation for urban
management and problem solving (Thakuriah et al. 2017).

In future, a number of multi-source data fusion research areas call for attention
in urban informatics. First, the data sampling and fusing resolution requirements in
space and time need to be investigated among different UGC sources to compre-
hensively understand human activities of different gender, age, and socioeconomic
groups and place semantics for intra-urban and inter-city human mobility modeling.
Second, combining UGC and PGC or combining data-driven and knowledge-
driven approaches can solve urban problems such as traffic congestion and envi-
ronmental pollution. Last but not least, there is a need to increase the engagement of
citizen science in addressing urban changes in responsive cities through data-smart
governance (Goldsmith and Crawford 2014).

28.6 Conclusion

UGC data contain rich information about human location, society, and human–envi-
ronment interactions and have become a promising data source for urban informatics
studies with unprecedented spatial, temporal, and thematic resolutions. This chapter
summarized the key characteristics of UGC data with a focus on geographic infor-
mation and urban studies. We discussed the analytical and computational framework
to process UGC data and urban applications including citizen demographics, human
mobility, urban spatial structure, place semantics, and sentiment analysis, to name a
few. Considering the limitation of a single data source, various kinds of data fusion
cases were discussed and suggested to advance future urban informatics studies. It is
worth noting that we did not try to enumerate all possible fusion cases but just to list
several scenarios with a focus on urban challenges. In sum, a combination of multi-
source UGC-driven and theory-informed approaches provides a more holistic view



28 User-Generated Content: A Promising Data Source … 515

for urban analytics, diagnostics, and human-centered sustainable urban planning and
future development.
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Chapter 29
User-Generated Content and Its
Applications in Urban Studies

Wei Tu, Qingquan Li, Yatao Zhang, and Yang Yue

Abstract The emergence of Web 2.0 and mobile Internet produces massive user-
generated content (UGC), including geo-tagged photos, social network posts, street
view images, and crowdsourcedGPS trajectories.UGCcreates unprecedented oppor-
tunities to sense what was previously hidden in the physical surfaces of cities and to
portray the interactions of infrastructures, geo-information, and people; therefore, it
is not only a new lens for urban space but also leads to innovative applications. In this
chapter, we will introduce several typical types of UGC, such as geo-tagged photos,
social media data, crowdsourcing GPS trajectories, and videos. We showcase ways
in which user-generated big data can be harvested and analyzed to generate invisible
and impressionistic landscapes of urban dynamics and to stimulate innovative appli-
cations. We discuss typical UGC-driven applications to demonstrate the potential of
UGC in revealing how urban spaces are perceived by the public, establishing links
between tangible artifacts and physical-cyber-social spaces. This fosters alternative
approaches to urban informatics that better capture the intricate nature of urban space
and its dynamics.

W. Tu · Q. Li (B) · Y. Yue
Guangdong Key Laboratory of Urban Informatics, Key Laboratory for Geo-Environmental
Monitoring of Coastal Zone of Ministry of Natural Resource, and Shenzhen Key Laboratory of
Spatial Smart Sensing and Service, Shenzhen University, Shenzhen, China
e-mail: liqq@szu.edu.cn

W. Tu
e-mail: tuwei@szu.edu.cn

Y. Yue
e-mail: yangyue@szu.edu.cn

Department of Urban Informatics, School of Architecture and Urban Planning, Shenzhen
University, Shenzhen, China

Q. Li · Y. Zhang
State Key Lab of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan
University, Wuhan, China
e-mail: yatau@foxmail.com

© The Author(s) 2021
W. Shi et al. (eds.), Urban Informatics, The Urban Book Series,
https://doi.org/10.1007/978-981-15-8983-6_29

523

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8983-6_29&domain=pdf
mailto:liqq@szu.edu.cn
mailto:tuwei@szu.edu.cn
mailto:yangyue@szu.edu.cn
mailto:yatau@foxmail.com
https://doi.org/10.1007/978-981-15-8983-6_29


524 W. Tu et al.

29.1 Introduction

Cities are the living spaces of more than 50% of the global population but occupy
less than 2% of the Earth’s land surface. Although the past decades have witnessed
advances in the economy, the environment, and human health in urban areas, espe-
cially in developing countries, cities are still facing great challenges on the way
toward a sustainable future. These challenges include traffic congestion, environ-
mental pollution, waste management, vitality loss, and social inequality. Since 2000,
the boom of information and communication technologies (ICT), Internet, and artifi-
cial intelligence (AI) has produced massive urban data. Therefore, urban studies are
increasingly adopting an information-centric approach where they meet geographic
information science (GIS), computer science, urban planning, etc. (Batty 2013; Li
2017).

When enabled with Web 2.0, mobile Internet, and smartphones, humans become
sensors to perceive their immediate surroundings and thus produce multi-source and
heterogeneous content, such as text, images, videos, and audio, that is, user-generated
content (UGC) (Koskinen 2003; Wang et al. 2014). UGC denotes content that has
been posted by users on online platforms, including Internet forums, blogs, wikis,
Instagram, YouTube, Douyin, and social networks such as Weibo, Facebook, and
Twitter (Cha et al. 2007; George and Scerri 2007; Goodchild 2007; Krumm et al.
2008; Lenders et al. 2008; Hollenstein and Purves 2010; Heipke 2010). The use
of UGC has grown rapidly in recent years, because of its comparatively low cost,
high penetration, and fast update. For instance, the popular Wikipedia (Fig. 29.1a),
edited by worldwide volunteers, has become the largest encyclopedia in the world
and continues to be updated following advances in science, technology, and society.
Another example is OpenStreetMap (OSM; Haklay and Weber 2008; Fig. 29.1b)
which attracts large numbers of volunteers who use GPS and fine-resolution imagery
to produce a comprehensive base map covering 80% of all roads (Barrington-Leigh

(a) (b)

Fig. 29.1 Representative user-generated content Web sites. a Wikipedia (https://www.wikipe
dia.org/); b OpenStreetMap in Shenzhen (https://www.openstreetmap.org/#map=11/22.5322/114.
0912&layers=T)

https://www.wikipedia.org/
https://www.openstreetmap.org/#map%3d11/22.5322/114.0912%26layers%3dT
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andMillard-Ball 2017). Nowadays, OSM not only supports route planning and navi-
gation services but also provides benefits to city planners with newly available urban
data.

Classic urban studies generally rely on census data or field survey, which is expen-
sive, labor-intensive, and of low temporal resolution. UGC enables urban studies to
dive into the wave of big data (Aguilera et al. 2016). In general, UGC is produced
by volunteers and thus contains volunteers’ perceptions, preferences, or opinions
about places, topics, and people. Accordingly, massive UGC provides unprecedented
data sources for urban researchers to extra urban knowledge. On the other hand,
UGC also motivates an alternative approach for conceptualizing and portraying the
dynamics, structures, and characteristics of city. Consequently,UGC stimulates inno-
vative urban applicationswhich sense infrastructures, spaces, and people at all scales,
reveals hidden urban knowledge, and makes real-time responses in support of urban
emergency and long-term urban policies. Here, we sketch several types of UGC and
their potential in urban sectors. The general framework of UGC-driven urban studies
and insightful urban applications is reviewed. We discuss the challenges and future
directions, including data quality and privacy, multi-source data fusion, integration
of urban sensing, and urban governance.

The remainder of this chapter is organized as follows: Sect. 29.2 introduces four
representative types of UGC, including geo-tagged photos, social media data, crowd-
sourcing GPS trajectories, and videos. Section 29.3 presents the general framework
of UGC-driven urban studies and reviews typical urban applications. Section 29.4
discusses challenges and future directions. Section 29.5 concludes the chapter and
discusses future work.

29.2 User-Generated Content

User-generated content has had a great impact on information-centric urban studies
because of its appealing characteristics that crystallize the relationship between urban
spaces and human activities with massive crowdsourcing data (Crooks et al. 2016;
Jenkins et al. 2016; Thakuriah et al. 2016; Valdez et al. 2018). Accordingly, the
sources and types of UGC are various (Heipke 2010; Mart et al. 2019; See et al.
2019). The focus heremainly concentrates on geo-tagged user-generated content as it
provides opportunities to expose the hidden social, economic, anddemographic infor-
mation in urban spaces (Jenkins et al. 2016), which greatly benefits our understanding
of the diversity of urban spaces and the complexity of urban dynamics. This section
reviews several popular types of UGC and their characteristics, to provide a global
overview of UGC, including geo-tagged photos, social media data, crowdsourcing
GPS trajectories, and videos.
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29.2.1 Geo-Tagged Photos

Geo-tagged photos are images uploaded to Internet forums and social networks by
users. Usually, these photos are tagged with either explicit geographic coordinates
or implicit forms of geo-information (e.g. point of interest or place name). There
are two popular types of geo-tagged photos. One is sourced from the photo-sharing
services, such as Flickr or Picasa, which allow users to share geo-tagged photos
with text tags (Chen et al. 2018). Nowadays, there are many publicly available geo-
tagged photos. For example, Yahoo Research Lab (Thomee et al. 2016) published
one Flickr dataset YFCC100M containing 100 million images (https://webscope.san
dbox.yahoo.com/catalog.php?datatype=i) for benchmarking purposes. MIT CSAIL
(Zhou et al. 2018) published the dataset Place including 10 million photos of urban
landmarks (http://places2.csail.mit.edu/). These photos, coordinates, and timestamps
can be used to generate user footprints (Alivand and Hochmair 2017). Meanwhile,
tagged texts provide auxiliary information with certain models, e.g. topic probability
models. Through extracting the information hidden in these photos, researchers can
effectively detect the temporal activities of photo takers and further analyze the
behavior patterns of urban citizens.

Another type of geo-tagged photo is sourced from street view images collected by
vehicles or volunteers, such as Google Street View (Hara et al. 2013; Li et al. 2015).
Street view images usually contain one panoramic image and the corresponding
location and therefore provide a sequence of images along a road. Different from
remote sensing images monitoring geographic objects from above (aerial or space),
the major advantage of street view images is the access they provide to urban land-
scapes from a pedestrian-like angle (Li et al. 2015; Cao et al. 2018). Consequently,
street view images have had a significant impact on street level research, on such
topics as urban greenery (Li et al. 2015), sidewalk accessibility (Hara et al. 2013),
and the demographics of neighborhoods (Gebru et al. 2017).

Using innovative technologies such as computer vision and semantic annotations,
geo-tagged photos have been used to extract massive knowledge about urban places
and human beings. With regard to urban places, geo-tagged photos enable us to
assess urban landscapes (Gebru et al. 2017; Li et al. 2015), including, for example,
the distribution of urban infrastructure. In terms of human beings, they offer an
opportunity to explore human social and mobility patterns at multiple geographic
scales (Alivand and Hochmair 2017; Zhang et al. 2018). Furthermore, researchers
can leverage them as a lens to articulate the relationship between urban spaces and
human beings.

29.2.2 Social Media Data

Social media data contribute another valuable form of content to urban studies, espe-
cially location-based social networks (LBSN) (Kim et al. 2017; Shelton et al. 2015;

https://webscope.sandbox.yahoo.com/catalog.php?datatype=i
http://places2.csail.mit.edu/
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Thakuriah et al. 2016). In 2018, there were over 3 billion active social media users,
and almost 3 billion active users of mobile social media (Mart et al. 2019). Gener-
ally, LBSN data provide various perspectives on social, economic, and demographic
aspects in urban spaces. Through embedding social media data into urban spaces,
the link to human beings is established, enabling the tangible and comprehensive
understanding of human–environment interactions (Mart et al. 2019).

To date, there have been many substantial studies using LBSN data (e.g.
Foursquare, Twitter, Airbnb, and Weibo) to portray urban dynamics. Table 29.1 lists
the publicly available social media content. Foursquare data usually include place
information, including check-ins, ratings, tips, and photos. Foursquare data have
been used to identify users’ perceptions and preferences in urban spaces through the
identification of the most visited or checked-in places (Agryzkov et al. 2016; Mart
et al. 2017). Twitter and Weibo are other commonly used social media datasets. The
coordinates and timestamps associated with social media content of Twitter can be
used to detect the spatiotemporal patterns in people’s presence and activities (Crooks
et al. 2015). Combined with natural language processing (NLP), Twitter is capable of
detecting certain events, hot topics, culture distribution, urban functions, etc. (Yang
et al. 2015; Tu et al. 2017; Tu et al. 2018a). Different from Twitter data, the content of
Instagram is more visually related about the observed entity rather than text related,
in the format of coordinates, photos, and corresponding descriptions (Giridhar et al.
2017). Thus, Instagram-based studies focus on the descriptions of a place through
keywords and the activities happening in a place (Mart et al. 2019). Airbnb, oneWeb
site offering information about temporal accommodation plays an important role in
urban studies about rental homes. Meanwhile, Airbnb content provides an insight to
observe tourism, especially in tourist cities.

Table 29.1 Publicly available social media data

Social media data Description Web link

Global Foursquare check-in
dataset (Yang et al. 2015)

Contains 33,278,683
check-ins by
266,909 users on 3,680,126
venues (in 415 cities in 77
countries)

https://sites.google.com/site/
yangdingqi/home/foursquare-
dataset

Twitter dataset (Yang and
Leskovec 2011)

Includes 467 million Twitter
posts from 20 million users
covering a 7-month period
from June 1, 2009, to
December 31, 2009

https://snap.stanford.edu/data/
twitter7.html

Instagram dataset (Ferrara
et al. 2014)

Contains information from
45,000 users of Instagram
during the period from Jan 20
to Feb 17, 2014

http://www.emilio.ferrara.
name/datasets/

Airbnb dataset Contains reviews, listings, and
neighborhood information in
worldwide cities

http://insideairbnb.com/get-the-
data.html

https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://snap.stanford.edu/data/twitter7.html
http://www.emilio.ferrara.name/datasets/
http://insideairbnb.com/get-the-data.html
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29.2.3 Crowdsourcing GPS Trajectories

The availability of crowdsourcing technologies facilitates the emergence and effec-
tive usage of geospatial data, which is of profound significance in the planning
and management of urban spaces (Crooks et al. 2015; Jenkins et al. 2016). Crowd-
sourced GPS trajectories are usually collected by volunteers without professional
services (Heipke 2010), implementing the concept of citizens as sensors proposed
by Goodchild (See et al. 2019). So far, there have been many projects about crowd-
sourcing geospatial data (Heipke 2010), such as OpenStreetMap (OSM) (Planet
2019), Wikimapia, or HD TrafficTM. OSM is probably the most prominent among all
the crowdsourcing projects (Heipke 2010). The purpose of OSM is to establish a free,
editable map across the world, supported by volunteers acting as sensors to collect
geographic data (Barron et al. 2014). OSM has been widely used in a broad range of
urban applications, from navigation to routing, from urban block division to urban
function recognition (Crooks et al. 2015). In addition, digital footprints extracted
from crowdsourced GPS trajectories are also important proxies. Digital footprints
through time provide an insight to understand humanmobility patterns and also offer
access to the dynamic cognition of urban places.

29.2.4 Videos

Videos contain amounts of dynamic information about described phenomena and can
greatly assist urban planning and management, such as urban scene understanding
(Cordts et al. 2016), human activity analysis (Zhu et al. 2017), transportation surveil-
lance (Chen et al. 2016), and emergency management (Schnebele et al. 2015). There
are many ways to obtain video datasets, such as from YouTube videos (Douyin
and Kuaishou), from social media platforms, urban surveillance videos, and street
videos. Unlike the above three kinds of UGC data, although information in videos
is wealthy and dynamic, it is relatively difficult to process videos quickly and effi-
ciently due to their volume, noise, and diversity (Zhu et al. 2017). Lots of techniques
for motion estimation, tracking, segmentation, and video filtering have been devel-
oped (Tekalp 2015). Nowadays, human activity and perception have become hot
topics in urban studies. Videos from social media platforms, such as YouTube, can
be utilized to perform spatiotemporal mapping of human activity, in the form of
human activity recognition, sport mapping, weather impacts on human activities,
crime detection, etc. (Zhu et al. 2017). Moreover, videos can reveal functions in
urban scene understanding, such as those revealed by the Cityscapes dataset (https://
www.cityscapes-dataset.com/; Cordts et al. 2016). This dataset provides a detailed
annotated class list of urban stereo videos covering fifty cities, which can be used in
semantic understanding of urban scenes (Cordts et al. 2016).

https://www.cityscapes-dataset.com/
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29.3 Urban Studies Driven by User-Generated Content

User-generated content contains massive hidden information, such as the users’
socioeconomic status, preferences, opinions, and activity-mobility patterns (Jenkins
et al. 2016; Mart et al. 2019; Thakuriah et al. 2016; Venerandi et al. 2015). Large
volume UGC is stored, cleaned, and extracted to learn about phenomena in urban
spaces and the interactions between urban functions and people. Consequently, UGC
has beenwidely applied in urban studies, such as in urban planning, urban transporta-
tion, urban environment, and health. This section presents the general framework of
UGC-driven urban studies and reviews representative urban applications.

29.3.1 Framework for UGC-Driven Urban Studies

Acquisition, integration, and analysis of UGC can be used to tackle the major issues
that cities face, e.g. traffic congestion, urban growth, air pollution, public health,
and urban safety. Generally, the framework of UGC-driven urban studies contains
four layers from the bottom to the top as shown in Fig. 29.2: UGC harvesting, UGC
management, UGC analytics, and smart urban applications.

In the UGC harvesting layer, single- or multi-source UGC is acquired from an
online forum, vertical Web sites, and social networks. For example, posted Twitter
messages about a city will be crawled for future data processing and analytics. In the
second UGC management layer, the acquired UGC will be organized by locations,
by users, or by associated topics. High-performance computing architectures and
effective indexing structures that simultaneously incorporate spatiotemporal infor-
mation, and texts will be built for efficient data manipulation. In the UGC analytics
step, data mining (clustering and classification), and machine learning (e.g. logistics
regression, decision tree, random forest, and support vector machine), deep learning
(e.g. convolutional neural networks, deep residual networks, generative adversarial
networks), and visualization will be used to recognize objects, patterns, and associa-
tions, and to speculate about causes and effects. In the smart urban application step,
this extracted urban knowledge will be utilized by urban planners, transportation
officials, environmentalists, and medical departments. In addition, the information
will be disseminated to related people and organizations to improve urban living.

29.3.2 Urban Planning

Urban planning refers to social, economic, and political activities concerning the
interconnectedness and complexity of urban spaces (Levy 2016). Urban planning is
close related to many interactions of places and people, including urban form, land-
use planning, locating transportation infrastructures, and designing urban interfaces.
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Fig. 29.2 General framework of urban studies using user-generated content

UGC not only provides rich representations about urban space, but also opens access
to human activity research (Crooks et al. 2015; Li et al. 2017; Longley and Adnan
2016).

The focus here mainly lies on two parts, namely human activity, and urban
form and function. Regarding human activity, social media data collected from
a great number of users, such as Foursquare, Instagram, or Twitter, provide the
detailed descriptions of human activities within urban spaces (Mart et al. 2019),
with which researchers can recognize activity patterns at suitable spatiotemporal
scales. Recently, Tu et al. (2018a) fused large volume social media check-in data
and mobile phone positioning data to extract city-wide human activities and portray
their diurnal patterns. Gebru et al. (2017) inferred demographic information at neigh-
borhoods across the USA from massive street view images. Studies of urban form
and function address the aggregation of the physical shapes of urban spaces and the
human activities that happen in these spaces respectively (Crooks et al. 2016). UGC
provides large amounts of information that can be used to understand urban form and
function and highlights how they influence each other (Crooks et al. 2015). Street
network maps of OSM give detailed insights into urban form and are of fundamental
importance in a range of applications. Other types of UGC, such as geo-tagged
photos and social-media data, can be used to understand urban function (Gebru et al.
2017; Li et al. 2015; Cao et al. 2018). For example, Zhong et al. (2018) presented a
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tweet-topic-function-structure framework to reveal spatial patterns from individual
tweets. Their results demonstrated that when aggregating tweets by zones, the areas
with the same topics form spatial clusters but of entangled urban functions. Using
massive street view images, Zhang et al. (2018) developed a data-driven deep learning
approach to map the distribution of city-wide human perception (e.g. safe, lively,
beautiful, wealthy, depressing, or boring), which suggest the potential of massive
UGC.

29.3.3 Urban Transportation

Transportation is essential to daily movements in the city. Quantities of urban-sensed
data have been used to resolve problems in urban transportation and to build intelli-
gent transportation systems (ITS; Wang et al. 2016). The social media platforms,
mobile phones, and surveillance videos make it possible to generate rich social
signals in a real-timemanner and establish a data foundation for social transportation
research (Zheng et al. 2016). UGC-based ITS can make use of various crowdsourced
social signals to understand the social needs of transportation and combine needs
and services to improve efficiency and effectiveness and make traffic conditions and
citizen travel more convenient (Wang et al. 2016; Tu et al. 2019).

UGCcan be used in a range of applications in urban transportation, for example, in
mapping road networks, monitoring real-time traffic, or recommending travel routes.
In termsof trafficmonitoring, informationobtained fromsocialmedia platforms, such
as Twitter, YouTube, and Flickr, encourages people to participate effectively in traffic
tasks, such as identifying road hazards, and greatly cuts down on the related financial
burden of government (Santani et al. 2015). In traffic management, social media data
support shortest path computing, travel recommendation, etc., and can be improved
by exploiting the content hidden in UGC (Wang et al. 2016). With respect to future
green transportation, UGC that connects vehicles, people, and urban infrastructures
can help to advance the efficiency of entire transportation systems and to promote
reductions in fuel consumption and carbon emission (Wang et al. 2016).

29.3.4 Urban Environments and Health

Theurban environment has a close relationship to the quality of human life and health,
both of which should be emphasized in urban governance. The knowledge mined
from social media data, mobile phones, and other UGC can provide opportunities to
quantify aspects of the urban environment, such as urban green space (Li et al. 2015),
air quality (Jiang et al. 2015), soundscapes (Aiello et al. 2016), and heat distribution
(Overeem et al. 2013). Thus, fine-resolution maps of these environmental factors can
help urban planners to improve residents’ quality of life, surroundings, and health.
For example, utilizing the green index of street view images, Li et al. (2015) assess
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street-level urban greenery and provide suggestions for urban planners to reasonably
improve the distribution of urban green spaces. Jiang et al. (2015) analyzed the
spatiotemporal tendency in social media data using Sina Weibo (Chinese Twitter) in
an effort to monitor air quality dynamically in large cities. Also, maps can be drawn
by establishing a relationship between human perceptions and soundscapes extracted
from social media (Aiello et al. 2016). In addition, smartphone battery temperatures
can be used to estimate urban daily mean air temperatures by utilizing a heat transfer
model in real time (Overeem et al. 2013).

29.3.5 Urban Safety

Citizens residing in urban areas may face fires, storms, heavy rainfall, traffic jams,
and other hazards, which affect urban safety and human life. Therefore, it is impor-
tant to detect urban emergency events in real time (Xu et al. 2016). Lots of messages
from UGC, such as social media, volunteered photos, and videos, contain informa-
tion about urban events and are important data sources to derive emergency events,
capture their physical and social features, and help urbanmanagement departments to
react quickly (Schnebele et al. 2015; Xu et al. 2016). Thus, event detection becomes
a crucial issue in urban emergency management. There have been many studies
focused on urban event detection. For example, some studies proposed adaptive algo-
rithms to detect urban events through geo-tagged data from photo-sharing services
(Papadopoulos et al. 2010). Making use of crowdsourcing to build an emergency
management system is another choice (Oliveira et al. 2017). In addition, in order to
detect emergency events in real time, the 5W (What, Where, When, Who, andWhy)
characteristics are proposed to depict the spatial and temporal information of social
media and thus to achieve detection goals (Xu et al. 2016).

29.4 Challenges and Future Directions

Recent UGC research has made great advances in the domain of urban studies. Many
innovative urban applications have stimulated thinking about better urban living.
Because of the complexity of cities (Batty 2007), this research presents various
challenges to information-centric cities.

29.4.1 Data Quality and Privacy

Recently, with the growing interest in artificial intelligence, it has become possible
to produce UGC not only by people but also by machines. Several studies have
reported that fake messages are posted on Twitter (Fourney et al. 2017). Many
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machine accounts have been created to disseminate special texts and photos with
the objective of influencing specific groups of people. Consequently, UGC may be
biased. When conducting UGC-driven urban studies, attention should be paid to the
data quality issue to strengthen the reliability of the findings (Tu et al. 2018b; Jiang
et al. 2019).

The privacy of UGC is another important issue. Scientific ethics should be high-
lighted for UGC research. Recently, a new General Data Protection Regulation
(GDPR) was adopted in Europe and is likely to fundamentally reshape the way
in which data are handled across every sector. The general public, Internet giants,
and scientific communities should find an appropriate consensus on the collection,
processing, and study of UGC.

29.4.2 Multi-source UGC Fusion

When thousands and even millions of users contribute to UGC, the results are often
highly fragmented. For example, becausemost geo-tagged photos are shared by users
with smartphones, the perceptions and preferences of people without smartphones
cannot be captured. Tweets posted in tourist destinations and at landmarks tend to
emphasize certain topics and opinions, resulting in bias with respect to the general
population (Longley and Adnan 2016). Thus, careful selection of data sources is
crucial if the reconstructed urban knowledge is to be complete and accurate. The
results from a single source of UGC may be biased and contain only a part of urban
knowledge. The misuse of UGC may consequently generate biased understanding.
Fusion of multiple sources may be required to deepen our understanding of objects,
people, and places in the city (Li et al. 2017). By integrating traditional urban data and
alternative UGC, more and more comprehensive and wide-coverage urban solutions
would be supported (Estima and Painho 2016).

29.4.3 Integrating Urban Sensing and Urban Governance

UGCcan provide alternative data sources to sense the invisible city under the physical
surface, for example, regarding urban deprivation (Venerandi et al. 2015), human
mobility (Yang, Qu, Yang et al. 2019; Xu et al. 2019), urban areas of interest (Chen
et al. 2018), urban vibrancy (Huang et al. 2019), and urban functions (Tu et al. 2017,
2018a; Zhong et al. 2018). UGC enables us to assess new dimensions of the city
and to deepen our understanding of complex cities. However, these novel urban-
sensing studies have not been well integrated with urban governance. How to take
the sensed urban information into the workflow of urban governance is still an open
question. UGC-driven urban policy-making will be necessary if we are to explore a
new framework linking UGC to urban operation.
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29.5 Conclusion

The prevalence of UGC provides an alternative data source for urban studies because
of its characteristics of low cost, high penetration, and wide coverage. Massive UGC
can not only sense invisible urban spaces but also provide fertile soil for breeding
innovative applications. This chapter has summarized the four representative types
of UGC: geo-tagged photos, social-media data, crowdsourced GPS trajectories, and
videos. The general framework of UGC-driven urban studies has been presented, and
smart UGC-driven applications in the city have been reviewed. The challenges and
opportunities of UGC in urban studies have also been discussed, in order to provide
insights for future urban informatics approaches. This will lead to the emergence of
alternative urban informatics approaches that better capture the intricate nature of
urban spaces and their dynamics.
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Chapter 30
Introduction to Urban Big Data
Infrastructure

Michael F. Goodchild

Rapid progress is being made in the development of infrastructure for handling
urban big data, as will be evident from even themost cursory examination of the eight
chapters in this section. Big data require the ability to handle unprecedented volumes
of data, often in near-real time, and to fuse and conflate data from multiple sources
with different degrees of quality. But in addition, the nature of infrastructure should
be interpreted broadly, as encompassing not only data, but also the software needed to
handle the data, the people who possess the requisite skills, and the decision-makers
and general public who make use of the products of urban big data and may also
contribute data through crowdsourcing. Moreover, no discussion of urban big data
can escape the ethical issues that are raised by the technology and its use, especially
the thorny issue of privacy. Urban big data infrastructure is clearly a vast topic,
and these eight chapters can do no more than scratch the surface. The following
paragraphs give a brief introduction to each chapter and explain how the various
contributions fit together. At the end, a short discussion suggests some of the topics
that might be covered in a longer review, and gives an overall assessment of this part
of the book.

In Chap. 31, Ningchuan Xiao and Harvey Miller expand on the definition of
urban big data, explaining its role in concepts of smart mobility, the smart city, and
enhanced digital infrastructure. They review many sources of urban big data, from
sensors to crowdsourcing, and argue strongly for open access as a key to supporting
many potential applications. Some well-chosen stories are used to identify use cases,
and the example of access to real-time data on transit vehicles is used to demonstrate
some of the technical challenges.

While ethical issues are often regrettably left till last, we have chosen to raise
questions of privacy early in the section. Chapter 32 by Jerome Dobson and William
Herbert discusses geoprivacy, the threat to individual privacy that originates with
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the widespread capturing of an individual’s coordinates, often without that indi-
vidual’s knowledge and conscious consent. Regulation varies fromcountry to country
and even within countries, and while the European Union has recently adopted
comprehensive protection of user privacy, there has been little progress in the USA.

Accurate surveying of property has existed for centuries, but it has generally been
assumed that a point can lie in at most one property. Today, this may no longer
be true: In condominiums, for example, properties can be stacked on top of each
other, requiring a three-dimensional (3D) approach. In Chap. 33, Lin Li provides an
extensive review of the complex ownership geometries that can now be dealt with
using three-dimensional techniques and digital representations.

Chapter 34 follows directly from Chap. 33 by providing a comprehensive review
of techniques for 3D digital modeling of city structures. Much of this interest comes
from the construction industry,whose building informationmodeling (BIM) provides
techniques for capturing not only architectural plans, but also as-built information
on building infrastructure and use. The chapter compares BIM with City Geog-
raphy Markup Language (CityGML), a product of the geospatial community that
brings spatial databasemodeling indoors, allowing a full integration between outdoor
applications that are largely 2D, and indoor functions in full 3D.

The sequence of chapters on 3D representations of cities ends with Chap. 35,
based on Esri’s CityEngine. City planning requires consideration of buildings in
context and specifically with the ways in which planners regulate the development
of neighborhoods. CityEngine was developed as a multipurpose planning tool that is
capable of implementing regulations, providing perspective visualizations of plans,
and supportingmany of the functions of city government. The chapter provides ample
illustration of the applications of the software and its implications for geodesign and
the planning process.

Today’s cities are complex and growing more so as a result of recent investments
in digital infrastructure. The massive volumes of data that are now available, and
the speed at which decisions are needed, argue in many cases for the use of high-
performance computing (HPC). Cyber geographic information systems (CyberGIS),
the topic of Chap. 36, use HPC to address many such applications, extending
conventional GIS to take advantage of massive computational and communication
technologies.

Chapter 37 focuses on spatial search, the process that allows users to find and
assess big data resources and judge their fitness for a given application. Techniques
of spatial search became necessary beginning in the early 1990s, as the availability
of geospatial data began to outstrip any user’s knowledge of where to look. Data
warehouses, geolibraries, and geoportals are all responses to the need to be systematic
about the storage of geospatial data. The chapter reviews the relevant techniques,
including the concept of metadata, that is, data that allow a user to assess the fitness
of a given data set.

Finally, Chap. 38 addresses the Internet of things (IoT), a term that describes
sensors of various kinds that are connected to the Internet. Sensors might be fixed
in space, such as closed-circuit television (CCTV) cameras, carried on vehicles, or
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carried by humans, often in the form of smartphone functions. IoT is clearly an
important aspect of the smart city and of urban big data.

Big data infrastructure is a means to an end, rather than an end in itself. While
Part IV has provided an overview of some of the foundational issues, the reader will
have to look further for a complete view of the role of this infrastructure in enabling
the functions of the modern city. Some of that can be found in other sections of
this volume, and some is surely yet to emerge. While we can perhaps see and share
some of the excitement over IoT or CityEngine, the eventual value of these tools is
still difficult to predict. There is a “build it and they will come” sense to big data
infrastructure, but also a sense that some of the eventual outcomes are unanticipated
and may well have costs that exceed their benefits. Chapter 32 on privacy is perhaps
a foretaste of what may arise as the technologies of surveillance proliferate.
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Chapter 31
Cultivating Urban Big Data

Ningchuan Xiao and Harvey J. Miller

Abstract Urban big data often contain spatial and temporal elements that have
increasingly become an integral part of various applications and projects such as
smart mobility, smart city, and other digitally enhanced urban infrastructure. It is
critical to develop an open and collaborative environment so that these data can be
used by a wide range of users. This chapter first discusses some characteristics and
sources of urban big data. Three hypothetical user stories are described to highlight
the potential of these data. After describing the internal data structure of these data
and techniques that can be used to retrieve the data, we discuss the difficulty in
making the data useful for the general public and elaborate on a self-organizing agile
approach to developing an urban big data infrastructure.

31.1 Introduction

Big data are one of the most popular topics of the past decade (Marr 2015). The
concept of big data has evolved beyond the original context as a buzz word into
the reality of daily life and has shown tangible values for businesses, governments,
research communities, and the general public (Kim et al. 2014; Günther et al. 2017).
Informally, big data refer to the vast amount of data that are generated, collected, or
distributed at a high frequency or speed. More formal definitions of big data vary
widely in the literature (Mergel et al. 2016), and researchers have generally agreed
that big data all share certain characteristics, including volume, variety, veracity,
velocity, and value (Chen and Zhang 2014).

Urban areas are a significant playground where multiple players are engaged in
the generation, storage, and applications of big data (Kitchin 2014). For much of the
urban population, big data have become an integral part of their daily lives. Many
technological, economic, and demographic factors have contributed to this rapid
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growth. Various sensor technologies used in domains such as environmental moni-
toring and shared transportation means are the data sources that provide continuous
feeds (Cuff et al. 2008). These sensors have been connected through a network that
forms what is dubbed the Internet of things or IoT (Atzori et al. 2010). In an urban
area, the IoT plays an especially important role in everyday life because the so-called
things in the IoT includeboth physical objects such asGPSdevices and environmental
sensors, and also people who are equipped with sensors that can provide information
about the location and surrounding area of the person. In many cities around the
world, public transportation systems have increasingly applied GPS to allow more
accurate and accessible transit to their residents. For example, many public transit
agencies instrument their vehicleswithGPS receivers and share these data publicly to
support real-time bus tracking and arrival applications. In the meantime, passengers
of these transportation systems use new ticketing methods such as smart cards to pay
the transit fare, which also allows the transportation authorities to record and track
their movements. In addition, citizens in urban areas have become a special kind of
sensor (Goodchild 2007). These “sensors” have multiple ways of generating data.
For example, theymay provide spatial and temporal data using technology developed
by commercial companies, as in the case of Google Traffic, in exchange for services
(Heipke 2010), or they collect data about gas prices or traffic and exchange them
with companies such as GasBuddy orWaze for rewards or other types ofmembership
benefits (Boulos et al. 2011). Telecommunication companies have established vast
databases that contain user identities and spatiotemporal activities. Cell phones have
been mostly replaced by smartphones where the original function of making phone
calls has been reduced tomerely one of a huge number of uses relying on the network
provided by the telecommunication companies, where many of the other functions
are enabled to track the user’s location.

Urban big data generated through sensor technology have all the characteristics of
big data in general, but more critically they have their own features. First, urban big
data involve a wide range of users from the general public to those in private services.
It is important to recognize that these groups of people are active in multiple roles
in the entire ecosystem of urban big data, including the phases of data generation,
maintenance, storage, and usage. The users of the data, for example, also contribute
to the generation of the very data they are using, as in the case of GasBuddy1 where
members report gas prices at different stations and also use the information provided
by the Web service. Second, urban big data always have a geographic footprint as
the data must relate to an urban extent. This is different from other big data sources
(e.g. Web search and tweets without geotags) where the geographic dimension is
not salient. Along with the spatial dimension, urban big data also have an important
and sensitive temporal dimension as many applications depend on the time stamp
of the data (e.g., real-time bus information is important for users to schedule activi-
ties around bus operations). Third, urban big data as a whole are often ill-structured
because many data sources often do not coordinate their data generation and collec-
tion efforts. Data tend to exist in a loosely managed environment where a particular

1www.gasbuddy.com.
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data set may not be connected to other data sets and may not be known to other
groups of people.

The purpose of this chapter is two twofold: We provide an overview of urban
big data and discuss the technical aspects how data can be made useful for various
purposes. We specifically focus on the part of big data within the urban context
as described above. The remainder of this chapter starts with a discussion of data
sources. We then discuss the elements of the data, followed by several hypothetical
user stories. On the technical aspects of urban big data, we discuss several data-
collecting techniques and then extend the discussion into the needs and requirements
for developing an urban big data infrastructure.

31.2 Sources of Urban Big Data

Urban big data come from a wide range of sources, and it may not be straightfor-
ward to categorize these sources. For example, in a study of the characteristics of
26 data sets (Kitchin and McArdle 2016), seven types were used to categorize the
data sets, including mobile communication, Web sites, social media/crowdsourcing,
cameras/lasers, transactions of process-generated data, and administrative. Not all
these data have the urban context. Here, we group big data sources by the type of
data providers, which can be from private or public sectors. In addition, we also
recognize the types of data that are generated voluntarily. Each data set can be open
to the public to use or may be protected so that only authorized users can access
it. The distinction between open and protected data is important, especially for the
urban context, as many data sources may have limited uses because they are difficult
to share among potential users of the data. Table 31.1 lists a number of example

Table 31.1 Example sources
of urban big data

Provider Open Protected

Private Bike sharing Bike sharing
Mobile phone calls
Surveillance camera and
CCTV
Health data

Public Real-time bus
operation
Census data
LiDAR and remote
sensing
Traffic cameras and
CCTV
Air pollution sensors

Public transit usage
Individual survey
Public health data

Volunteers Social media
Community sensor
network

Social media
Health data on mobile
devices
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data sets for each category. The purpose of listing these examples is to give a brief
overview of possible and practical data sources.We note that these are merely a small
sample as different cities in different counties will certainly have more sources.

The private sector generates a huge amount of data on a daily basis. We only
list a few examples that are more related to the urban context. Popular bike-sharing
companies, for example, provide both open and protected data. The open slice of the
data may include the number and locations of bike stations, and available bikes and
docks at each location, while the protected part results from tracking the movement
of each individual bike along with information about customers. Some companies
(e.g. Waze) may choose to release an aggregated version of their individual data in
the form of averages over space and time as the open part, while protecting the actual
individual data. It is obvious that private companies have been collecting such data
sets as phone calls, surveillance, and individual health information. These data are
highly protected due to privacy laws and even the need tomaintain good relationships
with the public (Chap. 32).

Urban big data from sources in the public sector cover a variety of domains such
as demography, transportation, environment, and public health. These data are not
necessarily open to the general public due to privacy concerns. For example, while
many municipal services provide public transit data (e.g. bus operations), individual
usage of bus data that can be obtained through the records of bus passes is often
protected. The duality also applies to census data, where the aggregated version
of the demographic, housing, and economic data is open to the general public, but
individual surveys are tightly guarded.

The third type of data source includes individuals or groups who volunteer their
own data for various uses. These providers generate their own data as they are them-
selves sensors (Goodchild 2007; Chaps. 28 and 29), which is different from the
other two provider types where data are passively collected. A significant source in
this category is the social media data. Tweets, for example, can be harvested using
different licensing policies granted by Twitter. While the users generate the data,
they do not necessarily own their own data, and not all social media data are open
to the public. Other important kinds of volunteered data are those generated by the
general public using various sensors. One of the prominent examples is the use of
affordable air quality sensors (Kumar et al. 2015), and the users of these sensors can
share their data to form community sensor networks (Yi et al. 2015). Though the
quality of such data may be questionable (Lewis and Edwards 2016), they have been
used for mapping2 or other analysis.3

2www.purpleair.com/map?#1/25/-30.
3www.citylab.com/environment/2018/07/cheap-sensors-are-democratizing-air-quality-data/563
990/.

http://www.purpleair.com/map%3f#1/25/-30
http://www.citylab.com/environment/2018/07/cheap-sensors-are-democratizing-air-quality-data/563990/
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31.3 User Stories

Let us consider three user stories of urban big data. These stories are hypothetical,
but they do represent some of the examples we have encountered in our previous
applications. They are not limited just to the data but extend to the entire ecosystem
of urban big data that includes, in addition to data, the software systems as deployed
in a hardware or network setting. We assume the existence of the data, and we aim
to demonstrate how such data can be used in meaningful ways to address real-life
problems. These stories are based on examples from experiences in the USA, but we
believe it is possible to find relevant examples in other countries. We note that we use
the term user story instead of use case for a specific reason, as use cases are a software
engineering term that requires more formal description of the system. However, in
this chapter, as will be discussed later, the specific requirements of the data usages
will be difficult to define, and we argue that an agile method is more suitable. More
discussion about the agile method will be presented later in this chapter.

The first user story involves a resident, Jon, in an urban area. Jon plans to invite
a few of his friends to a party over the weekend. He has a few requirements for the
party venue. His friends like biking, and he wants to use the bike-sharing system so
that his friends can rent bikes for some fun riding. The party location needs to have
sufficient available bikes and be close enough to the trails. Not all of his friends have
cars, so Jon must consider a place that can be accessed by public transit or only by
biking. He also desires the place to be close to some respectable restaurants for a
happy hour after the ride. There is no existing app that will help Jon plan the event.
But Jon is data savvy and can use the openly available data and mapping tools to
put together some candidate locations. He can also use historical data to tell roughly
what will happen in the weekend. He then shares what he has found with his friends
before he finalizes the party venue.

The second user story involves a group of individuals who are interested in the
city’s development direction. They are busy with their own daily work, and it is hard
for them to find a good time to have face-to-facemeetings.Most of their activities rely
on the use of online communication tools. Recently, the county planning authority
posted a statement that gives the overall environment of the county a low rating. But
the group does not feel this rating fairly represents the progress the county has made
over the past few years and would like to give the overall environment another look.
Two group members, Rachie and Lieta, are especially critical of the county’s rating.
Rachie is interested in air quality, and he is able to collect official air quality data
and unofficial, open-source data for the past year. These are daily average data. Leita
works onwater quality, and she acquires some environmentalmeasures for the gauges
in the major streams and lakes within the county. These are again daily averages.
They make the data sets available on the group Web site where the members can see
the maps and the dynamics of each of the environmental factors. In the discussion
board, the group members eventually conclude that it is incorrect and unfair to use a
single rating to represent the overall environment quality, and they will present their
findings in a hearing.
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A third user story involves, again, a group of citizens who are dissatisfied by the
congressional redistricting plan put forward by the state commission. They believe
the plan is biased toward a political party, even though the commission has clearly
stated their anti-gerrymandering stance. The group collected population data at the
census block level and voters’ data to support their arguments that while the official
plan has the overall population evenly divided into the congressional districts, the
voters of one of the political parties are strongly concentrated in one district and
diluted in others, which gives the other party the edge in the majority of districts.
The group also wants to further their argument by establishing that there are multiple
alternative plans that can be considered to be equally good. While there are software
packages that can be used to generate different kinds of alternative aggregations, they
also need to use different demographic and other social and economic data at various
spatial resolutions. More importantly, the group uses the alternatives generated by
the software and then each group member will start to modify those plans manually
to create their own plans. The group members will then share their plans on an online
platform that allows them to compare and even synthesize new plans.

Clearly, these user stories involve more than just data. For example, software
tools and Web-based applications are essential, and developing those tools is a
great challenge. However, it is also clear that data are the cornerstone of the entire
ecosystem.

31.4 Elements of Urban Big Data

Urban big data exhibit different forms due to the standard chosen to suit the preferred
application. For example, a public transit agency may tend to release data using the
popular standard called the General Transit Feed Specification (GTFS, discussed
later in this chapter). However, we can decompose the data into its smallest items
where each can be formulated as a space–time–attribute (STA) tuple of three elements
d = (x, t, a), where x is the location or a representation of location of the data item,
t is the time stamp to indicate when the observation of the data item occurs or is
released, and a is a set of attributes that are associated with the data item.

The above encoding strategy is similar to that of a geo-atom (Goodchild et al.
2007). Here, we separate location and time and relax the way location and attributes
can be represented. Location can be explicitly recorded using either a set of coordi-
nates or a set of indicators such as identification numbers that can be used to uniquely
refer to locations (see examples below). The attributes associated with the location
and time together are a set that is considered as one item in the tuple. This can be done
by formatting an attribute as an object formed by a pair of the name of the attribute
and the actual value. For example, an attribute of a specific PM2.5 measure can be
formed as {PM2.5: 65}.Multiple attributes can be put together in the samemanner as
{PM2.5: 65, Ozone: 35}, a format commonly used in many data encoding strategies
such as JavaScript Object Notation (JSON) that is supported in many programming
languages. Putting everything together, an example of ((−83, 40), Mon Jul 01 2019
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23:52:00 GMT + 0800 (CST), {PM2.5: 65, Ozone: 35}) encodes two air quality
measures at a location in Columbus, OH on Monday, July 1, 2019 at 11:52 PM.
Another example is (101.1, 2010, {total: 1200}), indicating a total (population) of
1200 for census tract 101.1 in the year of 2010.

AnSTA tuple can be viewed as a special kind of observation that occurs at a certain
time and location. The big data for an urban area is a set d for all available locations
and time periods in the area for the kinds of attributes that can observed or collected.
This data model can be used to represent different spatial and temporal phenomena.
For example, air quality of anurban area canbe representedby a sequenceofmeasures
at a number of air quality stations, where each station is marked by its coordinates.
Air quality as a geographic phenomenon is a field where observations are possible
at any point in space. However, as far as data are concerned, we often resort to
discrete data points to represent the phenomenon. For areal data, locations can be
represented by the identification numbers or other indicators. For example, different
demographic data can be collected for census tracts for multiple years, where each
tract is represented by an identification number. The actual geometry (shape and its
corresponding coordinates) may not be crucial for the data collection purpose as
each tract can be uniquely identified and referred to geographically through another
data set containing the coordinates. Similar examples can be found for phenomena
on linear features such as water quality measures along a stream, where discrete
locations are used for observations.

An interesting case is social media data, which occur in huge volume and at high
speed. Such data can still be captured using the STA tuple of three elements, where
each social media event (such as a tweet, a Facebook post, and a weichat post) always
has the time, location (though it may not be shared), and attribute (the content as in
text or a mixture of multiple formats). Another example in the same manner is the
vast volume of Web pages. While the location of a Web page may not seem to be
essential, each Web page can be assigned a location since each will ultimately be
either hosted by a Web site that has a physical and meaningful geographic location
or created by a person at some location.

31.5 Data-Collecting and Processing Techniques

Urban big data can be obtained using variousmethods.Many data providers typically
offer an application program interface (API) that allows users to collect the data
through Internet connections. The APIs may have different constraints in terms of
how data can be collected. In general, data providers have full control of how their
data can be collected. For example, Twitter uses layers of data-streaming policies,
where the free and public license only provides a tiny portion of the tweets, and the
way those small numbers of tweets are sampled is not clear to users (Morstatter et al.
2013). Some other data providers, on the other hand, make their data more open. For
example, many public transit systems use a particular data protocol to make their
schedule and real-time vehicle positions available. In this section, we show how
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to stream urban big data using two examples. We focus on open data here, though
similar techniques can be applied to more restricted data sources.

The first example is the public transit system. A commonly used format for public
transit data (schedules and updates) is theGeneral Transit FeedSpecification orGTFS
(Harrelson 2006). Since its invention in 2005, GTFS has become the standard for
publishing public transit data by agencies such as TriMet in Portland, OR, and BART
in San Francisco, CA, to bring data to the general public (McHugh 2013). GTFS data
have also been incorporated into Google Maps, where users can find real-time transit
information on a common platform. The actual data structure of GTFS consists of
multiple text files in comma-separated values (CSV) format. Google also provides a
Python package called google.transit,4 where the gtfs_realtime_pb2
module can be used to help extract information fromGTFSwithout having to directly
handle the text files.

The transit agency in Columbus, OH, Central Ohio Transit Authority (COTA),
uses GTFS to publish the bus schedule and real-time information for bus trips and
its vehicle positions. To retrieve data for vehicle positions, we first use the following
four lines of code to import the necessary Python modules and request to open an
online GTFS database. In the fourth line, the file called VehiclePositions.pb
is not the database itself, but a Google Protocol Buffer that describes the structure of
the data and the necessary encoding/decoding methods of the data.

>> from google.transit import gtfs_realtime_pb2
>>> import requests
>>> import datetime
>>> response = requests.get(’http://realtime.cota.com/\

TMGTFSRealTimeWeb Service/Vehicle/VehiclePositions.pb’)

Now, we can establish the feed from the actual database and read the actual data
using the following code:

>>> feed = gtfs_realtime_pb2.FeedMessage()
>>> feed.ParseFromString(response.read())
>>> print(len(feed.entity)) 182

There were 182 buses at the time of running the code, among which the first bus
can be examined using the following code:

>>> bus = feed.entity[0]
>>> bus
id: ”1001”
vehicle {

trip {
trip_id: ”665028”
start_date: ”20190722”
route_id: ”001”

}
position {

latitude: 39.944339752197266

4https://developers.google.com/transit/gtfs-realtime/examples/python-sample.

https://developers.google.com/transit/gtfs-realtime/examples/python-sample


31 Cultivating Urban Big Data 555

longitude: -82.86833953857422
bearing: 270.0
speed: 7.93974322732538e-06

}
timestamp: 1563818766
vehicle {

id: ”11001”
label: ”1001”

}
}
>>>
d = datetime.datetime.fromtimestamp(bus.vehicle.timestamp)
>>>d.strftime(“%h %d, %Y, %H:%M:%S”)
‘Jul 22, 2019, 14:06:06’

Along with the position of the vehicle, the data also include the trip ID on which
the vehicle is currently running and the vehicle ID, and it will be straightforward to
use an STA tuple to encode this information. The default timestamp uses the epoch
time, and the last two lines of code show how to convert it into calendar date and
time.

We can run the same code after a few seconds, and below is the result. The
following examplewas obtained exactly 20 s after the previous result and the position
has also changed, while the bus was running on the same trip.

id: ”1001”
vehicle {

trip {
trip_id: ”665028”
start_date: ”20190722”
route_id: ”001”

}
position {

latitude: 39.94470977783203
longitude: -82.87486267089844
bearing: 270.0
speed: 8.457552212348673e-06

}
timestamp: 1563818786
vehicle {

id: ”11001”
label: ”1001”

}
}

While the vehicle position feed provides real-time data about bus location, detailed
information about bus stops must be obtained from another real-time feed. The
following example uses a similar procedure to retrieve real-time stop information.

>>> response = requests.get(’http://realtime.cota.com/\
… TMGTFSRealTimeWebService/\
… TripUpdate/TripUpdates.pb’)
>>> feed = gtfs_realtime_pb2.FeedMessage()
>>> feed.ParseFromString(response.content)
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Below we explore some information about the first trip. The following example
reveals the information about the trip and the vehicle that was currently operating on
this trip. This corresponds to the bus information from our previous example.

>>> feed.entity[0].trip_update.trip
trip_id: ”665028”
start_date: ”20190722”
route_id: ”001”
>>> feed.entity[0].trip_update.vehicle
id: ”11001”
label: ”1001”
>>> len(feed.entity[0].trip_update.stop_time_update)
74

There are 74 stops made on this trip so far, and we look at the first two stops:

>>> feed.entity[0].trip_update.stop_time_update[0]
stop_sequence: 9
arrival {

time: 1563818515
}
departure {

time: 1563818515
}
stop_id: ”LIVNOEW”
>>> ft.entity[0].trip_update.stop_time_update[1]
stop_sequence: 10
arrival {

time: 1563818711
}
departure {

time: 1563818711
}
stop_id: ”LIVCOUNW”

Based on the difference in departure times between the two stops, the data show
that the bus arrived at the second stop (coded “LIVCOUNW”) after 156 s (3.3 min).
Each stop has its unique code, and COTA maintains a master file for all the stops,5

where each stop is associated with a set of attributes that include the address and
coordinates.

With the above examples, it is clear that at a specific time and location, each bus
is associated with certain attributes such as the trip information and speed, which
can be encoded as an STA tuple. The same can be said about stops that are made
by the busses. We can then write a program that automatically requests the real-time
data for bus positions and stop updates at a desirable time interval (every second, for
example). The information retrieved can then be recorded in a database where each
record is an STA tuple (x, t, a). For the buses, for example, each record contains fields
such as latitude, longitude, timestamp, vehicle ID, trip ID, bearing, along with any
other information that is deemed to be useful. For each stop, we can do the same by

5https://github.com/joeshaw/cota-bus/blob/master/cota-gtfs/stops.txt.

https://github.com/joeshaw/cota-bus/blob/master/cota-gtfs/stops.txt


31 Cultivating Urban Big Data 557

recording fields such as the coordinates, arrival and departure times, trip ID, vehicle
ID, and stop ID. The accuracy of the database is partly dependent on the time interval
of data collection. A one-minute time interval may be sufficient for the purpose of
information visualization and some analysis, and a smaller interval will be needed
if we aim to provide real-time service to the general public for tasks such as trip
planning that require higher accuracy.

The Environmental Protection Agency (EPA) of the USA maintains a network
of air quality sensors across the country. EPA also provides an API to allow users
to access air quality data.6 This API provides a Web service based on a software
architecture called REST (Richardson and Ruby 2008) that supports the use of a
URL to query a database in order to retrieve data. For example, the following URL
specifies the time frame, geography boundaries, and environment variable, along
with other necessary parameters. The last parameter must be replaced by an actual
API key that can be applied from the Web site.

https://airnowapi.org/aq/data/?
parameters = pm25&
bbox = -83.368244,39.586371,-82.269611,40.344184&
startDate = 2019-05-19T03&endDate = 2019-05-19T04&
DataType = B&format = application/json&verbose = 1&
API_KEY = XXXX

This request will return the following data formatted in JSON. It shows that during
the two-hour time frame specified, there are two PM2.5 sensors at two locations, and
their data (e.g., locations, values, air quality index values) are provided. Again, we
can write a program that automatically and repeatedly retrieves information like the
above as STA tuples and store them into a database.

[
{

”Latitude”: 40.11109, ”Longitude”: -83.065376,
”UTC”: ”2019-05-19T03:00”,
”Parameter”: ”PM2.5”,
”Unit”: ”UG/M3”, ”Value”: 14.8, ”AQI”: 57, ”Category”: 2,
”SiteName”: ”Columbus NR - Smoky Row”,
”AgencyName”: ”Ohio EPA-DAPC”,
”FullAQSCode”: ”390490038”, ”IntlAQSCode”:

“840390490038”
},
{

”Latitude”: 40.0845, ”Longitude”: -82.81552,
”UTC”: ”2019-05-19T03:00”,
”Parameter”: ”PM2.5”,
”Unit”: ”UG/M3”, ”Value”: 12.2, ”AQI”: 51, ”Category”: 2,
”SiteName”: ”New Albany”,
”AgencyName”: ”Ohio EPA-DAPC”,
”FullAQSCode”: ”390490029”, ”IntlAQSCode”:

“840390490029”
},

6https://docs.airnowapi.org.

https://docs.airnowapi.org
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{
”Latitude”: 40.11109, ”Longitude”: -83.065376,
”UTC”: ”2019-05-19T04:00”,
”Parameter”: ”PM2.5”,
”Unit”: ”UG/M3”, ”Value”: 14.7, ”AQI”: 56, ”Category”: 2,
”SiteName”: ”Columbus NR - Smoky Row”,
”AgencyName”: ”Ohio EPA-DAPC”,
”FullAQSCode”: ”390490038”, ”IntlAQSCode”:

“840390490038”
},
{

”Latitude”: 40.0845, ”Longitude”: -82.81552,
”UTC”: ”2019-05-19T04:00”,
”Parameter”: ”PM2.5”,
”Unit”: ”UG/M3”, ”Value”: 12.1, ”AQI”: 51, ”Category”: 2,
”SiteName”: ”New Albany”,
”AgencyName”: ”Ohio EPA-DAPC”,
”FullAQSCode”: ”390490029”, ”IntlAQSCode”:

“840390490029”
}

]

The raw data collected in the above examples aremerely STA tuples of the form (x,
t, a) and must be processed to support purposes such as analyzing urban traffic status
or mapping density of air pollution. In a bigger context, this is an area of data mining
of big data (Vatsavai et al. 2012). In our example of using the GTFS feeds, two kinds
of real-time raw data are acquired: vehicle positions and stop updates. Among all the
GTFS text files, the file called stop_times.txt is used to store the bus schedule
for all routes, containing detailed arrival and departure time as scheduled for each
stop on each trip. By comparing the real-time trip updates of the actual arrival and
departure time of each trip with the scheduled times, it is possible to compute the
delay of each bus and conduct further analysis of how the delays propagate along the
trip (Park et al. 2019). It is also possible to visualize the discrepancy in places that
can be reached by the scheduled and actual buses (Fig. 31.1).

The above data collection examples show the general procedure of harvesting
urban big data and the considerations of storing them in spatiotemporal databases.
There are of course many other sources for urban big data that are designed for
different purposes (e.g. Twitter data). Though these data sets differ in technical details
such as data format and APIs, it can be argued that STA tuples can be used to capture
most (if not all) of these data sets. To this extent, from a data perspective alone, it
suffices to say that the data are “out there” for users to use. The real andmore difficult
challenge is how to make these data accessible to all.

31.6 Toward Urban Big Data Infrastructure

Urban big data as described above have the necessary elements to support the user
stories described in the previous section of this paper. These data sets are also rela-
tively straightforward to obtain. However, it should also be clear that the ecosystem
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Fig. 31.1 Visualizing the difference between the scheduled stops (blue) and those that were actually
reached (red) in a one-hour time frame from a given location (black pin icon). Source http://curio.
osu.edu/transit_access/

of urban big data does not always suit regular users from the general public, who
are often not trained to be as data savvy as the experts who generate the data. The
difficulty these regular users may face can be as simple as where to find the data
and as complicated as how to use them. These are the major limitations that make it
difficult for the data to be accessible to a wide audience.

To address these problems, we advocate the idea of urban big data infrastructure
under the spirit of data for all. The concept of infrastructure refers to the ubiquitous
availability of resources such as electricity where a person, who does not need to
be an electricity expert, can use it by simply plugging in. We would ponder if it is
possible for a regular user to find a desired spatiotemporal data set by specifying
it instead of by carrying out a process of searching and coding. For example, is it
possible to ask a virtual assistant (e.g. Apple’s Siri) on a smartphone to find the
spatiotemporal data set by giving a description of the data? In the remainder of this
section, we review some methods that may shed light in the future development of
such an infrastructure.

There are a few existing methods that can be used to address some of the issues
mentioned above. A geoportal (Tait 2005), for example, is designed as a gateway to
serve geospatial data on a Web-based platform. More specifically, a geoportal can
be used to allow users to do the following tasks:

• Discover geospatial data based on a catalog of the datamaintained in the geoportal.
• Provide useful information about how to use each of the geospatial data sets.

http://curio.osu.edu/transit_access/
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• View and map the data sets discovered.
• Automatically harvest (collect) online data sources and store them in the geoportal

for further uses.
• Provide data using various data query techniques such as REST, GeoRSS, and

KML.

The implementation of a geoportal requires work on the server side and is suitable
as a solution to data needs at the enterprise level. Ideally, by logging into a geoportal,
a user can find relevant data sets and explore the properties of those data through
mapping, tabulating, or simply describing the data. However, these geoportals are
usually developed for data experts to use instead for the regular users, who may not
have the necessary skill sets in understanding the portal and navigating the numerous
data sets served. It is also difficult to expect users to develop their own geoportals or to
develop data sets within existing portals. In this sense, the ultimate users (the general
public in our case) are entirely at the mercy of the data experts or data enterprises.

Another approach is spatial data infrastructure (SDI). The term often involves
technologies for data collection and retrieval, along with metadata, as well as poli-
cies that promote access to spatial data. For this reason, SDIs are not technological
solutions to data problems butmore of a social and political response to the data needs
that emerge from communities at different scales. In an ideal situation, implementing
an SDI requires the efforts of government agencies, the private sector, representatives
of the general public, and even members of academia. In the past, SDIs have been
effective in consolidating traditional data sets such as the cadastre, national base
maps, large-scale topographic maps, and remotely sensed images. While it is well
recognized that the success of SDIs is critically dependent on how the users, citizens,
and institutions are engaged, their involvements have been a significant challenge
(Erik de Man 2006; Elwood 2008). It should be noted that a major portion of the SDI
literature is focused on the technological aspects, especially taking a GIS-centered
perspective (Maguire and Longley 2005; Steiniger and Hunter 2012; Evangelidis
et al. 2014; Helmi, Farhan and Nasr 2018). Through such a technological perspec-
tive, unfortunately, the concept of SDI tends to be reduced to merely a form of GIS
or geoportal.

We argue that it is necessary to develop an urban big data infrastructure in order
to address the issues discussed above and to fulfill the goals of using the data as
mentioned in the user stories. The technical aspects of such an infrastructure, though
still challenging, can be relatively straightforward, as much of the effort has already
focused on how to utilize the technology in getting the data and making the data
accessible. For example, the development of geoportals has already demonstrated that
various data can be incorporated in commonly used formats and standards for users
to discover and use. Many geospatial database management systems (e.g. GeoServer
and Esri’s geoportal) can be used to harvest data from different sources. More impor-
tantly, these systems typically also support data discovery. For example, Catalogue
Services7 is a specification standard proposed by the Open Geospatial Consortium

7https://www.opengeospatial.org/standards/cat.

https://www.opengeospatial.org/standards/cat
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(OGC) and has been supported by major software systems such as GeoServer8 and
Esri’s geoportal.9

The fundamental challenge of developing urban big data infrastructures goes
beyond the technological domain: It is the often ill-defined relationship among data,
data providers, data users, and software developers and vendors that makes it difficult
for such an infrastructure to be effective, as shown in the case of SDIs. From an
engineering perspective, this challenge is due to the changing requirements as new
user stories emerge whenever new data sources or new technology become available.
There is no silver bullet that will solve all the problems. Instead, it is important to
understand that a fully functional urban big data infrastructure (or SDIs at a lesser
level of difficulty) takes time and must wait for collaborations to emerge.

We envision an agile process (Stellman and Greene 2014) where all parties
involved in the use and production of urban big data will constantly engage with
each other and revise any previous understandings about the data, even though the
understandingsmay be preliminary and sometimes trivial at the early stages of devel-
opment. A top-down approach to developing the infrastructure is bound to fail since
such an approach is typically dependent on well-defined requirements, as shown
repeatedly in the history and literature of software engineering (Sommerville 2016).
The strong social and human aspects of urban big data infrastructuremake it natural to
consider an agile approach that stresses how the development process should actively
engage with the system (data) users (Stellman and Greene, 2014). A typical agile
development process starts from user stories that roughly but meaningfully describe
the fundamental requirements of a system but often do not specify the details of
how the system should be run and built. In order for the project to advance, the end
user or client must constantly be involved in the process and provide feedbacks so
that the requirements can become increasingly clear. Lack of user involvement will
cause adverse consequences to both the team and the project (Hoda et al. 2011). User
involvement in turn helps the developers understand the direction of the project and
enables them to work together with the users, toward the end product.

Among the many agile methods, self-organizing agile methods are a promising
recent development that have gained much recognition (Hoda et al. 2012) and
can be especially suitable for the development of urban big data infrastructures.
Researchers have studied the potential of such an approach from different perspec-
tives, including organizational theory that focuses on how organizations may learn
from past experience (Morgan 1998) and complex adaptive systems that show how
feedback among individuals can help the system evolve (Lansing 2003). In addition
to the customer/user, a regular agile team includes a product owner who maintains
a close relationship with the customer and plays the role of a stakeholder, a coordi-
nator (scrum master) who operates the daily routines of the team and keeps the team
together, and teammembers who are dedicated to work on various parts of the project
with a strong leadership from the coordinator and product owner. In the case of a self-
organizing agile method, a team may still have those roles among team members,

8https://docs.geoserver.org/latest/en/user/services/csw/index.html.
9https://www.esri.com/en-us/arcgis/products/geoportal-server/overview.

https://docs.geoserver.org/latest/en/user/services/csw/index.html
https://www.esri.com/en-us/arcgis/products/geoportal-server/overview
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but is a more autonomous group where the role of each member may change. A
strong point of such an approach is that decisions about the project are made not by
the product owner but more spontaneously from the collaborations among all team
members, and more importantly with the customer (Hoda et al. 2011).

The key aspect of a self-organizing agile process is the collaborative leaders who
play the most critical role. In the agile literature, these are team members who act
as mentors and coordinators. Mentors are not bosses because they do not make
decisions; instead, they are coaches who provide guidance and support the team’s
confidence. Coordinators are essential too because they work directly with users in
order for the development to be on the right track as the users require.

Self-organizing agile methods are promising, and it should be noted that the
development of an urban big data infrastructure will not emerge just because there
are demands from users and data experts. Strong bonds between them are important,
and leadership is required.We do not imagine that an infrastructure can be developed
over just a few projects where big data are involved. Instead, given the fact that SDIs
are still far from being functional despite the efforts of the past three decades (Erik de
Man 2006; Grus et al. 2010), it is reasonable to believe that a fully functional urban
big data infrastructure will also take a long time to materialize. However, with strong
and collaborative leadership formed through the bond between the user (demand)
and the developers (skills), it is possible to evolve the infrastructure through multiple
projects where data and knowledge derived from the use of data will accumulate.
An open and collaborative environment will be especially useful at the urban scale
where similar tasks may repeat in different urban areas and therefore good practices
can be adopted and improved through time.

31.7 Concluding Remarks

Urban big data have exhibited potential in helping us to better understand the city and
make better and informed decisions. Such data have a wide range of sources, and the
technology to retrieve the data is relatively straightforward. However, the social and
human aspects have made the use of the data by the general public a real challenge.
Cultivating urban big data requires long-term planning and sustainable collaboration
between many parties. It is not reasonable to expect silver bullet solutions.

Technology aside, data have become the cornerstone of an ecosystem that is
sustained by a chain of users, developers, companies, analysts, and investors. The
roles of each player in this ecosystem are not the same as in the old economy.
For example, while users are still using the services provided by companies such
as Google and Facebook, they also contribute to data collection through using the
Internet (e.g. conducting searches or posting on social media). To some extent, this
era of urban big data is also an era where users act as products. Schneier (2015)
describes the relationship between the (private) data provider and users as a feudalist
system where the data “lords” have full and firm control on the properties (data) that
are similar to the land in a feudal system, and the users receive benefits from the data
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“lords” through payment or other types of contribution (their own data, for example),
similar to peasants in a feudal system who must trade their labor in order to have
access to land and services. We do not believe such a feudalist world in the data
domain is healthy for data to be used to its optimal extent. Through collaboration
and policy, we can develop an open (though not necessarily free) urban big data
infrastructure that will enable the data to be used by their true constituents: the
general public.
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Chapter 32
Geoprivacy, Convenience,
and the Pursuit of Anonymity in Digital
Cities

Jerome E. Dobson and Willam A. Herbert

Abstract Cities demand spatial efficiencies that can be achieved only through
sharing of information. Current technologies support collection, processing, and
dissemination of unprecedented quantities of personal, public, and corporate infor-
mation. Inherent in this milieu is an inevitable contest among societal efficiency,
corporate profits, consumer convenience, personal privacy, and even freedom.
The authors examine current trends in technology, data collection, legislation,
and public acceptance. They find that without broad specific regulations limiting
location data collection and use—including a universal protected right for indi-
viduals to pursue anonymity—governments, commercial enterprises, employers,
and individuals increasingly will exploit tracking technologies at the expense of
geoprivacy.

32.1 Introduction

Cities exist because of society’s overriding need for spatial efficiency. Placing people
close together, connected through systems that operate quickly and smoothly, can
enhance productivity and leisure, resulting in the potential for relatively high stan-
dards of living for many, while also creating wide disparities in economic and social
well-being. Information sharing is essential in commerce and marketing, which
typically are concentrated in urban areas.

Here, we explain the range of urban information technologies and applications
available now and likely to emerge soon.We discuss current policies, legislation, and
court rulings governing geoprivacy—defined here as “individual rights to prevent
[surveillance and] disclosure of the location of one’s home, workplace, daily activi-
ties, or trips” (Kwan et al. 2004)—together with surveillance and control, including
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the European Union’s recent General Data Privacy Regulation (GDPR). We address
the extent of government, corporate, and individual information gathering, and the
risks involved in such data collection and use. We explore the processes and consid-
erations by which corporations, groups, and individuals decide whether to accept or
resist surveillance and control.

Delivering goods, managing traffic and mass transit, facilitating urban pleasures,
and myriad other essential services such as crime prevention, depend on individ-
uals merging their own activities with communal operations. Maximizing efficiency
necessitates information sharing, which foments tension between societal demands
and personal expectations of freedom and privacy. Tensions can rise to conflict when
urban policymakers adopt “smart” technologies without studying and managing the
impacts such technologies will have on privacy (Williams 2019).

How a society balances community needs with individual rights reflects collec-
tive values and priorities. The escalating growth of privatized urban spaces (Garrett
2015) impedes geoprivacy protections in the USA because, in general, private actors
have more license to surveil and track than government agents who are subject
to greater legal restrictions. More important, government regulations rarely reflect
majoritarian views about geoprivacy, especially since Amazon, Apple, Facebook,
Google, and Microsoft collectively spent $582 million over thirteen years to lobby
the US Congress to promote their proprietary interests (Dellinger 2019).

In the USA, except for California, there is no comprehensive regulatory scheme
(Swisher 2019). Instead, the burden of balancing convenience and privacy regarding
data collection and accessibility is placed squarely on the individual.Hence, asFowler
(2018) warns, “Many of us will delete apps … disable as much tracking as we can
on our phones … delete our Facebook accounts … delete our social media histories
and old emails and text messages. But it won’t be enough because most people will
not care: The trade-off between privacy and convenience will be worth it to them,
because the loss of their privacy will have little to no impact on their day-to-day
lives. Most people will read (or perhaps ignore) the news stories about every new
privacy scandal, and they will then go back to their phones.” Even those who study
and report on location privacy have a hard time retaining their location invisibility
on the electronic surveillance grid (Swisher 2019).

Individuals routinely sacrifice some degree of privacy and personal choice for
the common good or consumer convenience. These sacrifices are usually implicit
tradeoffs without discernment or adequate information for informed consent. The
extent of sacrifice is oftentimes mollified by extreme individual wealth, creating a
non-egalitarian opt-out from shared sacrifice. In addition to economic inequality, a
digital divide existswith respect to individual access to and sophisticationwith the use
of technology (Slinn andHerbert 2011). Nevertheless, urban habits, design, customs,
and laws frequently favor collective efficiency and commerce over individual self-
determination with respect to privacy.

Traditionally, cities have provided individuals with ameans of hiding in the crowd
and maintaining relative anonymity. Many people crave the subjective perception
of invisibility in crowded streets, parks, and trains. For centuries, they enjoyed an
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overarching sense of obscurity based on time, space, impermanence, and inherent
limitations on human memory (Hartzog and Selinger 2019).

Collectively, however, people cannot have all they may want simultaneously. The
more one seeks fame the less likely he or she can have anonymity or obscurity and
so it goes for whole population segments within cities. Individuals and groups may
choose open lifestyles—such as those of political and civic leaders, entertainers,
entrepreneurs, and social media influencers. Others are forced into the public spot-
light against their will or live a life in the shadows out of choice, necessity, or
circumstances beyond their control.

New information technologies increase benefits and risks and make today’s soci-
etal and individual choices ever more difficult. Some applications improve govern-
ment, commercial, familial, and individual efficiencies and conveniences at the cost
of privacy, but they are rarely designed to protect privacy. At the same time, emerging
technologies enhance surveillance or control by government, employers, loved ones,
or caregivers. Through the collection of location data by commercial enterprises, the
most basic democratic rights of dissent and protest in the streets can be easily tracked
(Warzel and Thompson 2019).

These technologies also can create a new form of slavery—geoslavery—based on
location control, “a practice in which one entity, the master, coercively or surrepti-
tiously monitors and exerts control over the physical location of another individual,
the slave. Inherent in this concept is the potential for a master to routinely control
time, location, speed, and direction for each and every movement of the slave or,
indeed, of many slaves simultaneously. Enhanced surveillance and control may be
attained through complementary monitoring of functional indicators such as body
temperature, heart rate, and perspiration” (Dobson and Fisher 2003, pp. 47–48; 2007;
Herbert 2006). Geoslavery violates a central component of personal liberty, namely
freedom of locomotion, which includes the ability of a person to move from place to
place without external restraint unless pursuant to law (see the works of Blackstone
in Lemmings 2018).

Generalized fear of government or corporate electronic surveillance is common,
even though the public barely knows the collective scope and magnitude of the
data collection, sale, and use of such information. Moreover, the collection, use,
and distribution of personal data by individuals—family, friends, and strangers—is
routinely accepted without protest.

Health records, in particular, are considered sacrosanct in the USA. The Health
Insurance Portability and Accountability Act of 1996 (HIPAA) contains a “Privacy
Rule” so prominent that many people mistakenly dub the entire act the “Health Infor-
mation Privacy Act.” Its goals are to protect health insurance coverage when workers
change or lose jobs and to protect health data confidentiality and availability. It guar-
antees a right of access to one’s own health data on request (HIPAA Journal 2019). It
was passed with the good intention of protecting individuals from any consequences
that might result from divulging health information including workplace discrimina-
tion. Patients routinely are presentedwith a statement affirming their rights to privacy
except for release to insurers, the one entity most likely to react detrimentally to a
patient’s interests if adverse health conditions are found. Concomitantly, HIPAA’s
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disclosure rules restrict the release of health and geographic information on individ-
uals so completely that the act itself stymies high-precision geographic research on
factors, causes, and effects linking local health to local environments, thus fettering
the complementary fields of medical geography and epidemiology.

Many people have acquiesced to the commodification of personal location data
for advertising and consumer targeting, becoming willing subjects to what Shoshana
Zuboff has labeled “surveillance capitalism” (Zuboff 2019). Some recognize a risk
vs. benefit ratio; others do not. We explore the integration of location technology
with social media platforms and deregulatory ideology in the age of social media.
We discuss social and cultural changes arising from accelerated use of location
technology, implications for precarious work (Uberization), and unwritten tradeoffs
of “convenience” for loss of privacy. Here, we discuss such matters in the context of
three illustrative applications that feature tracking technology.

32.1.1 Application #1: The Role of Cities in Slavery Prior
to the Civil War

To contextualize the impact of twenty-first-century information technologies on
urban geoprivacy, human rights, and property rights, consider an example from the
nineteenth century based on analog technology rather than digital. From the earliest
days of the American republic, surveillance and restraint were core components of
the American slavery system. Freedom of movement was substantially restricted
for those enslaved. Federal laws enabled slaveholders to track down, recapture, and
return runaway slaves, then defined as human chattel with high monetary value. Self-
emancipated slaves constituted a major economic loss for slaveholders, who spent
substantial sums for location information to aid in the legal and frequently extra-legal
capture by slave catchers (Foner 2016).

Fugitive slaves in the nineteenth century flocked to cities in search of anonymity,
personal redefinition, and employment. Cities with large populations of free African-
Americans were particularly attractive for escaped slaves. There they had a greater
chance to attain obscurity and even mingle in crowds at public events (Franklin and
Schweninger 1999). Black and white abolitionists assisted self-emancipated slaves
in traveling to safer areas, creating new identities, and finding work and lodging. To
personalize,W.C. Pennington arrived inNewYorkCity in 1828 after escaping slavery
and stayed, establishing himself as a minister and educator. Another escaped slave,
Frederick Bailey, traveled to New York a decade later. During his short stay, Bailey
changed his name, married with Pennington officiating, and went off to become the
famous abolitionist writer and orator Frederick Douglass (Foner 2016).

Even slaves emancipated by their former masters faced difficulties in avoiding
discovery that could result in re-enslavement. Urban vigilance committees were
formed to protect escaped slaves, free African-Americans kidnapped off city streets,
and challenge legal proceedings intended to compel their enslavement in another
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state (Foner 2016). The importance of urban life to African-Americans explains, in
part, the reluctance of many who received land grants from abolitionist and agrarian
Gerrit Smith in the late 1840s to leave and start new lives in the remote Adirondack
Mountains. Despite the continuing fear of slave catchers, the urban environment was
more secure than attempting to create a safe community elsewhere (Stauffer 2002).

Imagine howmodern tracking technologies, had they been available in antebellum
times, would have maximized the efficiency of tracking down runaway slaves in
cities and returning them to bondage. Indeed, such technologies might have negated
the urban advantage in geoprivacy. The same principles apply to fugitive slaves in
the nineteenth century or modern-day sex slaves seeking freedom and dignity or
immigrants seeking refuge in the twenty-first century.

32.1.2 Application #2: Informed Delivery by the US Postal
Service

How pervasive and vexing geoprivacy can be today. How integrally it is entangled
with efficiency and convenience. In the first half of the twentieth century, it was
generally assumed that a mailman could deliver a package by knocking on the door
and handing it to a live person inside. Starting with World War II, however, changes
in lifestyle rendered that premise untrue. More women were working, and fewer
extended families lived together in the same house. Eventually, it became necessary
to leave packages unattended at the door. That gave rise to “porch pirates”—scofflaws
who steal unattended packages. Eventually, the problem became so rampant that
critics objected to “porch pirate” as too frivolous a term for the damage done. An
estimated 1.7 million packages are stolen every day across the USA (Hu and Haag
2019).

To counter theft, theUSPostal Service (USPS) initiated a programcalled Informed
Delivery. Any USPS customer could sign up for an electronic notice to inform him or
her when a package would arrive so the customer could arrange to be home at or soon
after its arrival. Unfortunately, USPS failed to install proper security procedures, and
now it is fairly easy for crooks to sign up for someone else’s account. Thus, some
thieves receive convenient notices alerting them to deliveries at a time unknown
to the resident. The problem could be solved by more stringent measures, such as
holding the package for customer pickup at the Post Office, but that would incur
unacceptable delays and additional travel on the part of the customer or mail carrier.
It is a clear case of customers, bent on convenience, wanting a solution that turns out
to be vulnerable itself.

Simultaneously, Amazon.com offered a program for customers to pre-approve
delivery personnel to open the front door and place each package inside. Predictably,
most customers recoiled at the thought. Next, Amazon offered to deliver inside the
garage, but many urban dwellers do not have garages and acceptance among those
who do is unclear.
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Today, the most popular countermeasure to porch piracy is Amazon’s Ring tech-
nology, which employs a video surveillance camera integrated into a doorbell (Wing-
field 2018). Privacy concerns have been expressed because each installation surveils
not only the owner’s yard, but neighbors’ yards, driveways, and streets as well, and
formal agreements are being instituted for police departments (600 so far) to harvest
and process data with the consent of owners but not the consent of neighbors, visi-
tors, and other passersby (Harwell 2019a, Thorbecke 2019). Worse yet, hackers have
frightened some residents (famously including an eight-year-old girl) by speaking
to them through Ring security cameras inside the home (Chiu 2019).

32.1.3 Application #3: Geoslavery in the Middle East
and China

In their initial article on geoslavery, Dobson and Fisher (2003) proposed “realistic
scenarios of potential enslavement applications.” Based on the real-life honormurder
of Sevda Gok, “a teenage girl [in eastern Turkey] whose family held a council and
voted to execute her in violation of their own country’s laws,” they envisioned the
following hypothetical scenario, which would be anathema to Western societies, yet
acceptable in someMiddle Eastern countries: “Soon an enterprising businessman…
may be able to purchase a central monitoring system … which can be locked onto
the wrists of every member of the village (women, children, and men). Most likely,
he will be able to offer a service to village parents at an affordable price that will
cover his investment and a tidy profit.”

At the time, some critics claimed the hypothetical scenario was futuristic and
inflammatory. Yet in 2019, “U.S. Representative Jackie Speier and 13 colleagues
wrote Apple CEO Tim Cook and Google CEO Sundar Pichai to call for the removal
of amobile app from the companies’ app stores that allows Saudimen to trackwomen
and migrant workers…” The Congressional press release (Speier 2019) states, “The
ingenuity of American technology companies should not be perverted to violate the
human rights of Saudi women. Twenty-first century innovations should not perpet-
uate sixteenth century tyranny…Keeping this application in your [app] stores allows
your companies and your American employees to be accomplices in the oppression
of Saudi Arabian women and migrant workers… The app, Absher … allows a male
“guardian” to take away permission for awomanormigrant laborer to exit the country
and provides the man with notifications if there is an attempt to leave. Amnesty Inter-
national has stated this app is another example of how the Saudi Arabian government
has developed and employed tools to limit women’s rights and freedoms.”

When we first wrote about geoslavery (Dobson and Fisher 2003; Herbert 2006),
the ultimate example we imagined was a nation tracking its entire population, and
employers tracking their employees, surveilling with GPS, enhancing with govern-
ment and corporate databases, and rewarding individuals for good behavior or
punishing them for bad behavior.
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In 2014, China announced plans to do exactly that. A year later, China’s “omnipo-
tent” Social Credit System was tested in pilot projects run by eight major companies
for planned national implementation in 2020 (Hatton 2015). Today, the test involves
more than twenty companies, where every individual is monitored through human
tracking and surveillance to produce a social credit score used to rate each citizen’s
trustworthiness. The current concept is not a unified platform generating unique
scores for 1.4 billion citizens. “Instead, the national program is envisioned as a web
of individual systems run by cities, hospitals, businesses and agricultural-produce
markets — all linked by data-sharing and using incentives and penalties to make
people and businesses behave as the government wishes” (Mistreanu 2018). It is
as if the US government were to explicitly appoint Google, Equifax, Sprint, and
other corporations as guardians of every citizen’s reputation, social success, job
opportunities, and travel destinations.

The stated intention of China’s original plan was to “allow the trustworthy to roam
everywhere under heaven while making it hard for the discredited to take a single
step” (Mistreanu 2018). By the end of 2018, “Citizens placed on black lists for social
credit offences were prevented from buying train tickets 5.5 million times … [and]
in 2017 … 6.15 million citizens had been barred from taking flights” (Kuo 2019).
Data variables, held in vast national and corporate databases, include government
information such as tax payments and traffic violations and corporate data such as
consumer debt.

The program qualifies as geoslavery even with Dobson’s original stipulation that
geoslavery must be either “coercive or surreptitious.” It is conspicuously not surrep-
titious, but surely it is coercive because the masters (currently the Chinese govern-
ment and 26 large corporations) completely control every life that is being evaluated,
including the decision to be watched. It cannot be consensual because the Chinese
government and its corporate partners hold the ultimate power relationship over
everyone submitting to it.

A Washington Post article (Song 2018) claims that the Chinese system is not as
bad as it sounds, because, for instance, many of the worst offences (such as denying
all travel requests for people who had traffic violations) happened in overzealous
pilot projects and were then rejected from the national plan. We do not understand
how that makes it better since the very same private companies running the tests
are slated to continue running the program in a somewhat autonomous status, and
private companies typically have more license to abuse than government itself does.
Regardless, when citizens eagerly accept daily, continuous evaluation of any kind,
as Chinese citizens are said to have done, there will be no turning back. Any future
bureaucracy can add another and another at its whim, and no one can object without
being down-scored.

China’s Social Credit System is the ultimate digital-age version of the long-feared
Panopticon. More than two centuries ago Samuel Bentham, an architect, designed
a building that was actually a surveillance machine; his brother Jeremy Bentham
fervently promoted the invention. Its optics were such that a single “inspector” could
observe every occupant simultaneously. They called it the “Panopticon” (all seeing).
It was, Jeremy said, “A new mode of obtaining power of mind over mind, in a
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quantity hitherto without example.” Since its inception, surveillance technology has
advanced in three major spurts, each of which triggered a new specter of surveillance
and control. The first instance was the Benthams’ building; the second was and
is a tightly controlled closed-circuit television network (CCTV), and the third is
today’s electronic tracking services. Each had and has its own distinctive rationale:
first the utopian perfection of society; second the enforcement of absolute tyranny;
today safety, security, and convenience. Functionally, however, their root function is
the same—total surveillance—and they are indeed three successive generations of
Panopticons. Dobson and Fisher (2007) called them, respectively, Panopticon I, II,
and III.

Clearly, China’s Social Credit Systemqualifies as Panopticon III, a case of cultural
acceptance that would not be acceptable in most western countries. But is western
culture really that opposed? In 2019, the Trump Administration proposed a point-
based plan to assign merit scores to immigrants applying for entry into the country
(Shoichet 2019). US education officials are considering a new adversity score added
to theSATscore that is so instrumental in determining social andfinancial opportunity
(Jaschik 2019).

32.2 Tracking Technologies

New information technologies increase benefits and risks and make today’s choices
ever more crucial. Here, we explain the range of human tracking technologies and
applications now available and how each is involved in tracking.

Human tracking technologies include Global Positioning System (GPS) receivers
that are attachable or wearable with GPS chips embedded in cell phones, bracelets, or
dedicated navigation devices, all of which may be connected to telecommunication
networks that record coordinates and interact with geographic information systems
(GIS) (Commonwealth v. Almonor 2019). A related form gets coordinates not from
GPS but from less precise cell-site location information (CSLI) when a cell phone
connects to a cell tower (Carpenter v. USA 2018).

Other ubiquitous sources of location data are the geosocial footprints extracted
from social media activity and smartphones (Weidemann et al. 2018). A New York
Times investigation described the extraordinary breadth of location information
extracted from a million smartphones in New York City and stored in one database
(Harris et al. 2018). Data from smartphones used in urban areas enables massive
tracking of individuals regardless of their economic status, neighborhood, orworksite
(Thompson and Warzel 2019).

The electronic exhibitionism inherent in social media is a major source of loca-
tion data that are collected, analyzed, and sold. Until 2019, Facebook continu-
ously collected location information on Android users even when the app was not
in use (Gomez 2019). For close to a decade, Google has maintained a database
called Sensorvault with detailed location information from millions of devices
(Valentino-DeVries 2019).
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Other tracking technologies include radio-frequency identification (RFID) and
biometrics (Herbert and Tuminaro 2008). RFID chips can be imbedded in worn or
carried objects such as urban transit cards and can be implanted in a person’s body.
Biometrics is an identification technology based on unique biological characteristics
such as voice and facial recognition that is being utilized in immigration and even by
landlords (Bellafante 2019). Wearable biometric devices are being used by profes-
sional sports teams to monitor the physical functions of athletes (Venook 2017).
Location data from RFID are not spatially continuous and are limited to specific
locations, but they are excellent for maintaining inventories of goods and people.
Thus, a core use of RFID and biometrics is monitoring pedestrian traffic in buildings
and transit systems. When integrated with surveillance cameras, these technologies
can form the basis for a modern-day Panopticon II (Dobson and Fisher 2007).

Facial pattern recognition can be stationary, as when used to monitor crowds
entering a stadium without necessarily following them home. However, frequent
detection at ubiquitous geo-referenced sites or by mobile sensors creates a trail of
geo-coordinates as effectively as GPS itself. Recently, Schuppe (2019) declared it a
“routine policing tool in America.” Yet, resistance is developing, and San Francisco
has banned its use (Conger et al. 2019).

Increasingly, automobiles are equippedwith surveillance devices capable ofmoni-
toring every aspect of engine performance but also direction, speed, and braking of
the car itself, plus personal details such as eye movements to measure attentiveness.

Geoslavery is the most extreme application threatening privacy and personal
freedom (Dobson and Fisher 2003; 2007; Fisher and Dobson 2003; Herbert 2006).
The term was coined (Dobson 2002) soon after entrepreneurs started offering “kid-
tracking” technology. Despite its kid name, then and now the devices can be used for
tracking people of any age. Applications can be highly beneficial, and many are, but
absolute control is a dangerous thing. The key to protecting the tracked is to establish
applicable ethical standards, laws, and regulations.

Less extreme but still concerning is “nudging,” a practice in which governments
or corporations encourage mass behavior, and “big nudging,” which uses big data
to do it (Helbing et al. 2017; Dasgupta 2017). Insurance companies, for instance,
reward customers for using location-based services (LBS) to enforce “safe” driving
habits. State Farm Insurance offers a driving score that determines insurance rates,
and they advertise it on TVmaking light of how it will dictate driving decisions such
as workers being late for a meeting or a pregnant mother arriving late at the hospital
for her baby’s delivery (State Farm Insurance Company 2019).

Dasgupta views such nudging as “a modern form of paternalism. The new, caring
government [or company] is … interested in what we do, but also … that we do
[what] it considers to be right … To many this appears to be a sort of digital [prod]
that allows one to govern the masses efficiently, without having to involve citizens in
democratic processes.”The technologyused for nudging is ubiquitous computing and
telecommunications systems, over which the individual consumer has little control.
Laws and customs determine what is acceptable, but most collection and processing
occurs in cloistered rooms. It is this separation of watcher and watched that frightens
many people.
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32.3 Informed Acceptance of Benefits and Adverse
Acceptance of Risks

Society views geosurveillance—defined here as the practice, usually electronic, of
monitoring and recording the geometries, topologies, and attributes of places and
human and physical entities both stationary and moving—with two faces. When
presented in the abstract, as CCTV was in George Orwell’s 1984, geosurveillance
is frightening in the extreme. When it is available commercially and used by many
or even just a few, however, the specter subsides. This is particularly true when the
technology is imbedded in smartphones, wearable devices, and apps. CCTV is now
deployed routinely for surveillance in cities and sensitive rural sites, and the greatest
fear for most people is merely a traffic fine. Likely, the key factor is individual
perception of actual use. Prior to deployment, there is no such experience on which
to judge. If then a device is widely deployed and seldom indicted for harm, the public
is lulled into thinking the risk is small or nonexistent. We call this phenomenon an
adverse acceptance.

The marketing of tracking technologies includes aggressive promotion of conve-
niences but reticence about dangers. Voluntary full disclosure of the scope, use, and
sale of data collected would be self-defeating for proponents. The lack of under-
standable information renders it impossible for an urban dweller to make rational
risk assessments connected to geoprivacy.

Excellent examples of this phenomenon are HudsonYards—a new 28-acre “smart
city” inManhattan—andWaterfront Toronto, both owned by a subsidiary ofGoogle’s
parent company Alphabet. In designing and promoting Hudson Yards, the developer
emphasizes the conveniences of installed tracking technologies without disclosing
whatmaybe donewith the data.As the developer’s president proclaimed to a reporter:
“The data is our data for the purposes of allowing us to make Hudson Yards function
better” (Jeans 2019). Yet, privacy concerns ultimately forced Alphabet to scale back
severely on certain onerous aspects of Waterfront Toronto (Bilefsky 2019).

Facedwith such opaqueness, a resident,worker, visitor, or commercial customer at
HudsonYards has only three choices: accept the surveillance based on the developer’s
assurance of a positive or benign purpose; ignore the surveillance and accept an
unknown risk concerning the use of the data by the developer or a third party; or
refuse to enter the “smart city” to avoid surveillance and data collection. Buyers and
renters must judge based on predominantly positive presentations. This situation is
an example of what Attoh et al. (2019) have termed “idiocy in the smart city.”

A similar dilemma is faced by Uber drivers and passengers because tracking
technologies are imbedded in the labor relationship of the “gig” worker (Attoh et al.
2019). The driver can accept the cost of creating geodata for Uber as part of work or
decline employment. Similarly, a potential customer can accept geosurveillance as a
cost of the convenience of using the service or decline the ride (Smith and Leberstein
2015).

Consider the nature of this cost/risk versus benefit ratio at Hudson Yards, Uber,
and anywhere else surveillance is installed. If the ratio is, say, 999 benefits to every
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1 cost/risk, society may favor surveillance, but how can and should society protect
itself from that one cost/risk? Consider this analogy: The benefits of white phos-
phorusmatches are overwhelmingly positive, butwe still have to devote some societal
resources to match safety.

Some applications improve government and commercial efficiencies at the cost
of privacy. Some yield control to government, loved ones, and caregivers. It is often
said that the problem with privacy is not technology but rather misuse of technology.
In turn, misuse is a function of societal norms and deviations from those norms. If
a business offered a female tracking service in the USA similar to the one in Case
Study #3, there would be wide public outrage including demands for government
investigation, regulation, and prosecution. In Saudi Arabia, however, it fits within
the norm of how women have been treated in the analog world. Still, some people in
Saudi Arabia will object, and some Americans will try to do it anyway.

Already one tragedy complicated by geoslavery has been documented (Dobson
2007).When Stacy Petersonwentmissing in 2007, news reports claimed her husband
Drew Peterson, a policeman in the Bolingbrook, Illinois Police Department, obses-
sively monitored her movements prior to her disappearance. She complained to
family and friends that he was controlling her. She changed her cell phone number in
a futile attempt to avoid his control. When confronted with the allegation that Drew
was tracking Stacy’s friends, his lawyer defended his actions in a frightening way.
It was a common practice, the lawyer said, for local police officers to track their
spouses, friends, and acquaintances. Stacy Peterson’s body was never found. If she
is dead, geoslavery is complicit in her murder. If she survived, geoslavery denied her
the possibility of taking her children with her.

32.4 Legal and Regulatory Responses to Tracking
Technologies

For decades, the European Union (EU) has been the international leader in regu-
lating collection and use of personal electronic data, including location data (Herbert
2008). In May 2018, its General Data Privacy Regulation (GDPR) became effective,
substantially broadening and improving protections for EU citizens. The regulation
constitutes a significant step forward for protecting geoprivacy in European cities,
particularly with its grant of the right to be forgotten.

The GDPR defines personal data to include location data as well as any other
information related to a specific individual. The new regulations impose mandates
that are relevant to geoprivacy, some particularly so: a requirement for informed and
unambiguous individual consent; an insistence that data collectionmust be legitimate
and necessary; a guarantee that individuals have rights to access and correct the
information; and, most important, the provision of a right to be forgotten. The GDPR
right to be forgotten, that is, to pursue anonymity, gives individuals a high degree
of authority over their own location data. It is codified in GDPR, Article 17, which
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states, “The data subject shall have the right to obtain from the controller the erasure of
personal data concerning him or herwithout undue delay and the controller shall have
the obligation to erase personal data without undue delay.” Erasure is enforceable
under certain circumstances including when the data are “no longer necessary in
relation to the purposes for which they were collected or otherwise processed.”

TheUSA is far behind in developing such a comprehensive response to the privacy
implications of electronic data. While American courts have grappled with some
privacy disputes resulting from tracking technology, primarily involving criminal
prosecutions, legislatures generally have been slow to respond. The delay in the
USA is due, in part, to the fact that the rise of electronic tracking and social media
occurred during the ascendancy and domination of neoliberal deregulation ideology.

The US Supreme Court and some state courts have ruled that the Fourth Amend-
ment to the United States Constitution mandates that law enforcement obtain a
judicial warrant before tracking with GPS or CSLI technologies. These rulings
are interpretative of constitutional limitations on the use of tracking technolo-
gies by government actors. They are premised on concepts of property rights and
reasonable expectations of privacy, rather than universal principles of human rights.

It is unlikely that federal legislation will be passed to grant strong privacy protec-
tions similar to GDPR in light of “the relationships between some members of
Congress and Silicon Valley companies” (Fowler 2018). Therefore, the impetus for
policy innovation concerning geoprivacy will more likely come from state legisla-
tures and local governments unless a new national social movement arises to compel
Congress to act with strong federal protections.

California has followed the EU’s lead by adopting a right to be forgotten through
passage of the California Privacy Act of 2018. Under the new state law, businesses
that collect and/or sell personal consumer information, including geolocation data
and biometric information, must notify the consumer, upon request, of the types
or information being collected, used, and/or sold. More important, the law requires
the deletion of such data, upon a consumer’s request, except in certain specified
situations. The City of Los Angeles sued an “IBM-owned app maker accused of
sharing user location data with affiliates of its parent company and other advertisers,
but also hiding the practice in a 10,000-word-long privacy policy” (Cimpanu 2019).

Other states have passed laws that seek to limit location tracking in narrower
ways. The following examples highlight the lack of uniformity in such legislative
measures. Montana and Utah statutes require law enforcement to seek a warrant
before obtaining location data from a device under certain circumstances. It is a crime
in Iowa andWisconsin for a person to attach a GPS device to another person’s vehicle
without consent. Mandated or coerced RFID chip implants are prohibited by laws
in California, Maryland, Utah, and New Hampshire. Some states have prohibited
or regulated the collection of biometric information, particularly with respect to
students.

Many people fear government or corporate surveillance, while ignoring the
collection, use, and distribution of personal data by individuals, including family
members, friends, and strangers. Some recognize a risk versus benefit ratio; most do
not. Government and corporate surveillance and data collection are indiscriminate,
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applying to everyone for purposes of political control or corporate profit. In terms of
everyday impact, however, the government might not care whether someone stops
for a beer on the way home from work, while a spouse, parent, or caregiver may.

Surveys of public attitudes toward geosurveillance reveal a contradictory mixture
of fear and acceptance.Rzeszewski andLuczys (2018) found, “Theprevailing attitude
that we identified [in Poznan, Poland and Edinburgh, UK] is neutral with a strong
undertone of resignation—surrendering personal location is viewed as a form of
digital currency. A smaller number of people had stronger, emotional views, either
very positive or very negative, based on uncritical technological enthusiasm or fear
of privacy violation. Such a wide spectrum of attitudes is not only produced by
interaction with technology but can also be a result of different values associated
with space and place itself.”

Surveying public perception of privacy in the USA, Kar et al. (2013) found that
respondents expect location data to be protected on the same level as health data
and other personal information. However, respondents themselves are unaware of
the legal implications of location privacy violations.

Indeed, public misunderstanding or outright ignorance of geoprivacy, geosurveil-
lance, and geoslavery closely matches other manifestations of geographic igno-
rance and anti-intellectualism in the USA. The American purge of geography from
all levels of education has left its mark on science and society (Kozak et al. 2015).
In elementary school, geography has been misconstrued as “social studies,” which
deemphasize physical geography and spatial thinking. In high school, geography is
required now by only 14 states. Geography is offered by most public universities
but rarely by private universities. Only one geography department remains within
the top twenty private US universities. To anyone who values education, it would
seem remarkable if such neglect did not result in serious losses of public under-
standing. As one prominent example, a recent Pew Research Center (2018) report
purporting to summarize “The State of Privacy in Post-SnowdenAmerica”missed its
mark by failing to mention geoprivacy, spatial privacy, geosurveillance, geoslavery,
or location (Pew Research Center 2018).

Citizens may fear government, but government agencies sometimes serve as their
advocate and protector. The Federal Trade Commission (FTC 2014) has engaged
in some limited efforts at challenging technology company misrepresentations
concerning privacy. In 2014, the FTC issued a report entitled, “Data Brokers: A
Call for Transparency and Accountability.” In it, they named nine data brokers who
amass and administer vast databases of personal information:

1. Acxiom: consumer data and analytics for marketing campaigns and fraud
detection; information on about 700 million consumers worldwide.

2. CoreLogic: property, consumer, and financial information;more than 795million
historical property transactions, 93 million mortgage applications, and property-
specific data covering over 99% of US residential properties; in total exceeding
147 million records.

3. Datalogix: businesses with marketing data on US households and more than a
trillion dollars in consumer transactions; partnership with Facebook.
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4. eBureau: predictive scoring and analytics services for marketers, financial
services companies, online retailers; billions of consumer records.

5. ID Analytics: analytic services principally to verify identities or detect fraud-
ulent transactions; 1.1 billion unique identity elements; 1.4 billion consumer
transactions.

6. Intelius: background check and public record information; more than twenty
billion records.

7. PeekYou: analyzes content from more than 60 social media sites, news sources,
homepages, and blog platforms.

8. Rapleaf: data aggregator with at least one data point associated with more than
80% of all US consumer email addresses; supplements with the age, gender,
marital status, and thirty other variables.

9. Recorded Future: historical data on consumers and companies; predicts future
behavior.

Mirani and Nisen (2014) call them “The nine companies that know more about
you than Google or Facebook.” A representative list of what they know shows many
variables that are spatial (address, address history, longitude and latitude); many
reveal geographic identity (race, ethnicity, country of origin, religion, language);
others relate to geographic habits (travel, vacation), not tomentiondozens of variables
that deeply probe finances, behavior, and lifestyle. The FTC report urged Congress
to require the data broker industry to be more transparent and to give consumers
greater control over their personal information.

32.5 Geoprivacy, the Inconscient Syndrome, and Control
in the Academy

“We have entered a grand social experiment as momentous as any in our past and
yet one so insidious that hardly anyone seems to have noticed” (Dobson 2009).
For the first decade and more that we wrote about geoprivacy and geoslavery, there
was precious little scholarly literature to cite. Today, there is a growing body based
on empirical research, and we are especially thankful for those cited above. Still,
technological and commercial advances are happening so fast that this chapter relies
heavily on recent news media reports to augment the academic literature.

We encourage all applicable disciplines to join the quest for deeper understanding.
Psychologists and sociologists, for instance, can study humanmotivations, responses,
and behavioral issues. Technologists and legal scholars can develop alternative
devices and regulations to thwart surveillance systems. Political scientists can explore
better means for developing proactive and responsive public policies. Historians can
search for antecedents to technologies, applications, and implications. Geographers
and integrative teams of diverse disciplines can conduct interdisciplinary research.

Unfortunately, some academics have adopted tracking technologies with no
more forethought than the general public. California physics professor Tom Bensky
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designed “a new mobile application and website … that tracks students’ attendance
using their cell phones,” which is now used by “a couple hundred other professors
and officials” (Bauer-Wolf 2019). He faced predictable complaints and answered in
a typically naïve way, “But I can’t convince them that I’m not going to do anything
with the data I’m getting. It’s just the app, server, and a database, but it is hard to
convince people.” Therein lies the ever-present question: Why should anyone trust
anyone who holds the keys to his or her private world? One must ask, what happens
if a student can’t afford a smartphone or refuses to sign up? Is an accommodation
(e.g., free phones, manual check-in) made, or does the student have to drop the class?
Will only the compliant be educated?

At the very least, such impositions on students should be raised to a higher level,
addressed in university policies to be developed through shared governance, and
challenged in state and federal courts. Professor Bensky’s app could form the basis
for one of the first legal challenges under the new California Privacy Act. If Bensky
were conducting a research experiment in precisely the same manner, federal law
would require him to file an application and face an Institutional Review Board to
ensure informed consent by those being tracked. A decade ago, privacy advocates
were outraged when a research team published results from tracking 100,000 people
without informed consent (González et al. 2008; Dobson 2009).

Bensky’s quote above is a prime example of what we term the inconscient
syndrome. In the course of our research, we have observed an inordinate number
of inconscient actors who show no malice but also no forethought. Most simply do
not think through the matter of surveillance deeply enough to perceive risks, and
the geographic dimension makes the perception even more difficult. Manifestations
include entrepreneurs who create andmarket new software and systems without real-
izing their potential dangers, consumers who persistently perceive benefits but not
risks, workers and their unions acquiescing to geosurveillance, targeted individuals
who naïvely trust their watchers, and commentators who trivialize risks in favor of
benefits. Most seem genuinely convinced that no risk exists, but that perception often
is influenced by sophisticated advertising aligned with commercial interests. Indeed,
universities have become leading advocates and practitioners of geosurveillance to
the concern of some faculty and others worried about intrusions into privacy (Vance
2019; Harwell 2019b).

32.6 Conclusions

Urbanization and the rapid rise of integrated location data technologies raise profound
questions concerning societal values and priorities about privacy and control. The
deregulated free market economy over the past four decades has empowered tech-
nology companies to develop products, platforms, and applications that maximize
profits and data collection and effectively deliver individual conveniences while
simultaneously eroding geoprivacy. Europe has responded with strong measures to
protect privacy, freedom, and the pursuit of anonymity. Conversely, China’s response
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is a perverse government assault on privacy. In the USA, use of tracking technolo-
gies against individuals is prohibited or regulated in certain areas, but true pro-active
privacy regulation exists only in California.

The benefits of smartphones, GPS, social media, and other technologies are
accepted for their conveniences with adverse acceptance of their risks and without a
rigorous examination of potential means to balance benefits with risks. While such
technologies help meet the need for urban spatial efficiencies, including infrastruc-
ture necessary for smart cities, they also feed massive corporate and government
databases that can be used in urban areas to promote human control, manipulation,
and even geoslavery. Developments in the Middle East and China, combined with
memories of chattel slavery, demonstrate that the loss of geoprivacy is no longer a
hypothetical proposition.

Regulation of geosurveillance to protect privacy is essential for cities to remain
places where individuals can live and move about in relative obscurity. The EU’s
GDPR and the new California Privacy Act provide models for how societies can
balance communal needs, consumer convenience, and individual autonomy. Central
to such regulations are informed notice and consent; insistence on legitimacy and
necessity in data collection; limitations of scope andduration of surveillance; rights of
access and to correct the information; and a person’s right to have the data destroyed.
That last and crucial element would restore a vital aspect of urban living: the right
to be forgotten—a guaranteed right to the pursuit of anonymity.

32.7 Epilogue

We submitted our final draft shortly before COVID-19 struck in earnest. The
pandemic then hampered publication while dramatically changing the circumstances
of our topic. Suddenly, geosurveillance was seen in a positive light as informa-
tion technologies became essential for controlling the contagion country by country,
enforcing social distancing, and tracing individuals exposed to the virus.WhenApple
and Google joined forces to support contract tracing, their offer was welcomed with
fanfare. Simultaneously, the pandemic justified trackingworkers, university students,
and beachgoers. Some Americans envied China’s apparent success without real-
izing how completely the country embraced geoslavery before the crisis. Conversely,
some Americans resisted overhead drone surveillance while others objected even to
preventive measures such as face masks.

We ourselves wrote an op-ed for the St. Louis Post Dispatch (May 6, 2020)
condensing this whole chapter into a few points relevant to the pandemic. “For
reopening,” we said, “the goal must be to minimize deaths and illnesses while
restoring essential goods and services, protecting fundamental rights, and main-
taining acceptable life styles.”
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Chapter 33
3D Modeling of the Cadastre
and the Spatial Representation
of Property

Lin Li, Renzhong Guo, Shen Ying, Haizhong Zhu, Jindi Wu,
and Chencheng Liu

Abstract An emerging technology, three-dimensional (3D) cadastres as extensions
to the current parcel-based or two-dimensional (2D) cadastre, has been developed to
meet the management of 3D urban land use and 3D properties. This chapter provides
a brief review of the key issues of 3D cadastre and the spatial representation of owner-
ship. In order to understand the importance of legislation for developing modeling
technology for 3D property, the legislative context of ownership is addressed in
specific reference to China. In light of spatial rights of land-use space, a 3D spatial
model of property is presented in terms of polyhedrawith four-layer structures. Being
compatible with the existing 2D cadastre, this 3D spatial data structure is suitable as
a hybrid cadastral system for 2D and 3D property and provides an available means to
spatially represent 3D property with integrity. By analyzing the heterogeneity of the
land space used for property, the ownership of condominiums with internal structure
is addressed and spatial representation of ownership is presented by instantiation in
a case study in China.

33.1 Introduction

A cadastre is generally regarded as a comprehensive land recording of the metes
and bounds of a country’s real property. According to the International Federation of
Surveyors (FIG), a cadastre is normally a parcel-based and up-to-date land informa-
tion system containing an official record of interests in land (i.e., rights, restrictions,
and responsibilities or RRRs). In this record, the ownership, extent, and value of
real property in a given area are explicitly and clearly registered and used for fiscal
purposes (e.g., taxation), legal purposes, and to assist in the management of land and
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land use (e.g., for planning and other administrative purposes). Registration of RRRs
is the administrative core of cadastres and properties.

As ownership is defined as the lawful record of a property or a piece of land
assigned to the people who own the property, the spatial extent and geographical
location of the property are the critical elements for substantiating the ownership.
Traditionally, a piece of land defined as a land parcel (or simply, a parcel) is a plane
area with a clear boundary on the surface of the Earth. From the boundary on the
ground, a spatial “cone” can be formed geometrically from the Earth’s center to
the sky, and ownership implicates the lawful record of all things within the spatial
“cone.” In this sense, the rights to land within the “cone” (space on, below, and above
the ground) are hypothetically homogeneous and can be easily demarcated by the
plane’s extent. As such, a two-dimensional (2D) or parcel-based cadastre has so far
dominated the administration of cadastres and has been adopted by various legal
systems.

With the evolution of society and the economy, especially in urban areas, rapid
urbanization presents a challenge to densely populated cities with limited urban land
resources, and changes to land-use patterns in the form of urban sprawl have been
increasing in recent years (Foley et al. 2005; Turner et al. 2007; Guo et al. 2013;
Zulkifli et al. 2015; Li et al. 2016). Space on, below, and above the ground cannot be
used merely for a single purpose. A piece of land must be shared by various parties
for different contexts, and rights to it cannot be secured by its plane extent. The
rights bounded to the space below or above ground are no longer fully consistent
with that on the ground. Thus, the use of a land parcel in terms of cadastre inevitably
evolves into the more general use of land space, which leads to a shift of focus
from the surface of land parcels to the space above and below them in land use and
development.

The emerging, spatially heterogeneous rights to land parcels break the spatial
homogeneity of land rights within the cone, as long as required by the 2D parcel-
based cadastre. The traditional concept of the 2D cadastre is augmented by dividing
the utilization of land space vertically, in order to accommodate increased population
density and intensive socioeconomic activities in urban areas. Three-dimensional
(3D) cadastres have been developed to meet the management of 3D land-use space
and 3D property (Guo et al. 2013; Stoter et al. 2013; Jazayeri et al. 2014; Karabin
2014). This emerging technology helps meet the increasing social demand for the
precise management of immovable property (land and housing).

Here, a typical example quoted from the study by Guo et al. (2013) may present
an intuitive understanding of the deficiency of a parcel-based cadastre. They cite a
parcel with a complex building on it in Shenzhen, one of the fastest-growing andmost
economically advanced cities in China. This complex is made up of several plaza
buildings containing many shops. Two main buildings are separated by a municipal
road and connected by an arched structure. The buildings are registered on a parcel-
based cadastralmap (Fig. 33.1). The land spaceused for the over-ground arch is drawn
on this map and labeled with H102-0037(B), which overlaps with the commercial
shops and the underground parking lot. Two adjacent parcels, H102-0037 and H102-
0038, contain the twomain buildings, respectively. However, H102-0037(B) refers to
the parcel above the surface, while H102-0037 and H102-0038 refer to parcels on the
surface. The land space of the arch, a public pedestrian corridor (a kind of easement),
belongs to the municipality, while the underground shops above the parking lot are
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Fig. 33.1 Cadastral map
(Guo et al. 2013)

Fig. 33.2 The vertical
profile of construction
(modified from Guo et al.
2013)

owned by different individuals. The vertical configuration is illustrated in Fig. 33.2.
However, it is found that this 2D cadastralmap fails to record the spatial configuration
of land space and may even confuse readers. The implications of a multi-purpose
use of land in H102-0037(B) could not be geometrically clarified on the 2D cadastral
map without adding a third dimension.

33.2 Spatial Rights to Real Property

33.2.1 Legal Context of a 3D Cadastre

When real property or a cadastre is registered on a 2D cadastral map, spatial rights
to real property, or the spatial extents assigned by ownership, can only be directly
presented in terms of 2D geometry, even though the rights are legally attributed in
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3D. As the above example shows, a 2D cadastre cannot represent the 3D features of
property. As the spatial rights are prescribed, interpreted, and implemented within
legal systems, it is important to understand the legal context in order to model the
spatial extent of the rights.

Ownership of land, or property in a wider sense, is set by legal systems and social
conventions. The key issue in land administration is the management of various
property or spatial rights on, in, and attached to the piece of land. These rights are
embodied in the concept of property, which may have different meanings in different
countries (Kalantari et al. 2008; Stubkjær 2004) that are largely dependent on legal
systems (Paulsson and Paasch 2011). Some countries—such as the Netherlands,
Germany, theUK, France, andBelgium—define ownership as the rights to the ground
and of all space above and below it, including groundwater and fixtures (van der
Molen 2003). Other countries understand ownership in a way that does not include
mines and groundwater. Some jurisdictions may not allow separate rights to a parcel
from construction on it, such as in the Netherlands and China. Other nations, such as
Denmark, accept, through leasing, different ownerships for land and for buildings;
in fact, the formation of a property “on top of another property” can be implemented
under a special procedure (Sorensen 2011).

As most systems of land administrations in the world are set on the basis of 2D
cadastres, the development of a 3D cadastre requires the amendment of property laws
and regulations when land use extends spatially to a vertical from a horizontal plane.
This is a big issue especially for those developed countries with comprehensive legal
and administrative systems. It usually takes a quite long and arduous effort to finish
an amendment. However, the laws in developing countries or regions are likely to
be amended more easily than those of developed countries due to their imperfect
legislation and administration.

China is a rapidly developing country and is currently perfecting her legislation
and administration, which gives her room to adapt, update, or refine some items in her
property laws where spatial rights of property have not been defined in great detail. It
was in 2007 when the Real Right Law of the People’s Republic of China was issued
and took effect (October 1, 2007). The right to land is founded also on the principles
of the parcel-based cadastre; however, Article 136 in this law states that “the right to
use construction land may be created separately on the surface of or above or under
the land. The newly established right may not injure the usufructuary right that has
already been established.” Article 138 further states that land space occupied by
buildings, fixtures, and affiliated facilities shall be contained in a contract with the
transfer of rights.

The separation of property rights for construction above and underground from
those on the surface implies that uses of above and underground spaces may be
different from those of the surface and that the parcel space may be multi-level,
across boundaries, or without 2D geometric limitation. It indicates that the rights to
land are always associated with some construction and no ownership will be created
without construction (or buildings). This law provides a good legal basis for local
governments to create their own rules and regulations for land use andmakes it easier
to develop a 3D cadastral system than in more developed countries or regions.
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33.2.2 Geometry of 3D Property with Homogeneous Land
Space

A property has both bona fide and legal aspects (Aien et al. 2013; Jazayeri et al.
2014; Ying et al. 2014), and it is considered a compound object that combines the
physical object with the legal treatment of the object. The physical object (such as
a usable unit of land space or an apartment) takes certain geometry and is the base
of the ownership and other rights. The legal aspect of property is attached to the
physical object and refers to or involves more space in various senses; for example,
solar rights to an apartment involve a space beyond the space occupied just by the
apartment and without a clearly defined boundary (Li et al. 2019). Thus, the spatial
representation of the physical objects is the major task of modeling 3D property that
is explicitly defined by spatial extent in the physical 3D space, that is, modeling
ownership by spatial means.

As a building is always attached on a piece of land, a 3D property (containing
both land and building or construction) consists spatially of two 3D geometries: a 3D
model of the construction and a 3D container that is a derived spatial extent of land
space used by the construction. Since a 3D model of construction is included in the
container, the spatial relation of a property with others can be captured by the spatial
relation among the containers. The architectural configuration of the construction
may have some influence on rights to land space, such as the geometry of easement
on neighboring spaces, and will be shaped by the access points of the architecture.
However, this kind of influence is hardly depicted in an explicit geometry. Therefore,
in terms of the cadastre, spatial modeling of a property in the form of land space is
aimed at presenting an explicit 3D geometry of the containers, which simplifies the
geometry of a property into a polyhedron. It comprises a prism or a combination of
prisms that have vertical faces and flat tops or bottoms (Fig. 33.3).

Fig. 33.3 Geometry of 3D
property in a cadastre
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This simplicity results from the fact that land space for above or underground
construction is plotted depending on a planar parcel. The faces of a polyhedron and
the edges of the faces should satisfy the generalized Jordan curve theorem that refers
to the orientability of these geometric elements. The interior of the container is hypo-
thetically connected, which means that any container is simple, and no compound
or multiple containers are allowed. If a container can be divided into two or more
independent containers, each of the latter is treated as a simple one.

33.3 Integral Spatial Modeling of 3D Property

Spatial modeling of 3D objects long has been studied and is being addressed in the
domain of geographical information systems (GIS) and related fields. Many 3D data
models have been presented and are used to capture the spatial features of 3D objects
in terms of geometry. 3D objects may be featured by simplexes (point, line, triangle,
and tetrahedron; Carlson 1987), configured by a 3D formal data structure (FDS)
(Molenaar 1990), represented by tetrahedronized irregular networks (Penninga et al.
2006), by polyhedra (Arens et al. 2005; Stoter 2004; Wenninger 1974; Zlatanova
2000), by polyhedral regular polytopes (Thompson 2007), or by a constructive solid
geometry (CSG) and B-rep approach in computer graphics. Those data models have
been commonly used for different fields and applications with certain semantic foci.

In spatially modeling of land administration and registration of property, an
emphasis is placed on keeping these data consistent when developing a real 3D
cadastre and extending its spatial dimension from 2D, since the semantics embedded
in the data models are used to regulate and coordinate relationships among people
and property under a given society, economy, and legal system. Therefore, the data
model of 3D property should be compatible with the existing data model in 2D
parcel-based cadastral systems so that the semantics recorded in the latter will not
change.

The 2D data models with three-layer structure including topological features—
faces, edges, and nodes (vertices)—are commonly adopted in 2D cadastre. A simple
example is shown in Fig. 33.4 with Table 33.1, where an edge is terminated by its
two nodes and a face is represented by its surrounding boundary as a series of edges.
For example, in that figure f14 is composed of four edges {e25, e26, e27, and e28}.

Fig. 33.4 2D data model for parcel-based property
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Table 33.1 Table of the 2D data model shown in Fig. 33.4

Edge From_Node To_Node Left_Face Right_Face

…

e25 v15 v16 f14 f0

e26 v16 v17 f14 f0

e27 v17 v18 f14 f0

e28 v15 v18 f13 f14

…

Adding a 3D topological feature—a volume—to the 2D data model forms a 3D
data model with four-layer structure for the 3D cadastral system. Consequently, a
volume that is able to depict a container or polyhedron is represented by a set of faces
that enclose a 3D space. Such a 3D data model may be operationally structured with
a 3D piecewise linear complex (PLC), a commonly used geometric data structure
in computer graphics (Cohen-Steiner et al. 2004; Miller et al. 1996; Si and Gartner
2005).

For example, two volumes (3D properties) in Fig. 33.5a are integrated with 2D
parcels into a 3D spatial configuration of 3D space that accommodates both 2D
properties and 3D properties shown in Fig. 33.5b. Volume Vol2 is represented by an

©

(a)

(b)

©

Fig. 33.5 A 3D data model of property compatible with a parcel-based 2D data model (modified
fromGuo and Ying 2010). a Two volumes (containers) with 3D geometry. bCompatible data model
for 2D and 3D cadastre
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enclosed face set {f7, f8, f9, f10, f11, f12}, and face f8 is demarcated by a set of
edges {e15, e16, e17, e18}. Volume Vol4 is regarded as a special kind of 3D object,
being degraded from 3D geometry into face f14 of the 2D geometry. This simple
example shows that the 3D data model matches well with the commonly used 2D
data model.

33.4 Heterogeneity of Land Space Used for Property

If an ownership includes a certain land space where all constructions lie within the
space, a container mentioned above in the form of a polyhedron can be spatially
modeled due to its homogeneous space with respect to ownership. However, in a
densely populated urban area, many high-rise buildings are created to provide more
housing and to accommodate more people. A unique owner of an apartment in a
building is not an exclusive owner of a parcel of land that is undividable. Although
an apartment uniquely occupies a chunk of land space and its ownership could be
also spatiallymodeledby its polyhedral container geometry, different legal treatments
associated with the ownership emerging from sharing integrity of land space break
the homogeneity of the land space used by the apartment. In this case, the internal
structure of the ownership should be clearly presented by its spatial representation.
This poses a critical requirement for more precise management of property that
includes not only land space and the vertical spatial extent of the property, but also
the horizontal extent of the property and the ownership structure, which corresponds
to the spatial components of the property.

In general, a property being viewed as a compound object combines the physical
object with the legal treatment of the object in data models. However, a physical
object (building or apartment) may be constructed with several parts with different
functions or intentions, which lead to different legal treatments included in the owner-
ship. An internal heterogeneity is then emerging in the ownership and reflects the
disparity of the lawful recording of the different parts of an object and requires
differentiating ownership in a property management system. A condominium unit is
a typical property of this kind.

With a common or shared ground parcel, a building consisting of condominiums
is divided into private and common parts. This co-ownership has been discussed by
many studies (Çağdaş 2013; Pouliot et al. 2011, 2013; Rajabifard et al. 2013; Li
et al. 2016). For this kind of ownership two types of ownership are found, exclusive
ownership and shared ownership. Exclusive ownership means that an owner can
dispose of his or her parts according to the corresponding laws. Shared (or common)
ownership means that the common parts and the ground parcel cannot be disposed
at someone’s own will and must be disposed in common. It is also found that an
ownership of a condominium is not the same as ownership of a piece of parcel
or a chunk of land space. Its different spatial parts with certain rights should be
represented in detail so that the internal structure of the ownership is expressed in a
spatially explicit manner targeted toward more precise management of property.
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Physical structural components associated with a condominium unit may have
different rights to each part with internal homogeneity and those different rights
come together to constitute the ownership of the condominium. For example, in
China, an ownership of a condominium unit may include two physical objects: the
exclusively owned apartment itself and some space (such as elevators and corridors)
that is shared with others. The ownership includes at least two different internal
rights to the parts. Even for exclusively owned objects (or spaces), the room space
is physically recorded into the legal spatial extent, and a balcony (space) may be
half-recorded into the legal spatial extent. Such subdivisions of ownership with legal
space are critical in taxation, loans, and insurance.

As parts of land space corresponding to certain physical objects, each of these
parts in general can be suitably modeled by an enclosed polyhedron in the four-layer
structure. However, it becomes critical to clarify the semantics of those parts with
ownership and spatial relations among them in spatial modeling of the ownership.
As mentioned above, the meaning of ownership varies with different legal systems
and social conventions; it would be much more helpful to discuss the spatial repre-
sentation of the condominium ownership with a given legislative and institutional
context. The following section uses China as an example.

33.5 A Case Study of Spatial Modeling of Ownership
Structure in China

33.5.1 Ownership of Condominiums in China

According to the Land Administration Law in mainland China, urban land is admin-
istered differently from rural land. Any urban land is uniquely owned by the State
and ownership cannot be altered. Ownership of the buildings or other construc-
tions on urban land can be attributed to individuals or any legal parties. A property
embodies the ownership of a house, a building, or buildings and the usufruct of land.
In this legislative context as well as social conventions in China, condominiums are
the predominant form of housing property in urban areas. Ownership is legislatively
ensured by the Real Right Law of the People’s Republic of China (People’s Republic
of China 2007), which offers provisions for the owners’ co-ownership of building
areas. Its Article 70 states that “as regards such exclusive parts within the buildings as
the residential houses or the houses used for business purposes, an owner shall enjoy
the ownership thereof, while as regards the common parts other than the exclusive
parts, the owner shall have common ownership and the common management right
thereof.”

Ownership of a condominium unit refers to two types of objects, that is, exclu-
sive objects and common or shared objects. In Specifications for Estate Surveying
(People’s Republic of China 2000), exclusive objects are further divided into
two types of objects: the major body and annexes such as balconies, basements,
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Table 33.2 Internal structure of ownership of a condominium unit

Physical parts Physical objects Sub-objects Counted physical
space

Remarks

Exclusive Major body Completely Rooms

Annexes De facto Totally Balconies in the
major structure

Ratio Partially Balconies outside of
the major structure

Fiat Non (height <
2.1 m)
Partially (others)

Bay windows

Shared Apportionable De facto Totally Commonly owned
indoor stairs

Ratio Partially Commonly owned
corridors

Fiat Non Commonly owned
roof gardens

Non-apportionable Non Basements

and garages; common objects are further divided into apportionable and non-
apportionable objects. Construction area is used to measure ownership in terms of
magnitude. Apportionable means that the metric geometry of the objects is calcu-
lated in some approach to contribute the construction area of the corresponding
condominium units, and non-apportionable means that the objects make no contri-
bution to the construction area. That is, the legal construction area of a condominium
unit consists of the construction area from its exclusive parts and from its shares of
apportionable objects.

Since the spatial extent of physical objects from both types is the metric base
for deriving the construction area and measures ownership in different ways, owner-
ship of a condominium unit is structured by different parts in light of the physical
configuration of the unit and buildings including the unit. The internal structure of
ownership is tabulated in Table 33.2.

33.5.2 Implementation Tool for Spatial Modeling
of Ownership

It is very clear from Table 33.2 that the structure of ownership can be presented by a
3Dmodel of the physical building of a condominium unit. Although a condominium
unitmaybeof complex physical structure, each part corresponds to a physical compo-
nent of the building which can be modeled with the geometry of a 3D container as
discussed above. It is known that CityGML models or building information models
(BIMs) provide rich semantic and 3D information for the internal structure of a
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building (Li et al. 2019). A great effort has been made to adopt CityGML or BIMs
in the field of land administration and property management (Amirebrahimi 2012;
Çağdaş 2013; El-Mekawy et al. 2014; Góźdź et al. 2014). CityGML has shown its
merits in exploring the internal heterogeneity of the ownership of condominiums and
clarifying the spatial differences within the ownership.

The ISO19152 LADM is designed for offering a conceptual model that allows
land administration objects and relationships to be described. Land administration is
described as the process of determining, recording, and disseminating information on
the relationship between people and land (or rather space). The LADM includes basic
packages that are related to (1) parties; (2) basic administrative units and RRRs; and
(3) spatial units (parcels, legal spaces of buildings, and utilities). The package, Spatial
Unit, is composed of the surveying and spatial representation sub-packages, and has
several different spatial profiles that describe geometrical and topological aspects.
This package provides an available linkage to 3D models of building structures.

Although LADM and CityGML have different foci on spatial features, there is
no obvious geometrical barrier between them because both LADM and CityGML
are compatible with ISO19107. LADM provides a formal language to describe land
administration in terms of its parties, administrative and spatial units, and sources
and representations, while CityGML is a data encoding method that was created to
exchange data. The representation of legal spaces from LADM can bemapped to and
encoded as aCityGMLADE(application domain extensionmechanism) (OGC2012;
Çağdaş 2013). That is, CityGML with LADM offers an effective way to develop a
feasible 3D cadastral system which is able to model either homogeneous spatial
rights of 3D property with integrity, or heterogeneous spatial rights with internal
structure of ownership.

33.5.3 An Example of Spatial Representation of the Internal
Structure of Ownership

A case study of a condominium in China (Li et al. 2016) is borrowed here as an
example of the spatial modeling of the internal structure of ownership by CityGML
with LADM. Modeling the ownership structure of a condominium unit is shown in
Fig. 33.6. LADM packages (red color) are introduced and two separate hierarchies, a
legal hierarchy (yellow color) and a physical hierarchy (light blue color), aremodeled
with CityGML independently, and an n:n relationship between these is established
in the model. As a building unit might have a different legal spatial extent from its
physical counterparts, an attribute “the numerical ratio” is designated as the ratio of
the legal spatial extent to its physical spatial extent, such as 0.5, 1, or 0 for different
types of building parts. Therefore, the legal spatial extent and relevant semantic
information are attached to and combined with a corresponding physical object by
extending the attributes and semantics in CityGML, which is implemented through
the usage of the ADE mechanism. The legal object is described by its physical
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Fig. 33.6 UML diagram for modeling the ownership structure of a condominium unit (Li et al.
2016)

counterpart via semantic relations between them, which is also implemented by the
use of the ADE mechanism.

A residential condominium with 28 stories is taken as an example of modeling.
The internal structures of each story are similar to each other, so only the second story
is viewed here. Three exclusive objects and seven shared objects are on this story.
Each exclusive object is composed of one major body and some annexes, including
de facto annexes, ratio annexes, and fiat annexes (Fig. 33.7). Apportionable de facto
objects are also included, such as shared objects within a building (such as staircases)
and shared objects in this story (such as corridors), apportionable ratio objects (such
as a lanai), and apportionable fiat objects (such as a commonly used flowerbed).

Figure 33.8 shows the 3D representation of the interior structure of this second
story. The semantic relations of the condominium units with their exclusive compo-
nents and their physical counterparts in the second story, including the major bodies
and annexes, are presented, for instance, in Fig. 33.9, which shows the semantic
relations of Condominium Unit 1.

This example shows that although the ownership of a condominium unit is inher-
ently complex, the internal structure can be subdivided into several sections in terms
of homogeneity of rights, and the ownership structures can be modeled precisely by
extending CityGML with the LADM. The spatial model here is mainly based on
legal concepts specified by legislation in China. However, the modeling approach
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Fig. 33.7 Layout plan of the second story of the residential condominium building (Li et al. 2016).
Red solid line: the major body; blue solid line: exclusive de facto object; green solid line: exclusive
ratio object; blue dotted line: exclusive fiat object; yellow solid line: apportionable de facto object
that is shared in the building; magenta solid line: apportionable de facto object that is shared in
the story; cyan solid line: apportionable ratio object; magenta dotted line: apportionable fiat object;
and number in brackets after the names of the annexes: the number of the major body to which the
annexes are attached

may provide an available paradigm to model the ownership structure of a condo-
minium unit, which could be adapted to other jurisdictions, especially in countries
where similar legal concepts exist.

33.6 Summary

A transition in the administration of land or immovable property from land parcel
(2D) to land space (3D) is a trend in urban areas, especially in populated cities,
owing to both an increasing intensity of socioeconomic activities and a need to
update to 3D technology. Although some rights to property may be completely or
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Fig. 33.8 3D representation of the interior structure of the second story (Li et al. 2016)

Fig. 33.9 Semantic relations between Condominium Unit 1 and its exclusive components (Li et al.
2016)
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partially unclear with respect to space, the nature of the rights characterized by spatial
features is crucial in managing and clarifying them. The use of the vertical space
above and below ground, rather than horizontally defined surface parcels, is the key
concept pushing property rights from a 2D to a 3D framework. Ownership, as the
most important right to property, can be documented not only in text and in parcel-
based 2Dmaps but also registered in terms of spatial extent, because it is determined
and identified in the physical world. Spatial modeling of ownership can succeed in
representing the spatial extent that is defined by the property’s physical space.

For land management, a polyhedral container can be used for clarifying spatial
rights to the use of land space. A PLC-based compatible 3D datamodel is an effective
means to represent both 2D and 3Dproperty, which is especially useful in the ongoing
development of 3D cadastral systems, since 2D cadastres are the prevailing paradigm
for the management of property. For housing property, the ownership may have a
complex structure, so an individual polyhedral container may fail to capture the
spatial extent of the ownership because of the heterogeneous rights to parts of property
caused by sharing space. Therefore, explicitly demarcating the spatial extent of each
part, clarifying the structure of ownership, and linking them with the legal spatial
extent are the critical tasks for the precise management of properties.

It should be also noted that spatial modeling of property depends largely on its
legal and institutional system. Here, cases in China are taken as an example, and the
above-presented modeling details and data model are specific to the Chinese context.
Nevertheless, it provides an available exemplar for applications in other legal systems,
and its modeling paradigmmay be very helpful for developing property management
systems for various kinds of 3D property.
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Chapter 34
Semantic 3D City Modeling and BIM

Thomas H. Kolbe and Andreas Donaubauer

Abstract Semantic 3D city modeling and building information modeling (BIM) are
methods for modeling, creating, and analyzing three-dimensional representations of
physical objects of the environment. Digital modeling of the built environment has
been approached fromat least four different domains: computer graphics and gaming,
planning and construction, urban simulation, and geomatics. This chapter introduces
the similarities and differences of 3D models from these disciplines with regard
to aspects like scale, level of detail, representation of spatial and semantic char-
acteristics, and appearance. Exemplified by the international standards CityGML
and Industry Foundation Classes (IFC), information models from semantic 3D city
modeling and BIM and their corresponding modeling approaches are explored, and
the relationships between them are discussed. Based on use cases from infrastructure
planning, approaches for integrating information from semantic 3D city modeling
andBIM, such as semantic transformation betweenCityGMLand IFC, are described.
Furthermore, the role of semantic 3D city modeling and BIM for recent develop-
ments in urban informatics, such as smart cities and digital twins, is investigated and
illustrated by real-world examples.

34.1 Digital Models of the Built Environment

Many applications in the context of urban informatics require detailed information
about the physical urban environment. For example, for the planning, design, and
construction of buildings, detailed information about the location, the components,
their materials and costs, and the construction schedule is required. For all kinds of
urban simulations like noise propagation, air quality and pollution assessment, energy
demand, and production estimation, but also for driving simulations and autonomous
driving, comprehensive data are required on the urban topography.

Digital models of the built environment are computer representations of the
objects, their characteristics, and their interrelationships within a specific urban
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terrain. This includes both the natural and man-made features like the digital terrain
model (DTM), digital surface model (DSM), vegetation, water bodies, as well as
man-made constructions like buildings, bridges, tunnels, and infrastructure. Key
properties of the digital representations are spatial, temporal, graphical, and thematic
information about the entities in and around cities, providing information on the loca-
tion, shape, extent, visual appearance, classification, thematic attributes, functional
aspects, and their interrelationships.

Different applications and use cases have different requirements regarding the
resolution and level of detail of the objects of an urban model and their modeled
aspects. For example, for the visual inspection of the urban topography by a human
operator, it will be sufficient to represent the geometry and graphical appearance of
the urban terrain. If thematic or spatio-thematic queries and analyses are to be carried
out, like “list all windows of all buildings which have a line-of-sight to a specific
place or route” or “find all buildings having a heating energy demand higher than
100 kWh/m2/year”, then thematic information has also to be represented, because the
computer has to know which objects are buildings, their energy demand, which parts
of them are windows, and what are their locations and orientations. For simulation
applications like blast analysis or the propagation of radio waves, information about
the materials of the different objects will also be required.

Urban models that only represent the 3D geometry and appearance information
(visual models) will be referred to as virtual reality (VR) models in the following.
Typical real-world examples of VR models are the 3D models of major cities in
Google Earth or Apple Maps. They are just geometrical representations of the urban
surface (3D meshes with graphical textures). A human viewer can easily recognize
the different features, but for the computer, these data are not structured into separate
meaningful objects.Models of real-world entities that also include themeaning of the
objects, their thematic properties, and their logical relationships are generally referred
to as semantic models or information models. Thus, urban models containing both
the spatial and thematic aspects are called urban information models (UIM).

Now, urban modeling can be carried out in various ways and using different
formal modeling techniques and data representations. This diversity results from
the fact that 3D urban modeling has been approached from at least four different
disciplines: computer graphics and gaming; geomatics (including the disciplines
of geoinformatics, geodesy, photogrammetry, and remote sensing); planning and
construction (including the disciplines of civil engineering and architecture, urban
and landscape planning); and urban and environmental simulation. This is illustrated
in Fig. 34.1.

It is important to understand that each discipline has its own scope and thus puts a
different focus on the things that are modeled and on the way they are modeled. This
has resulted in the development and usage of distinct modeling paradigms, concep-
tual data models, and data exchange formats, which frequently causes problems in
discussions about urban models between people coming from different disciplines.
On the other hand, system interoperability issues arise and have to be addressedwhen
data from one discipline are to be brought into another discipline or if data from the
different disciplines are to be used in an integrated way.
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Fig. 34.1 Different disciplines and their approaches to the definition, generation, and usage of
urban 3D/4D models

Data models and methods developed in the field of computer graphics (CG) and
gaming aim at the efficient and high-quality 3D visualization of the cityscape and the
elements in it. Thus, VRmodels are in the main focus of CG, containing information
on geometry and (graphical) appearance. 3D objects are typically structured in so-
called scene graphs, which allow for the definition and multiple instantiation of
prototypical shapes and realize a hierarchical aggregation. Scene graphs may also
contain light sources, virtual cameras, and information about the environment like
fog density, andmay provide the means for object animation, describing the dynamic
behavior of objects, and user interaction (see, e.g., Foley et al. 1995). In CG, objects
are typically modeled in a way that best supports rendering and visualization, which
may suggest the aggregation of objects which might not be considered as a unit from
a semantic point of view. The representation of semantic information is not a focus
of CG and is often neglected.

Models andmethods from the field of training simulation and computer games are
quite similar to CGwith respect to the representation of 3D objects. In addition, these
models support the description of object physics (like weight, elasticity, mechanical
connections, etc.), kinematic modeling, and complex object behaviors, in order to
describe the functions and interactions to be considered by the simulator. Like in
CG, object semantics are often not considered, apart from simulator control data.

The planning and construction domain focuses on the representation of man-
made objects in fine detail in order to support the design and construction processes.
While in the past computer-aided architectural design (CAAD) was mainly used
to represent the geometry of the objects, in the past decade a strong transition has
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occurred toward building informationmodeling (BIM). BIMmeans the classification
and decomposition of 3D models according to a semantic data model, where each
class has a well-defined meaning. By these means, a comprehensive, centralized
information repository will be created that can be used by all stakeholders over
the entire life cycle of a building. BIM is focused (and tailored) to building and
site models with a very detailed object model, where sites are constructed from
components like walls, slabs, stairs, pipes, cables, power plugs, etc. BIM does not
address the representation of natural objects like vegetation or water bodies and
only recently started to include other object types like bridges, roads, or terrain.
Nevertheless, since buildings are one of the most important entities in the urban
terrain, and BIM also includes the modeling of their interiors, it is quite relevant to
urban modeling. In order to support the design of a building, a generative modeling
approach is followed, that is, objects are virtually constructed from a set of volumetric
semantic components like walls, slabs, etc. in the same way as the building will be
constructed in reality. Typically, the components are geometrically described and
combined using constructive solid geometry and sweep geometry. Thiswill be further
explained in the section on BIM.

In geomatics, emphasis is given to the representation of the urban topography
including natural objects, man-made objects, and the Earth’s relief. While in the past
2D maps and 2D digital landscape models (DLM) have been used at different scales
to visualize and represent the topographic structure of a region with respect to plani-
metric (horizontal/flat) shapes and extents, virtual 3D city and landscape models
nowadays capture and visualize the 3D geometry, 3D topology, and appearance of
the urban entities in different levels of detail (LoD). If the objects are structured
according to a semantic model and have thematic attributes and logical interrelation-
ships, these models are referred to as semantic 3D city models. They can be seen as a
realization of the concept of urban information modeling. The modeling paradigm in
geomatics is oriented toward the representation and mapping of observable features
and thus is very close to the results that are obtained from data acquisition methods
from photogrammetry, remote sensing, and surveying (see, e.g., Kolbe et al. 2009).
Semantic 3D city models are explained in more detail in the next section.

More details about the similarities and differences of models from the planning
and construction as well as geomatics domains are given in the fourth section of this
chapter and by Kolbe and Plümer (2004) and Nagel et al. (2009).

The models used in the field of urban simulation often are based on regular or
irregular decompositions of the urban space into finite elements. Both the air space
and the space occupied by physical objects are represented by voxels, meshes of
3D tetrahedra, or 3D volumes bound by triangle meshes. Since all urban features
use the same representation, they can be treated by the simulation tools in a similar
way. The cells or elements of such a representation are parameterized by properties
that are relevant for the respective simulation. For example, in pollution dispersion
simulation, all voxels representing the urban air space have a parameter vector for
wind direction,wind speed, air temperature, and concentrations of specific pollutants.
Other kinds of simulations require the explicit spatio-semantic representation of
urban objects. For example, in traffic simulations, the roads have to be represented
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together with traffic-related information such as speed limits, traffic lights, turning
restrictions, and parking lots. For simulation of building heat-energy demand, 3D
building models are required with information about usage type (e.g., residential,
office, manufacturing) and about building physics like the wall, roof, and window
insulation.

While digital models of the urban environment were often static in the past, that
is, they just represented a snapshot of a specific timepoint, nowadays the time dimen-
sion plays an increasing role due to new application fields like smart cities and digital
twins. In these application fields, sensors and their highly dynamic observations are
related to the objects of the digital urban models. In the field of computer gaming,
including training simulations, as well as in the field of urban simulations, the repre-
sentation of dynamic behavior and changes over time has been addressed for long
time. However, in the approaches of geomatics as well as of planning and construc-
tion to digital urban modeling, the time dimension has not yet been considered to a
full extent (see, e.g., Chaturvedi and Kolbe 2019b).

In the remainder of this chapter, we will concentrate on the spatio-semantic
modeling of the urban environment, namely semantic 3D city modeling and building
information modeling.

34.2 Semantic 3D City Modeling

Semantic 3D city models are virtual models of the urban environment, that is,
datasets representing the entities of the physical reality like buildings, streets, trees,
bridges, and the terrain. In contrast to virtual reality (VR) models, they are structured
(e.g., subdivided and attributed) according to thematic and logical criteria and not
according to graphical or rendering considerations. The objects of a semantic 3D
city model represent the respective real-world things with their thematic, geomet-
rical, topological, and appearance properties. Furthermore, logical and spatial inter-
relationships between different objects are expressed. Objects belong to a set of
predefined classes like Building, Road, CityFurniture, or WaterBody with spatial
and thematic attributes whose semantics—that is, the meaning of the model compo-
nents and properties—are explicitly defined in a specification. Complex objects are
typically further decomposed into meaningful parts, for example, a building can
be decomposed into building parts and these again are structured into roof, wall,
and ground surfaces. Wall surfaces can further contain windows and doors. Objects
can have thematic attributes on all aggregation levels. Their spatial properties are
represented using geometric and topologic objects.
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34.2.1 Purpose and Key Applications

3D city models are mostly used topographically, to describe the physical environ-
ment as it is with respect to the spatial, thematic, and appearance characteristics of
the urban entities. They are used to create 3D maps for applications ranging from
topographicmapping, cadastres, disastermanagement, visual exploration, navigation
and autonomous driving, and urban simulations. Semantic 3D city models comprise
all objects within larger geographical areas, typically starting from city blocks up to
entire countries. They can be seen as the 3D successor of traditional 2D digital land-
scape models as created and maintained by mapping agencies. In fact, most semantic
3D city models today are being created and maintained by mapping departments on
municipal, state, or country level. However, 3D city models are also produced by
commercial companies as well as by initiatives like the Open Street Map project.

A semantic 3D city model could be seen (and is used) as an inventory of the
relevant urban objects. As such, it is useful for applications related to property and
asset management, as well as for life cycle management of the man-made and natural
urban features. When it comes to urban data integration, semantic 3D city models
play a key role, because data from different domains like urban planning, mobility,
energy, and ecology are most often related to specific spatial urban objects. Since
these objects are represented in a 3D city model, the domain-specific data can be
linked with the respective city model objects. Alternatively, the urban objects could
be enriched with the domain-specific data. The objects of a 3D city model then play
the role of a common denominator, because data from different domains can be
linked and interrelated via the urban objects. This is further illustrated below.

In their overview paper, Biljecki et al. (2015) enumerate and describe more than
100 applications of 3D city models. The authors distinguish mainly between use
cases that are based on visualization and those where 3D models are being used for
computations, queries, andmore sophisticated analyses including simulations.While
semantic 3D city models can also be used for visualization-based use cases, they are
especially relevant for the second category and for many use cases are even required.
Willenborg et al. (2018) explain in more detail how semantic 3D city models are
being employed in three very different use cases: (1) solar irradiation analysis, (2)
detonation simulation, and (3) building energy demand estimation.

34.2.2 Modeling Paradigm

Semantic 3D city models are typically being used to represent the existing physical
objects of the urban environment. Hence, a descriptive modeling paradigm is being
followed, which best supports the modeling of urban entities by observation methods
from surveying, photogrammetry, remote sensing, and laser scanning. Direct results
from these methods are typically 2D images and videos from different viewpoints
(nadir and oblique views from airborne and space sensing, terrestrial views from
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mobile mapping) and 3D point clouds as resulting from laser scanning or stereo-
photogrammetric dense image matching. 3D point clouds then can be triangulated,
producing 3Dmeshes that describe the observed surface structures. In order to repre-
sent the 3D geometric extent and shape of separated objects, boundary representa-
tions (B-Reps) are being used, where volumetric geometries are specified by the
accumulation of their bounding surfaces (see, e.g., Foley et al. 1995). In contrast
to most other disciplines, geometries in the geomatics domain are always georefer-
enced with respect to a regional or global coordinate reference system (CRS). The
exclusive usage of absolute coordinate values allows GIS and spatial databases to
create and maintain spatial index structures, which facilitate efficient processing of
spatial queries and analyses on very large datasets. This is not supported in compa-
rable efficiency and completeness by the modeling paradigms which are followed in
other disciplines.

Based on the reconstruction of 3D geometry, the semantic objects are then gener-
ated. Since only observable parts can be registered from surveying and remote
sensing, the object decompositions are typically aligned with the visible surface
parts. For example, buildings are decomposed into wall, roof, and ground surfaces as
only the surfaces can be reliably detected, whereas in general the entire volumetric
wall objects or other constructive elements like beams or slabs are not detectable. As
a rule, each (relevant) real-world thing is represented by one classified object. Each
object can have multiple representations, such as geometries of different types in
multiple levels of detail, as well as multiple visual appearances. It is recommended
that all objects should have globally unique identifiers and that these identifiers
should also be kept stable over the lifetime of the real-world object. The reason is
that this allows keeping track of the object in different applications and for linking
information from different sources to it in a sustainable way.

Of course, 3D city models can also be used to represent future development states
of cities, but the employed accumulative modeling principle (B-Rep geometries with
absoluteworld coordinates) is not especially supportive regardingmanual, interactive
changes of object locations, extents, and shapes. This is in contrast to generative
and parametric modeling principles that are typically used in building information
modeling.

34.2.3 The International Standard CityGML

The City Geography Markup Language (CityGML), issued by the Open Geospatial
Consortium (OGC), is the international standard for the representation and exchange
of semantic 3D city and landscape models. CityGML defines a common information
model and data exchange format for 3Durban and rural objects. It specifies the classes
and relations for the most relevant topographic objects in cities and regional models
with respect to their geometrical, topological, semantic, and appearance properties.
Included are generalization hierarchies between thematic classes and aggregation
and thematic relations between objects. CityGML is implemented as an application
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schema of the Geography Markup Language 3.1.1 (GML3; see Cox et al. 2004), the
extensible international standard for geodata exchange and encoding issued by the
OGC and the ISO TC211. It is further based on a number of standards from the ISO
191xx family, the OGC, the W3C Consortium, the Web 3D Consortium, and OASIS
(Kolbe 2009; Gröger and Plümer 2012).

The data model consists of class definitions for the most important objects within
virtual 3D city and landscape models. CityGML consists of a core module and
several extension modules. Whereas the core module comprises the basic concepts
and components of a virtual city, each extension module covers a specific thematic
field like buildings, bridges, tunnels, digital terrain model, water bodies, vegetation,
transportation, city furniture objects, etc. Implementations are not required to support
the entire data model but may employ only a subset of modules according to their
specific needs. Figure 34.2 shows an excerpt from the top-level class hierarchy of
CityGML.

CityGML defines five consecutive levels of detail (LoD), where objects become
more detailed with increasing LoD regarding both their spatial and thematic differ-
entiation. Each object may have attached a separate representation for each LoD
simultaneously. The five LoDs as defined by CityGML are illustrated in Fig. 34.3.

CityGML comprises class definitions for the representation of complex digital
terrain models (DTMs) in various forms from point clouds over raster data or TINs,
including break lines. All these DTM data types can be used to build composite or
hybrid terrain representations. The LoD concept even allows for the maintenance of
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Fig. 34.2 UML diagram of the top-level class hierarchy of CityGML. All thematic objects are
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Fig. 34.3 Illustration of the five levels of detail defined by CityGML

several terrain variants in different resolutions. DTMs can be restricted by validity-
extent polygons. Holes within these polygons allow for embedding of other DTM
components, for example, a fine-resolution TIN embedded into a gridded DTM of a
large area.

In CityGML, the coherent modeling of semantic and geometric/topological prop-
erties is supported. At the semantic level, real-world entities are represented by
features such as buildings, walls, windows, or rooms. The description also includes
attributes, relations, and aggregation hierarchies between them. At the geometric
level, geometry is assigned to thematic features representing their spatial location and
extent. Complex geometry objects are decomposed into geometric primitives. Thus,
the model can consist of two aggregation hierarchies in which the corresponding
objects are linked by relationships, but also simpler representations are supported
(see, e.g., Stadler and Kolbe 2007).

Spatial properties of CityGML features are modeled according to the GML3
geometry model (see ISO 19107:2003; Cox et al. 2004) representing 3D geometry
according to the boundary representation (B-Rep, see Foley et al. (1995), typically
using a 3D coordinate reference system (CRS) with absolute world coordinates.
Spatial database management systems, like Oracle Spatial and PostGIS, as well as
many (3D) GIS, provide native support for GML3’s geometry model enabling loss-
less storage, efficient management, and spatial indexing of CityGML data. Besides
geographic and projected coordinates, also compound 3DCRS, that is, different CRS
for planimetry and height, are supported.
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In order to provide for a simple but yet flexible way of topological modeling,
CityGML does not make use of GML’s topology classes. Instead, topological neigh-
borhood relations are expressed using GML’s capability to establish XLinks from
composite geometries to the shared geometry (parts). For example, a surface that
is bounding both a house and a garage can be referenced by the two respective
solid geometries assigned to each object. If a geometry object should be shared
by different composite geometries or different thematic features, it only has to be
assigned a unique identifier, which is then referenced by the corresponding GML
geometry aggregate objects (see Gröger and Plümer 2012, for examples).

In addition to semantics and spatial properties, CityGML features can be assigned
appearance information, that is, observable properties of a feature’s surface. In most
cases, these surface data are recorded by sensors, for example, a RGB or infrared
camera. CityGML appearances are represented by textures, georeferenced textures,
and material representations (the latter adopted from the CG standards X3D and
COLLADA) of object surfaces, but are not limited to visual data. In contrast, appear-
ance relates to any surface-based theme, such as infrared radiation, noise immis-
sion, radio-frequency absorption, and earthquake- or blast-induced structural stress.
Consequently, appearance information can serve as input for both visualization and
analysis tasks. CityGML supports feature appearances for each LOD and an arbitrary
number of themes.

3D objects are often derived from or have relations to objects in external databases
or datasets. In order to express these links, each object in the city model may have
external references to its corresponding objects in external data sources, given as
Uniform Resource Identifiers (URIs). Furthermore, explicit information which facil-
itates the integration of different 3D datasets/object types can be represented. The
concept of the Terrain Intersection Curve (TIC) is introduced to integrate 3D objects
with the digital terrain model at their correct height in order to prevent, for example,
buildings from floating over or sinking into the terrain.

To allow for the aggregation of arbitrary city objects according to user-defined
criteria, CityGML employs a generic grouping concept. Groups may be further clas-
sified by additional attributes and may contain other groups as members, allowing
for nested grouping of arbitrary depth.

Attributes for classifying objects, such as roof types, often are restricted to a set of
discrete values. To facilitate interoperability, in CityGML, these sets are specified as
external codelists and implemented as GML simple dictionaries. External codelists
can be (re)defined by the user.

Further objects which are not explicitly covered by the specification document
can be represented using the concept of generic objects and attributes. In addition,
the CityGML data model may be extended for specific applications through so-
called Application Domain Extensions (ADEs). All datasets containing ADE can
still be interpreted by applications that rely on the basic CityGML data model. By
these means, the data model of CityGML balances between strictness and gener-
ality. This is realized by the three main parts: (1) the core thematic model with
well-defined LoDs, classes, spatial and thematic attributes, and relations; (2) Gener-
icCityObjects and generic attributes allow the extension of CityGML data on the
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fly; and (3) ADEs facilitate the systematic extension of the CityGML data model by
new classes, attributes, and relations for specific application domains. Many ADEs
have already been developed by different communities; for example, the Energy
ADE (Nouvel et al. 2015) to support energetic analyses of buildings or the Utility
Network ADE (Kutzner et al. 2018) supporting the simultaneous representation and
analysis of multiple supply and disposal networks. A comprehensive discussion of
existing CityGML ADEs is provided by Biljecki et al. (2018).

34.3 Building Information Modeling

34.3.1 Purpose and Key Applications

In the context of digital urban models, the acronym BIM stands for either building
information modeling or building information model, two terms that were coined by
the architecture, engineering, and construction (AEC) industry. Following Eastman
et al. (2011), BIM is used as a verb in this contribution. This is to express that
building information modeling (BIM) describes a modeling activity rather than just
a collection of static object. According to Borrmann et al. (2015a), BIM is based on
the idea of continuous usage of the digital representation of a building from its design,
planning, and construction to operation and deconstruction. A basic premise of BIM
is collaboration by different stakeholders in the different phases of the life cycle of a
facility (National Institute of Building Sciences 2012). Therefore, BIM goes hand in
handwith the idea of an improved exchange of data between all stakeholders involved
and an increase in efficiency over the whole life cycle of a building. In contrast to
computer-aided architectural design (CAAD) which mainly focuses on representing
the geometry and appearance of man-made objects, BIM is focused (and tailored) to
building and site models with a very detailed information model representing sites,
buildings, and their components like walls, slabs, stairs, pipes, cables, power plugs
as semantic objects, and the relations between them. The information model also
allows representation of aspects like time (e.g., for scheduling tasks in the building
project) and costs often referred to as 4D or 5D BIM.

Eastman et al. (2011) group the key applications of building informationmodeling
according to the stakeholders involved in the BIM process as follows:

• Owners: assess design options from cost, time, sustainability and facility opera-
tion perspectives (requires quantity takeoff and computation, energy simulation,
3D visualization already in an early design phase); cost and schedule control;
commissioning and asset management based on the as-built/as-maintained model

• Architects and engineers: space planning and program compliance, energy anal-
ysis, design communication/review (3D visualization), quantity takeoff and
cost estimation, design and analysis/simulation of building systems (structure,
mechanical and air handling systems, emergency systems, lighting, acoustics,
etc.), design coordination (clash detection)
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• Contractors: construction planning and scheduling (4D simulation), cost and
schedule control, procurement purchasing and tracking, and safety management
(4D simulation)

• Subcontractors and fabricators: automated manufacturing, preassembly, and
prefabrication.

Common to all applications listed above is that they usually consider a single
construction project or facility, not a whole district, a city, or even a larger
geographical area.

While BIM in its early days was mainly applied in building construction, it is
increasingly getting adopted in infrastructure construction today. An overview of
BIM for infrastructure applications like planning, building and maintaining roads
and railways, utility networks, etc. was provided by Bradley et al. (2016).

34.3.2 Modeling Paradigm

Although BIM can be applied for managing existing buildings (see applications for
owners above), the majority of BIM applications is focused around the design and
construction phase of a building. BIM models are therefore used as templates to
create originals according to the model. This means that BIM adheres to a prescrip-
tivemodeling paradigm, as inmost cases, themodel already exists before the original
(Brüggemann and von Both 2015). In addition, BIM follows a generative modeling
approach since the model reflects the construction process (Kolbe and Plümer 2004).
This requires highly detailed models with representations of all the constructive
elements as components. However, the geometric representation of the constructive
elements may vary in granularity depending on the state of planning (draft planning,
execution planning, etc.). In order to provide the user of a model with information
on the geometric granularity, BIM defines so-called levels of development (LoD).
To support the dynamic nature of the planning process, the generative modeling
approach followed in BIM must also enable changes to models of planned objects
to be carried out quickly and efficiently. Therefore, mostly parametric and genera-
tive geometry models such as constructive solid geometry (CSG) and sweep repre-
sentations are applied. Use of parametric representations and local transformations
is making the interactive design of BIM models intuitive, as the characteristics of
components can be changed easily by adjusting their parameters. For example, the
thickness of a wall component can simply be changed by adjusting the width param-
eter; the change of geometry follows implicitly. Also the placement of a window
within a wall could easily be modified by just moving the window object to some
other place in the wall, that is, by changing the relative translation of the window
object with respect to the wall object. The space taken by the window object then
becomes subtracted from the wall in order to generate the hole in the wall. The same
is true for the design and construction of a road, where the centerline describes the
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road alignment and a cross-section together with some parameters provide informa-
tion about the width of the lanes and shoulders. If the road needs to be moved by 10
m to the left, for example, just the centerline has to be adjusted accordingly; the rest
follows implicitly.

34.3.3 The International Standard IFC

The Industry Foundation Classes (IFC) (International Organization for Standard-
ization 2018) defines a software-vendor-neutral product model and data exchange
format for BIM that has been developed by buildingSMART, an international organi-
zation from the AEC domain. IFC is widely adopted: According to Borrmann et al.
(2015a), IFC is supported by all major software vendors in the AEC domain and
serves for realizing Open BIM, that is, for implementing a software-vendor-neutral
BIMprocess which relies on exchanging data between the stakeholders in a standard-
ized format and information model. IFC has been made mandatory for government
projects in several countries such as Singapore, Finland, and Great Britain. The US
National BIM Standard (National Institute of Building Sciences 2012) is specified
based on IFC, and also the German national BIM strategy regards “Open BIM”
realized using IFC as an important component for implementing BIM processes in
public construction projects.

IFC provides a very detailed and rich information model (see Fig. 34.4) for 3D
building representations using constructive elements like beams (class ifcBeam),
walls (class ifcWall), etc., and also non-physical spatial objects like stories (class
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Fig. 34.4 Excerpt from the IFC information model showing the inheritance hierarchy of the most
important top-level entities in EXPRESS-G notation. Source Borrmann et al. (2015a)
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ifcBuildingStorey) and spaces (class ifcSpace). Diverse specializations are included
for different crafts like steelworks, dry works, plumbing, electrical wirings, and
air conditioning (HVAC). The information model includes material properties and
costs, allowing, for example, cost calculations, planning of construction phases, and
structural analyses to be carried out. Reflecting the scope and key applications of
BIM, IFC not only allows buildings and their components to be modeled, but also
processes that occur during a construction project and actors and non-physical objects
that control other objects like legal directives and building regulations. Since IFC
Version 4, the topic of BIM for infrastructure has been taken into account by defining
objects for road and rail alignment. IFC data models for bridges and tunnels are in
preparation.

The information model of IFC can be customized both by restriction and by
extension. Model view definitions (MVD) can be created in order to restrict the
data model to a specific purpose, for example, to define data exchange requirements
for specific application domains. A range of predefined MVD documents can be
found in theMVD database of buildingSMART International. They include anMVD
for coordination between architectural, structural, and building services domains,
for quantity takeoff, and an MVD for energy analyses. The standardized exchange
format for MVD is mvdXML (Chipman et al. 2016). The concepts of property
sets and quantity sets allow for a flexible extension of the semantic model by user-
defined attributes. This may be done at runtime or can be defined using an MVD.
The extension of IFC by new feature classes or the further refinement of existing
feature classes by new subclasses is not supported.

IFC has a very comprehensive 2D and 3D geometry model. In line with the
modeling paradigm suitable for BIM, IFC offers parametric geometry models like
constructive solid geometry (CSG) and sweep, but also B-Rep geometries.

From Version 2.3, simple georeferencing has been included which allows one to
specify the real-world coordinates of the origin of an entire site model in geographic
coordinates (lat/long according to the WGS84 datum) plus ellipsoidal heights in
meters. Along with the increasing importance of BIM for infrastructure and the need
to handle objects with larger geographic extents, the current version of IFC 4 supports
more complex georeferencing methods, which, however, are not yet sufficient for
certain practical cases in large infrastructure projects (see Markič et al. 2018).

34.4 Integration of Semantic 3D City Modeling and BIM

The integration of BIM and GIS is currently the subject of intense research and
development efforts in academia as well as in industry, and it has also found its way
into university teaching and professional training courses (Hijazi et al. 2018; Noardo
et al. 2019).

As a research area, BIM-GIS integration has developed over the past decade
and is meanwhile described by several overview articles (e.g., Liu et al. 2017). The
following classification of integration approaches builds upon Liu et al. (2017):
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(a) Approaches transforming data between BIM and semantic 3D city modeling
based on existing information models from the AEC and geospatial domains
with IFC and CityGML being the most prominent information models of the
respective domain (Stouffs et al. 2018).

(b) Approaches defining new information models (e.g., El Mekawy et al. 2012)
or extensions of existing information models from the AEC and the geospatial
domains (e.g., de Laat and van Berlo 2011). The aim of these approaches is
to enable a data transformation between BIM and semantic 3D city modeling
that is as lossless as possible. One of the most recent works in this field is
described by Stouffs et al. (2018). Based on the use cases they identified with
government agencies in Singapore, they extend theCityGML informationmodel
using theApplicationDomainExtension (ADE)mechanism inorder to represent
semantic information beyond what the CityGML information model provides.
The transformation rules between IFC and CityGML are then defined using a
triple graph grammar approach (Stouffs et al. 2018).

(c) Approaches integrating BIM and GIS at process level. According to Liu et al.
(2017), this type of integration is characterized by the fact that BIMandGIS data
reside in their original data formats and information models. Linking data from
both information models can then be achieved, for example, by using semantic
Web technologies or by encapsulating the data using Web services. However,
it should be noted that although standardized Web-service interfaces exist in
the geospatial domain (e.g., OGC WFS), comparable standardized interfaces
currently do not exist for accessing BIM models. Researchers have also inves-
tigated querying BIM and GIS data residing in their original structures simulta-
neously. An example of such an approach is given by Daum et al. (2017). They
define a spatio-semantic query language for the integrated analysis of 3D city
models and building information models.

(d) Furthermore, application, vendor system, or project-specific approaches for
BIM and GIS integration exist. These approaches do not necessarily rely on
standardized information models on both sides. For example, GIS software
vendors provide functionality to import the native format of a specific BIM
authoring tool into their system. In case the geometry in the BIM data is para-
metric, it is transformed into explicit (mesh) geometry in the GIS software.
Semantic transformations are not applied during import but could be applied by
the GIS user.

The effort that researchers and software companies put into BIM-GIS integration
indicates on the one hand the complexity of the topic, but on the other hand, it is
also an indication of the need and benefit of such integration, as described in the
following section.
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34.4.1 Applications/Use Cases

Figure 34.5 names a selection of use cases for BIM-GIS integration related to the life
cycle of a building or an infrastructure object. In the concept phase, an integration of
a planned building with the virtual representation of its environment allows variant
and feasibility studies and can facilitate stakeholder involvement and participatory
planning by 3D visualization. In summary, it can be stated that BIM-GIS integra-
tion in the early design phase supports geodesign, according to Flaxman (2010) a
“planningmethod which tightly couples the creation of design proposals with impact
simulations informed by geographic contexts”.

Simulations in the geographic context of a building can also be applied during the
detailed design phase. This might include energetic simulations involving shadowing
effects by adjacent buildings, vegetation, or topography. In infrastructure construc-
tion, simulations in the geographic context can also be helpful: When planning
motorway junctions, for example, the glare effect is determined using virtual models
of the surrounding topography. In the next section, we describe an overall approach
to planning integration that enables many more applications based on a consistent
virtual representation of existing and planned man-made and natural objects.

Also in the construction phase, a range of applications benefit from an integration.
In construction-site logistics, for example, the locations of cranes and storage areas
can be planned taking into account the surroundings. The planning and scheduling

Fig. 34.5 BIM-GIS-integration use cases. Modified from Borrmann et al. (2015a)
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of (heavy) transports can also be performed using geospatial data from semantic 3D
city and landscape models. Environmental regulations must be observed during the
construction phase. Schaller et al. (2017) describe, for example, how the construction
sequence plan from BIM is compared with regulations for the clearing of woody
plants in order to comply with species protection regulations. The species protection
mapping is available in the form of geodata. At the end of the construction process,
an as-built model of the structure is created. This can be used to update a semantic
3D city model.

Facilitymanagement, emergencymanagement, and seamless indoor-outdoor tran-
sitions are examples for applications requiring the integration of BIM and semantic
3D city models from the maintenance phase of a building. Hijazi et al. (2011) show,
for example, how indoor and outdoor utility networks can jointly be analyzed for
building maintenance purposes.

Finally, in the modification phase an integration of BIM models into their
geographic context supports feasibility studies for demolition works. Willenborg
et al. (2018) show, for example, an approach to couple semantic 3D city models with
a blast simulator in order to determine the safety zone around the detonation.

All the applications mentioned above can be classified into one of the following
categories:

• Bringing BIM models into 3D city models for joint visualization, analyses, and
simulation

• Bringing semantic 3D city models into BIM systems to import the surrounding
environment for planned buildings or renovations

• Applications that make simultaneous use of indoor and outdoor representations.

It depends on the use case whether only the geometry, the geometry and the
appearance, or whether also the semantics of the objects must be considered with the
integration. Furthermore, the application determines whether the main focus is on
BIM or semantic 3D city modeling, as the scope of both methods is complementary,
with an overlap on the level of managing existing buildings, as explained in the
following section.

34.4.2 Relationship of Semantic 3D City Modeling and BIM

Semantic 3D city modeling and BIM have in common that both methods deal with
semantic modeling of the built environment. However, as we can see from the
description of purpose and key applications of semantic 3D city modeling on the
one hand and BIM on the other hand, there are different views on the same real-
world objects which are manifested in the scope and scale as well as the different
geometry modeling paradigms of the methods.

Figure 34.6 shows the differences in scope and scale. BIM’s scale range includes a
detailed view of a specific building, from the basic structure to the individual compo-
nents. The scope is on the construction process (prescriptive modeling approach, see
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Fig. 34.6 Relation of semantic 3D city modeling and building information modeling with respect
to scope and scale

section on purpose and key applications of BIM above). In contrast, semantic 3D city
modeling includes the scale range of an entire region down to an individual room
of a building, including further thematic areas like transportation, vegetation, and
water bodies. Semantic 3D city modeling primarily describes the current state of the
built environment. Semantic 3D city models can thus be seen as an inventory list of
the physical objects of the built environment in a specific region and can therefore
serve as a hub for linking information from various information systems (descriptive
modeling approach, see section on purpose and key applications of semantic 3D city
modeling above).

The different scopes and scale ranges of the two methods result in different
geometry modeling paradigms, as shown in Fig. 34.7.

In semantic 3D city modeling, diverse sensors like airborne cameras and laser
scanners, and terrestrial surveying instruments like tachymeters and terrestrial laser
scanners, are applied to observe the surfaces of physical urban objects. Thus, objects
are described by their observable surfaces like wall and floor surfaces, which can be
accumulated to higher-level objects like rooms or buildings. The resulting geometry
modeling paradigm is boundary representation (B-Rep), whichmeans that geometric
objects are recursively described by their boundaries (a solid by its bounding surfaces,
a surface by its bounding rings, and so on). B-Rep has its strengths, for example, in
its ability to be used with spatial indexing, which allows the storage and query of
very large datasets. In contrast, BIM models reflect how a 3D object is constructed.
Therefore, a generative modeling approach is applied, allowing the representation
of constructive elements by volumetric and parametric primitives. The geometry
modeling paradigm is often constructive solid geometry (CSG), where complex
volumes are created from combinations of volumetric primitives; operators are
union, intersection, and difference (set minus). CSG and other parametric geom-
etry paradigms have their strength in the fact that changes can be carried out very
efficiently. For example, to change the thickness of a wall in a CSG model means to



34 Semantic 3D City Modeling and BIM 627

IfcWallStandardCase

IfcBeam

IfcSlab
IfcWindow

WallSurface

InteriorWallSurface

FloorSurface

IntBuildingInstallation

GroundSurface

Window

Building Information Modeling (e.g. IFC)
e.g. Constructive Solid Geometry

Semantic 3D City Modeling (e.g. CityGML)
Boundary Representation

Fig. 34.7 Geometry modeling paradigms predominantly applied in BIM and semantic 3D city
modeling (Nagel et al. 2009)

just alter one parameter, whereas in a B-Rep model many points would have to be
moved individually, whereby inconsistencies could be introduced in the model.

While a CSG model can be uniquely mapped to exactly one B-Rep, the other
way around is ambiguous: One B-Rep model can be created by an infinite number
of different CSG models (see Kolbe and Plümer 2004; Nagel et al. 2009).

34.5 Recent Developments in Urban Informatics Involving
Digital Models of the Built Environment

The following examples from the authors’ project environment illustrate recent devel-
opments in urban informatics that involve semantic 3D city modeling, BIM, or a
combination of the two methods.

34.5.1 Integrated Planning Models

As described in the previous section, the integration of semantic 3D city modeling
and BIM can be employed for joint visualization and analysis of planned objects
and their geographic environment. The authors of this chapter contributed to several
research projects in the field of integrating BIM and semantic 3D city modeling for
improving the planning process in infrastructure construction.
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The project 3D Tracks (Breunig et al. 2017) developed new methods for collab-
orative subway track planning. A major research topic was the multi-scale nature of
large infrastructure construction projects, with scale ranges from kilometer down to
centimeter. Multi-scale representation is well established in the geospatial domain
in general and in particular in semantic 3D city modeling (see the LoD concept of
CityGML described above). However, as semantic 3D city models are rather static in
nature (at least as far as the geometry of buildings is concerned), the LoD concept had
to be adapted to the requirements of the highly dynamic planning process. Depen-
dencies between the different levels of detail were introduced in a semantic model
for representing shield tunnels (Borrmann et al. 2015b). This allows for the typical
top-down planning approach from a coarser level, such as alignment (LoD 1), to a
finer level. A key aspect of the model is that a refinement hierarchy between the
representations of a tunnel in different LoDs is created with the help of space objects
(see LoD 2–LoD 4 in Fig. 34.8), while the constructive elements of the tunnel are
only represented in the highest LoD (LoD 5 in Fig. 34.8).

Figure 34.9 gives an example of the construction history of a shield tunnel in
several levels of detail. Construction operations provided by parametric 3D CAD
systems like sweeping, extrusion, etc. have been performed in a sequence, resulting
in a graph structure which allows cross-LoD dependencies to be defined. Therefore,
changes in a lower LoD will automatically take effect on objects in higher levels of
detail. Although this modeling approach differs significantly from the way objects
are represented in semantic 3D city modeling, Borrmann et al. (2015b) demonstrated
that a geometric and semantic mapping, and geometric transformation of their tunnel
objects to objects according to the CityGML representation of tunnels, is possible in
an automated transformation workflow.
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Fig. 34.8 A shield tunnel in different, dependent levels of detail (Borrmann et al. 2015b)
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Fig. 34.9 Construction history and resulting cross-LoD dependency graph of a shield tunnel
(Borrmann et al. 2015b)

Furthermore, in order to integrate parametric BIM authoring tools and anal-
yses based on semantic 3D city models, the project team chose to encapsulate the
geoprocessing workflows that had to be carried out for tasks like evaluating the
planned rescue shafts of a subway track by standardized Web services provided in a
distributed system. This allowed the team to keep the digital representations of the
planned objects and the objects representing the geographic context in their own data
structures, following integration approach (c) discussed earlier.

Schönhut (2018) describes a different approach of supporting subway planning by
the integration of BIM and semantic 3D city modeling. Instead of keeping semantic
3D city models and BIM data in their original structures and bringing them together
only encapsulated by processing services for specific analyses, she integrates data
from both domains into a common information model (see Fig. 34.10). Her approach
uses an integrated planningmodel and the CityGML schema as common information
model. Since CityGML is not representing hydrogeological objects, which is critical
for subway track planning, CityGML was extended using the Application Domain
Extension (ADE) mechanism by classes of dedicated information models from the
geology domain, namely the Geoscience Markup Language and the Groundwater
Markup Language. An advantage of such an integration approach—besides a visu-
alization of the BIM models in their environment—is that analysis and simulation
methods developed on the basis of the CityGML standard for existing urban objects
can now also be applied to the planned objects. Thus, what-if scenarios can be eval-
uated on different planning alternatives. This is useful not only in infrastructure
planning but also in the context of smart cities.
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Fig. 34.10 An integrated planning model for subway planning based on a CityGML Underground
Environment Application Domain Extension

34.5.2 Digital Models of the Built Environment, Smart Cities,
and Digital Urban Twins

The notion of the digital twin (DT) was originally defined in product life cycle
management for industrial machines (Datta 2017). The DT is a digital representa-
tion of the available information on a specific physical thing including its origin,
state, history, as well as recorded performance data. It is used for documentation and
predictive maintenance. Only very recently colleagues from geospatial information
science and urban planning have started to discuss using DTs in the urban context,
see Batty (2018). In contrast to industry, where all the information about a specific
product is bundled by the manufacturer, the information about real-world objects of
cities like buildings, streets, bridges, and so on is distributed across several organiza-
tions and stakeholders. Information about one and the same building is, for example,
stored and managed by different departments of the city administration, by energy
supply companies, and by the owners and users of the building. Creating and main-
taining a digital twin therefore first of all means information integration. Due to the
distributed and heterogeneous nature of the information about the built environment,
creating the digital twin of a city is challenging, both technically and organization-
ally. In order to link and use such heterogeneous data, spatial data infrastructures
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for smart cities can play an important role in establishing interoperability between
systems and platforms.

Moshrefzadeh et al. (2017) describe a concept for information integration in this
context. Their smart district data infrastructure (SDDI) defines an organizational and
technical framework for creating the digital twin of a city district. Their concept
consists of actors, applications, sensors, urban analytics tools, a central resource
registry of all the distributed information resources, and a 3D virtual district model
as a central component (see Fig. 34.11). Based on the SDDI concept, Chaturvedi
et al. (2019) present an approach for securing distributed applications and services
which facilitates privacy, security, and controlled access to all stakeholders and the
respective components and allows single-sign-on (SSO) authentication. Chaturvedi
and Kolbe (2019a) describe an approach for interoperable access to sensor observa-
tions and time-series data from distributed, heterogeneous IoT and sensor platforms
in the SDDI context.

A unique feature of SDDI is the fact that all the information, sensors, and appli-
cations coming from different domains are linked with the virtual 3D district model
represented in CityGML. As shown in Fig. 34.12, digital representations of physical
objects such as buildings and streets in semantic 3D citymodels can be used as anchor
points for linking information from different domains and different stakeholders.

Thus, impacts of changes in the city can be simulated from different perspec-
tives in the digital twin before they are implemented in the real city. Most smart
city approaches today do not fully exploit this kind of information integration and
therefore limit their view of the city to specific sectors, for example, smart mobility
and smart energy, neglecting the interdependencies between those sectors.

A number of applications with real data from cities such as Berlin, London, and
New York already show today that the concept of information integration based

Fig. 34.11 Overview of the SDDI components



632 T. H. Kolbe and A. Donaubauer

Fig. 34.12 Digital representations of physical objects in semantic 3D city models as anchor points
for integrating information from different domains

on digital models of the built environment, especially semantic 3D city models,
can make a valuable contribution to the planning and operation of cities. Examples
of application domains are strategic energy planning (Kaden and Kolbe 2014) and
solar potential analysis, as well as detonation simulations (Willenborg et al. 2018),
traffic simulation (Beil and Kolbe 2017; Ruhdorfer et al. 2018), and flood-inundation
simulation (Chaturvedi and Kolbe 2017).

34.6 Summary and Conclusions

Digital models of the built environment provide detailed information on the physical
urban reality. Semantic 3D city modeling as well as building information modeling
both address not only the representation of spatial and graphical aspects of urban enti-
ties, but especially focus on their thematic structuring and decomposition into mean-
ingful objects. However, semantic 3D city modeling and BIM are following different
modeling paradigms to achieve that goal. While the former is especially tailored to
create descriptive models of the existing urban reality, BIM is tailored to create
prescriptive models telling how reality should become. The different approaches
are originating from different disciplines, that is, geomatics and AEC, and are
supporting the typical applications within their disciplines very well. There is an
increasing demand to combine the two representations, though, and a number of
different approaches were explained in the chapter. Also, examples for use cases that
require combinations of semantic 3D city models and BIM were given. In general,
semantic urban models are key for a wide range of urban applications in a multitude
of domains, including all kinds of simulations.
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It is, however, important that urbanmodels are structured and exchanged according
to open standards. Standards play an important role in the acquisition and use of urban
models, because data are typically captured, refined, visualized, and used by different
parties and systems. Standards specify the exchange of information from the level of
object definition and semantics down to the level of the physical file layout. The use
of open standards ensures platform- andmanufacturer-independent management and
processing of data. Platform independence is also important to protect investments
on collected datasets against arbitrariness, the risk of failure of a manufacturer, or
abandoning of a specific software system.

In conclusion, it is important to point out that the achievable and manageable data
quality of urban models is not only limited by the data collection processes (and
thus by sensors and the subsequent interpretation of sensed data), but also from the
employed standards concerning the data modeling frameworks and data exchange
capabilities. Data lossmay occur between two parties or systems, if the data exchange
standard is not capable of preserving the original content, structure, and logic of a
dataset.

CityGML and IFC are the most important open standards for semantic 3D
modeling of the built environment.
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Chapter 35
CityEngine: An Introduction
to Rule-Based Modeling

Tom Kelly

Abstract CityEngine is a rule-based urban modeling software package. It offers a
flexible pipeline to transform 2D data into 3D urban models. Typical applications
include processing 2D urban cartographic geographic information system (GIS) data
to create a detailed 3D city model, creating a detailed visualization of a proposed
development, or exploring the design space of a potential project. The rule-based
core of Esri’s CityEngine has some unique advantages: Huge cities can be created as
easily as small ones, while the quality of the models is consistent throughout. Addi-
tionally, this rule-based approach means that large design spaces can be explored
quickly, interactively, and analytically compared. Such advantages must be care-
fully balanced against the increased time to create and parameterize the rules and
the sometimes stylistic or approximate models created; coming from more tradi-
tional workflows, CityEngine’s pipeline can be initially overwhelming. We intro-
duce the principal workflows and the flexibility they afford, sketch the procedural
programming language used, and discuss the export pathways available.

35.1 3D: One Better than 2D

3D technologies are revolutionizing the way we plan, understand, communicate, and
document our urban environments. Revolutions are, however, rarely easy; there are
numerous issues and challenges around this transition from 2D to 3D toolchains.

Reading 2D plans and maps is often challenging because they are one dimension
short of the 3D world we live in. The 3D data must be encoded using various tricks
and conventions, such as contour lines, elevation diagrams, symbols, and shading.
This is because there is more information in the 3D world than 2D plans contain.
Technology now enables us to efficiently record, model, and plot in 3D. Collecting
and sharing this 3D information has been, until recently, difficult and prohibitively
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expensive. As various technologies such as commodity 3D CAD and photogram-
metric reconstruction have matured, we are able to accurately construct virtual 3D
models of our 3D world.

At the same time as making our data more accurate, 3D models make our data
more accessible. While it has always been possible to create physical scale models
of our environments, these are expensive, difficult to transport or share, and bulky
to store. Technologies such as immersive virtual and augmented realities (VR, AR,
often summarized as XR) allow anyone from children to city planners to understand
complex designs by exploring them at real-world scales. 3D tools such as physical
simulation (solar potential, window modeling) and viewpoint rendering help engi-
neers design empirically better environments; because we are able to explore our
design spaces more quickly, we understand them faster, produce better designs, and
better comprehend any issues.

However, 3D modeling is difficult. The de facto 3D representation is the mesh.
This is a set of corners (vertices) placed in 3D space, between which we create
triangles. By creatingmany thousands of such triangles, we can build representations
of complex 3D environments. We may even choose to apply colors or texture to each
triangle.

There are many tools available for creating these polygonal meshes. Traditional
manual 3Dmodeling tools offer away to createmultiple triangles at a time by creating
more complex primitives (spheres, cubes, curves, surfaces, extrusions, etc.). Such
manual tools include Autodesk Maya (2019), Trimble SketchUp (2019), or Blender
(2019). Even though these manual tools have become incredibly sophisticated and
general, they still require users to spend a lot of time positioning and editing triangles
and primitives. For our use cases, we might imagine our long-suffering artist being
employed to position a spherical doorknob on every rectangular front door, of every
building, in the urban area we are modeling.

What we would rather do is to create a rule which encodes “attach a sphere to
every front door”. Luckily, computers are rather good at these repetitive tasks—if
we can find a way to explain to them what to do. In this chapter, we introduce one
way to instruct them: rule-based modeling. In particular, we will dive deeply into a
particular modeling system: Esri’s CityEngine. Such modeling systems offer tools
to procedurally generate 3D meshes from systems of rules—they are able to create
models with millions of vertices in seconds.

It is here that we see another advantage of working with virtual, rather than
physical, 3D models. Computer programs can follow rules to create and manipulate
virtual polygonal meshmodels superhumanly quickly and accurately.We can repeat-
edly change the rules and view and explore the resulting environments on screen, in
virtual reality, or physically produce them using a 3D printer. To perform the same
changes in a physical 3D model would take many lifetimes.
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35.2 2D Shapes + Rules = 3D Models

Because of the hierarchical, systematic, and often repetitive nature of urban envi-
ronments, rule-based city modeling has been a driving force for general proce-
dural modeling in general. We note in passing that other rule-based systems have
been wildly successful in other domains. Of note are commercial systems such as
SpeedTree (2019) for the rapid generation of trees and forests and Grome (Wikipedia
2019) for creating terrains and landscapes. For each different domain, different tech-
niques and rules are appropriate. In CityEngine, as we will see, the rules and the
operations they use have been carefully curated to allow rapid and accurate modeling
of buildings and streets.

Before deciding to use a rule-basedmodeling pipeline, it is important to weigh the
advantages and disadvantages against more traditional manual modeling pipelines.
For smaller ormore complexmodels,manualmodelingmaybe faster and cheaper; the
time to create the rules may be larger than the time that would be taken to perform the
manual modeling. Rule-based modeling is particularly difficult for complex geome-
tries where many decisions are involved in placement and evaluation. Translating
each decision into a rule and ensuring that the decisions interact appropriately in
all circumstances can be time-consuming. We note that many of the explanatory
examples in this chapter would be more quickly created using manual modeling
tools—only when scaling up to larger areas does rule-based modeling reward the
time invested in creating the rules.

Writing rule files is a new skill that must be taught, studied, and maintained
like any other. Because it is a newer technology, finding qualified personnel can be
more difficult, especially because they may need a background in urban design, a
basic knowledge of linear algebra, as well as the ability to (en)code our rules in a
programming language.

These caveats aside, rule-based modeling is able to offer a flexible, quick, and
responsive toolchain for quickly developing urban scenarios ranging from single
building modeling, campus-scale designs, up to neighborhood and city-scale simu-
lation. Once the rules are available, a large quantity of geometry can be created
easily and quickly. Changes and modifications to scenarios can be made in real time.
Both the level of detail (“do we draw chimneys on the buildings?”, “do we draw
roofs?”), the presentation format (Webviewer, VR), and the rule attributes (“how
high is this building?”) can be updated over an entire city at once, all thanks to
rule-based modeling.

Esri’s CityEngine is a software system for rule-based modeling in the urban
domain. It provides a visual environment to apply rules, create new rules, and inspect
the results. The historical context of CityEngine was that it was acquired by Esri
during their transition from a 2D cartography company to a provider of 3D solu-
tions. As witnessed by ArcGIS Pro, this transition has created a massively powerful
pipeline with support for all the major industry formats. This business context under-
pins the CityEngine workflow—2D shapes are imported into the system, where rules
are used to convert them to 3D models. These models are the 3D output which we
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Fig. 35.1 The central paradigm of CityEngine is to apply rules to shapes (gray, left) to create 3D
models (right). This approach is able to create a large variety of rule-driven models

may view in CityEngine or export to the Web or VR. Thus, the central process for
modeling in CityEngine is to apply rules to shapes to create models (Fig. 35.1).

ACGA rule is a text file containing a list of instructions. In Fig. 35.2, we introduce
a simple rule which extrudes a shape into a model of a 3D prism. While this rule
only contains five lines of code, complex rule files can be thousands of lines long.

This chapter aims to be a broad introductory tour of the systemwith a deepdive into
various implementation topics. We continue to describe shapes, the rules, analysis
tools, and export paths from CityEngine. After reading this chapter, the kinesthetic
learner is encouraged to spend a few days working through the CityEngine tutorials
provided by Esri (2019a). Similarly, Esri’s online documentation is an invaluable
source of technical details (Esri 2019b).

version "2019.0"

@Startrule
Lot -->
   extrude (20)
   X+ =

Fig. 35.2 A simple CGA rule file (center) is applied to several different shapes (left) to create the
associated 3D models (right). This rule creates a prism of height 20 m over the shape
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35.3 On the (Many) Origins of Shapes

CityEngine provides two workflows to instantly create entire cities with very little
user input. The City Wizard (File → New… → CityEngine → CityWizard) uses
an entirely procedural workflow to create an impressive quantity of shapes with
complex rules in a few clicks. Of course, the resulting city is entirely fictional; if
we wish instead to use an entirely data-driven set of shapes, we may use the Map
Import (File → getMapData…). This tool downloads satellite images, height maps,
lot footprints, and street networks, to create shapes and terrain for a real-world area
(Fig. 35.3). However, because there is no common data source for building rules,
only simple rules are provided. Both the City Wizard and Map Import use shapes
to model entire cities quickly but leave us with limited control over the shapes and
rules. We continue to examine more controlled ways to create shapes.

Shapes are usually 2D polygons lying on the ground.Much of CityEngine’s utility
and complexity is driven by the different ways to create shapes. The various sources
for shapes provide an overview of the different modeling workflows available in
CityEngine:

• To create a 3D model of an existing area, we may use a collection of building lots
from a geospatial data source (including FileGDB, DXF, Shapefile, or OBJ) as
shapes.

• To plan a new urban area, we may draw our own shapes, for example by adding
each corner of each lot at a time. The simplest way to create a shape is to use the
Rectangular Shape Creation tool, which allows clicking and dragging to position
two corners of a rectangle on the floor plane. To increase the accuracy, we may
trace the outline of these shapes from images imported into CityEngine.

Fig. 35.3 A city created in 30 s using the Map Import functionality
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• If wewish to use rules to add windows to the blank facades of a building, we could
draw the building using the manual 3D modeling tools provided by CityEngine.
This is an uncommon workflow because the shapes may not be horizontal. Such
a workflow allows us to manually model a building and then apply rules only
to specific façades. CityEngine has a range of tools for manual shape modeling,
including rectangular, polygonal, and circle generation. Markus Lipp created this
modeling system to use intelligent extrusions to quickly and manually model
urban forms (Lipp et al. 2014).

• Whenmodeling a street network, wemay import a street graph (formats supported
include DXF, FileGDB, and OpenStreetMap) and use CityEngine’s dynamic
shape system to automatically create street shapes, blocks, and lot shapes between
the streets. We continue to explore the dynamic shape system in greater depth.

35.3.1 Dynamic Shapes: Streets, Blocks, and Lots

Dynamic shapes use algorithms to approximate the forms that we see in our urban
environments. Because of this, they are only simulated designs that match general
characteristics (the range of building lot widths) but not specific measurements (the
width of a particular lot). We describe them as dynamic because they are generated
dynamically from the street graph; if you move a street intersection, the adjoining
roads and blocks are automatically recalculated. The flexibility of CityEngine allows
for combinations of these shape generation approaches—manual, data-driven, and
dynamic—to be used together. For example, streets can be imported from a GIS data
source and the blocks between the streets can be dynamically subdivided to lots, or
an area of the city where GIS data exist for streets and lots can be augmented by
adjacent dynamically generated streets and lots.

A street graph describes the streets in a street network. Over this graph, dynamic
street shapes are created for sidewalks, junctions, and the street themselves, as shown
in Fig. 35.4. The graph edges describe the center lines, and the nodes (where the edges
meet) describe the street junctions.

Fig. 35.4 Left: a blue street centerline graph; middle: the generated street shapes; right: 3Dmodels
generated by applying rules to the shapes
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Fig. 35.5 Block subdivision algorithms used to create building lots. From left to right: recursive,
offset, and skeleton. Far right: skeleton modified for a high irregularity and narrower lot width

Between streets, CityEngine dynamically generates blocks and from the blocks,
lots. Generally, every loop of streets generates a block in its interior. The block
contains a further selection of attributes which define its subdivision into lot shapes.
The lot shape represents a parcel of land on which we will use rules to generate
individual building models. When a block (or a street) is selected in CityEngine, the
Inspector shows details about the object which drive the generation of the dynamic
shapes. Block to lot subdivision algorithms are discussed by Vanegas et al. (2012)
and are subdivided into twomajor categories: recursive subdivision and offsets. Each
of these can be further controlled with attributes controlling on lot area, width, and
variation, as in Fig. 35.5.

The generation sequence is an important part of the modeling paradigm used by
CityEngine for dynamic shapes: Streets are created, betweenwhich blocks are found,
and finally inside each block, lots are created. It is important to note this order when
creating cityscapes and start with street creation before moving on to block and lot
generation. This is because small changes in the street network will affect many
blocks, whereas changing a block’s subdivision settings will affect only the lots in
the block. Similarly, changing a lot’s rule or attributes will only affect the single lot’s
(building) model.

Remembering that our shapeswill be the starting point for rules, it is also important
to note the default starting rule names for each dynamic shape type. This name is
used to automatically assign a start (initial) rule to the shape. For example, dragging
a rule file onto a street’s sidewalk shape will attempt to use the rule named Sidewalk
(and taking no parameters), while the same file dragged onto a lot shape will use the
rule Lot.
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35.3.2 Graphs and Cities

The astute reader will notice that the street graphs (the street centerlines themselves)
are not dynamic. The street graph contains the information required to dynamically
create the other dynamic shapes. As we have come to expect, CityEngine provides
manual, data-driven, and procedural approaches to creating street graphs.

Creating a street graph manually can be accomplished with the polygonal or
freehand street creation tools. These allow graph vertices and edges to be created by
clicking at corners or by sketching streets. The Edit Street tool can then be used to
reposition vertices, curve streets, and adjust street or sidewalk widths.

An alternative to drawing street graphs directly is to import an existing graph
from a GIS source. Supported formats include DXF, FileGDB, and OpenStreetMap.
CityEngine can parse and map attributes such as street widths in some of these
formats, which can avoid manual assignment with the Edit Street tool. Working with
various data sources can take some experience because each has different properties
such as distance between nodes or the presence of curved graph segments. To assist
withworkingwith these graphs, various tools are available to simplify a graph (Graph
→ Simplify Graph…), align the graph to the terrain (Graph → Align Graph to
Terrain), or resolve crossing graph edges into bridges and underpasses (Graph →
Generate Bridges…)

To create large street networks where there is no available GIS source, CityEngine
provides theGrowStreets toolwhich creates a procedurally generated set of streets, as
well as blocks and lots as described above. The origins of the street growth algorithms
used are described in the paper by Parish and Müller (2001), although these have
now advanced beyond the published details somewhat. In summary, self-sensitive
L-Systems (Prusinkiewicz and Lindenmayer 2012) are employed to grow major and
minor streets. Newly grown edges are snapped to attach to parts of the existing
networks. By combining different patterns of growth for both the major and minor
streets, a wide variety of different networks can be grown, illustrated in Fig. 35.6. The
Grow Streets tool also allows the type of dynamic block subdivision to be specified.

Once a real street graph has been imported or synthetic graph has been grown,
the Edit Street and Street Creation tools can be used to amend or fine-tune the data.

There are several use cases for graphs beyond their typical use of creating
street models. Appropriate rules can be used to create various graph-like structures
including walls, railroads, and power-lines as in Fig. 35.7.

We have seen an overview of the multitude of ways that CityEngine can be used to
create different shapes; we continue to examine howwe can obtain rules to transform
our shapes into 3D models.
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Fig. 35.6 Awide variety of street patterns can be generated by selecting the major and minor street
patterns. Left: organic major and raster minor; Middle: raster major and raster minor; Right: radial
major and organic minor

Fig. 35.7 Walls, streets, fences, and power-lines generated from rules executed on dynamic graph
shapes

35.4 Writing CGA Rules for Fun and Profit

CityEngine rules are written in the Computer Generated Architecture (CGA)
programming language. Writing a simple CGA rule can be quick and effortless;
however, writing a realistic or flexible rule is an involved process. A library of
existing rules is provided, and further rules can be found online. The fastest route
to creating a 3D scene from a 2D map is by combining and parameterizing these
existing rules, without ever writing CGA code ourselves.

Pre-installed rules can be found in the ESRI.lib project. A further selection of
well-written rules for a variety of circumstances can also be found in the tutorials and
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CGA File
Scene layer list
3D view
Navigator
Inspector
Assigned rule
Rule attribute
Selected object

Fig. 35.8 CityEngine user interface elements. Orange: important elements of the interface. Blue:
dragging a rule onto the selected shape to generate a 3D model

downloads dialog (Help → Download Tutorials and Examples). Finally, many user-
generated rule packages (single .RPK files containing rules and resources) of varying
quality can be found online (“ArcGIS content search”with keyword CityEngine; Esri
2019c). Exploring existing rules is a powerful way to understand how models can be
generated using the CGA language. As rules can take a lot of time to write, reusing
existing rules is advisable wherever possible; libraries should be used before writing
CGA code ourselves.

To apply a rule or rule package, we may drag the rule package or file from the
navigator onto a shape as shown in Fig. 35.8. By selecting a group of shapes before
dragging, we may assign the rule to a number of shapes at once. The Inspector panel
allows us to customize rules in a variety of ways. Various options exist for selecting
shapes by layer or start rule can be found by right-clicking on a shape. After assigning
a rule, there is a short delaywhile the rule is compiled and evaluated to create amodel.
If we desire more control, the Inspector contains more detailed options for the shape,
including the CGA rule file, Start rule, and the previously mentioned rule attributes.

35.4.1 Writing Rules

While the mythos of “coders” and “software engineers” may have elevated program-
ming to the status of a divine art, the reality is much more down to earth. CGA is a
simpler language than the likes of Python, relying on a few basic operations which
are repeatedly applied to write a rule. We find that undergraduate students are able to
create their own rules after a few sessions with CityEngine. Those with experience of
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complex languages such as C or C++must learn the CGAway of doing things which
is more functional than they are used to. The dialect of CGA used in CityEngine has
evolved from the version presented in the initial academic publication (Müller et al.
2006); care must be taken when comparing rules from different versions.

We take the opportunity here to untangle the term “shape” in CityEngine. This has
been overused to describe both the input shapes (described in the previous sections)
and the shapes which are passed between rules in CGA. CityEngine refers to these
intermediate shapes as “CGA shapes”; here, we will use the term geometry. This
regrettable confusion is somewhat caused by the academic origin of CityEngine,
where our input shapes did not exist.

A CGA rule file is a text document containing a collection of rules. A rule is
analogous to a function or method in other programming languages. Each rule is
identified by its name and set of parameters: X(1) is a different rule to X(1,2). As
the rule is executed, it can call various operations, as well as other rules. Operations
are analogous to library functions in other programming languages. As parent rules
use operations to create new geometries, they label each with a child rule. If this rule
exists, it will then be executed on the child geometry. Unlike the academic description
of CGA (Müller et al. 2006), there is no concept of priority; rules are evaluated purely
according to their parent rule.

Each rule transforms a piece of geometry into new geometries (or nothing); the
result is a 3D mesh model consisting of all the geometry that cannot be further trans-
formed. The initial geometry is the input shape to which the initial rule (sometimes
designated with the @Startrule annotation) is applied. The rule also has access to
attributes, which allows the rule behavior to be customized by the user or a data
source. Attributes and parameters are used in the same way other programming
languages use variables to customize behavior. Most of the attributes’ values can
be set and read by various operations. Attributes are sometimes taken as additional
context for operations to define and refine behavior. For example, predominant orien-
tation and origin information are encoded in the scope and pivot attributes. When the
split operation is used in the y-direction, this direction is relative to this orientation
given by the scope and pivot locations stored in attributes.

The typical pattern of programming in CGA is to repeatedly expand-then-divide
geometry. The rule to create a building model may start with a lot shape, expand with
an extrude operation to create prism geometry as high as the building, and then use
a comp operation to divide the prism into various faces. The face pointing upward
expands to create a roofwith a roofGable operation,while side faces are divided using
the split operation to become floors and then windows. Another extrude operation
finally recesses the windows into the façade. We continue to study such operations
in more detail.

35.4.1.1 Operations

Learning to write CGA rules is predominantly the process of learning the various
operations and their effects on geometry and attributes. While the complexity of
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existing rules can be overwhelming to the new user, the compact set of CGA
operations presents a shallow learning curve.

CGA is a programming language designed to do one thing—model urban environ-
ments—and not much else. For this reason, wewould describe it as a domain-specific
(programming) language (DSL). For other domains, there are other programming
languages: We may use L-Systems (Prusinkiewicz 1986) to generate flora or URDF
(2019) to create robots. Because CGA is a DSL, its operations are carefully curated
for the urban domain. A lot of theoretical effort was expended in finding a compact
yet expressive set of operations. In contrast, general-purpose procedural modeling
languages, such as Houdini (2019) and Rhino (2019), are not specialized in a single
domain and havemany complex operations to learn. Figure 35.9 introduces a handful
of key CityEngine operations.

By repeatedly applying these operations, we can create a large variety of urban
geometries. For example, the setback, extrude, comp, and roofGable operations can
be used to create a house with a recessed top story and a gabled roof, as in the
following Fig. 35.10.

An important observation is that CGA does not contain loop or repeat operations.
To achieve repeating geometry (such as windows on a building façade or trees along
a street), we can use the split operation with the asterisk (*) modifier to split a parent

Fig. 35.9 CityEngine has over 60 operations. Here, we show a selection applied to a square input
shape (gray), as well as example usage. Trivial rules with the names of colors (Red, Blue, etc.) are
not shown, but would be included in the rule file
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Fig. 35.10 A progression of three CGA rule files using operations including extrude, comp, and
roofGable, accompanying models shown above. Note how we start with a simple rule and gradually
extend it to create more complex geometries following the expand-then-divide paradigm. The green
text highlights comments which are ignored by CityEngine, but help humans to understand the code

shape into a repeating number of child shapes with the same rules. This is illustrated
in Fig. 35.11.

In our final example, we create geometry for streets. To create highway lanes, we
wish to split down the long axis of the streets, which may be curved. The UV variant
of the split operation achieves this. Finally, wemay wish to add texture maps (bitmap
images) over our geometry instead of simple colors using the texture operations, as
in Fig. 35.12.

35.4.2 Modeling Workflow

Creating larger rule files can be a daunting task for those new to writing code. This is
a skill that requires time to practice and learn, but when a little knowledge is gained
is often intoxicating:

The programmer, like the poet, works only slightly removed from pure thought-stuff. He
builds his castles in the air, from air, creating by exertion of the imagination. (Brooks 1995)

This initial excitement often causes problems with inexperienced programmers;
overconfidence causes a failure to understand the characteristics of a growing code
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base.Asmany small problems in the code (“bugs”) become entrenched, it can become
very time-consuming to make even small changes. We can provide some general
guidance and tools which can help us build large CGA programs:

• Write small pieces of code at a time and test them frequently. This makes it much
quicker to track down and isolate issues. If you cannot understand some behavior,
it is frequently the case that too much code was written before trying to run it.

• Create reusable rules. A small rule that you have created which generates an
“Acme brand window” may be reused if kept in separate file. CGA provides the
import functionality to facilitate using this window rule in other rule files.

• Read the provided CGA documentation (Help menu → CGA reference).

Fig. 35.11 Example of using the split rule to subdivide a façade to create windows
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Fig. 35.11 (continued)

• It is easy to get lost in the details of programming and write code that is easy
to understand today but difficult to understand in a week’s time when you have
forgotten the details. Use code comments (sections of code which the computer
does not see) to keep notes for yourself and inform future readers. CityEngine
comments can be created in two ways:

//everything on this line is a comment
/* everything between the two asterisks is a comment */

• Collections of rule files can be large, written by multiple people, have multiple
versions, or can even evolve different branches as they are developed. For these
reasons, programmers will typically use a version control system (such as the
insensitively named git (git 2019)) to manage their code.

• Be aware of the keyboard shortcuts and context (right-click) menus available in
CityEngine. For example, if you have a shape selected with a rule and are editing
the rule in the text editor, Ctrl + S followed by Ctrl + G (on Windows or Linux;
use the command key instead of Ctrl on OS X) will save and show the updated 3D
shape. In the 3D view, the F key will move the view to show the selected object,
or F9–F12 will show and hide various classes of objects.
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Beyond general programming etiquette, CityEngine provides several bespoke
mechanisms to help writing CGA rules. TheModel Hierarchy panel shows a graph of
the different rule applications (Window → ShowModel Hierarchy, Fig. 35.13). This
shows the InspectModel tool button, which can be used to select a building to analyze
(Note that Inspect Model is a different piece of functionality to the Inspector panel.).
The resulting graph is shown in the panel, with every rule application illustrated by
a gray arrow. Lines connect parent/child rule pairs. By selecting a rule in the graph,
the 3D view will highlight the resulting geometry and show the scope, pivot, and
trim planes valid for the application of the rule. Right-clicking on a rule node in the
graph gives the option to jump to the corresponding portion of CGA. A single CGA
rule will typically be applied in different locations and so will appear multiple times
in the graph.

Another tool provided by CityEngine is the Façade Wizard (Window → Show
Façade Wizard). For a single 2D façade, this aids in generating the split and extrude
operations required for a well-parameterized façade.

Fig. 35.12 Example of creating models for street shapes. The split rule is used with the UV
parameter to split curved areas. The three different street UV sets split from different sides of the
shapes. Finally, the normalize UV and texture commands create “stop” markings
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Fig. 35.12 (continued)

To deliver a CityEngine rule to an end user in a convenient format, use a rule
package. This can be built by selecting the CGA file to export in the navigator, right-
clicking, and selecting Share As…. Additional resources and metadata are specified
in the dialog box. In this way, the resulting .RPK file may include many individual
CGA files and other resources such as data in text files and texture images. Such
a package is easily distributed as a single file, and Esri provides a cloud system to
distribute rules.
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CGA File
Scene layer list
3D view
Navigator
Inspector
Assigned rule
Rule attribute
Selected object

Fig. 35.13 The Model Hierarchy is a very useful tool for visualizing geometry. Left: a 3D view
of a model from the first figure. The selected rule is highlighted and rendered with a solid color;
the scope, pivot, and trim planes are also visualized. Right: the rule hierarchy identifies the rule
which created the selected geometry. Clicking on another rule will show that rule’s associated
geometry. Note the Inspect Model button (top center) which is used to enable the Model Hierarchy
functionality

35.4.3 Attributes

Having built our rules and assigned them to our shapes, we are often interested in
further customizing the rule’s expression using attributes.

Attributes are used to refine the evaluation of models within a rule application.
They allow a rule to be generalized. For example, consider a number of otherwise
identical buildings constructed from different materials; instead of a separate rule
for each material, we may use a single rule with an attribute for the building mate-
rial. Attributes can control any behavior of a rule, but typically, control features
such as building height, age, or the number of pedestrians created on the sidewalks.
CityEngine shows many of the available attributes for the selected shape and rule
in the Inspector panel (Fig. 35.14); some rules have a great many attributes. The
default attribute values are set by the rule. However, users can override the source of
attributes to allow the rule to respond to different inputs.

The attributes in CityEngine have a multitude of different sources, and the
interdependencies between them can be complex. Attribute sources include:

• Rule-sourced (Rule default), the default attribute behavior
• User-sourced
• Shape-sourced (Object attributes)
• Image- or shape-driven (Layer attributes).
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Fig. 35.14 Attributes are defined in the CGA file (left) and are edited either with handles (center)
or using the Inspector (right)

These can be selected by clicking the down arrow next to an attribute in the
Inspector panel and selecting Connect Attribute…. Rule-sourced attribute values are
given in the CGA rule file. These attributes can be random; this feature can be used
to add variation to a rule applied many times; for example, every building may be
generated with the same rule, but given a height that is randomly selected between
10 and 20 m [attr height = rand (10,20)].

To allow users to change an attribute without editing the CGA file, attributes
edited in the Inspector become user-sourced attributes. However, we may wish our
attributes to come from other sources which may be driven by data. Object attributes
are visible in the Inspector (under the Object Attributes heading) when a shape is
selected. Object attributes can come from input data sources (e.g., OpenStreetMap
data often gives every lot shape a building height attribute) or are created by dynamic
shapes (e.g., the connectionStart and End attributes are added automatically to street
shapes to specify the adjacent junction types).

Layer attributes sample their values from other shapes or a bitmap, as illustrated
in Fig. 35.15. For example, we can drive the height-of-building attribute by using a
georeferenced heightmap that has been captured by aerial LiDAR. In this way, we
can control a rule using several different data sources. This approach significantly
improves the accuracy of resulting geometry over a purely rule-driven procedural
pipeline.

Finally, it is useful to know that the attributes for multiple shapes can be edited at
once by selecting several shapes. Multiple shapes can be selected by shift-clicking
or by dragging a selection box around them. Alternately, by right-clicking on shapes
in the 3D view, various automatic selection options allow selection of many shapes
within a layer. The Inspector shows the available attributes for the entire selection,
and editing an attribute or source applies that attribute change to all the selected
shapes.
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Fig. 35.15 Left: a black and white image imported as a texture is used to drive the height attribute
of three rectangular suspended shapes, each with the same simple extrude rule. The white parts of
the texture are sampled to large values, which are expressed as tall cuboids; black areas are small
values which become short cuboids. Right: in this way, we may sample attributes from the same
texture to vary building height (or any other attribute) across a city according to an image

35.4.4 Exploring Design Space

As a designer using CityEngine, the number of decisions that must be made can be
very high. Complex rules present hundreds of attributes, and these must be aligned
to user requirements, artistic visions, and practical considerations. Because every
additional attribute adds a dimension to the design space, it can take a lot of time to
explore large, heavily parameterized rules. Further, we may wish to design multiple
scenarios: different rules, attributes, and shapes solving the same problem that we
wish to compare side by side. CityEngine provides a Python interface for advanced
programmers to control attributes (and many other scene elements) using custom
code; typical uses are to create video animations of attributes or run custom design-
space search algorithms. Most users, however, will want to avoid such complexities.

CityEngine presents a number of tools to help explore this design space of
attributes visually. As we have seen, the simplest of these is the Inspector panel
which arranges the attributes in groups specified by the rule file and allows the
different attribute sources to be selected in a 2D interface. Given the large number of
attributes in a rule such as the Paris example, it is often useful to see a visual repre-
sentation of those attributes next to the 3D model. Handles present this functionality
by showing the attributes (such as height) as controls in the 3D view. The handle
system was inspired by the dimension lines of engineering diagrams, as introduced
by Kelly et al. (2015). When a model with handle functionality is selected in the 3D
view, the handles are shown at the edges of the model depending on the viewpoint.
Various handles control different types of values: Boolean toggles, multiple-choice
dials, distance-as-value dimension lines, and color selector triangular handles are
available. The handle locations, behavior as the viewpoint moves, and appearance
are defined by the @Handle annotation in the CGA rule file. They are designed by
the rule creator and are only available if the rule author chooses to use them. Often
the rule author will choose to expose only the most-used attributes using handles to
avoid overcrowding the screen.
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Handles change the value of an attribute throughout an entire rule evaluation for
a single shape. There are situations where we wish to edit an attribute within a rule
evaluation, for example, to make one story of a building taller than the others or to
move the location of a single window in a large façade. In this situation, we can use
local edits. These allow us to edit attributes with handles. Local edits are created by
selecting the Local Edits Tool; depending on how the rule is structured, this tool may
allow us to edit all local attributes in a row, column, or more complex patterns at
once. Local edits are discussed further by Lipp et al. (2019).

As we modify rule attributes, we may be trying to achieve an objective target such
as a target floor area for a building or group of buildings. CityEngine’s reporting
mechanism allows rules to collate such information and then prepare a summary
report for each model. The report operation accumulates values whenever it is
invoked, returning a sum total for the entire model [we may use the operation report
(“area”, 200)]. Multiple values (floor area, room volume, etc.) can be accumulated
for each rule and displayed in the Inspector as a table. If CityEngine’s dashboard
functionality is used, these tables can be presented as a range of graphs which update
automatically. They can show results over all models in the scene or only those
selected.

By taking the time to add reports to your models and using the dashboard func-
tionality, it becomes possible to explore the design space interactively with a wide
range of users. For example, clients may appreciate being able to use the handles to
edit building heights and receive instant feedback on the effects of available floor
area and construction costs.

Beyond raw reported analytics, we may be interested in the visual consequences
of our designs. CityEngine provides a range of tools for measuring distance and area
in the 3D scene (Fig. 35.16), but most interestingly provides visibility calculations;
this highlights the areas of models which are visible or not from a certain location
under a given field of view.

Finally, scenarios allow us to compare different events. Each scenario can contain
different layers of content on top of a shared background. For example, three different
developments proposed for a city block with different height can be shown, while
the surrounding city remains constant. A scenario can be duplicated and edited to
explore a new design space.

Fig. 35.16 Analysis tools. Left: viewshed calculations showing visible (green) and occluded (red)
areas. Middle: path length measuring tool. Right: area measuring tool
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35.5 Beyond CityEngine: Export Pathways

After we have painstakingly created shapes, written rules, and adjusted parame-
ters to generate our 3D reconstruction, we will want to view, export, and share our
CityEngine scenes.

It should be noted that CityEngine’s 3D view can create images with a reasonable-
quality lighting model. There are options in the viewport panel (View Settings) to
enable shadows (as cast by the sun), ambient occlusion (more accurate shadows in
geometry creases), and field of view (the angle of the scene we see). Images can be
saved from the 3D (Bookmarks → Save Snapshot…).

CityEngine’s 3D view renderer is a real-time OpenGL renderer similar to those
used for video games. If we would like more accurate physically based rendering
(PBR) and are prepared to wait for each image to render, we can use a third-party
renderer (such as POV-Ray, LuxRenderer, Unity game engine, Autodesk 3dsMax, or
Blender) to create accurate images. These renderers are complex pieces of software
in themselves, and the mechanics and artistry of setting up lighting and materials to
create beautiful photorealistic images are beyond this chapter.However, in Fig. 35.17,
we compare the default CityEngine rendering to the physically based Cycles renderer
in Blender. We note the high quality of light simulation (reflections, shadows, and
color bleeding) and material appearance.

To use an external renderer, we must export our models as 3D meshes from
CityEngine to another package. CityEngine offers a variety of different formats to
export models (File → Export Models): Wavefront’s OBJ is a commonly used
interchange format, but other more exotic formats include Collada, Autodesk FBX,
and Alembic. Then a typical pipeline in a 3Dmodeling application such as Blender is
to import the 3D meshes, set up textures, and position the camera and lights. Finally,
a render operation is performed that might take minutes or even days to produce a
large high-quality image.

To share our finished 3D meshes online with others as 3D objects, rather than 2D
images, there are several options. There is a rapidly growing selection of Web-based
3D hosts (Sketchfab, SketchUp 3DWarehouse, or Google’s Poly) who will host OBJ
meshes online so that they may be viewed in a browser. Links to the resulting Web
pages can be shared with clients and colleagues. However, these general 3D sites
lack support for many details from aCityEngine scene. Esri provides two solutions to
this problem: the CityEngineWeb scene exporter (File → Export Models…) and the
separate application ArcGIS Urban (ArcGIS Urban → Synchronize all scenarios).
This ensures that details such as lighting information, different scenarios, and shape
information remain visible and interactive for viewers, although editing attributes
is not supported. Esri provides a convenient pipeline from CityEngine to host Web
scenes on their online platform; this includes support for a “split-screen” to show
two scenarios side by side in the browser.

Immersive technologies are a recent and popular trend in 3D visualization. Virtual
reality (VR) is the most popular medium: Users wear a headset (such as the Oculus
Rift or HTC Vive) which tracks head motions and shows different images to each
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Fig. 35.17 Top: CityEngine’s default OpenGL real-time renderer without ambient occlusion or
shadows. Middle: with ambient occlusion and shadows. Bottom: Blender’s Cycles renderer takes
12 min to render this image with soft shadows and reflective glass. The mesh was exported to
Blender in the OBJ format
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eye to create a realistic and immersive 3D experience. Creating these experiences
is still a technical process and requires the use of a video game engine; the most
developed CityEngine pipeline uses the Unreal Engine. CityEngine 2019.0 includes
a betaUnreal Enginemodel exporter, the output of which can be imported intoUnreal
via the Datasmith toolkit. The technical details are documented online and are likely
to change in the near future (Esri 2019d).

The CityEngine VR experience presents a tabletop containing the models
(Fig. 35.18). This presents the exported models on a tabletop in a virtual office.
Users are able to explore the models by dragging the model on the tabletop. Option-
ally, the user can teleport to pre-designated sites in the 3D world to get a street-level
view of the model. These design decisions avoid some of the discomfort of moving
users through VR at high speeds. The tabletop interface eliminates motion sickness
by allowing users to stand over the scene and explore it from a “virtually static”
location.

There are downsides to VR as a presentation format. A minority of people still
experience motion sickness or discomfort, the headsets are not suitable to be worn
for long periods of time, and they are still low resolution when compared to desktop
monitors. These limitations are rapidly diminishing as improved hardware and soft-
ware interfaces become available.However, for applicationswhere immediate impact
or immersion is important, they can be very powerful tools for stimulating discussion
and gauging impact.

Fig. 35.18 CityEngine virtual reality presents a tabletop model to navigate using the controllers
(right). Multiple users are supported (second user’s headset shown top center)
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35.6 Conclusion

CityEngine provides several pieces of unique functionality to the urban designer’s
toolkit. The ability to work with rules, rather than concrete manual models, can
massively reduce the time, increase the scale, and lead to a multitude of new work-
flows for designing urban spaces. These new workflows allow us to quickly iterate
solutions in a “client’s office” situation; the solutions can be visualized and quanti-
tatively analyzed on-the-fly. Such innovations allow faster user feedback as well as
a better understanding of the problem and solution spaces.

All new workflows come with caveats and CityEngine is no exception. When
a non-programmer (who does not write rules) uses CityEngine, he or she faces a
limited selection of rule files. A programmer will usually have to invest substantial
time learning CGA and creating rule files appropriate to the problem. However,
there are substantial resources available to aid both groups of users: Large libraries
of rules are available online, and comprehensive API documentation is provided for
the programmer.

CityEngine originally grew out of Pascal Müller’s academic work at ETH Zürich
(Müller 2010). The continuing development of the CityEngine software product
has been quietly shadowed by academic works detailing the future innovations
in the system (Schwarz and Müller 2015); such technologies and features often
flow between other Esri products and CityEngine itself. Recent innovations in dash-
board data presentation and pipelines for virtual realities reflect the exciting ongoing
development of the system at Esri R&D Center Zürich.
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Chapter 36
Integrating CyberGIS and Urban
Sensing for Reproducible Streaming
Analytics
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Abstract Increasingly pervasive location-aware sensors interconnectedwith rapidly
advancing wireless network services are motivating the development of near-real-
time urban analytics. This development has revealed both tremendous challenges
and opportunities for scientific innovation and discovery. However, state-of-the-art
urban discovery and innovation are not well equipped to resolve the challenges of
such analytics, which in turn limits new research questions from being asked and
answered. Specifically, commonly used urban analytics capabilities are typically
designed to handle, process, and analyze static datasets that can be treated as map
layers and are consequently ill-equipped in (a) resolving the volume and velocity of
urban big data; (b) meeting the computing requirements for processing, analyzing,
and visualizing these datasets; and (c) providing concurrent online access to such
analytics. To tackle these challenges,we have developed a novel cyberGIS framework
that includes computationally reproducible approaches to streaming urban analytics.
This framework is based on CyberGIS-Jupyter, through integration of cyberGIS
and real-time urban sensing, for achieving capabilities that have previously been
unavailable toward helping cities solve challenging urban informatics problems.
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36.1 Introduction and Background

Harnessing urban big data to support scientific investigations into the impacts, chal-
lenges, and opportunities associated with increasing urbanization promises to enable
the combination of analysis, observation, and modeling capabilities and to set and
evaluate urban development policies and goals. Urban areas account for 70% of
greenhouse gas emissions and energy use while contributing nearly 80% of total
gross national product (GNP) (UN-Habitat 2011). They are consequently important
levers to address environmental sustainability. For example, in the Chicago urban
area, over 120 cities, towns, and villages have formally adopted a joint sustainability
plan called the “Greenest Region Compact” (Marka 2019), understanding that chal-
lenges such as the reduction of greenhouse gas emissions or the improvement of
air quality are regional in nature, requiring holistic approaches. Setting and tracking
progress toward meeting those goals requires harnessing urban big data from not
only traditional sources but from new sensor networks, high-bandwidth instruments
such as light detection and ranging (LiDAR) and camera systems, and new sources
such as those related to remote imaging or mobility. This will require a new approach
to urban spatial analytics to support scientific investigations into the impacts, chal-
lenges, and opportunities associated with increasing urbanization. These investiga-
tions will require applying analysis, observation, and modeling capabilities to set
and evaluate urban development policies and goals.

In this context, complex and massive urban data are increasingly collected for
understanding and tackling such grand challenges, motivating many urban observa-
tories that could play essential roles in resolving these challenges through science,
engineering, and policy innovations (Miller et al. 2019). However, such observatories
require innovative approaches to integratingdynamic andvoluminousurbandatawith
associated analytics for a variety of scientific problem-solving and decision-making
purposes. Therefore, the overarching objective of this research is to develop an inno-
vative cyberGIS (i.e. geographic information science and systems or GIS, based on
advanced cyberinfrastructure: Wang 2010) framework for integrating urban sensing
and analytics in a computationally reproducible way.

36.1.1 Urban Sensing Data

With recent rapid advances in andwidespread adoption of location-aware devices and
sensors, researchers in many fields now have an overwhelming wealth of dynamic
urban data to investigate pressing scientific questions (Armstrong et al. 2019). These
data streams from fixed as well as mobile platforms pose significant challenges
to urban analytics. The past decade of open-data initiatives has similarly resulted
in diverse new datasets related to urban infrastructure, operations, and activities
(Huijboom and Van den Broek 2011). Anonymized open data is also available for
many US cities such as the City of Chicago, with detailed records of over a decade
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of crimes, 311 service calls, permits, inspections, traffic flow, and other operational
data. Integrating and analyzing these varied data sources will not only enable new
questions about, and insights into the interdependencies of urban phenomena, but
also new approaches to understanding complex environmental and urban systems
(Xu et al. 2017). For example, a science question may be posed to explore the
relationships between social factors such as crime or school performance and the
environmental characteristics of urban neighborhoods (e.g. with or without green
spaces, weak or strong local economy, etc.).

For many questions, data such as those related to air quality or urban heat lack the
spatial and temporal resolutions that are needed to better understand neighborhoods.
The National Science Foundation (NSF)-funded Array of Things (AoT), a partner-
ship of the University of Chicago, Argonne National Laboratory, and the City of
Chicago, set out to use new sensor technologies and embedded (or “edge”) compu-
tation to create an experimental “instrument” comprising hundreds of intelligent
sensing devices. The “nodes” were designed to measure Chicago’s urban environ-
ment, air quality, and activity such as traffic or pedestrian flow at neighborhood
resolution. The project integrates established and emerging sensor technologies to
measure several dozen urban environmental conditions,with remotely programmable
machine learning capabilities to measure factors for which no sensors are available,
such as the flow of pedestrians through a park or of bicycles through an intersec-
tion (Catlett et al. 2017). AoT has deployed more than 130 nodes in Chicago. Test
deployments are under way in over a dozen cities around the globe.

To illustrate the nature of data from suchmeasurement instruments, a singlemonth
of AoT data is in the range of 2 GB compressed, or about 10 GB uncompressed. This
is several times larger than the entire Chicago crimes database from 2001 to present
(18 years) comprising 7 million rows of crime records.

36.1.2 CyberGIS

During the past decade, cyberGIS has emerged as a new generation of GIS,
comprising a seamless integration of advanced cyberinfrastructure, GIS, and spatial
analysis and modeling capabilities while leading to widespread research advances
and broad societal impacts (Anselin and Rey 2012; Wang and Goodchild 2019).
CyberGIS has provided a solid foundation for breakthroughs in diverse science,
technology, and application domains, and contributed to the innovation of cyberin-
frastructure overall (Wright andWang 2011). During the past several years, cyberGIS
has grown as a vibrant interdisciplinary field while the cyberGIS community has
achieved significant advances in tackling challenging environmental and geospatial
problems (e.g. Hu et al. 2017, Liu et al. 2018).
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36.1.3 Spatial Data Synthesis

Substantial progress has been made through a data science project funded by NSF
to establish core spatial data synthesis capabilities (e.g. integrating geotagged data
streams from social media, census data, and urban infrastructure registry data; Wang
2016). The core capabilitieswere developed and deployed using cyberGIS supercom-
puting and cloud architecture to support spatial big data analytics. These capabilities
include: (a) vector-data processing; (b) raster processing; (c) integration of heteroge-
neous spatial data streams; (d) spatial data visualization; and (e) spatial data retrieval
and storage.

Developing synthesis capabilities for varied data from a multitude of sources
poses new challenges due to the dynamic nature of the data sources and the user-
driven nature of data synthesis, which requires the process to be always-on and
highly available, demanding innovative computational capabilities. The NSF project
has demonstrated powerful synthesis capabilities for spatial data that were devel-
oped to overcome the challenge of handling urban big data by researchers who
may not be fully trained to employ advanced cyberinfrastructure (Soliman et al.
2017). The developed capabilities benefit from integrated high-performance and
cloud computing to overcome some key challenges such as providing on-demand
access to virtual distributed processing clusters with elastic resource provision. The
cyberGIS framework described in this chapter integrates these capabilities to enable
urban discovery and innovation based on streaming data and related urban analytics
(Fig. 36.1).

36.1.4 Cyberinfrastructure

The varied types of urban data and associated analytics introduce critical require-
ments for innovating cyberinfrastructure and cyberGIS. The varied types, sizes, and
formats of data pose a need for varied modalities of computing. For example, fast-
streaming data from numerous AoT nodes will need an elastic and integrated high-
performance computing (HPC) and cloud infrastructure to manage and process the
data in near-real time, while historical datasets like census and topographic datasets
can be processed in an HPC batch environment.

Resourcing Open Geospatial Education and Research (ROGER) has been estab-
lishedusing experiences gained fromanNSFMajorResearch Instrumentationproject
for computation- and data-intensive processing and analysis of geospatial data.
It provides hybrid computing modalities, including high-performance computing
(HPC) batch, data-intensive computing based on Hadoop and Spark, and cloud
computing, backed by a petascale common data store (Wang 2017). Moreover,
ROGER offers a wide variety of geospatial software packages, forming the core
computational environment of the cyberGIS framework.
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Fig. 36.1 A cyberGIS framework for streaming analytics to enable urban discovery and innovation

36.2 Framework

36.2.1 Architecture

The framework is designed to integrate cyberGIS with urban sensing data for (1)
facilitating user interactions with streaming urban analytics through an online envi-
ronment; (2) providing cyberGIS capabilities to achieve scalable urban analytics; and
(3) managing the execution of analytics and their interactions with measurements.
These functions are accomplished by: (a) the speed layer; (b) the batch layer; and (c)
the serving layer, which are coupled with scalable computing capabilities including
a workload-aware data and computation management capability (Fig. 36.2).
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Fig. 36.2 Architecture

The framework takes a holistic system approach to: a) varying workloads
including low-latency read, fast update, and ad-hoc queries; and b) linear scala-
bility (Yang et al. 2014). When data arrive (e.g. via Apache Kafka; Kreps et al.
2011), they are ingested separately by the speed layer and batch layer. The speed
layer is required to specifically make data immediately available for both real-time
queries and analysis that are critical for some application scenarios (e.g. emergency
management). Hence, the speed layer focuses on the most recent data and streaming
analytics and is built on event-processing frameworks (e.g. Apache Storm 2020).
On the other hand, the batch layer is designed to handle the integration with large
historical datasets, with computationally intensive tasks performed on it. Therefore,
the speed layer is designed to sustain high-frequency writes and provide a real-time
view into the data while the batch layer is developed for read intensive and analytical
workloads. Both batch and speed layers are connected to end users by the serving
layer, which accesses the results of previous operations through a diverse range of
data stores, including in-memory databases (e.g. REDIS 2020), NoSQL databases
(e.g. Cassandra; Apache Cassandra 2020) and big data storage systems (e.g. HDFS;
Shvachko et al. 2010). The serving layer provides the interactive user interfaces
described in the following section.
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36.2.2 User Environment

The user environment is established by enhancing CyberGIS-Jupyter to achieve
reproducible and scalable computational tasks (Yin et al. 2019). Through this online
environment, a usermay invoke aCyberGIS-Jupyter notebookwith a suite of analysis
tasks, perform the tasks that can be executed on cyberinfrastructure resources, and
customize the notebook for specific reproducible investigations that can be shared
with other users. The usermay also be interested to access automatedworkflowsusing
cyberGIS visual analytics with a particular focus on specifyingworkflow parameters,
interpreting workflow results, assessing visualizations, and sharing results and visu-
alizations with pertinent collaborators and communities. The user environment is
designed for a large number of users to simultaneously conduct streaming analytics.

36.2.3 Analytics

Spatial references and spatiotemporal resolutions are fundamental characteristics
of urban data. Conflating urban data for both analytics and visualization purposes
necessitates transforming the data into common projection systems and spatiotem-
poral units. For example, map reprojection achieves this transformation by applying
common map operations such as coordinate translation, framing, forward- and
inverse-mapping, and interpolation or resampling. Our earlier work has developed
techniques to do reprojection using HPC resources (Finn et al. 2019). Another core
capability aims to provide friendly interfaces through which users can interact with
urban sensing data and related analyses based on map layers, charts, and tables. We
have developed a Web-based and Open Geospatial Consortium (OGC) compliant
solution capable of providing interoperable access to heterogeneous spatiotemporal
data through the support of several Web services such as WMS, WFS, WCS, and
WPS, and state-of-the-art mapping libraries (e.g. leaflet, d3.js) to enhance the visual
representation of urban data.

36.3 Case Study

36.3.1 Study Area

TheChicagoMetropolitanArea (CMA) provides an ideal test case for the framework.
The CMA covers approximately 28,000 km2 with a population of over 10 million
people and is the third largest economy in the USA. It is at the crossroads of the
rail, road, and air transportation infrastructures in North America. Extreme heat has
already had detrimental effects on the Chicago urban population and by extension on
the regional and US economy (Karl and Knight 1997). Elevated night temperatures
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over multiple days, exacerbated by urban heat-island (UHI) effects, are implicated
in human health impacts (Semenza et al. 1996) as is neighborhood economic vitality
(Browning et al. 2012). Given that the average summer time temperatures in the
midwest are expected to increase by 3–6°F in the next 25–50 years (Wuebbles and
Hayhoe 2004), the framework is crucially important for examining the urban micro-
climate at finer spatial and temporal granularities and directly coupling data with
urban heat-related analytics to enhance our understanding of related issues in urban
environments.

36.3.2 AoT Data

This case study uses data from AoT, coupled with computationally intensive
spatial analyses, to explore a “smart city” vision that can make urban planning
and policy adjustment possible on time scales of days or weeks rather than more
traditional multi-year time windows. AoT nodes include both sensors (including
cameras and a microphone) and embedded (“edge”) computing resources, enabling
remotely programmedmachine learning to analyze data in situ. Currently, AoT nodes
measure temperature, relative humidity, barometric pressure, light, vibration, carbon
monoxide, nitrogen dioxide, sulfur dioxide, ozone, ambient sound pressure, and
particulate matter. Nodes analyze images at 30 s intervals to count pedestrians and
vehicles, transmitting these numbers along with readings from the sensors every 30
s to a central data repository. A map for the locations and types of sensors of AoT in
Chicago is available at the project website (Catlett 2020).

Data are open and free, available for bulk download and through a real-time
API. With respect to climate, AoT data have been used as part of a project funded
by the Department of Energy’s Exascale Computing Program for calibration and
parameterization of fine-resolution weather models (Jain et al. 2018). Figure 36.3
shows a general workflow of how AoT measurement data can be translated into
useful smart city applications.

Initiated with experimental nodes deployed in 2016, the project is implemented
using Argonne’s Waggle hardware/software platform (Beckman et al. 2016). As of
late 2019, the 130 nodes in Chicago and over 60 nodes being deployed in partner
cities represent the fourth generation of the platform (Fig. 36.4). Recent funding
from NSF for the SAGE (Beckman et al. 2019) project aims to move to the fifth
generationwith substantially increased edge computing power, new sensors, andwith
experimental deployments in multiple observatories including the NSF’s National
Ecological Observation Network (NEON; Keller et al. 2008) and High-Performance
Wireless Research and Education Network (HPWREN; Hansen et al. 2002).

The spatial distribution of nodes is illustrated in Fig. 36.5 showing the munici-
pality ofChicago (589km2).Thedensity of deployment varies fromeveryblock along
several streets in the downtown area to more sparse distribution in residential areas.
Locations are selected in cooperation with science teams, city officials, and commu-
nity groups. An analysis by the University of Chicago’s Center for Spatial Data
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Fig. 36.3 A workflow from AoT sensor data to smart city applications

Science showed that 80% of Chicago’s population lives within 2 km of an AoT node
and 42% live within 1 km. While traditional sources for measurements such as air
quality are available, for instance, there are fewer than 10 Environmental Protection
Agency sites in the Chicago municipality, and most only measure 1 or 2 pollutants.
AoT is an experimental instrument with respect to the technologies, and similarly,
the density of nodes is aimed at optimal placement for various research or policy
questions and their associated measurement requirements.

Another issue worth noting is that different generations (or “models”) of AoT
nodes (three models are in operation as of late 2019) vary with respect to sensors
and capabilities. Only a few of the early nodes measured particulate matter, but all of
the fourth-generation nodes are equipped with particulate-matter sensors. Similarly,
the microphone in early nodes measured aggregate sound pressure, while new nodes
provide measurements for ten octaves. As shown in Fig. 36.5, several nodes may be
not working at a specific time, and during software updates and experimental soft-
ware deployments, many nodes may be unavailable for periods of time. Figure 36.5
indicates that orange nodes are active while blue nodes denote inactive nodes. In
reality, the number of nodes that are available may not equal the total number of
AoT nodes deployed. The Waggle platform provides resiliency to communication
outages, caching all measurements until the data have been transmitted to the central
servers and acknowledged as received. Thus, in periods where nodes appear unavail-
able, the data for that period of time may become available later. Such factors are
less visible in the bulk downloads than in using the real-time API.
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Fig. 36.4 The deployment information for AoT nodes in Chicago

36.3.3 CyberGIS-Jupyter

CyberGIS-Jupyter serves as the foundational engine for capturing and analyzing real-
time streaming AoT data. CyberGIS-Jupyter is equipped with cyberGIS libraries
scaling to both high-performance computing and cloud resources (Padmanabhan
et al. 2019) and hence can support computationally intensive spatial analysis for
users not only to capture the real-time, high-frequency data, but also to conduct
urban analytics with AoT data. In this case study, real-time location-based AoT data
can be used for understandingChicago’s heat environment. For example, temperature
patterns can be derived based on AoT data as shown in Fig. 36.6. For all AoT nodes
with temperature sensors, the temporal trend on September 30, 2019, is visualized
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Fig. 36.5 The spatial distribution of AoT nodes in Chicago

Fig. 36.6 The temperature curve derived from AoT data
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on CyberGIS-Jupyter with different colors indicating different nodes. The AoT data
have high frequency with the temperature data recorded every 26 s on average.

Due to the huge amount of data stored, with 2–3 GB of data captured from AoT
every week, AoT’s API cache only keeps 3–4 weeks of fresh data. In order to get
the data back in 2017, for example, we need to download the whole dataset from
the AoT bulk download website (or a subset of months of interest) and start our data
processing from there.

Using the AoT streaming API as our data access option, spatial analysis of the
temperature data and the geolocation of the AoT nodes can be conducted based
on CyberGIS-Jupyter. Considering the need for identifying dense concentrations
of high-temperature areas, Fig. 36.7 shows temperature patterns within one week

Fig. 36.7 Temperature maps in Chicago based on AoT sensors using a spatial interpolation algo-
rithm. Temperature measurements are in degrees Celsius. From the top left to last map in the last
row, each map represents the temperature distribution captured at 6am on September 30th, October
1st, October 2nd, October 3rd, October 4th, October 5th, and October 6th, respectively
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in 2019. One can distinguish some hot spots from these heat maps. A workflow
has been developed to capture the temperature data of the Chicago area based on
CyberGIS-Jupyter from all of the available temperature sensors in Chicago using
AoT’s API at 6am in the morning from September 30th to October 6th on a daily
basis. Combining with the geolocation of the sensors, the dynamic maps shown in
Fig. 36.7 were generated using an inverse-distance weighted algorithm for spatial
interpolation (Wang and Armstrong 2003). As shown in Fig. 36.7, throughout the
week, the temperature in northwest Chicago, near Jefferson Park and North Park,
and oftentimes in southeast and downtown Chicago, was higher than the average
temperature in other areas. It is straightforward to understand that the temperature
in downtown and southeast Chicago was higher due to human activities, since those
areas have high population density. We investigated the sensor located in northwest
Chicago (latitude 41.97 N, longitude 87.76W, Fig. 36.8) and found it is installed near
an underground transformer and some external air conditioners, which seem to be the
heat sources. In addition, the density of sensors in northwest Chicago is lower than in
other urban areas as shown in Fig. 36.5, leading to the skewed spatial interpolation
result near Jefferson Park. The workflow for this analysis and associated data is
represented as a CyberGIS-Jupyter notebook that can be shared with other users for
reproducing the same results. The notebook can be adapted to accommodate data
from different AoT nodes and time ranges and support different parameter values
of the analysis (e.g. the number of the nearest neighbors in the spatial interpolation
algorithm).

Fig. 36.8 AGoogle Steetview image of theAoTnode located at latitude 41.97N, longitude 87.76W
near Jefferson Park on Chicago’s Northwest side
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Similar to the example for analyzing temperature patterns demonstrated above,
CyberGIS-Jupyter allows users to select other measurements from specific AoT
nodes and specify temporal ranges to retrieve corresponding data streams for
conducting computationally intensive analytics based on advanced cyberinfrastruc-
ture. Eachworkflow for combining AoT and other related data with specific analytics
can be represented as CyberGIS-Jupyter notebooks that can record the provenance of
computational steps in the workflow. Many users can simultaneously compose and
run their notebooks on CyberGIS-Jupyter without noticing that their notebooks are
executed on advanced cyberinfrastructure. While it is often challenging to “freeze”
dynamic data streams to experiment with various analytical scenarios, CyberGIS-
Jupyter notebooks can be shared among users to enable collaborative development
and computational reproducibility of urban analytics with dynamic data (https://go.
illinois.edu/CyberGIS-UrbanInformatics).

36.4 Concluding Discussion

Large cities like Chicago increasingly engage data-driven methods for urban plan-
ning and management, including for example land-use and transportation modeling,
economic forecasts, and environmental monitoring. However, the ability to continu-
ously monitor and alter policies of urban planning and management in a responsive
manner is hampered by the difficulty of harnessing high-quality, spatially explicit,
and temporally continuous data. In the USA, for example, large-scale land-use plan-
ning requires fine-resolution land cover data that is only available every five years
from the National Land Cover Database. Similarly, socioeconomic models depend
heavily on a census that is conducted on a ten-year interval. Due to these difficulties,
though cities incorporate data-driven approaches in their planning processes, it is
still challenging to implement the “smart city” vision based on fast data streams. A
key barrier is the inability to make timely interventions and management decisions
when environmental, social, or economic processes take place dynamically.

To address these challenges, this research has demonstrated that users can
conduct computationally intensive streaming analytics using CyberGIS-Jupyter and
AoT data without having to possess in-depth technical knowledge of cyberGIS
or cyberinfrastructure. AoT data can be harnessed through CyberGIS-Jupyter to
help users to monitor urban heat and other key indicators of urban dynamics. The
cyberGIS framework described in this chapter is able to resolve the volume and
velocity of urban big data through the support of advanced cyberinfrastructure;
meet the computing requirements for processing, analyzing, and visualizing these
datasets; and support concurrent online access to CyberGIS-Jupyter notebooks for
collaborative development and computational reproducibility of urban analytics.

https://go.illinois.edu/CyberGIS-UrbanInformatics
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Regarding future research in urban informatics involving fast data streams, it is
both important and challenging to achieve reproducible urban analytics. Without
computationally reproducible urban analytics, it would be difficult, if not entirely
impossible, to convince decision makers and practitioners to adopt such analytics in
any real-world settings. Fast data streams produce data continuously and pose signif-
icant challenges that must be addressed through novel algorithms that treat spatial
and temporal characteristics synergistically. Furthermore, exciting and important
cyberGIS research is urgently needed to better understand and support computational
reproducibility of urban analytics, which requires holistic approaches to optimizing
access and management of cyberinfrastructure resources, trading off performance
and uncertainty of spatial and spatiotemporal algorithms, and generalizing standards
and specifications for the building blocks of urban analytics.
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Chapter 37
Spatial Search

Liping Di and Eugene G. Yu

Abstract Urban studies concern the evolution of spatial structure in cities, where
information is often tied to location. The discovery of information is in a high-
dimensional space based on spatial and temporal dimensions, where the spatial rela-
tionships of components play roles in studying urban evolution. Spatial search in
urban studies has to deal with diverse aspects of data structures (structured versus
unstructured), data spatial context (implicit versus explicit), data spatial relationships
(containment versus intersection), data volume (large volume versus large variety),
spatial search speed (speed against different requirements), and spatial search accu-
racy (exactness versus relevance). This chapter reviews the technology in mining and
extracting spatial information into urban geographic information systems, spatially
indexing the urban information for effective spatially aware search, spatial rela-
tionships and their search algorithms, improving spatial relevance with different
spatial similarity measures and algorithms, and open standards and interoperability
in spatial search in the Web environment. Emerging technologies for spatial search
in urban studies are also reviewed. Applications of spatial search in urban studies
are exemplified and evaluated.

37.1 Spatial Search in the Context of Urban Studies

Urban studies is a transdisciplinary field that encompasses different academic fields,
including urban geography, urban sociology, urban economics, urban housing and
neighborhood development, urban environmental studies, urban governance, poli-
tics and administration, urban planning, design, and architecture (Bowen et al.
2010; Harris and Smith 2011). Search is ubiquitous in these focused research areas
(Ballatore et al. 2016). In its most general form, spatial search is the search for
information in a spatial and temporal context (Miller 1992). The introduction of the
spatial dimension in the search problem can be viewed from two perspectives: one
is as part of the information sought (i.e. the search for a place) and the other is as
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the context in which the search is carried out (e.g. the network of roads to be routed
through with an optimal route; Miller 1992).

Spatial search in urban studies carries different connotations depending on the root
subject and the application. In the context of technology and geoinformatics, spatial
search includes spaceless point search, range search, k-nearest neighbor search, and
aggregated spatial search (e.g. total area or total count). In economics and soci-
ology, spatial search can be seen as a decision problem and behavior. The spatial
search problem is formatted as a connected graphwith physical dimensions (e.g. two-
dimensional space). The spatial search problem can vary with options (e.g. perfect
knowledgewithfixed sample set, onlinewithout recall, onlinewith recall,with imper-
fect information). In the environment of linked open data (LOD), spatial search can be
described as a process of identifying the place (converting into geographic informa-
tion), modeling the spatial dimensions, indexing spatially for improved performance
or heuristic results, formulating the search problem, and searching for results in
constrained cases.

Spatial search in urban studies involves the following components to manage and
maintain a spatial information system:

• Geocoding: a process to parse and extract spatial references from a query request.
• Spatial indexing: a process to improve the performance of spatial information

retrieval.
• Spatial search algorithms: a set of algorithms to achieve the efficient and effective

discovery of spatial information for different applications.
• Catalog and federated catalog: a system to manage spatial metadata.

The chapter is organized as follows. The next section reviews the geocoding
process. Information about popular geocoding approaches and tools is introduced in
this section. This is followed by a review of the approaches and data structures used
in indexing the spatial information. The third section describes the spatial search
problem as expressed in computer algorithms, while the fourth section reviews the
cataloging strategies of spatial data and their approaches in distributed environ-
ments. The final section briefly touches on some of the recent advances and research
directions in spatial search.

37.2 Geocoding

In urban studies, place names and street addresses are commonly used in referencing
data geospatially (Dueker 1974). Geocoding is the step to relate location to descrip-
tive text or place names. In early literature, it was termed place naming (Dueker
1974; Tobler 1972). In urban areas, geocoding can be efficiently referenced using
different approaches for different datasets. Street geocoding, parcel geocoding, and
address-point geocoding are three of the commonly used approaches in geocoding
to associate an address with spatial coordinates (Zandbergen 2008; Owusu et al.
2017). As more and more types of geocode have emerged, the levels of detail can
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be associated with geocodes at different granularities. Table 37.1 shows the major
generations of geocoding technologies along with major software or services for the
corresponding generation. Geocoding has evolved along with the development of
geographic information systems (GIS). At the beginning of GIS development, in the
1960s, the simplest geocoding schemes and systems became available. Geocoded
area units could be matched to a representative point. Because these geocodes (e.g.
demographic information, economic metrics) can associate with many attributes,
they can be used effectively as base areal units for analyzing spatial differentiation
in urban areas.

In the Web environment or connected applications, the approach is to use the
API provided by geocoding services. All these services support both geocoding and
reverse geocoding. The responses of these APIs are mostly in JSON, which can be
easily incorporated and used by JavaScript in the Web environment (Table 37.2).

A place name may evolve over time, and sometimes, a place may carry multiple
alternative names. In such cases, a gazetteer (a searchable database of toponyms) is
useful and may be adapted to provide specific geocoding assistance. A gazetteer also
contains basic information about the place in addition to geographic coordinates. This
basic informationmay include demographic statistics, physical features, literacy, and
economic conditions. The NGA GEOnet Names Server (GNS) is one of the sources

Table 37.1 Brief history of geocoding development

Generation Geocoding technologies Representative system or service

1960s City block codes; street segments;
representative point; Address Coding
Guides (ACG) (Dueker 1974)

Automatic Location Table (AULT;
Dueker 1974)
Street Address Conversion System
(SACS; Dueker 1974)

1970s Dual Independent Map Encoding
(DIME) (Farnsworth and Curry 1970)

Address Matching System (ADMATCH),
Geographic Base File System (DIME),
Computer Mapping System (GRIDS)
(Farnsworth and Curry 1970)

1980s Geographic Base File (GBF) (Davis
et al. 1992)

GBF/DIME (Davis et al. 1970)

1990s Topologically Integrated Geographic
Encoding and Referencing (TIGER)
(Broome and Meixler 1990)

2000s Commercial geocoding scheme
Multilevel geocoding (Zandbergen
2008; Goldberg 2017)
ADDRESS-POINT™ (Mesev 2005)
Geocoded National Address File
(G-NAF) (Paull 2003)
Open Street Map (OSM)

Commercial software and services
(Goldberg et al. 2007)

2010s Master Address File (MAF) (Trainor
2003)

MAF/TIGER (Galdi 2005; Trainor 2005)
Commercial geocoding Application
Programming Interface (API) (Panasyuk
et al. 2019)
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Table 37.2 List of selected geocoding web services

Name Limitation for service Reference data Reference or endpoint

Google geocoding
API

50 requests per
second; free credit
$200 each month

Google maps https://maps.googleapis.
com/maps/api/geocode/
json

Bing Locations API Maximum 2 jobs at the
same time. 50
jobs/24 h. 5 data
sources and 2500
entities per source

Bing maps
(NAVTEQ)

https://docs.microsoft.
com/en-us/bingmaps/rest-
services/locations

Yahoo geocoding API 5000 queries per IP
address per day

Yahoo maps
(NAVTEQ)

https://local.yahooapis.
com/MapsService/V1/
geocode

Baidu
geocoding/reverse
geocoding API

One million times/day Baidu maps https://api.map.baidu.
com/telematics/v3/geo
coding
https://api.map.baidu.
com/telematics/v3/revers
eGeocoding

Yandex geocoder API 25,000 total requests
per day to the
geocoder, router, and
panorama service
combined

Yandex maps
(NAVTEQ)

https://tech.yandex.com/
maps/geocoder

Gaode geocoder API 250 query requests per
day (API calls)

Gaode map https://lbs.amap.com/api/
javascript-api/guide/ser
vices/geocoder

Nominatim 1 request per second OpenStreetMap
(OSM)

https://nominatim.openst
reetmap.org/search
https://nominatim.openst
reetmap.org/reverse

Texas A&M
Geoservices
Geocoder

2500 queries Combined
resources

https://geoservices.tamu.
edu/Services/Geocode

used in these services. These services from gazetteers have been found very useful
in urban studies (Janowicz et al. 2019; Dimou and Schaffar 2009). Table 37.3 lists
a few of the most widely used gazetteers for retrieving geographic dimensions or
coordinates of a place name and basic information about the place. The capabilities
of gazetteers in disambiguating place names and putting place in context have led to
many applications in the semantic analytics of urban studies (Janowicz et al. 2019).

https://maps.googleapis.com/maps/api/geocode/json
https://docs.microsoft.com/en-us/bingmaps/rest-services/locations
https://local.yahooapis.com/MapsService/V1/geocode
https://api.map.baidu.com/telematics/v3/geocoding
https://api.map.baidu.com/telematics/v3/reverseGeocoding
https://tech.yandex.com/maps/geocoder
https://lbs.amap.com/api/javascript-api/guide/services/geocoder
https://nominatim.openstreetmap.org/search
https://nominatim.openstreetmap.org/reverse
https://geoservices.tamu.edu/Services/Geocode
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37.3 Spatial Indexing

Spatial indexing is the process of creating an effective and efficient data structure to
help in speeding up spatial queries. Spatial indexing differs from common database
indexing in having spatial properties: the object is not just one value but has two or
more dimensions, and the size of an object may be non-zero (that is, a line, area, or
volume; Kriegel and Seeger 1988). These properties lead to spatial relationships that
are more complex than simple linear relationships. Many spatial indexing schemes
have been developed along with the development of computer technologies (Kriegel
and Seeger 1988; Lu and Ooi 1993). The basic goal of such spatial indexing is to
reduce the computation required to retrieve matched spatial objects, given a set of
geometrical criteria.

To create a spatial index, it is first necessary to identify the features to be indexed.
For example, in a 2D spatial world, geographic features are commonly expressed
as points, lines, or areas. Points can be represented as a pair of coordinates, which
can be treated as fields to be indexed in a spatial database. Most spatial indexing
approaches are specially designed for points (Lu and Ooi 1993). Lines and areas
cannot be represented accurately as fields fit for indexing in a spatial databasewithout
losing information. Representative features need to be either selected or extracted for
complex geographic objects. The processes are analogous to feature selection and
feature extraction in machine learning, statistics, and information theory. In other
words, the selection of features does not change the values which can be interpreted
as dimensions. For example, the minimum bounding rectangle (MBR), the two-
dimensional case of the minimum bounding box, can be treated as a selected feature,
since its value can be found in the array of coordinates representing the geographic
object. Any selected coordinate from the represented arrays (e.g. start point, end
point, or middle point) can also be selected as the basis of indexing. The process can
be generalized as one of transforming a k-dimensional space to a 2 k-dimensional
space as described by Kriegel and Seeger (1988). For example, a rectangle aligned
with the axes in 2D space can be defined by four coordinates. One encoding can
be the corner coordinates (either upper left coordinate plus lower right coordinate
or lower left coordinate plus upper right coordinate) or the center coordinates plus
extent distances to each side (Kriegel and Seeger 1988). The grid file could be a
four-dimensional grid, with the rectangle snapped to the closest cell in the grid file.
On the other hand, the extraction of features goes through a computerized process to
compute a set of values from the objects. For example, a hashing value is computed
from the object using a hashing function. A centroid can also be computed from
the object. The object can be represented as the first n principal components using
principal-component extraction algorithms. These derived features can be used as
indexed fields in a spatial database.

The next question for spatial indexing is how to handle the overlapping of spatial
objects defined by the indexing spatial feature. Two schemes are available to dealwith
the partition: a clipping scheme (C-scheme) and a bounding scheme (OR-scheme)
(Kriegel and Seeger 1988). For example, when anMBR is used as the spatial feature,
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the coverage defined by one MBR may overlap with that of another MBR. One
example is shown in Fig. 37.1. With the clipping scheme, the object is duplicated
with both partitions when the partition line crosses the region. For example, Object
R3 is duplicated in both partitions (Fig. 37.1a). With the OR-scheme, Object R3 is
only included in one partition S1 (Fig. 37.1b). The advantages and disadvantages of
the two schemes are described in Table 37.4.

The computerized data structures for spatial indexing are as follows:

• Fixed grid index: The simplest example is uniform grid scheme where the space
is partitioned uniformly into regular grids by value ranges along each axis. The
grid system can be predefined with specified intervals or units. Retrieval time
for the closest spatial rectangle would be O(1), and on average for any spatial

Fig. 37.1 Partition scheme
for overlapping regions
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(b)
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Table 37.4 Schemes for overlapping regions in a partition

Scheme Pros Cons

OR-scheme Efficient storage utilization
One file hosts both points and rectangles

Increased time to search, insert, or
delete due to high overlap

C-scheme Efficient inheritance of underlying point
access methods
One file hosts both points and rectangles

Duplications of MBRs
Information redundancy

rectangle would be O(nCells + n), where nCells is the number of grid cells and n
is the number of spatial objects, that is, the rectangles in the example. Thememory
requirement is O(nCells + n).

• Spatial hashing: Because the distribution of spatial objects is often sparse, a
uniform grid would result in many empty cells. A hash table can be used to
store the index, and multi-level multi-key grid files can be used to index the
multi-dimensional spatial data (Bentley and Friedman 1979).

• Spatial data partitioning trees

– Binary space partitioning (BSP) tree: This is a general partition approach
to partition space recursively into two convex sets using a hyperplane. It was
developed as a general method in 3D video image processing (Schumacher
et al. 1969). The k-dimensional binary search tree (k-d tree) is constructed by
using one axis to split data at the median of the points along the axis (Bentley
1975). The Local Split Decision tree (LSD tree) is designed to handle both
points and intervals (Henrich et al. 1989). The K-D-B tree is a derived tree
structure that combines properties from the k-d tree and the B-tree (balanced
tree) (Robinson 1981).

– Quad tree: A quad tree builds a hierarchical representation of spatial data by
dividing recursively into four quadrants (Finkel and Bentley 1974).

– Octree: An octree is a hierarchical data structure that extends the quadtree to
3D, with all internal nodes having eight children (Meagher 1980).

– Balltree: A balltree is “a complete binary tree in which a ball is associated
with each node in such a way that an interior node’s ball is the smallest which
contains the balls of its children” (Omohundro 1989).

– R-tree: An R-tree uses a minimum bounding rectangle (MBR) to determine
its children (Guttman 1984). It is a balanced tree. Its variant trees include the
Hilbert R (Kamel and Faloutsos 1984), R + (Sellis et al. 1984), Priority R
(Arge et al. 2008), R* (Beckmann et al. 1990), GiST (Hellerstein et al. 1995),
and G-tree (Zhong et al. 2015).

– Metric tree: The vantage-point tree (vp-tree) is a space-partitioning algorithm
to construct a tree with a sphere-like bounding area to partition themetric space
(Yianilos 1993). Each part is defined within a threshold to each vantage point.
A multi-vantage-point tree (MVP tree) is a variant of vp-tree which uses more
than one point to partition at each level (Bozkaya and Ozsoyoglou 1999). The
cover tree algorithms construct a leveled tree where each parent covers the
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extent of all children (Begelzimer et al. 2006). The Bukhard-and-Keller tree
(BK-tree) is adapted to discrete space by arranging points that are close to each
other (Burkhard and Keller 1973).

37.4 Search Algorithms

A spatial search in urban studies can be viewed from different perspectives and
formulated differently for different subject domains. In this section, two perspectives
are examined. First, from the perspective of geography, spatial search is treated
as a technology and method, and typical spatial queries and corresponding search
algorithms are reviewed. Second, from the perspective of urban economics and urban
sociology, spatial search is treated as a form of decision-making, generalized spatial
search is formulated with graph theory, and related search algorithms are reviewed.

37.4.1 Spatial Queries

The following are the common types of spatial search used in urban studies:

• Nearest neighbor search: This is termed the k-nearest neighbor (k-NN) search.
Typical questions can be “Find the k stores that are closest to a given point or
current location” or “Find the closest restaurant.”

• Range search: Range search is also common in urban studies. Example queries:
“Find all the restaurants with 5 miles range” and “Find all the zones that can be
reached between a half hour and a hour.”

• Aggregate search: Questions can be often asked in urban studies that involve
spatial aggregation. Examples are: “Get the number of hospitals for travel distance
zones of under 10, 10–50, 50–100, and above 100 miles” or “Find the total area
of green space in an urban district.”

The k-NN search is well studied in computer science and geographic information
systems (Knuth 1997). There are a suite of algorithms designed to solve the problem.
There are two major categories of algorithms: exact search and approximate search.
The simplest approach to find the k-nearest neighbors is sequential search that does
not require any preprocessing of the spatial data (Bentley and Friedman 1979). The
search time is O(kn), where k is the dimension and n is the total number of features.
The storage requirement is also O(kn).

Spatial indexing can be used in preprocessing the data, creating a data structure
that can be easily retrieved. BSP-trees, metric trees, and R-trees are three types of
commonly used tree data structures in indexing spatial data. The kd-tree, one of the
BSP-trees, uses axial rays to partition (ending up as rectangles), while the vp-tree,
one of themetric trees, uses equidistance circles to partition data. TheR-tree structure
uses rectangles but has a focus on keeping the geographic object in a hierarchical
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structure. Most of these data structures lead to improvements by reducing the time
to search to approximately O(log n) on average.

Different geographic information systems may support different spatial indexing
algorithms. The R-tree and its variants are the most popularly implemented spatial
indexing algorithms in geographic information systems, including PostGIS,MySQL,
and Oracle. A grid-based spatial indexing scheme is popularly implemented in many
geospatial databases, including Esri geodatabase, Oracle, and Microsoft SQL, due
to its data-driven spatial indexing scheme.

Spatial search (k-NN, range search, or aggregate search) has been applied in many
urban studies. Alternative site selections, such as the “spatial search” of Massam
(1980), analyze spatial interactions and require range searches to assess the effect of
selecting one alternative over another. For example, a firm searching for a location
may consider the labor force that is available within a certain distance of each alter-
native location. In choosing a location for a retail store location, the analyst may need
to conduct spatial queries on household purchasing power within a certain distance
of each of the location alternatives. The results of such spatial queries would help in
evaluating alternatives and making better plans.

37.4.2 Spatial Search with Graph Theory

Spatial search can be seen as a decision problem in urban studies, especially those
studieswith roots in economics.EconomicSearchTheory iswell studied andhas been
used in studies of urban migration, urban markets, and urban agglomeration effects
(Meier 2009,2010). Adding the spatial context, a generalized spatial search model
can be formulated (Meier, 1995,2010). The spatial search problem is effectively
definedwithin a connected graph. The vertices of the connected graph are alternatives
at discrete locations in two-dimensional space. The edge connecting two vertices
represents the cost, which may be a function of distance. The goal is to maximize
the expected utility when the decision is to move from one vertex to another. Each
alternative may be visited once.

The model of spatial search results from the tight bounding and integration of
spatial context with a domain-specific model. In economics, this spatial model is
tightly integrated with a model of economic search. This approach of integrating the
spatial context with models in urban studies effectively converts the spatial search
problem into an optimization problem on a graph.

The traveling salesperson problem is NP-hard. However, most problems in urban
studies have a limited size, making them soluble. There are also heuristics to help in
solving the optimization problem efficiently.

With the conversion of the spatial search problem to an optimization problem
in a graph, the commonly used graph search algorithms become applicable to
the spatial search model. These algorithms include breadth-first search, depth-first
search, greedy best-first search, heuristic A*, and Dijkstra’s shortest path algorithm.
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The spatial search model has found applications in market area analytics, firm loca-
tion, urban effect analysis, and urban modeling (Meier 1995). The simple distance
or fuel cost-based spatial search model may be used in urban transportation planning
and commercial truck routing (Zarezadeh et al. 2018; Moreno-Monroy and Posada
2018; Monte et al. 2018).

37.5 Distributed Search and Interoperability in the Web
Environment

The abundance of geospatial information has grown beyond anyone’s ability to
manage it be properly. The introduction of live sensors and fast updating of informa-
tion also suggests that the monolithic geographic information system cannot satisfy
the requirements of spatial search in urban studies. Yet the data resources available
for urban studies continue to grow.

There are several approaches to enable spatial search and geoprocessing to
leverage the growing volume of information for urban studies. First, the informa-
tion can be harvested and ingested into a local spatial catalog system through the
harvesting of spatial metadata and data from different sources. The local spatial
catalog system has to manage all the information. Each harvester may be updated
or re-started (if incremental harvest is not supported by remote services). After each
harvest, spatial indexing needs to be updated or re-built. The advantage for such a
system is that the existing spatial indexing techniques are already supported. The
major drawbacks are that the data can grow out of control and are not always current.

Second, the information is harvested, integrated, and indexed in a distributed
manner. In this case, the local catalog system is replaced with a distributed catalog
that clusters multiple cloud-computing instances. Each cloud-computing instance
may handle a strip of information. A distributed spatial indexing scheme needs to
be adopted to support the spatial search in such a distributed system (Priya and
Kalpana 2018). The advantage for such a system lies in its capability to handle large
datasets in a scalable cloud-computing environment. The major limitations are: (1)
the freshness of the metadata and data cannot be warranted, (2) the remote services
may not allow the duplication of their metadata and data for various reasons, and (3)
the maintenance of a large distributed spatial catalog system can still be a challenge,
and the distributed spatial search capability is still in development.

Third, a federated spatial catalog system can be adopted to support the on-the-fly
integration of distributed search (Shao et al. 2013; Bai et al. 2007). The development
of a federated spatial catalog depends on the adoption of open geospatial standards.
The standard interface and response from catalogs make it possible to do translation
on the fly. The idea of federated catalog is to set up a series of plug-in translators that
handle the translation of request to and response from the remote catalog services.
When a user sends in a spatial query, the query request is first translated into a
format that matches the remote server and the translated request is sent out. The
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response from the remote service is then translated and integrated in the mediator
to be sent back to the user. The advantages of such a federated catalog are: (1) it
does not need extensive resources in manage the metadata and data since most of
the resources are still maintained by the original provider; (2) the contents are in
complete synchronization with remote services; and (3) spatial search is completed
in a distributed environment. The drawbacks are: (1) the spatial search function and
responses are tied to what the remote services offer, and (2) duplicates may not be
removed properly if two remote services offer the same content.

37.6 Trends

The spatial search problem is a hard problem to solve. The performance of current
solutions is acceptable only because either one of the following assumptions stands:
(1) the size of data is limited, (2) optimal heuristics exist for the dataset, or (3) the best
option executes in an acceptable time. This section reviews two frontiers in solving
the spatial search problem: a quantum spatial search algorithm and semantic spatial
search.

Quantum algorithms have emerged in solving the spatial search problem
with improvements. Quantum computing is seen as the future of computing, to
improve non-deterministic algorithms that consider multiple superpositions of states
(Venegas-Andraca 2008;Chakraborty et al. 2016;Ambainis 2008). The spatial search
problem is seen as one of the hard problems to be solved with classic computers
(Meier 1995,2010), or as a decision problem to find the target vertex in a connected
graph (Meier 1995). In a fully connected lattice graph of n vertices, the worst time
to find the marked target is O(n log n) using a random walk in a classic computer.
New algorithms in quantum computing have shown that the search can be improved
many fold with quantum random walks (Portugal 2018). A discrete-time quantum
walk (DTQW) algorithm improved the time to O(

√
n log n) (Ambainis et al. 2005).

A controlled quantum walk (CQW) algorithm on a lattice using an ancilla qubit
improved the time complexity to O((n log n)1/2) (Tulsi 2008). An improved version
of DTQW also achieved the same time complexity (Ambainis et al. 2015). Portugal
described an approach to the design of quantum algorithms for the spatial search
problem that explains howGrover’s algorithm (Grover 1996), the quantum algorithm
for searching a database, “can be seen as a spatial search problem on the complete
graph with loops using the coined model and on the complete graph without loops
using the staggered model” (Portugal 2018).

The application of semantic technology improves the accuracy of spatial search
withmore explicit spatial semantics.Most current spatial search solutions treat spatial
objects as a spaceless point. Spatial extents and spatial relationships are not taken
into full consideration with current solutions. The augmentation of linked geodata
(Stadler et al. 2012) with spatiotemporal semantics enables a semantic spatial search
(Neumaier and Polleres 2019). A Transportation ontology domain can be added to
a semantic-based public transportation geoportal to support semantic spatial search



37 Spatial Search 695

on concepts, relationships, and individuals (Gunay et al. 2014). Ontology provides
additional semantic constraints in semantic spatial search (Jones et al. 2004,2001).
A spatial entity can be described by its sub-components, and the search for a
spatial entity can be modeled as a multi-component spatial search problem (MCSSP)
(Menon and Smith 1989,Menon 1990). This effectively formulates the spatial search
problem as a constraint satisfaction problem (CSP) in computer science. The suite of
heuristic CSP algorithms can be applied to help in finding the best match, including
backtracking, graph-based backjumping, arc consistency, and forward checking
(Frost 1997).

37.7 Conclusion

Spatial search has been one of themost intensively researched topics in urban studies,
and can be traced back to a pre-computer era. The classic spatial search in dealingwith
connectivity between spatial objects or entities has been thoroughly researched and
supported by most geographic information systems. The spatial search problem can
be integrated with models in urban studies to put the research in spatial context.
Extending studies with spatial dimensions increases the complexity of problem
solving. In a fully connected graph depicting the relationships among entities in
a spatial context, the problem is NP-complete and is therefore difficult to solve.
However, in actual applications in urban studies, the data size is often manageable
and heuristics can be applied to solve the spatial search problem within a reasonable
time interval.

New developments in alternative computing environments shed light on solving
the spatial problem more efficiently. One of the most researched alternatives is
to leverage random walk with quantum computing. Several algorithms have been
proposed to solve the spatial search problem efficiently with quantumwalks. Another
frontier is the use of semantic Web technology in dealing with big data and
heterogeneous data in the spatial context.
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Chapter 38
Urban IoT: Advances, Challenges,
and Opportunities for Mass Data
Collection, Analysis, and Visualization

Andrew Hudson-Smith, Duncan Wilson, Steven Gray, and Oliver Dawkins

Abstract Urban Internet of Things (IoT) is in an early speculative phase. Often
linked to the smart city movement, it provides a way of sensing and collecting
data—environmental, societal, and transitional—both automatically, remotely, and
with increasing levels of spatial and temporal detail. From city-wide data collection
down to the scale of individual buildings and rooms, this chapter details the tech-
nology behind the rise of IoT in urban areas and explores the challenges (societal
and technical) behind city-wide deployments. Drawing from a series of deployments
at the Queen Elizabeth Olympic Park, London, it details the challenges and opportu-
nities for mass data collection. Widening out the view, it looks at what is becoming
known as “the humble lamp post” in Urban IoT fields to detail the potential of Urban
IoT with the objects that already form part of the urban fabric. Finally, it examines
the potential of Urban IoT for input into urban modeling and how we are on the edge
of a shift in the collection, analysis, and communication of urban data.

38.1 The Urban Internet of Things

As Cellary (2013) notes, there is no common consensus about what “smart” really
means in the context of information and communications technology (ICT).Although
this term has become fashionable, it is also broadly used as a synonym of almost
anything considered to be modern and intelligent (Anthopoulos 2017). In an urban
context, Batty and others note that the term smart cities correspond with the rapid
spread of computation into the kinds of public and open environments that others,
from Hardin (1968) to McCullough (2013), have called the commons, meaning the
spaces in the city that are notionally set aside for collective use and exploitation by
the community. While the term smart has many competing definitions and public
perceptions associated with it, we consider a focus on sensing and computation in
public spaces to be its defining characteristic. In this way, the aspirations behind
smart technologies we relate to self-monitoring, analysis, and reporting technology
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(SMART) adapted from the association with computer hard disks as a way to inter-
nally monitor their own health and performance. SMART, in terms of disk drives,
allows users to perform self-tests on the disk and to monitor a number of perfor-
mance and reliability attributes and seems a useful close analogy. The ability to
self-monitor, analyze, and report performance and reliability measures is, we argue,
a closer definition of the smart city, especially when focusing on aspects of sensing
the environment, communication, modeling, and analyzing based on data feeds from
the urban context.

Covering urban areas in general and at multiple scales from the city as a whole
down to the microscale of footfall at a given point in place and time, the potential for
urban data collection is almost infinite and certainly satisfies accepted criteria for data
to become big. In 2013, Ebbers, Abdel-Gayed, Budhi et al. stated that there are four
main aspects of big data, these being data generated at a fast rate (velocity), very large
and potentially unknown data quantities (volume), accuracy of the data (veracity),
and different forms of data such as text, structured data, etc. (variety). Tennant et al.
(2017) build upon this, noting that other aspects of big data have been added over the
years, for example, volatility, referring to the length of validity of the data, which is
particularly relevant when referring to real-time data streams; and value, referring to
potential insights that can be derived by analyzing the data. Velocity, variety, volume,
and veracity of data, interlinked with volatility and value, are central to the use of
data within an urban context. This cuts across a broad spectrum of applications, but
more especially applications consuming, analyzing, and visualizing data in an urban
context from Internet of Things devices—or an Urban Internet of Things. Coulton
et al. (2019) state that the term Internet of Things (IoT) was coined by Kevin Ashton
in the late 1990s. Ashton explained how by using sensors to gather data that could be
shared across the company’s computer network, they could streamline their supply
chain. He called these data-enabled parts of the supply chain the Internet of Things,
and the phrase caught on.

The potential of the concept is immense, as it is linked to the automation of
data collection en masse. As Ashton (2009) notes, if we had computers that knew
everything there was to know about things—using data they gathered without any
help from us—we would be able to track and count everything, and greatly reduce
waste, loss, and cost. We would know when things needed replacing, repairing, or
recalling, and whether they were fresh or past their best. Linking this to cities, Batty
and Hudson-Smith (2007), in their often-cited paper, called this the computable city,
stating that by the year 2050, everything around us will be some form of computer.
In essence, they were predicting an Urban Internet of Things.

Building on this, the Mayor of London published a document entitled “The
Smarter London Together” roadmap, in 2016. The roadmap, which is a non-statutory
document, builds on the first Smart London Plan from the Greater London Authority
(GLA) in 2013. It provides a new approach based on collaborative missions and calls
for the city’s 33 local authorities and various public services to work and collaborate
better with the aid of data and digital technologies (GLA 2019). As part of this work,
the city has developed a number of test beds, allowing the exploration of research-
led deployments. One such location is the Queen Elizabeth Olympic Park (QEOP),
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to the east of the City of London and an area we will focus on to explore actual
examples of Urban IoT. As the GLA note, the park’s development is managed by
the London Legacy Development Corporation (LLDC). Its ambition is to use the
park as a test bed for new international standards in smart data, sustainability, and
community building, sharing its successes across the city and beyond. This initiative
has allowed the authors of this chapter to deploy a number of IoT-led initiatives
within the park. Over the following sections, we explore these deployments while
also focusing on the wider picture and also the current realities of Urban IoT in the
context of our definition of smart—self-monitoring, analysis, and reporting technolo-
gies—and also within the view of what we define as the essential six Vs of Urban
IoT: velocity, volume, veracity, variety, volatility, and value.

The Internet of Things is central to the collection of potentially all the types of
data that are required to understand and manage an urban system. Link this further to
knowing the location of each device and you have the potential of a real-time view of
a city, or a representation of the city in software that is also known as a digital twin.
As such, the development of digital twins has been used as one of the deployments
for examination in QEOP.

38.2 The Digital Twin

Originally developed in the context of industrial design and manufacture during
the early 2000s, the term digital twin was proposed as a means of monitoring the
performance of industrial products with the aid of digital replicas. The digital twin
would be connected to its physical counterpart, an aircraft engine for example, in
such a way that any relevant changes in the state of the latter would be automatically
sensed and registered (Grieves and Vickers 2017). In this way, the performance of
complex and dynamic objects like aircraft engines, or even entire aircraft, could
be modeled, monitored, and optimized throughout the entire industrial lifecycle,
from design, through daily operation, and on to their eventual decommissioning
and disposal. Each component could have its own digital twin, effectively giving
us a nested hierarchy of digital twins all the way down to the most fundamental
components.

New applications for digital twins are now being sought in other fields. At the
urban scale, the digital twin is finding more immediate application in the conver-
gence of IoT and building information modeling (BIM) (Deutsch 2017). A BIM
model is a digital model of a building that has had the 3D geometric properties
of the structure enhanced with quantitative values and semantic descriptions of the
particular building components being represented (see Chap. 34). In principle, all
of its components can be modeled, down to the smallest nut or bolt, in the same
way as the original aircraft concept, to include information about their manufacture,
appearance, physical properties, date of purchase, or installation and cost. The last
two facilitate the additional time (4D) and cost (5D) dimensions used for scheduling
BIM-based construction. Using open standards like the Industry Foundation Classes
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(IFC), BIM models can be federated to enable multiple stakeholders to collaborate
by reviewing and updating a BIM during the building’s design and construction. At
the same time, BIM is perhaps not an “obligatory point of passage” for a digital twin
as some in the BIM industry might wish to suggest (cf. Law and Callon 1994).

While BIM provides an efficient means of constructing the 3D representations
required for a digital twin of new builds, the models can quickly become static
and outdated once they have been handed over to building owners. However, with
the addition of embedded sensors and Internet-based connectivity, it is possible to
continue monitoring aspects of the building’s physical and environmental conditions
in real time. In this way, IoT provides the potential for sensing, connectivity, and
feedback through actuation that serve to animate and bring the building’s digital twin
to life by establishing its link to the physical counterpart. Figure 38.1 illustrates Here
East (a building in QEOP), which was modeled in three dimensions and deployed
with environmental IoT sensors to create a simple twin model. The model updates in
real time, providing the twin aspect linked to the three-dimensional representation
of the built form.

Even social aspects of the building’s everyday life can be incorporated for a
more holistic, responsive, and participatory approach to building management and
operation (Dawkins et al. 2018). It is this broad spectrum of connectivity through
multiple aspects of IoT, from environmental sensor data through to information
occupation and across to social network information, that provides the real key to a
digital twin.

Here, we find ourselves in the realm of connected environments. As Hudson-
Smith et al. (2019) define them, a connected environment is any place—a home, a
building, a street, a park—where sensors have been deployed and connected via the

Fig. 38.1 A digital twin with IoT sensors of the here east building at the queen Elizabeth Park,
London
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Internet. Collecting data through these sensors allows them to be analyzed, checked
for quality control, joined up with other data sets, and used to enhance the area,
be it for management, social, environmental, or economic reasons. It is through the
capture, processing, and analysis of longitudinal real-time operational data, increas-
ingly performed in the Cloud, that the further possibilities for simulation and more
exploratory and predictive use of a digital twin can be achieved. In this way, digital
twins bestow on their users some of the powers of more enchanted objects like the
crystal ball, insofar as they provide a digital means to see distant places and look into
the past and future (Rose 2014). More prosaically, by representing the digital twin as
a 3D model, and moving away from the use of abstract plots and graphs, the digital
twin becomes more accessible to the public, and more relatable to a specific place.
The digital twin is a new kind of enchanted object: a digital representation of the
physical world that, with the addition of data collected from anything from building
systems through to social and environmental feeds, gives each individual a kind of
omniscience that can help one understand and act on one’s environment.

Just as digital twins are the sum of their components, we can also aggregate
them to create connected assemblages at coarser scales. The digital twin at the urban
scale is still an emerging concept. Some imagine an urban digital twin as a swarm
of connected systems collaborating autonomously to intelligently manage energy,
traffic, utility, roads, and communication networks (Datta 2016). The digital twin can
be viewed as a mirror held up to this world, one that not only reflects the environment
as we ordinarily see it, but also the unseen or invisible patterns of phenomena that
find themselves encoded in flows of sensor data.With mirror worlds, as conceived by
computer scientist David Gelernter in the early nineties, “the whole city shows up on
your screen, in a single dense, live, pulsing, swarming, moving, changing picture.”
This vision is currently being realized through the development of interactive virtual
city models like Cityzenith, VU.CITY, Virtual Singapore, and CASA’s own Virtual
London (ViLo).

Commonly viewed on the computer screen, tablet, or mobile phone, new oppor-
tunities of interacting with these tools and the data they orchestrate are being opened
up by increasingly immersive virtual, augmented, and mixed-reality devices. While
virtual-reality systems enable us to visit other places and times and immerse ourselves
within those environments, augmented and mixed realities can bring that informa-
tional content to us by overlaying it on the everyday environment (from room to
building to street, neighborhood, and city). At different scales, data and reality can
be mixed, viewed, and shared. Such mirror worlds then often engage new contexts
and audiences while also providing new opportunities for learning and the exercise
of personal and collective agency in the urban environment (Dawkins 2017). Digital
twins can be used to view a variety of information in a multitude of ways. The ViLO
model (Figure 38.2) allows viewing via a traditional computer desktop as well as via
virtual reality, augmented reality, and mixed reality, all with real-time, geo-located
data. Given the pace of technology, the creation of digital twins is inevitable, allowing
the digitalization of our world and thus opening up the opportunity for new insights
into physical worlds. Indeed, in the recent report “Data for the public good,” the UK’s
National Infrastructure Commission (NIC 2018) proposes the creation of a digital
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Fig. 38.2 QEOP in the “ViLO” model providing real-time IoT data within a 3D environment

twin to unify the management of data concerning transport, rail, power, water, and
communications infrastructures alongsidemeteorology and demographics across the
whole of the UK.

38.3 Potential Versus Reality

The potential of the Urban Internet of Things is such that it could be viewed as new
data revolution,moving forward our understanding of the logistics of cities. There are
already an estimated 26.6 billion IoT things in existence with a predicted 75 billion
connected things by 2025 (Statista 2018).

Such numbers do not necessarily, however, mean that there are 26.6 billion opera-
tional devices. We would estimate that less than a tenth of these devices are currently
live, transmitting data; a tenth of those probably have quality control on their data
feeds; and a tenth of those have a known location, indeed probably even less. The
potential is of course there, and all technological developments take time to become
embedded into methodologies and systems, which are often developed on a wave
of hype, expectations, and disillusionment, and then finally enter production. The
Gartner Hype curve is a useful way to understand such adoption of technology;
the most recent (Gartner 2018) has digital twins approaching the peak of inflated
expectations.

The first realizations of cities inside a computer in iconic, rather than in more
abstractedmathematical form,weremooted in the 1960swith the Skidmore, Owings,
andMerrill wireframemodel of Chicago, an early exhibit of these possibilities (Batty
and Hudson-Smith 2007). The intervening years have seen the development of 3D
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models beyond the wireframe and into photorealism on a global scale. Indeed, as
Goodchild (2018) notes, the technical ability to create and visualize 3D renderings
of the Earth was unavailable in the mid 1960s at the birth of GIS, but it was achieved
in the early 1990s, and led directly to Google Earth and its many competitors.

The technology continues to develop and the more recent introduction of the
Google Earth Engine essentially now provides public access to a multi-petabyte
curated collection of widely used geospatial datasets (Gorelick et al. 2017). Beyond
this level of detail is the current domain of systems such as ViLO, linking in building
information systems, with geographical information systems (GIS) providing the
linkage between buildings, data, and geography. However, these merely provide the
skeleton to the twin and arguably can be compared to thewireframemodel of Chicago
from the 1960s in terms of where we are in creating a true digital twin.

If themodel is the skeleton of the city, then the Internet of Things can be compared
to the neurons in the brain, communicating via wireless protocols rather than neuro-
transmitters. At the moment, however, the city does not have a brain, and the devices
communicate to diverse systems, sometimes joined up, such as is the case in terms
of public transport networks and deployed sensors, but often as part of local initia-
tives using devices deployed by hobbyists, or as part of small research trials. The
data are, however, starting to flow, and developments in networking and computing
technology are enabling small, low-power devices to be deployed in the field and
communicate over long distances. This is the revolution on the horizon and it is
just starting to become a reality, allowing data-collection devices to go from a small
number to a number that has the potential to be compared to the number of neurons
in the brain, collecting data about the city.

Data created en masse at a hyper-local level opens up the prospect of a data-
driven view of the city that was unimaginable when the first computer models were
created. It is the ability to sense and collect data at a range of time scales, now
becoming dependent on need rather than technical ability, that opens up the potential
of IoT within an urban environment. IoT data cover a wide range of themes, from
data relating to transport flows through to the density of crowds, environmental data
about air pollution and temperature, through to economic transactions and foot fall
and data relating to buildings. It covers all scales, from the hyper-local presence
sensor under a desk that infers occupation, through sensors of room temperature
and use of energy, up to city-wide transport data and urban heat islands, with the
integration of GIS and smart-cities systems.

The use of such devices for input into a smart-city system can be broken down
into the following aspects as highlighted in Figure 38.3:

Although the diagram in Figure 38.3 appears complex, it can be broken down
into its components, each allowing the data to be collected, processed, analyzed,
and finally visualized. Sensing and actuating are ubiquitous in our modern cities,
buildings, and consumer products. Sensors refer to the technology that “converts
a physical measure into a signal that is read by an observer or by an instrument”
(McGrath and Ní Scanaill 2014). The emergence of the first thermostat in 1883 (US
Patent No. 281884) is considered by some to be the first modern sensor and is still
common-place in most monitoring systems. The 1990s witnessed the large-scale use
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Fig. 38.3 Intel IoT reference architecture (Intel 2018).

of microelectromechanical (MEMS) sensors in automotive systems such as airbags
and antilock braking, which introduced cheaper and more reliable sensing. The first
consumerMEMSdevice, theNintendoWii controller of 2006, introduced a three-axis
accelerometerwhichdetermined themotion andposition of the controller. Economies
of scalemean that similar technologies are now embedded inmany consumer devices
from phones to watches. From analog to digital, low cost to high, sensors cover a
broad spectrumof operational parameters; for example, not all temperatures are equal
and careful consideration needs to be given to the type of temperature sensor to be
used (contact, non-contact, etc.).

Actuators on the other hand are the components of a machine that move or control
some mechanism, by converting energy into motion. It is the mechanism by which
a control system acts upon an environment. From the brute-force application in
the construction site using hydraulics and pneumatics to the highly automated and
controlled environment of the factory floor, all the applications have an ongoing oper-
ational cost—they are not fit and forget devices. The physical Internet has different
maintenance requirements to those of the digital Internet.

Data generated by sensors or pushed to actuators are processed through gateways.
These computational nodes canbeon the same functional device (e.g. amobile phone)
or a separate computemodulewhich gathers data frommultiple sensing and actuating
nodes (e.g. wireless sensor networks). The purpose of these data-collection devices
is to capture, filter, and process data efficiently and to connect using wired or wireless
communication technologies to legacyorCloud infrastructure.This aggregation layer
is often used to provide security, management, and data-preprocessing functions.

Data from gateways (or things) can be processed through any number of Cloud
services, such as processing streams of data, implementing policies to make data
available to different end consumers, or sending for storage. Data are typically stored
for real-time analysis and presentation or archived to support offline analysis.
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Smart technology can also use Cloud or edge architectures. These essentially
describe where computing, storage, and analysis take place in the network. At the
Cloud scale, data are typically sent to a centralized location where they are hosted on
high-performance computing infrastructure and enjoy the benefit of compute power
for complex analytic tasks. As an example, the meteorological network of weather
stations maintained by the Meteorological Office around the UK all upload sensor
data to servers where supercomputer facilities can be used to analyze and update
rolling weather forecasts.

At the other end of the spectrum, there are many applications where it may be too
expensive to send data via a data network to the Cloud, or where the latency in doing
so means that useful analysis cannot be delivered in a timely manner. For example,
autonomous vehicles need to operate at very low latency so that they can respond
immediately to their surroundings; hence, many tasks are run locally in the vehicle,
with non-time-critical information being sent to and from roadside infrastructure.

The final building block of IoT systems is the business intelligence layer, which
both presents interfaces into the information being generated and provides the means
to manage the system. IoT platforms provide the support software that facilitates
communication, data flow, device management, and the functionality of applica-
tions. Outputs are typically screen-based and are increasingly accessed through
virtual, augmented, or mixed-reality interfaces. As IoT systems mature, platforms
are continually evolving to support the monitoring and management of connected
devices at scale, since much of the value in the IoT supply chain is lost or made in
the operational cost of those systems.

38.4 Putting It into Practice: Bats and Creatures

With the ability to visualize in three dimensions and collect data on the edge or
within the Cloud via sensors and actuators linking into the digital twins of Urban
IoT, the natural environment is often overlooked, especially by those focusing on city
systems. Arguably, too many IoT test beds concentrate on smart transport systems,
city logistics, or more traditional sensor-based devices. The opportunity of the Urban
Internet of Things is the ability to look beyond the current normal and explore new
possibilities. In terms of the health of an environment, bats are considered to be a
good indicator species; a healthy bat population suggests a healthy biodiversity in
the local area. As part of the QEOP test bed, Intel, in association with both University
College London and Imperial College London, designed and deployed a “Shazam for
Bats” project. Shazam is known for the ability to identify music through short audio
clips, thus the aim to track and identify bats via IoT audio recording. A network of 15
smart bat monitors was developed and installed across the park in different habitats,
creating a connected environment for monitoring wildlife.

The monitors (as pictured in Fig. 38.4) recorded the urban sound scapes via
an ultrasonic microphone, with data processed by converting the sound into image
files for data analysis. Each device processed the information locally using edge
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Fig. 38.4 Echo box installed in the QEOP (https://naturesmartcities.com)

computing. As Premsankar et al. (2018) note, in edge architecture computing
resources are made available at the edge of the network, close to (or even co-located
with) end devices. Placing computing resources in close proximity to the devices
generating the data reduces communication. Processing the data on the device has
multiple benefits, firstly through reduced energy consumption and secondly through
a dramatic decrease in the amount of data that has to be transmitted and processed
on researchers’ computers. During the first year of the trial (which is ongoing), the
implementation of edge computing allowed a data reduction from 180Gb per day
down to 2.2 Mb per day, a factor of 80000. Without the ability to process the data
locally and instead relying on WiFi or such-like local infrastructure, neither the data
collection nor the analysis would have been possible.

The use of the Internet of Things for longitudinal monitoring was carried out
alongside more traditional survey techniques. The continuous data collection and
analysis did however open up researcher time to focus on other aspects of the data
and to note other shifts in bat activity. The use of IoT is notable as it provides an
ongoing data stream without going into the field, allowing a background level of
activity to be established and thus a series of interventions such as street lighting
strategies to be implemented, with data accessible and therefore available for expert
analysis on a daily basis. The trial is of interest in terms of the six Vs of Urban IoT:
the velocity and volume led to the implementation of edge computing, while the
veracity was tested as the identification of bat species was uncertain at the start of the
trail. The data remained volatile, with hardware and power supply issues allowing
approximately 70% uptime during the first year of testing. The sense of value is
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ongoing, but the ability to monitor remotely with data arriving in a preprocessed
form creates intellectual, logistical, and economic values in terms of access to new
data and analysis methodologies, the ability to carry on logistical trails in the park,
and the saving of researchers’ time.

Soft artificial intelligence (AI) is defined as non-sentient AI designed to perform
at close to a human level in one specific domain. Soft AI is a reality now in the new
generation of smart Internet of Things devices like Amazon’s Alexa, Apple’s Siri
or Microsoft’s Cortana (Milton et al. 2018). With over 100 million Alexa devices
sold worldwide (The Verge 2019), the public at large are becoming used to talking
to devices in their own home. As another part of the QEOP Urban IoT deployment,
a series of 15 devices were placed in the park to allow the public to talk to them
about the environment. The deployment was part of the project known as “Tales
of The Park,” looking at the wider issue of cybersecurity, trust, and risk within the
Internet of Things. Using technology embedded into a series of 3D printed creatures
(from bees through to otters and even garden gnomes), these geo-located devices
used low-energy Bluetooth beacons to broadcast a URL to nearby users. A chatbot
system then allowed users to converse with the devices via text-basedmessages using
natural language. The IoT devices were aimed at communicating information about
the local environment and the area’s flora and fauna to the public at large, displayed
on plinths at eye level, and spread across the park during the summer of 2018. We
illustrate one such installation in Figure 38.5.

The majority of Urban IoT devices are small computers, often unseen, taking
samples and communicating data out of sight. The aim of this part of the QEOP
deployment was to make IoT visible, and to move beyond either the small hidden
devices or devices in anonymous boxes, often found attached to lamp posts (more
on lamp posts later in the chapter).

The creatures formed their own network of awareness, retaining information about
the user as each device acted as a waypoint in the park. They opened up awareness of
IoT devices being deployed with local environmental information, as well as moving
the devices into a sense of awareness of the user as they learnedmore about the user at
every interaction. In this sense, they open up the possibility of Urban IoT being more
than invisible data collecting devices, and instead devices that chat and converse
with users, allowing data to be both collected and communicated. Of course this
opens up a whole issue around security and trust: how do you know which devices
in the city to talk to? In the future, it may be necessary to address the possibility of
a rogue Urban IoT, where devices are deployed to obtain information from the user
without them either knowing or being aware. It is however an intriguing future to
see Urban IoT as not only collectors but providers of information, and to have those
devices be situated already within the environment, from trees to park benches and
bus stops. All have the potential to be data collectors, and conversely, what could be
more natural than talking to your bus stop for data on the bus times, weather, or air
pollution, in the way you currently ask Alexa for information at home?
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Fig. 38.5 Oneof the installations in theQEOP, in this case a gnomewith embedded IoT technologies
on a plinth

38.5 The Humble Lamp Post

The lighting of streets by electricity has brought a sense of security and wellbeing to
our cities, towns, and villages for over 125 years. The first-ever electric streetlights
in Britain were brought into operation in the 1870s in Holborn Viaduct and the
Thames Embankment, London, and today, there are over 7.5 million streetlights in
the UK (HTMA 2019). Lamp posts are part of the city; they are ubiquitous and
almost unseen. As such, they make almost the perfect place for widespread, dense,
and geo-located IoT sensors for the city. The process of transforming the lamp post
into an IoT network is still in a conceptual stage, but test beds are in place at various
locations around the world.
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One such example is a trial to deploy customized multi-purpose lamp posts
(MPLPs) in Kowloon East, Hong Kong’s smart-city pilot area. The MPLPs will
be interconnected with a telecommunication network to form an IoT backbone.
Leveraging IoT sensors fixed on the lamp posts, the MPLP aims to enable real-
time collection of city data, such as weather, air quality, temperature, and flows of
people and vehicles, for city management and the support of various applications
of smart-city initiatives (SCW 2019). Another example is the Humble Lamp Post, a
cross-European initiative to upgrade and standardize the 90million street lights across
Europe with IoT services. Such envisioned services include: offering a (potentially
free) public WiFi network; providing the powered foundations for a mesh network
of (IoT) sensors across the city; helping drivers find a parking place; improving
public safety; and supporting environmentalmonitoring (air quality, waste, flooding).
Figure 38.6 illustrates the range of sensors and services envisaged. They can be a
place for electronic street signage, public information, and advertising (revenue);
be the home of sensors that help direct visually impaired people; a powered Web
of electric vehicle (car, bike) charging points; or even pedestrian-flow monitors that
can help keep the high street a vibrant place (BSI 2017).

A cross-technology and arts project, known as Hello Lamp Post, is an early
example of using the lamp post as a social network. Using mobile-phone tech-
nology, the project started as an experimental urban-design intervention that operated
in Bristol in July to September 2013. It used pre-existing identifier codes on street
infrastructure to enable people to send text messages to objects such as lamp posts,
post boxes, bins, telegraph poles, and so on. As Nansen et al. (2014) note, the project
aimed to challenge ideas of efficiency tied upwith the smart city by thinking about the
city as a platform for social play. It allowed users to communicate with street furni-
ture using SMS messages. Their exchanges with the objects were stored and used in
exchanges to other people (Nijholt 2015), allowing a conversation to build, while the
systemwas not directly automated (in comparison to the case of the chatbot creatures
in QEOP). The project has been adapted for use in 12 cities around the world (Hello
Lamp Post 2019) and was installed in the Queen Elizabeth Olympic Park during the
summer of 2018 as part of the ongoing test bed for Smart London. Hello Lamp Post
and the creatures in QEOP show that urban design and street furniture in cities can
not only be conduits for more traditional digital data (data in binary form), but also
for social data, collected from Urban IoT devices.

38.6 Urban Modeling

It is a little beyond this chapter to delve deeply into urban modeling, but it is worth
noting that the first generation of urban models was designed and implemented in
North America mainly during the years 1959–68, years which coincided with the
launching of large-scale land-use transportation studies in major metropolitan areas
(Batty 1979). In the intervening years, urban models and a variety of modeling
techniques have been used to predict and forecast everything from the first transport
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Fig. 38.6 Sensors on the humble lamp post, UrbanDNA (2018).

models to population growth, housing supply and demand, air pollution, the behavior
of crowds, retailing, urban economics, and everything in between.

A number of techniques such as agent-based modeling are expanded upon within
this book. All of them, however, rely on data and are arguably only as good as the
data input to the model, and then also only as good as the methodology behind
them. So while an increase in data may be seen as positive in terms of allowing a
wider understanding of our cities, a focus needs to be made on understanding the
veracity of the data. In terms of urban modeling, even small changes to an input’s
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veracity can lead to a biased data set. As Harris et al. (2017) note, simulations that
are based on biased data have the potential to increase biases by presenting results
that are then used to influence policy. That said, the input from Urban IoT devices
into urban modeling opens a new era in simulating and predicting our environment,
but it requires standards and a joined-up approach to data analysis.

38.7 Talking to the Neighbors

As Summerson (2019) notes, the rapid rise of IoT devices within an urban context
presents its own challenges. Summerson, leader of a UK government-funded organi-
zation known as the Future Cities Catapult (as of April 2019 renamed the Connected
Places Catapult), notes that one problem is that much of IoT is still held in silos and
separate systems that cannot communicate with each other. At the other end of the
spectrum, however, irresponsible information usage raises serious—and arguably
even dangerous—privacy and security concerns. Perera et al. (2018) highlight the
issues by stating that IoT solutions often act as independent systems; the data
collected by each of these solutions are used by them and stored in access-controlled
silos.After primary usage, data are either thrown away or locked down in independent
data silos.

A significant amount of knowledge and insight is hidden in these data silos that
could be used to improve our lives; such data include our behaviors, habits, pref-
erences, life patterns, and resource consumption. In short, at the current time, IoT
devices often do not talk to each other; the data may be of high velocity and high
volume and with a high level of veracity, but they are often isolated within a closed
system. The system is often closed not only due to varying standards for sensing,
communicating, and sharing data but also on a social-technical level, since IoT
data is often private. As such the view of a self-monitoring, analysis, and reporting
technology (SMART) city is complex and although often in close proximity, IoT
devices are predominantly not aware of or communicating with their neighbors,
making data collection and analysis within the IoT context an emerging challenge.
As Summerson (2019) concludes, while IoT interoperability might be the key to
accelerating improvements in traffic management, air quality and health, city plan-
ning, housing, and much more, the need to define and ensure the use of common
languages and mechanisms—agreed IoT standards—has never been more urgent.

38.8 Conclusion

Digital twins are, according to Gartner (2018), at the peak of inflated expectations,
while this arguably means the trough of disillusionment looms, before the arrival
of wider use and a plateau of productivity. Their widespread use, and with it data
collection, analysis, and use via Urban IoT devices, is on the horizon. To revisit the



716 A. Hudson-Smith et al.

six Vs (velocity, volume, veracity, variety, volatility and value), without question,
the volume and velocity are critical aspects of data in relation to Urban IoT devices.
We are on the boundary of a change in the availability, use, and communication of
data relating to cities. A majority of the estimated 75 billion IoT devices by 2025
will be in urban areas with a majority of them being able to provide data readings
at a sub-minute and moving toward a sub-second frequency. In a similar change,
the variety of data is increasing, from the ability to track foot-fall in real time, to
pollutants at a hyper-local level, or levels of noise, through to the location of people
and transport.

Advances in sensor technologies and networking are increasing the variety of
information we are able to collect. Urban data, via the Internet of Things, are still
in an early speculative phase and the veracity of the data is questionable. This is not
only due to the quality of sensors but also to human factors. The volume of data can
of course help with this; if you have enough devices deployed, then it is possible
to identify rogue readings and delete them from any input or analysis. The value
in terms of inputs into urban policy or urban modeling is long term, whereas the
data collection is increasingly short term and high volume, raising issues around
storage; and indeed, if data are simply used for the moment and then discarded due
to excessive volume.

The opportunities for mass data collection via Urban IoT devices are immense, as
are its potential inputs into urban modeling and policy. There are challenges, as we
have noted, perhaps most notably in the veracity and volatility of data; but the value,
volume, velocity, and variety of data collected from devices make the opportunities
for Urban IoT almost limitless.
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Chapter 39
Introduction to Urban Computing

Wenzhong Shi and Anshu Zhang

Abstract This chapter overviews Part V of this book themed urban computing.
This part of the book covers the topics of visual analytics, cloud, edge, and mobile
computing, data mining and knowledge discovery, AI and deep learning for urban
computing, and a range of mainstream urban models and simulation methods. It
provides a systematic review of computing technologies for urban governance and
urban services, together with the examples of their usage, in the context of urban
computing.

Within the context of urban informatics, urban computing is the processing of
acquired urban data to serve urban applications. Urban computing can be regarded as
the use of computing technologies to address urban issues, including those for urban
governance and providing services to urban people. The computing technologies
include those that are relevant to urban-related data communications, governance,
analyses, mining, and visualization.

The basis of urban computing is the capability to performhighly scalable, fast, reli-
able, and flexible computation. The advances in cloud, mobile, and edge computing
have greatly enhanced the computation capability for urban applications. Urban
governance aims to improve the effectiveness and efficiency of urban management
and decision making by addressing urban issues like traffic congestion, environ-
mental pollution, disaster mitigation, aging population, large infrastructure mainte-
nance, and housing. Urban services aim to provide a better experience for citizens
in daily life. To achieve the goals of urban governance and urban services, urban
computing needs to help people understand the data and extract actionable knowl-
edge or other analytical results for alleviating urban issues and providing services.
This leads to more dimensions of urban computing: urban data mining, analytics,
modeling, and simulation.
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The chapters inPartVof this bookdescribe urban computing from theperspectives
of principles, models, and technologies in computing science and urban modeling.
Emphases are put on the development and use of these principles, models, and
technologies for urban contexts and urban applications.

While computations are carried out by machines, humans are the ones utilizing
the computations to make decisions. Thus, Chap. 40 by Gennady Andrienko and 14
colleagues first introduces visual analytics, the studyof the principles andmethods for
human-computer collaboration in solving complex problems, with a focus on visual
analytics for urban mobility data. The chapter describes various visual and interac-
tive analytical techniques and exemplifies the use of these techniques by analyzing
Europe-wide data on the movement of passenger cars. By doing so, it shows how
visual analytics greatly improve the ability of humans to see, interpret, link, and
reason with data and their computation results, and then make decisions in urban
contexts.

Chapter 41 by Chaowei Yang and his team introduces three backbone technolo-
gies for urban computing: cloud, mobile, and edge computing. Cloud computing
provides scalability and on-demand availability of urban data computation. Mobile
computing shifts the computation to mobile devices to reduce the load on central
computation and enable more social interactions of citizens. Edge computing moves
the computation to sensor networks to dramatically reduce the data communication
load, speed up the response of sensors, and alleviate data-safety issues. The chapter
systematically reviews the principles and characteristics of the three computing tech-
nologies and their applications in smart cities, and further illustrates their uses and
integration by using the example of the urban heat island.

Chapter 42 by Chao Zhang and Jiawei Han moves to extracting succinct and
easily interpretable knowledge from massive urban data. The review concentrates
on discovering knowledge about urban activities from a type of crowdsourced and
less-structured urban big data, that is, social sensing data contributed by users who
share their experiences in the physical world online. The chapter first describes
conventional and recently developed statistical and pattern-discovery methods for
urban activity modeling, then presents the latest multimodal embedding techniques
for learning urban activities, and concludeswith future directions of urban knowledge
discovery.

In the data-intensive era, approaches of mining knowledge from urban big
data inevitably progress to leveraging the latest developments of artificial intelli-
gence (AI), especially deep learning. In Chap. 43, Senzhang Wang and Jiannong
Cao provide an overview of the challenges, methodologies, and applications of
AI for urban computing. The chapter introduces the principles of mainstream AI
techniques for urban computing, including popular deep-learning models that are
commonly used in urban computing tasks. Then, the authors review the wide appli-
cations of urban computing based on AI and deep learning in urban planning, urban
transportation, social networks, urban safety and security, and urban environment
monitoring.

People use various urban models to understand cities and carry out urban gover-
nance and urban service tasks. The models run on real-world data with realistic
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complexity, as well as on simulation data that can overcome the sparsity of real-world
data and be obtained with much lower cost and risk (e.g., for a disaster evacuation
scenario). The remaining chapters in Part V introduce a number of mainstream urban
models and simulation methods.

Chapter 44 byMarkBirkin presentsmicrosimulation, the technique for generating
synthetic population data of humans, households, or other entities at the individual
level by using aggregate census data and individual-level sample data. Then, such
synthetic data can supportmore analysis functions and result in deeper insight into the
investigated problem than the original aggregate census tables. The chapter describes
the principles of microsimulation, followed by the properties of microsimulation in
computation, uncertainty, data assimilation, dynamics, and interdependence.

Chapter 45 by Anthony G. O. Yeh, Xia Li, and Chang Xia discusses cellular
automata (CA) modeling for urban issues. With its unique strength in simulating
complexnonlinear problems,CAhasbecomeamajor analytical approach for creating
what-if scenarios to facilitate urban policy making. The chapter covers the basics of
CAmodels, the approaches to usingCAmodels for urbanmodeling, different types of
specialized urban CAmodels, applications of CA in urban studies and planning prac-
tices, and finally an outlook on further research for solving the remaining problems
in urban CA modeling.

Chapter 46 by Andrew Crooks, Alison Heppenstall, Nick Malleson, and Ed
Manley reviews agent-based modeling, the simulation technique that can create arti-
ficialworlds populatedwith individual agents, and investigatemacroscopic processes
in cities formed by interactions between the agents. A distinct advantage of agent-
based modeling is its ability to assign diverse behaviors and rules to individual
agents or groups of agents, which makes it a powerful way to simulate complex
urban problems. The chapter presents the fundamentals of agent-based models and
the applications of these models for solving urban problems. It further discusses
how to capture decision-making processes in agent-based models, and new advances
in agent-based modeling by utilizing big data, data mining, and machine-learning
techniques.

Traveling and transportation have always been core topics in urban modeling.
Chapter 47 by Eric J. Miller discusses the all-around evolution of transportation
modeling driven by informatics. The chapter probes into this evolution from the
changes in travel behavior due to real-time travel information and new mobility
services and technologies; changes in transportation-system performance; new
survey and tracking data available for transportation modeling; and the progress
of modeling methods in response to new transportation phenomena and the latest
computing and AI technologies. Finally, the chapter foresees new research problems
where the theories and big data collide, thatmay fundamentally change transportation
modeling in the future.

Due to space limitations, Part V only addresses a selection of core topics of
urban computing. Many other important topics could be elaborated, for instance,
urban data communication which is crucial for cloud, mobile, and edge computing.
Urban data communication technologies include those for data transmission, wired
and wireless data communication networks, devices, protocols, and security issues.
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Also, the theories of modeling cities as complex systems have been discussed in
Part I of this book, but much more discussion is needed on the computational aspect
of complex system modeling for cities, particularly complex network modeling.
Complex network models have been used not only on the topics traditionally
employing network models, such as vehicle movements or road networks, but also
on all kinds of dynamics and interactions in cities.

People will not stop pursuing higher computation capacity. Quantum computing,
the computation based on principles of quantummechanics such as superposition and
entanglement, is a prominent example of the technologies in the experimental stage
that aim to exponentially accelerate computation. Once some of these technologies
become widely available, they are also likely to be applied to urban issues and to
stimulate revolutions in urban computing.
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Chapter 40
Visual Analytics for Characterizing
Mobility Aspects of Urban Context

Gennady Andrienko, Natalia Andrienko, Fabian Patterson, Siming Chen,
Robert Weibel, Haosheng Huang, Christos Doulkeridis, Harris Georgiou,
Nikos Pelekis, Yannis Theodoridis, Mirco Nanni, Leonardo Longhi,
Athanasios Koumparos, Ansar Yasar, and Ibad Kureshi

Abstract Visual analytics science develops principles and methods for efficient
human–computer collaboration in solving complex problems. Visual and interac-
tive techniques are used to create conditions in which human analysts can effec-
tively utilize their unique capabilities: the power of seeing, interpreting, linking, and
reasoning. Visual analytics research deals with various types of data and analysis
tasks from numerous application domains. A prominent research topic is analysis
of spatiotemporal data, which may describe events occurring at different spatial
locations, changes of attribute values associated with places or spatial objects, or
movements of people, vehicles, or other objects. Such kinds of data are abundant in
urban applications. Movement data are a quintessential type of spatiotemporal data
because they can be considered from multiple perspectives as trajectories, as spatial
events, and as changes of space-related attribute values. By example of movement
data, we demonstrate the utilization of visual analytics techniques and approaches
in data exploration and analysis.
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40.1 Introduction

The science of visual analytics (Thomas and Cook 2005) develops principles,
methods, and tools to enable synergistic work between humans and computers
through interactive visual interfaces. Such interfaces support the unique capabili-
ties of humans (such as the flexible application of prior knowledge and experiences,
creative thinking, and insight) and couple these abilities with machines’ computa-
tional strengths, enabling the generation of new knowledge from large and complex
data.

In this chapter, we describe visual analytics approaches that are related to the study
of urban mobility data and discuss how visual analytics can support analysis of such
data and informed, justifiable decision making. We address different stages of the
urban data science process, including data quality assessment, data transformation,
exploration, and analysis, and indicate possibilities for model building, evaluation,
and refinement.We conclude this chapter with a summary of achievements, unsolved
problems, and future research directions.

We demonstrate the utilization of visual analytics techniques in a process of
exploration and analytical reasoning using a real-world data set. In the EU-funded
Track&Know project,1 one of industrial partners collects Europe-wide tracks of
passenger cars. The data are collected for insurance purposes under vehicle owners’
informed consent, aiming at enabling transparent pricing and facilitating analysis
of accidents. For these purposes, it is necessary to have an understanding of the
context in which the vehicles move, which includes the surrounding traffic. There are
several questions that require answers for understanding traffic: What are the major
flows and their properties? How do they vary over time? What is the composition
of the types of the cars appearing on streets? What are regular and irregular trips
and how are they distributed in space and time? etc. Answers to these questions
can be valuable for a variety of practical applications such as assessing which part
of traffic can be potentially served by publicly shared vehicles or by electric cars,
evaluating applicability of various car sharing schemes, identifying and assessing
different driving styles, and investigating events, such as traffic accidents, in their
context.

40.2 State of the Art

Batty (2013) considers a city as a system composed of flows (between locations and
between activities) and networks of relationships and interactions among various
entities. For understanding these factors of the urban context, a variety of different
data sources is considered. There are studies (e.g., Kesting and Treiber 2013) based
on stationary sensors such as traffic counters that record aggregated characteristics
(howmany cars passed a given street segment during some time interval andwhatwas

1Track&Know, grant agreement 780,754: https://trackandknowproject.eu/.

https://trackandknowproject.eu/
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their speed). Such sensors record aggregates but do not allow the tracking of vehicles.
Another kind of stationary sensors is docking stations for rental bicycles (or, poten-
tially, other kinds of shared vehicles). Usually, these sensors provide only general
characteristics (overall capacity, numbers of docked bicycles, and empty slots) and
their aggregates over time intervals. However, sometimes more detailed data are
released, enabling analysis of the moves of the vehicles between the docking stations
(Beecham andWood 2014). Some researchers approximatemobility from space- and
time-referenced social media records. A prominent example is provided by Lansley
and Longley (2016) who studied in detail the distribution of the message topics in
space and their variation over time. Itoh et al. (2016) studied data of smart-card
usage in local trains together with social media records for reconstructing temporal
characteristics of major flows and understanding abnormal situations.

Several review papers discussed visual analytics approaches to analyzingmobility
and transportation. A review by Andrienko and Andrienko (2013a) considered
approaches from the data processing perspective: looking at trajectories, clustering
trajectories, transforming times in trajectories, and studying attributes, events, and
patterns in trajectories, followed by generalization and aggregation of trajectories and
tracing derived flows. In a more recent review on visual analytics of mobility and
transportation, Andrienko et al. (2017) outline approaches used for the following
problems: understanding details of individual movement, studying the variety of
routes taken, assessing movement dynamics along a route, linking origins and desti-
nations, characterizing collective movement over a territory, detecting events and
studying their distributions, contextualizing movement, and studying impacts and
risks.

Markovic et al. (2019) present a viewpoint of a road transportation agency,
mentioning the following problems of interest: demand estimation, modeling human
behavior, designing public transit, measuring and predicting traffic performance,
assessing impact on the environment, and improving road safety.

The reviews indicate the need to consider movement data from multiple
perspectives. We follow this approach in our work.

40.3 Mobility Data: Properties and Problems

To demonstrate the data analysis workflow, we use trajectories of 4521 passenger
cars within the Greater London area that were recorded during two regular weeks
in winter 2017; 4,284,493 position records in total. Each position record consists
of an anonymized identifier of a vehicle, time-stamped geographic coordinates,
and attributes such as momentary speed and heading, GPS signal quality. Trans-
port for London estimates the number of all cars registered in London as about 2.6
million.2 Respectively, our data set covers about 0.2% of the active “population” of
the passenger cars. Figures 40.1 and 40.2 show the spatial and temporal distributions

2https://content.tfl.gov.uk/technical-note-12-how-many-cars-are-there-in-london.pdf.

https://content.tfl.gov.uk/technical-note-12-how-many-cars-are-there-in-london.pdf
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Fig. 40.1 Spatial footprint
of all trajectories in the data
set

of the recorded trajectories. From the map (Fig. 40.1), we can recognize the major
roads and populated areas.

The time histogram (Fig. 40.2) reflects the distribution of the counts of distinct
cars per hour, starting from Sunday midnight: 2 weeks × 7 days × 24 h = 336 h
in total. The time histogram clearly shows the weekly cycle and distinct profiles of
weekdays and weekends.

For assessing the quality of the data set, we follow the approach proposed by
Andrienko et al. (2016a). Possible problems in movement data include problems
of coverage and accuracy that may occur in all components of the data, namely
space, time, identifiers, and attributes. Respectively, we assess properties of all data
components and their combinations.

Fig. 40.2 Temporal profile of the data: the bars represent the car counts per hour
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Fig. 40.3 Sampling rates

For the temporal component, we start with examining the sampling rates, i.e., the
time intervals between consecutive position recordings for the same car. The statistics
(Fig. 40.3) demonstrate that the most frequent sampling rate is around 1 min (59–
61 s). A much smaller subset of points is characterized by the sampling rate of about
2min, and only a few points have 3min intervals to the next points. All other intervals
appear in the data infrequently. Next, we checked if the sampling rate of 1 min is
typical for all cars. For this purpose, we calculated the median sampling rate for
each car. The results demonstrate that more than 98% of the cars have the median
sampling rate of 1 min ± 1 s. However, we have identified a few outliers: about 100
cars that had only a few positions recorded and, correspondingly, rather arbitrarily
sampling rates; 9 cars with many recorded positions but the median sampling rates
of 3–5 min; and 2 cars with very high sampling rates (13 s). Such outliers need to be
separated in further analysis. We have also identified several thousands of duplicate
pairs of an identifier and a time stamp and excluded the duplicates.

Figure 40.4 shows the frequency distribution of the distances between consecutive
position records, with the bins corresponding to 10 m intervals. We can observe
major peaks at 420 and 1760 m. Since the typical sampling rate is 1 min, these peaks
correspond to displacement speeds 25.2 and 105.6 km/h. We also observe narrower
peaks at 100m (6 km/h) and 2000m (120 km/h). The formermay correspond to small
displacements caused bywaiting at street intersections.We inspected the second peak
separately. Such distances between points appear either at highways and may mean
that some points were not recorded (e.g., due to bad satellite connection), or at the
borders of the studied area (Fig. 40.4 bottom). These large displacements at the area
boundaries are artifacts of data selection by a bounding rectangle.

Figure 40.5 presents the frequency distribution of the instant speed values in the
positional data after excluding numerous (about 778,000) stationary points and a
few outliers with speeds higher than 180 km/h. The clearly visible peaks roughly
correspond to the speed limits on different categories of the UK roads.

Figure 40.6 shows the frequency distribution of the measured vehicle headings
in the non-stationary points. There are two strange pits around the values 90° and
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Fig. 40.4 Top: frequency distribution of the distances between consecutive points of trajectories.
Bottom: long distances between consecutive points are caused by selecting data that fit in a chosen
bounding rectangle (border effects)

270°. It is quite unlikely that these directions were really much less frequent than the
others. The pits may be due to the method that is used by the tracking devices for
determining the vehicle heading. The method may calculate the angle based on the
ratio of the x- and y-differences between two consecutively measured positions (of
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Fig. 40.5 Frequency distribution of the speeds after removing stationary positions and outliers

Fig. 40.6 Frequency distribution of the measured vehicle headings

which the second position is not recorded) and fail in cases when the y-difference
equals zero. Whatever the reason, the measured heading values cannot be trusted.

For human mobility studies, it is important to divide trajectories into trips, e.g.,
between places of significant stops (Andrienko and Andrienko 2013a). There exist
different criteria for separating trips: by positional attributes (e.g., taximeter is
switched on or off), by temporal cycles (e.g., daily trips), by substantial displacement
(e.g., if the next point is at least 5 km away) and by temporal gaps between points (no
movement for at least 15 min). We used the latter criterion. For tolerating position
measurement errors, the periods when positions remained within a small area during
a time interval of a chosen length (15 min) were also treated as stops. In this way,
we acquired 164,644 sub-trajectories, from which 3943 consisted of single points
and were excluded from further consideration. The remaining sub-trajectories were
treated as representing trips. Figure 40.7 presents the frequency distribution of the
trip counts per car. About 300 cars had only 1 or 2 trips during the two weeks. Many
cars performed from 30 to 50 trips, and only a few cars had more than 80 trips.
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Fig. 40.7 Frequency distribution of the trip counts per car

Figure 40.8 presents an example of all trips of a single car during two weeks. The
map on the left shows the spatial footprint. A space–time cube (Hägerstrand 1970;
Kraak 2003) shows the same trips in space and time simultaneously. The vertical
axis represents the time of the day. The colors encode the weekdays (green) and
weekends (red). Generally, such a visualization may enable identifying the person
whose track is shown; therefore, we have masked the locations on the map and
will avoid disclosing any further potentially privacy-sensitive details in the text or
illustrations.

After performing the investigation of the data properties and cleaning the data by
excluding incomplete tracks and incorrect values, we can proceed with analysis.

Fig. 40.8 Trips of a single car are represented on a map (left) and in space–time cube (right), in
which the trips have been temporally aligned within the daily time cycle. The colors denote whether
the trips took place on weekdays (green) or weekends (red)
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40.4 Data Types: Events, Trajectories, Spatial Time Series,
and Situations

There exists a range of transformations that can be applied to movement data for
analyzing them in various ways and extracting different kinds of information. First
of all, each recorded position is a spatial event, which is specified by a reference to
the moving object id, time stamp t, and coordinates x (longitude) and y (latitude).
An event may also have attributes: id, t, x, y, attributes.

The events of moving objects being at specific spatial positions at particular times
can be called position events to distinguish them from other kinds of spatial events.
Integration of chronologically arranged position events of the same moving object
produces a trajectory of this object (Fig. 40.9). Such integration allows computa-
tion of derived attributes based on the positions of consecutive points: displace-
ment distance and direction, time difference, speed estimate, etc. These derived
attributes can be used for extracting secondary events from trajectories (e.g., stops)
and dividing trajectories into smaller subsets (e.g., trips between stops). We applied
these transformations when investigating the data properties.

Both trajectories and events can be spatially aggregated by a set of places. As a
result, the places are characterized based on the visits by moving objects (e.g., counts
of the objects and the visits, statistics of the duration of object presence in the area,
etc.) or the events that occurred in them (e.g., counts of events of different kinds). The
aggregation can be performed by time intervals producing place-based time series
of the visits and presence. Additionally, trajectories can be aggregated according
to the moves (transitions) between areas. The transitions link the areas, and these
links can be characterized based on the number and properties of the transitions,
such as the number of distinct objects that moved and the statistics of the speeds
and durations. Aggregated transitions between places are usually called flows. The
aggregation can also be made by time intervals resulting in link-based time series of
flow characteristics.

Fig. 40.9 A general scheme of movement data transformations
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Spatial time series can be viewed in two complementary ways. On the one hand,
they consist of sequences of values associated with individual places or links, which
can be called local time series. Respectively, the places or links can be characterized
and compared based on the temporal variation of the respective values. On the other
hand, for each time step, there exists a particular distribution of the values over the
set of places or links. This distribution can be called a spatial situation. The whole
spatial time series can be seen as a sequence of such spatial situations. Respectively,
the temporal variation of the spatial situations can be studied and characterized.

Further events (e.g., occurrences of extreme values) can be extracted from place-
or link-based spatial time series.

Data transformations support investigation of different aspects of mobility
phenomena. As our goal is characterization of urban context, we expect that
transformations will allow us to enrich the context by different kinds of relevant
information.

40.4.1 Context Acquisition from Movement Data

Traffic and mobility are important parts of the overall urban context. Information
concerning movements of vehicles and people in an urban area may be relevant
in studying various phenomena, such as air quality, noise, or disease spread, and
events, such as traffic accidents, crimes, or disruptions in the work of public trans-
port. Movement-related context information that can be extracted from trajectory
data includes place visiting context, flow context, time context, trip context, and
personalized semantic context. We consider a selection of the listed aspects in detail
in the following sections.

40.4.1.1 Place Visiting Context

For describing the context in terms of place visits, it is necessary to have a suitable
set of places. When there are no predefined places suiting the goals of an intended
study, the places need to be appropriately defined. One possible way to do this is
taking the neighborhoods of some positions of interest, e.g., circles of a chosen radius
around the positions of studied events. Places relevant to transportation studies can
be defined based on the street segments and intersections. However, the resulting
level of detail and amount of data can be excessive for the envisaged spatial scale of
the intended study. For studies of human mobility behaviors, places can be defined
based on identifying areas of different kinds of human activities.

A set of places can also be derived by partitioning the territory into compartments
based on the spatial distribution of some data, such as positions of stationary objects,
events, or points fromvehicle trajectories.Andrienko andAndrienko (2011) proposed
to divide a territory based on the distribution of characteristic points of trajectories,
which include the positions of stops and turns as well as trip starts and ends. The



40 Visual Analytics for Characterizing Mobility Aspects of Urban … 737

points are extracted from the trajectories and grouped according to their spatial
locations. A special method for space-bounded point clustering produces spatial
clusters whose radii do not exceed a given threshold. The medoids of the clusters
(i.e., the points with the smallest mean distances to the other cluster members) are
taken as generating seeds for Voronoi tessellation. When the points are not evenly
spread throughout the territory but form dense clusters, the seeds tend to be taken
from these clusters, which make the resulting places meaningful and interpretable.
Depending on the chosen maximal radius of a point cluster, the territory is divided
into larger or smaller compartments. Hence, an analyst can adjust the partitioning to
the spatial scale of the intended analysis and the desired level of detail.

Anexample of territory partitioningbasedon trajectory data is shown inFig. 40.10.
The characteristic points have been grouped in clusters with the maximal radius
2.5 km.As a result, we have obtained 3535 places (compartments). It can be observed
that the geometries and the spatial layout of the places reflect the topology of the

Fig. 40.10 Tessellation of the region into 3535 polygons based on point clustering bounded by a
maximal cluster radius of about 2.5 km. Colors represent counts of distinct cars observed in each
region, from blue (less than 8) to red (more than 102), using equal class size division
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major roads. This is the effect of taking seeds for the tessellation from dense concen-
trations of trajectory points, which mainly occurred along these roads. The places in
Fig. 40.10 are colored according to the numbers of distinct cars that visited them.
As we mentioned earlier, other characteristics of places that can be derived from
movement data are time series of place visits and their durations, and aggregate
characteristics of the objects that visited the places.

Thus, our data allow us to characterize the places based on the “population struc-
ture” of the cars that visited them. The data set includes car manufacturer information
for each anonymized car identifier. Respectively, it is possible to obtain separate car
counts for different manufacturers. Using this information, we would like to cluster
the places by the similarity of the car population structures. However, a straightfor-
ward application of clustering to the absolute counts just separates areas by total
car counts, replicating the major patterns visible in Fig. 40.9. Therefore, it is neces-
sary to normalize the counts by the total numbers of different cars recorded in each
compartment, thus obtaining proportional values.

We have clustered the normalized counts using the partition-based clustering
method k-means in combination with a projection of the cluster centroids onto a
plane, as suggested by Andrienko and Andrienko (2013b). The results are presented
in Fig. 40.11. The positions of the cluster centroids on the projection plane (top left)
are used for selecting appropriate clustering parameters and then for assigning colors
to clusters reflecting their similarities and differences. The cluster profiles in terms
of the proportions of the cars from different manufacturers are shown in a bar chart
(top right) and on a map (bottom left).

The clustering results show that the main motorways are dominated by Vauxhall,
Ford, and VW, while central London and Brighton are characterized by a mix of
everything, with some prevalence of Vauxhalls and Fords. One can find compact
“villages” in rural areas populated mostly by Fiat, Ford, SEAT, Peugeot, or VW.

Places can also be grouped according to the place-based time series of visits or
counts of distinct cars, either in absolute or normalized form. We omit such analysis
here due to space restrictions. However, we shall consider link-based time series in
the next section.

40.4.2 Flow Context

While place-based time series characterize a territory in terms of the spatiotem-
poral variation of the presence of moving objects or events, link-based time series
complement the characterization by describing the volumes and characteristics of
movements (flows) between the places. In this section, we present an example of
analyzing the flows between the same places as in Figs. 40.10 and 40.11. For the set
of 3,535 places, we obtain 13,153 directed links when we use the original trajectories
and 12,654 links when we use the trajectories corresponding to the trips (resulting
fromdividing the original trajectories based on stops for 15min ormore). The divided
trajectories are more appropriate for characterization of movement speeds.
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Fig. 40.11 Clustering of places by similarity of the car population structure. Top: a 2D projection
of the cluster centers (left) and the profiles of the clusters in terms of the attributes involved in the
clustering (right). Bottom: amapof the spatial distribution of the clusters (left) and the corresponding
legend showing the cluster sizes (right)

Figure 40.12 presents a map where the links are represented by curved lines
colored according to the average speeds during the transitions between the places.
Similarly to Fig. 40.10, this map reflects the properties of the road network and the
spatial distribution of the urban areas. Each pair of places is connected by two lines
reflecting movements in opposite directions. We can notice that for the majority of
the location pairs there is no substantial difference between the average speeds in
the opposite directions. However, aggregates that reflect the temporal variation, such
as the hourly flow volumes over the two weeks, may reveal asymmetry between the
flows in opposite directions.

In Fig. 40.13, we have applied k-means clustering to the flow volumes normalized
by the each link’smeanvalue after exclusion of the linkswith very lowflows (less than
50 moves in total during the 2 weeks period). As in the previous section (Fig. 40.11),
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Fig. 40.12 Average speeds of the flows between the places

the parameters for the clusteringwere selected by inspecting the positions of the clus-
ters centroids in the projection space, and the projection was also used for assigning
colors to the clusters. Clusters whose centroids are close in the projection space due
to the similarity of the respective attribute values receive similar colors. In the map
in Fig. 40.13, we can observe the consistency of cluster affiliation along chains of
links following the major roads; hence, the traffic has common patterns along the
major transportation corridors formed by the most important motorways. We can
also notice pairs of opposite links that were put in distinct clusters, which means that
the temporal patterns of the respective flows differ.

40.4.3 Time Context

Mobility is essentially a temporal phenomenon; thus, the distribution of people and
vehicles over a territory and their movements from place to place vary over time.
As human activities are cyclic in general, we can expect temporal cycles to appear
in aggregated representations of mobility, and we have observed them in the 2D
histograms of the aggregated flows in Fig. 40.13.
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Fig. 40.13 Links clustered according to the similarity of the normalized time series of flowvolumes.
Top: a map with the links colored according to their cluster affiliation; the legend shows the
cluster sizes. Bottom: the cluster profiles are represented in an aggregated form in two-dimensional
histograms with the rows corresponding to days and columns to hours. The heights of the colored
bars in the cells are proportional to the mean normalized hourly values for the clusters. The 2D
histogram with the dark gray bar shows the average temporal variation for all links

As shown in Fig. 40.9, spatial time series can be viewed from two complemen-
tary perspectives: as spatially distributed local time series and as temporally varying
spatial situations. Figure 40.13 corresponds to the former perspective: we applied
cluster analysis to the local time series associated with the links. Now we are going
to take the other perspective and apply clustering to the time steps of the time
series. We cluster the time steps according to the similarity of the spatial distri-
butions of the car presence (Figs. 40.14 and 40.15) and flow volumes (Figs. 40.16
and 40.17). The aggregates representing the presence have been obtained from the
original (undivided) trajectories, to take stationary vehicles into account, and the
link-based aggregates have been obtained from the divided trajectories representing
the trips.
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Fig. 40.14 Left: a calendar display of the clusters of the hourly time steps according to the distri-
bution of the car presence over the set of places. The columns correspond to 24 h of the day and the
rows to the 14 days fromMonday (top) to Sunday of the next week (bottom). The colors correspond
to different clusters, and the sizes of the colored rectangles represent the closeness of the cluster
members to the cluster centroids (the closer, the bigger). Right: the colors for the clusters have been
chosen by projecting the cluster centroids onto a continuously colored plane

The calendar view in Fig. 40.14, left, shows the daily and weekly patterns of
the spatial distribution of the car presence, where the night hours are similar across
the days; the morning and evening rush hours of the weekdays appear quite different
from themidday times, and the weekend patterns are distinct from the weekday ones.
The patterns on Friday evenings differ from the other weekdays by later beginnings
of the evening- and night-specific distributions.

The small multiple maps in Fig. 40.15 demonstrate the spatial distribution of the
mean volumes of the presence for each cluster. The clusters are arranged according
to the succession of their numeric labels (from 1 to 12) in rows from left to right
and from top to bottom.We can observe extremely prominent road network patterns,
especially during the mass commuting times (e.g., Clusters 6 and 10). These patterns
do not appear in late evenings and nights (Clusters 9 and 12).

Figures 40.16 and 40.17 present the results of applying clustering to the time
steps of the link-based time series. The times have been clustered according to the
similarity of the spatial distributions of the flow volumes. Figure 40.16 is analogous
to Figs. 40.14 and 40.17 corresponds to Fig. 40.15, but themaps here show the spatial
distributions of the mean flow volumes corresponding to the clusters. The volumes
are represented by proportional widths of the flow lines.

The afternoon Clusters 1, 4, and 9 are characterized by intensive traffic on high-
ways while the morning Clusters 6, 7, and 8 show higher traffic on local roads and
in populated areas. Interestingly, the flow distribution patterns in Hours 9–14 on the
weekdays are similar to those in the nights. Several clusters consist of only a few
or even a single time moment with extraordinary traffic distributions. For example,
Cluster 5 has a very high traffic on the inner ring of London.
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Fig. 40.15 Average spatial distributions of the car presence for the time clusters presented in
Fig. 40.14. The mean car counts are represented by the darkness of the shades of red while light
blue corresponds to zero values

40.5 Specifics of Episodic Movement Data

Depending on the temporal resolution and sampling regularity, movement data can
be categorized as quasi-continuous or episodic (Andrienko and Andrienko 2013a).
The example data used in this chapter can be ascribed to the former category, because
the time intervals between the records are quite small and mostly of the same length.
In episodic movement data, position measurements may be separated by large time
gaps, inwhich the positions of themoving objects are unknown and cannot be reliably
reconstructed. Such data require special approaches to analysis. Thus, likewith quasi-
continuous data, it is possible to aggregate episodic trajectories to flows between
places. However, consecutive positions of a trajectory may fit in non-neighboring
places. Flow maps constructed from episodic trajectories are typically extremely
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Fig. 40.16 Clusters of the hourly time steps according to the spatial distributions of the flow
volumes. The representation is analogous to Fig. 40.14

Fig. 40.17 Maps show the spatial distributions of the flow volumes, represented by proportional
line widths, for the clusters shown in Fig. 40.16
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cluttered due to a large number of intersecting flow lines connecting distant places.
Moreover, time intervals between consecutive positions may be longer than the time
intervals chosen for aggregation. Such trajectory segments must be ignored. It is also
not possible to estimate the number of moving objects that were present in a place
during a time interval because the exact times of coming to a place and leaving it is
unknown.

In interpreting flow maps built from episodic movement data, analysts should
keep in mind that they do not represent all movements that really happened. Never-
theless, such flow maps can be useful since there is a chance that mass movements
or sufficiently frequent movement patterns can be adequately reflected.

As an example of episodic movement data, Fig. 40.18 demonstrates 11,671 trajec-
tories reconstructed from georeferenced posts of social media (Twitter) users. Each
trajectory consists of a chronological sequence of posts of one user. Similar trajec-
tories can be constructed from data about mobile phone activities, including making
calls, sending messages, and accessing Internet.

In Fig. 40.18, the locations of the social media posts are connected by lines, which
are drawn with 97% transparency. Long lines mean unknown users’ paths between
the locations of their consecutive posts. In this data set, which spans a 28-days period
in September, the median time interval between records of the same user is 14 min,

Fig. 40.18 Episodic trajectories reconstructed from georeferenced posts of social media users
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the third quartile is about three hours, and the maximum is over 24 days. However,
in most cases, the distances between the points are small, the third quartile being
only 0.26 km. This means that people tend to make repeated posts from the same or
nearly the same locations, which are, possibly, repeatedly visited.

Despite all uncertainties, episodic trajectories reconstructed from social media
posts or mobile phone use registers can provide valuable information about mobility
behaviors of people. Unlike trajectories of personal cars, taxis, or any particular kind
of vehicles, these trajectories can reflect movements made with the use of diverse
transportation modes. However, because of the uncertainties and inherent biases,
such data need to be used cautiously as a complement to other mobility data rather
than alone.

As we mentioned, special care needs to be taken in aggregation of episodic move-
ment data. In our example, we partition the territory into spatial compartments using
the method described earlier, that is, the same as we used for the vehicle trajec-
tories. We want to aggregate the data by hourly time intervals; therefore, we split
the trajectories into trips by time gaps longer than one hour. This means that, when
the time interval between two points exceeds one hour, the later point is treated as
the beginning of a new trip. Hence, the transition between the points is not used in
the aggregation. Additionally, we split the trajectories by spatial gaps of more than
5 km, which is the average radius of a spatial compartment used for the aggregation.
The flow map resulting from the aggregation is shown in Fig. 40.19. It reveals the
importance of the central area of London for people’s mobility: not only the major
flows occurred in the center, but also there were relatively many radial movements
to and from the central area. Besides, we can see “hubs,” such as Camden Town and
Wimbledon, with star-like patterns of flows around them.

Figure 40.20, left, demonstrates the temporal distribution of the aggregatedmove-
ments of the socialmedia users. In this two-dimensional temporal histogram, the rows
correspond to the days, columns to the hours of a day, and the sizes of the squares are
proportional to the numbers of moves made in the corresponding hourly intervals.
Prominent patterns of more intensive movements in morning hours of the weekdays,
with peaks at Hour 9, are clearly visible. Many movements also happen in the late
afternoons and evenings of the weekdays, while on the weekends the movements
are more uniformly distributed over a day starting from late morning. Interestingly,
this temporal distribution differs from the temporal distribution of the counts of the
posted messages shown on the right of Fig. 40.20.

This example shows that the approaches presented in this chapter are not specific
to GPS tracks of vehicles but can be applied to other kinds of spatiotemporal data
collected in various ways. However, the ways of data collection and the properties
of the data need to be carefully taken into account in data transformation, analysis,
and interpretation of visual displays and computation results.
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Fig. 40.19 Aggregated movements of social media users

40.6 Discussion and Conclusions

Our examples demonstrate how three major aspects of the urban context—places,
flows, and times—can be characterized using trajectory data. We proposed methods
to define a suitable set of places, aggregate trajectories into place- and link-based
time series, and characterize the places, flows, and times taking two complementary
perspectives in analyzing the time series. We demonstrated the use of methods of
cluster analysis as a means of abstraction and as an aid in coping with large data
volumes. Particularly, we showed that clustering by similarity can be applied to
local time series, for characterizing places and links, and to spatial distributions, for
characterizing times.

Due to the page limit, we shall only briefly outline the potential directions for
extraction of further context information from trajectory data. One possibility is to
consider attributes along trajectories, such as Andrienko et al. (2013b) have done:

• measured values, e.g., instant speed and direction, acceleration, turn, fuel
consumption, CO2 emission, etc.;

• spatial context, e.g., road type, land use, distances to stationary objects such as
gas stations or other places of interest;
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Fig. 40.20 Temporal patterns of the aggregatedmoves of the social media users (left) are compared
with the temporal patterns of the number of posted messages (right). The rows correspond to the
days, columns to the hours of a day, and the sizes of the squares are proportional to the numbers of
moves or messages, respectively

• derived from sequences of positions of the same trajectory, e.g., computed speed
and direction, curvature of the travelled path in a sliding time window; and

• computed based on trajectories of co-moving objects, e.g., count of trajectories
in given space- and time-windows or distance to nth closest neighbor.

Acquired attributes can be aggregated by places, flows, or along trajectories,
enabling selection of locations, connections, or vehicles with particular features.
Such vehicles can be visualized on a trajectory wall (Tominsky et al. 2012).

Trajectory attributes can be used for identifying locations that are characterized
by particular properties. Thus, density-based clustering of trajectory segments char-
acterized by slow movement can be used for identifying locations of traffic jams and
revealing their dynamics (Andrienko and Andrienko 2013b). Scalable methods are
developed for identifying hotspots from big data (Nikitopoulos et al. 2018). Consid-
ering the parts of trajectories preceding traffic jams, one can study the traffic jam
propagation over the street network (Wang et al. 2013).

Methods for time series analysis and modeling can be applied to place- or link-
based local time series that have been clustered by similarity. The resulting models
can be used for predicting traffic characteristics depending on time. Besides, link-
based time series of flow volumes and average movement speeds not only can be
modeled in separation but also used for representing andmodeling the speed–volume
dependencies as proposed by Andrienko and Andrienko (2013b). Such models can
be utilized for simulation of regular and extraordinary traffic (Andrienko et al. 2016c)
or for billboard pricing and informed decision making (Liu et al. 2017).
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Division of trajectories into trips allows extraction of routine movement behav-
iors (Rinzivillo et al. 2014) and semantic interpretation of locations (Andrienko
et al. 2016b ). Analysis of semantically-annotated trajectory data (e.g. by state tran-
sition graphs, Andrienko and Andrienko 2018) allows finding important behavior
patterns without compromising personal privacy.

Our study demonstrates that visual analytics approaches and techniques can
support sophisticated analyses for gaining understanding of complex phenomena,
such as urban mobility, which is necessary for building explainable models and
making informed substantiated decisions. However, we see a need for further
advances in visual analytics research and technical developments in the following
major directions:

• Stronger support of joint analysis of multiple data sets of diverse structure and
quality;

• Dealing with streaming data that are constantly generated and updated; and
• More specific approaches for supporting decisionmaking, including development,

evaluation, and comparison of decision options and performing what-if scenarios.
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Chapter 41
Cloud, Edge, and Mobile Computing
for Smart Cities

Qian Liu, Juan Gu, Jingchao Yang, Yun Li, Dexuan Sha, Mengchao Xu,
Ishan Shams, Manzhu Yu, and Chaowei Yang

Abstract Smart cities evolve rapidly along with the technical advances in wireless
and sensor networks, information science, and human–computer interactions. Urban
computing provides the processing power to enable the integration of such tech-
nologies to improve the living quality of urban citizens, including health care, urban
planning, energy, and other aspects. This chapter uses different computing capabil-
ities, such as cloud computing, mobile computing, and edge computing, to support
smart cities using the urban heat island of the greater Washington DC area as an
example. We discuss the benefits of leveraging cloud, mobile, and edge computing
to address the challenges brought by the spatiotemporal dynamics of the urban heat
island, including elevated emissions of air pollutants and greenhouse gases, compro-
mised human health and comfort, and impaired water quality. Cloud computing
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brings scalability and on-demand computing capacity to urban system simulations
for timely prediction.Mobile computing brings portability and social interactivity for
citizens to report instantaneous information for better knowledge integration. Edge
computing allows data producedby in-situ devices to be processed and analyzed at the
edge of the network, reducing the data traffic to the central repository and processing
engine (data center or cloud). Challenges and future directions are discussed for
integrating the three computing technologies to achieve an overall better computing
infrastructure supporting smart cities. The integration is discussed in aspects of band-
width issue, network access optimization, service quality and convergence, and data
integrity and security.

41.1 Introduction

41.1.1 Why Computing is Important in Smart Cities

Increasing global urbanization generates many problems, such as traffic conges-
tion, energy consumption, industrial waste, and heat islands (Rao and Rao 2012;
González-Gil et al. 2014; Li et al. 2012; Zhong et al. 2017; Rizwan et al. 2008).
These problems produce serious negative impacts on urban residents. For example,
an urban heat island (UHI) in an urban area or metropolitan area is significantly
warmer than its surrounding rural areas due to human activities. UHI contributes
directly to environmental warming, industrial waste, air pollution, and heat-related
mortality (Petkova et al. 2016). In order to alleviate urban problems and achieve
sustainable development, a number of smart-city solutions have been the subject
of experiments in cities over the past two decades. Copenhagen Municipality uses
monitor sensors installed in different trash containers and information systems to
optimize waste handling (State of Green Denmark 2018). Seoul of South Korea has
smart meters installed in residential houses, office areas, and industrial facilities to
report in real time the consumption of electricity, water, and gas (Hwang and Choe
2013). Smart cities are supported by key information and communications technolo-
gies (ICT) including the Internet of things (IoT), computing platforms, big data, arti-
ficial intelligence (AI), geographical information, and others (Graham and Marvin
2002; Morán et al. 2016; Mitchell et al. 2013) (Fig. 41.1). Among them, diverse
sensors, stable communication networks, and sophisticated computing platforms are
three fundamental technologies for smart cities. Sensors are the smart-city’s sensory
organs, to capture and integrate data continuously in real time. Smart sensors, such
as monitoring cameras, smart meters, and wearable devices, are widely employed
to improve urban transportation, utility planning, parking-lot management, pollution
monitoring, and health care. The number of connected devices on the Internet will
exceed 50 billion by 2020 according to Cisco (2017). The communication network
is the smart-city’s transmission system, transmitting data from sensors to computing
platforms. Reliable, scalable, and high-speed networks, including wired and wireless
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Fig. 41.1 Key technologies of smart cities

networks, are fundamental infrastructure for such transmission.Computingplatforms
support the management and analyses of relevant city data in a broader context, to
identify city-relevant events that require processing and action. A large quantity of
data is generated continuously from countless smart-city sensors. To store, process,
and analyze the massive heterogeneous data, a stable, scalable, fast computing plat-
form is required. For example, car drivers need a smart navigation system to provide
them with the optimal driving route in real time, updated dynamically with traffic
pattern and congestion changes. Different systems and devices using ICT have been
developed to monitor and forecast UHI in the past years. For example, France devel-
oped a Heat Health Watch Warning System to monitor heat waves that may result
in a large increase of mortality (Casanueva et al. 2019). Greece developed a UHI
modeling system to simulate and forecast heat islands in Athens (Giannaros et al.
2014). Richmond has handmade devices equipped in cars and bikes to map UHI
(Hoffiman 2018).

41.1.2 Major Computing Techniques in Smart City Studies

Washburn et al. (2009) described the smart city as using a collection of smart
computing technologies to manage critical infrastructure components and services.
A centralized cloud-computing architecture has been widely deployed in smart cities
to extend the storage capability and improve the processing velocity with character-
istics of elastically, on-demand, and pay-as-you-go computing resources (Yang and
Huang 2013). Cloud computing maximizes the utilization rate of physical resources
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by adopting a series of technologies including virtualization and network secu-
rity. Virtualization is a core technology supporting cloud computing, and abstracts
actual hardware as virtual computer systems. Virtualization enables multiple oper-
ating systems to run on a computer system simultaneously and optimizes the use of
computing and storage resources. Practically, cloud computing virtualizes computer
resources and manages them in a resource pool to provide computing services over
the network, reducing the idle time of resources including CPU, RAM, network,
and storage. Public clouds (e.g., Amazon AWS, Microsoft Azure) are open to the
public, who pay to use them. On the other hand, a private cloud is delivered via a
secure private network and usually shared among people in a single organization.
Cloud computing provides the smart city with the computing capability to store and
access data and applications outside local computing environment through computer
networks (Kakderi et al. 2016).

The proliferation of IoT enables smart cities to collect a large number of data and
deploy a lot of applications at the edge to utilize these data (Shi et al. 2016). The data
and applications also produce challenges of near-real-time response, privacy, and
massive numbers of data for network transmission. Cloud computing alone is not
sufficient to address such challenges. A new computing paradigm, edge computing,
which shifts the data storage, processing and analyses to the end of the network, as
close as possible to the devices, is deployed (Shi et al. 2016). With the aid of edge
computing, the edges of network become data producers as well as data processors,
addressing the challenge of response time, bandwidth, data safety, and privacy (Shi
et al. 2016). Edge computing offers a number of benefits, including allowing services
to continue to operate when there is no connection to the Internet, and processing
data locally. This significantly reduces the network load with only processing results
(which are normally smaller in volume than raw data) being transmitted across the
network.

The past two decades have witnessed the increasingly use of mobile devices (such
as mobile phones, portable computers, wearable devices, and smart vehicles) and
rapid growth of wireless communication technology (Hashim Raza Bukhari et al.
2018). Data processing is shifted away from centralized computing centers to the
mobile devices of end user. With battery volume and network bandwidth limitations,
computing resources offered by mobile computing are not as reliable as the other
two computing frameworks. Nevertheless, they are portable and able to collect and
process data where cloud computing and edge computing are unavailable.

The three computing paradigms collaboratively provide a comprehensive and
reliable data store and processing framework to overcome the disadvantages of a
single device and enable a suite of applications of smart cities (Table 41.1) including:
transport and traffic management, utilities and energy management, environmental
protection and sustainability, public safety, and smart-city security.

Figure 41.2 illustrates the sensors and computing devices of a smart city andplaces
them into three types: different sensors collecting different information for different
purposes. The sensors also have embedded computing capabilities; for example,
moving sensors can be used to provide flexible data collection to dynamically cover
different regions with fast situation-aware processing capabilities such as navigation.
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Table 41.1 Application examples of cloud, edge and mobile computing in smart cities

Application
examples

Computing paradigm

Cloud computing Edge computing Mobile computing

Transport and
traffic
management

Using cloud
computing for
smart-city logistics
(Nowicka 2014)

Connected parking
meters (David 2018)

Location-aware mobile
applications (Altman
et al. 2015)

Utilities and
energy
management

Using cloud
computing for smart
grid energy
management (Bera
et al. 2015)

Street lighting (David
2018)

The use of GPRS
technology for electricity
network telecontrol
(Souza et al. 2016)

Environmental
protection and
sustainability

Using cloud
computing for climate
analysis and
simulation (Yang et al.
2017a, b)

Vehicular pollution
system based on IoT
(Rushikesh and
Sivappagari 2015)

Location-aware weather
report applications
(Altman et al. 2015)

Public safety and
smart-city
security

Cloud computing
services in medical
heath care solutions
(Kaushal and Khan
2014)

Smart home (Shi et al.
2016)

Healthcare applications
(Hameed 2003)
Lost child application
(Satyanarayanan 2010)

Fig. 41.2 Urban computing for smart cities include cloud computing (gray), edge computing
(orange), and mobile computing (blue) devices and capabilities
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Edge-computing sensors act as fixed data collectors with various computing powers
depending on tasks assigned; for example, a higher edge-computing capacity enables
handling analytics for a larger area, like a neighborhood. All data and processes can
also be uploaded to the cloud’s centralized computing, for extensive data processing
and knowledge extraction or mining.

Computing serves as an indivisible capability to support effective and efficient
smart-city applications and research, through which massive smart-city data can be
processed in parallel and in a real-time manner. This chapter introduces the three
computing paradigms’ engagement in a smart city using UHI as a case study. A
workflow was proposed to integrate three computing techniques as a seamless inte-
gration for handlingUHI problem (one of the severe urban challenges facing us today
especially with climate and global change).

This chapter starts with an introduction to urban computing in 41.1, followed by
the current status and challenges of computing in different smart-city scenarios.
Sections. 41.3, 41.4 and 41.5 introduce, respectively, cloud computing, edge
computing, and mobile computing using UHI as a use case. The last section uses
UHI as an example to integrate the three computing paradigms through collaborative
workflow.

41.2 Computing for Smart Cities

41.2.1 Data and Model in Smart Cities

Smart cities require multiple data sources and reliable models to produce decision-
supporting information. It becomes especially challenging when a massive number
of smart devices and sensors are engaged. This section introduces five typical smart-
city applications, the data engaged, corresponding models, and their requirements
for computing.

41.2.1.1 Transport and Traffic Management

Transportation is oneof themost important aspects for urban-living activities.Various
sources of transportation data are related to people’s travel and commuting, which
is a complicated and indispensable part of smart cities. For example, traffic data
are generated and collected by sensors in traffic vehicles (e.g., taxis, buses, metros,
trains, vessels, and planes) or monitors installed along the roads (e.g., loop sensors
and surveillance cameras). Commuting data refer to data that record people’s regular
movement in cities. Geo-tagged social network data collect posts (e.g., blogs, tweets)
through social networks which are tagged with geoinformation. Road network data
represent road segments and intersections, respectively. The transportation network
is modeled as a directed graph which includes transit routes and stop facilities of
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buses and metro networks. Point of interest (POI) data depict related information for
facilities, such as restaurants, shopping malls, parks, airports, schools, and hospitals
in the city, which helps guiding people to find their destinations.

To handle and integrate the complex data from different sources efficiently and to
satisfy various user groups, different models are used for intelligent transportation
systems, such as agent-based traffic management models (Sciences et al. 2011),
cognitive rationality-based decision-makingmodels (Cascetta et al. 2015) andmixed-
ranked logit models (Liu et al. 2017).

41.2.1.2 Utilities and Energy Management

The large volume of data for utilities and energy management is increasingly adding
burden to urban computing systems, especially with the wide adoption of sensors,
wireless transmission, and network communication (Zhou et al. 2017). The input data
of smart-city energy systems include numeric data, text-based data, and audio-visual
data. Numeric data refer to the observations and collections from sensors and meters,
such as power quality, customer usage, and electrical production. Text-based data
sources are mainly internal and external communications, regulatory documents,
legal documents, and linguistic social media records. Audio-visual data are records
and social media data in the form of sound and video (Schuelke-Leech et al. 2015).

The utilities and energy management systems should be green, sustainable, and
with high operational speed and efficiency. Schuelke-Leech et al. (2015) demonstrate
how future sustainable energy systems will be smart and integrated with smart grids,
renewable sources, storage, and energy management and monitoring systems. The
energy and utility systems of cities are complicated because they have to satisfy a
huge number of requirements with comparably limited supply. The computational
systems need not only to integrate intermittent power sources efficiently and effec-
tively, but also to predict equipment failures and power outages, allowing utilities to
optimize their maintenance budgets. For example, Sheikhi et al. (2015) presented an
Energy Hub Model in a future vision of energy systems, which supported real-time
and two-way computational communication between utility companies and smart
energy hubs. Such models also allowed intelligent infrastructures at both ends, since
to manage power consumption necessitates large-scale real-time computing capabil-
ities to handle the communication and the storage of big data. These systems help
managers, employees, and consumers to make informed decisions based on data and
empirical investigation, rather than on intuition or past practice.

41.2.1.3 Environmental Protection and Sustainability

Environmental protection and sustainability also play important roles in smart cities.
The environmental resources refer to minerals, forests and grasslands, wetlands,
rivers, lakes, and the ocean. These natural resources have been exploited unduly, and
the inappropriate management of natural resources has caused severe environmental
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degradation (Song et al. 2017). The data that urban environmental protection and
sustainability management systems are dealing with include hydrogeological data,
environmental surveillance data, ecological statistics, and meteorological data. The
data quantity and dimensions are big according to the characteristics of big data. The
functions of these data are not only to accurately present the current situation of the
environment but also to effectively predict the future and sustainability. Therefore,
powerful computational ability is needed to help governments and individual users
to prevent and settle environmental challenges.

As environmental protection and sustainability are important factors for the devel-
opment of smart cities, data collection and computational models have flourished
in this domain. Take the IoT and its associated computing model as an example:
the informational landscape of smart sustainable cities and big data applications is
augmented to achieve the required level of environmental sustainability (Bibri 2018).
For governments, the combination of 3D GIS and cloud computing is also offering
effective services in the environmental management of smart cities (Lv et al. 2018).

41.2.1.4 Public Safety and Security

Public safety and security are directly related to citizens’ wellbeing and their lives.
With the growth of different kinds of monitoring devices and systems, data from the
IoT, unmanned aerial vehicles (UAV) (Menouar et al. 2017), and social media are
leveraged to make our cities more and more safe and stable. Usually, the safety and
security issues are directly related to people’s life and property, and needs immediate
and accurate response from relevant personnel. Therefore, extremely high perfor-
mance in efficiency and accuracy is needed for safety and security models and
systems. Edge and mobile computing, which can share the burden of the central
cloud and improve processing speed, are ideal for the applications such as finding
a lost child (Shi et al. 2016). Wearable devices and medical sensors can measure
users’ health conditions and send health data to the processing unit for doctors’
further diagnosis.

To address these challenges, safety systems should include the following data
sources andmodel features: health care andmonitoring systems; smart safety systems
for surveillance; smart systems of crisis management to support decision making,
early warning, monitoring and forecasting emergencies; centrally operated units
of police and integrated rescue systems (IRS); safe Internet connection and data
protection; and centers of data processing (Lacinák and Ristvej 2017).

41.2.1.5 Urban Heat Island and Urban Computing

Urban computing utilizes the three computing paradigms to store, process, integrate,
model, and analyze various big data and phenomena, such as real-time data generated
by diverse smart sensors and devices, fundamental urban geographical data, social
media data, data on transportation on flooding, and on UHI. UHI is considered one
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of the major urban challenges and is caused by a set of complex factors, including
urban land use changes, solar radiation, anthropogenic heat sources, climate change,
urban development, and wind speed and direction (Memon et al. 2009). The negative
effects of UHI include: (1) increasing temperature in cities (Voogt and Oke 2003);
(2) contribution to global warming (Van Weverberg et al. 2008; EPA 2016); (3)
air pollution (Sarrat et al 2006; Davies et al. 2008); (4) increasing energy demand
(Santamouris et al. 2001; Santamouris 2015); and (5) heat-related mortality (Guest
et al. 1999; Conti et al. 2005; Haines et al. 2006; Filleul et al. 2006; Hondula, et al.
2014).

To reduce the negative impact of UHI, remotely sensed data, stationary meteo-
rological monitoring data, building data, digital elevation data and other data were
integrated to model, monitor, simulate, and evaluate UHI in more than 100 cities in
the past 50 years. However, UHI studies involve big data storage, processing, and
modeling,which need complicated computing. There is no single efficient computing
architecture for large-scale or long-term UHI studies. This chapter takes UHI as an
example to introduce how the combination of cloud, edge, andmobile computing can
help addressing the smart city challenges in sequence of: (1) what are the computing
challenges of smart cities; (2) how the three computing paradigms can help address
the challenges; and (3) how to integrate the three computing paradigms to address
these challenges using UHI as an example.

41.2.2 Computing Challenges in Smart Cities

41.2.2.1 Big Data Handling

Urban data have been harvested from various sources including (1) remote sensing,
(2) in-situ sensing, (3) social sensing, (4) IoT sensing, and (5) simulation. The
collected data together provide a comprehensive view of the urban system: for
example, the underground water distribution network for water usage management
(Karwot et al. 2016), real-time parking prediction (Vlahogianni et al. 2016), and 3D
city modeling for urban disaster management (Amirebrahimi et al. 2016). However,
the sensing and simulation produce large numbers of data that far exceed the storage
capacity of an individual computer. Taking remote sensing as an example, fine
spatiotemporal resolution imagery grows exponentially with spatial resolution. For
example, the volume of the Earth Observing System and Data Information System
(EOSDIS) data archive was more than 27.5 petabytes (PB) at the end of fiscal year
2018 (NASA Earth Science Data Systems Program Highlights 2018). Efficiently
storing such a large volume of data is a challenging task. Meanwhile, data are
produced in high velocity in a continuous manner with the development of advanced
techniques, such as water meters, which collect water usage data in a fixed interval
(e.g., every 30 s). The velocity of data requires streaming data collection and anal-
ysis methods for near-real-time applications. In addition, the heterogeneous data are
stored in various file formats, such as image, video, text, or audio, and pose grand
challenges to data management.
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41.2.2.2 Compute-Intensive Modeling and Processing

The smart city is becoming a sophisticated ecosystem where massive data are being
collected and innovative solutions are being proposed to deliver smart services
(Anthopoulos 2015). Generally, those solutions rely on complicated data models and
analytics with the aid of the computer. Data models often represent objects or situa-
tions in the real world, and a digital model makesmathematical analysis possible. For
example, a trend in smart cities is to build three-dimensional (3D) models for visual-
ization and analytics such as skyline analysis, underground utility management, and
route selection (Yao et al. 2017; and see Sects. 41.5 and 41.6). Although a 3D model
can represent cities as virtual reality to support real 3D analysis, more computing
resources are needed for effective 3D rendering and analysis. Data analytics is an
important component of the big data paradigm. However, it comes after data collec-
tion, deduplication, completion, aggregation, harmonization, contextualization, and
filtering. These components of the process are essential to enable analytics to derive
useful insights. Different types of computing resources are required for different
components in the data process workflow. For example, moving partial computing
resources to the data collection sites for data cleaning can reduce the volume of data
transferred to the core computing platform, result in a lower bandwidth cost and a
higher analysis speed.

41.2.2.3 Data Security and Privacy

Security and privacy issues are two of the major challenges in smart-city computing
due to the identification information within the data and the security issues located
in the multiple computing layers. Generally, some of the raw data may contain
confidential or sensitive information related to people or governments; such data
processing should be protected against unauthorized usage. Taking cellular data for
example, a phone number in each record represents a real person and makes an indi-
vidual’s daily activities traceable, which may divulge the private affairs of people.
In the water distribution management system, a methodology for synthetic house-
hold water consumption was proposed to reproduce water consumption data due to
privacy constraints (Kofinas et al. 2018). Simultaneously, in smart-city applications,
data move over various computing layers through networks, some of which may be
insecure. In an application, data may be processed with more than one computing
technique including edge computing, mobile computing, and cloud computing. In
most cases, mobile devices and edge computing nodes need to connect via Wi-Fi
to upload data to the cloud-computing platform. Connection to unauthorized Wi-Fi
may bring security risks to the system. Besides network connection, distributed open-
source big data platforms like Hadoop and Elastic search are becoming increasingly
popular for distributed data storage and analytics, However, compared to commercial
solutions, these platforms lack sufficient security guarantees (Sharma and Navdeti
2014).
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41.2.2.4 Efficiency

A trend in smart-city’s applications is to extract information from big data, and
thus, lack of efficiency becomes a bottleneck of most data-analytical applications.
Different applications vary in levels of complexity and require different response
times. Navigation needs immediate optimal route suggestion (e.g., fastest route
option) based on real-time traffic data (Liebig et al. 2017). Predictions of hurricane
intensity help people prepare for severe weather, saving properties, and human lives
(Li et al. 2017). Applications like environmental sustainability are less sensitive to
the response time. Meanwhile, although a series of open-source big data platforms,
such as Apache Hadoop, Spark, HDFS, and MapReduce, have been developed and
adopted in various domains, these platforms are not specifically designed to support
spatiotemporal data. Performance issues are unavoidable when using these platforms
to process spatiotemporal data without any modification. Some research has been
done to customize these tools for domain adoption. Taking array-based raster data
for example, a hierarchical index was proposed to speed up the query process of grid
data stored in the HDFS file system (Hu et al. 2018). The development of an efficient
spatiotemporal computing platform is still in an initial stage; how to utilize and opti-
mize big data computing platforms to implement efficient smart-city applications
remains a challenge.

41.2.3 Generic Computing Architecture for Smart Cities

Cloud, edge, and mobile computing support different functions and applications
in the development of smart cities. To optimize the computation capability and
further overcome the challenges discussed in Sect. 41.3, different types of computing
paradigms should be utilized. Based on the characteristics and advantages of each
type of computing, a computing architecture for a smart-city system is proposed
(Fig. 41.3).

41.2.3.1 General Computing Modules in Smart Cities

The proposed architecture of computing system in smart cities contains the following
five parts:

(1) Application acquisition: The function of the application layer is to collect
requirements fromusers, then organize, and analyze them into the four aspects as
mentioned in Sect. 41.2.1: Transportation and traffic management, utilities and
energy management, environmental protection and sustainability, and public
and smart-city security.

(2) Visualization: The visualization layer is designed to visualize the applications in
the form of 2D and 3Dmaps, trajectories, images, charts, histograms, and others
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Fig. 41.3 Generic computing architecture for smart cities

using technologies and software such as 2D mapping, 3D modeling, Jupyter,
and Zeppelin.

(3) High-performance analysis and modeling: As discussed in the former sections,
computing for smart cities is usually encountered with big data issues, and
high-performance computing techniques are essential to maintain a stable and
efficient computation system. This layer implements data analysis, modeling,
and prediction according to the applications.

(4) Data access and query: The system utilizes a data access and query layer to
retrieve and select data sources that satisfy the needs and orders from users.
Methods and techniques such as SQL, No-SQL, R-Tree, Quadtree, and spatial–
temporal indexing will be adopted according to the category of data.

(5) Data storage and infrastructure: This layer provides the hardware and physical
devices, including data storage facilities, aswell as the servers and networks. The
smart-cities-related data sources will be stored in different categories according
to the requirements from uses, using database systems such as file storage,
Relational Database Management System (RDMS), No-SQL, array-based, and
linked-data databases.

41.2.3.2 Computing Methods Integration

Computing procedures are embedded in all the layers of the proposed computing
architecture for smart cities, through a series of security controls, encryption, stan-
dardization, authentication, authorization, governance, curation, and network tech-
niques. The core computingmethods of smart cities contain central cloud computing,
edge computing, and mobile computing. In the central cloud platform, data centers
provide complex analysis and visualization capabilities, as well as hardware facili-
ties and infrastructure for the cloud. The servers are linked with high-speed networks
to provide services for clients. Normally, data centers are built and located in less
populated places, with a high power-supply stability and a low risk of disaster (Dinh



41 Cloud, Edge, and Mobile Computing for Smart Cities 769

et al. 2013). The edge-computing platform is connected with the central cloud by the
Internet. They have dual communication with each other to enable data interactions.
The edge servers can share and reduce the burden of central servers, and as a result
increase the speed of processing and delivering data. The mobile-computing plat-
form is the mobile devices of the end users, which has a certain capability to process
data along with mobility. Mobile devices can also be connected to central clouds by
wireless networks for data transmission. Edge- and mobile-computing platforms are
connected with each other in applications where interactions are needed.

In the architecture, the three computing paradigms are connected and assist each
other, where there are distinctions between them in the collaboration of processing
smart cities’ services and applications. Different from cloud computing requiring
all parts to be connected to the central cloud, where large volumes of data are
processed to find optimization solutions or support decisions, edge computing relo-
cates crucial data processing to the edge of the network, rather than constantly deliv-
ering data back to a central server. Therefore, edge-enabled devices can gather and
process data in real time, allowing them to respond faster and more effectively,
while mobile computing relates to the emergence of new devices and interfaces and
has the data processing capability on the mobile devices. Moreover, the central-
ized cloud could perform extremely complex data processing, storing, and analytics.
Edge computing usually performs less intricate data processing than central clouds,
storing and forwarding. However, some mobile devices can only implement simple
and limited data processing. By integrating the three computing paradigms, the effi-
ciency challenges of intensive big data processing and computing can be remitted.
Direct connection between edges, mobile devices, and the central cloud with a stable
and secure network will guarantee the safety and security of the whole system.

41.3 Cloud Computing for Smart Cities

41.3.1 Methodology

Cloud computing is developed and improved based on the evolution of parallel
computing, distributed computing, and grid computing (Jadeja and Modi 2012;
Yang and Raskin 2009). Parallel computing allows many computation processes
to run simultaneously, which achieves high performance in a divide-and-conquer
fashion (Fu et al. 2015). Distributed computing contains components located on
different networked computers which communicate and cooperate with each other to
achieve a common computing objective (Yang et al. 2008). The inexpensive computer
nodes and high-speed networks make possible the function of distributed computing
systems (Jonas et al. 2017). Grid computing organizes a network of heterogeneous
computer resources to work together and achieves high performance for processing
and executing resource-hungry tasks like those normally allocated to supercomputers
(Wang et al. 2018). Different from the above-mentioned computing modes, cloud
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computing is amodel for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (NASA 2010), instead of a local machine
or remote server handling applications.

Cloud computing is capable of scheduling and balancing the distribution of
resources according to real utilization demand, and billing according to the usage.
Using different techniques and according to different budgets, cloud computing
extends subscription-based access to data, platforms, infrastructure, and software,
approaches that are referred to as data as a service (DaaS), platform as a service
(PaaS), infrastructure as a service (IaaS), and software as a service (SaaS) (Subashini
and Kavitha 2011; Yang et al. 2011).

41.3.2 Challenges, Motivations and Opportunities

Past research (Gong et al. 2010; Zhang et al. 2010; Yang and Huang 2013; Mahmood
2011) identified the features and advantages of cloud computing as:

(1) Hyperscale. Some Internet companies have developed large-scale cloud-
computing platforms for business applications, and the practical clouds have
a considerable scale. For example, Google cloud computing (Xiong et al. 2017)
has millions of servers; Amazon, IBM, Microsoft, Saleforce, Ali, and Tencent
(Hashem et al 2015; Rittinghouse and Ransome 2016), and other agencies have
hundreds of thousands of servers in their clouds. Conceptually, a cloud can
provide users with unprecedented computing power.

(2) Virtualization. Cloud-computing supports users to access services at any loca-
tion using a variety of terminals and devices. The requested resources come from
the cloud, which uses virtualization techniques to separate computer resources
and services from underlying fixed physical entities (Gong et al. 2010). The
application runs above in the cloud without specifying a server. Simple network
connection enables users to benefit from super-powerful services via multiple
devices, such as a computer, a PAD, or a mobile phone.

(3) Reliability. Cloud computing uses the capability of fault tolerance and isomor-
phic interchangeability of computing nodes and other strategies to ensure high
reliability and availability (Dai et al. 2009). Compared with traditional in-house
computing infrastructures, cloud computing is more reliable and consistent.

(4) Universality. Cloud computing is not specific to any particular applications. It
can support a variety of applications under the support of a single cloud. The
same cloud infrastructure can be shared by different applications at the same
time (Yang et al. 2016).

(5) Scalability. The capabilities and scales of the cloud canbemodified and extended
dynamically to meet the needs of applications and growth (Lehrig et al. 2015).
Scalability allows cost-effective running of workloads that make a very high
demand on servers but only for short periods of time or occasionally.
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(6) On-demand. Users could request and receive access to cloud service offerings,
like the traditional infrastructure utilities of water, electricity, and gas. Based on
a pool of physical and virtual resources in the cloud, operations such as creating,
stopping, and terminating could be conducted at any time without waiting for
delivery and purchasing processes (Etro 2015). Usage monitoring tools of the
cloud can record usage details for billing.

(7) Cost savings. The “pay-as-you-go” characteristic of cloud service enables
personal and business clients to access the cloud from extremely cheap and
price-flexible computing nodes. The automatic system of the cloud reduces
the cost of data center management by deleting the basic maintenance budget.
The lack of physical infrastructure removes the operational expenses of power,
storage, administration and even labor costs.

Considering the advantages listed above, cloud computing can help to address the
following computing challenges of smart cities:

(1) Unity and efficiency. Through the architecture of the IaaS model, cloud
computing integrates various frameworks, hardware brands, and computing
models of servers to the traditional data centers and provides a unified plat-
form of application based on the cloud operating systems (Mitton et al. 2012).
Meanwhile, with the virtualization techniques, cloud computing can be flexibly
and effectively partitioned, allocated, and integrated over a potentially infinite
number of storage and computing resources, and optimize the efficiency ratio
according to application and requirements.

(2) Large-scale infrastructure. Infrastructure management of hardware and soft-
ware is mainly responsible for the monitoring and management of large-scale
foundational computing resources (Jin et al. 2014). Fundamental software
resources include stand-alone operating systems, middleware, databases, and so
on. Fundamental hardware resources include three main devices in the network
environment: computing (server), storage (storage device), and network (switch,
router, and other devices). The advantages of infrastructure management center
are: (1) to manage the assets of the basic software and hardware resources;
(2) to support the status and performance monitoring of the basic hardware;
(3) to trigger alarms for abnormal situations, and remind users to maintain the
abnormal equipment; (4) to carry out long-term statistical analysis of the basic
software and hardware resources; and (5) to provide a decision-making basis
for high-level resource scheduling.

(3) Sustainable and green energy. Facing the burden of large-scale fundamental
software and hardware resources, green and energy-saving operation and main-
tenance management of this basic infrastructure is an inevitable demand for the
supplier of cloud computing (Wibowo et al. 2018).
Presently, users often purchase large amounts of equipment to guarantee peak
business operation demands. But for actual operation processes, the load of the
equipment is generally low (Mastelic and Brandic 2015), especially in the low-
loading period. A long-term low utilization rate will lead to a large waste of
resources and energy.
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A cloud-computing data center supports multi-tenant applications of resources.
The utilization rate of resources can be effectively improved through the histor-
ical statistical information of business, and the coordination of business/resource
scheduling management. In typical applications, a cloud-computing data center
using energy-saving technology can increase the load of resources to a signifi-
cantly higher level (Ronget al. 2016), remove the loss in the process of resources’
scheduling, and double the resources’ payload. During night operations, when
the overall load of the data center decreases, the unused resources can be trans-
ferred to the idle mode, to maximize the green, low-carbon and energy-saving
operation of the data center (Hao et al. 2012).

(4) Privacy and security. In the cloud-computing environment, the centralized and
large-scale management of basic resources shifts the security problems to the
server side in the data center. From the specialization perspective, end users
can achieve business security through the security mechanism of the cloud data
center, without consuming too much resources and power (Jin et al. 2014; Sen
2015). At the same time, cloud-computing centers will be directly responsible
for the security of all users and specifically focus on the main security risks
including data access risk, data storage risk, information management risk, data
isolation risk, legal investigation support risk, aswell as sustainable development
and migration risk.

The security control of cloud computing can be integrated by the basic hardware
and software security design. The architecture, strategy, authentication, encryption,
and other aspects of a cloud-computing system ensure the information security of
cloud-computing servers.

Cloud computing reduces the risk of data loss or leakage from individuals by
storing data in a centralized database (Chang and Ramachandran 2015). At the same
time, a cloud-computing center also uses a variety of backup methods in security and
disaster recovery to guarantee that data will not be lost or illegally tampered with.

41.3.3 Urban Heat Island Use Case

Remote-sensing data analysis of a large area is a traditional approach to extract
temperature information of cities for UHI modeling and prediction. Google Earth
Engine (GGE) is a cloud-based platform sharing large numbers of satellite data online
and allowing data analysis and processing on the fly (Gorelick et al. 2017).

Chakraborty and Lee (2019) implemented the SUE algorithm on the Google Earth
Engine platform using MODIS images to calculate the UHI intensity for over 9500
urban clusters using over 15 years of data,making this one of themost comprehensive
characterizations of the surface UHI to date. They designed an interactive, public-
facingWeb application to query UHI intensities of almost all urban clusters based on
GGE. Ravanelli et al. (2018a,b) took advantage of GGE and the Climate Engine (CE)
tool to process the huge amount of satellite Earth observation data (6000 Landsat



41 Cloud, Edge, and Mobile Computing for Smart Cities 773

images) over the period of 1992–2011 and realized wide spatiotemporal monitoring
of surface UHI and its connection with land cover changes. Yu et al. (2019) utilized
cloud-based computing of spatial and landscape analysis to identify the multi-scale
spatiotemporal patterns and characteristics of regional heat islands.

Cloud-computing techniques enable researchers to calculate geophysical parame-
ters from large numbers of remote-sensing data with high and efficient performance.
The cloud-computing platform, like Google Earth Engine, assists users to store and
manage original raw datasets and provides interactive SaaS for customized algo-
rithms deployment and running for specific UHI-related use cases. These functions
are successful in addressing the computing challenges of big data handling, efficiency,
computing-intensive modeling and processing, and data security.

41.4 Edge Computing for Smart Cities

41.4.1 Methodology

With the development of computation technology and hardware, a large number
of smart devices are integrated with sensors, enabling them to acquire real-time
data and information from the environment. This phenomenon has culminated in the
captivating concept of the IoT in which all smart things, such as smart cars (Morabito
et al. 2018), wearable devices (Chen et al. 2017), sensors and industrial and utility
components (Mehta et al. 2018) are connected via networks and empowered with
data analytics that are significantly changing the way we work, live, and play. In
the past few years, many scientific and industrial organizations have introduced and
implemented the concept of IoT in various fields such as smart homes, smart cities,
smart traffic, and smart environments. Edge computing is a new paradigm in which
extensive computing and storage resources are placed to provide cloud-computing
capabilities at the edge (variously referred to as cloudlets or micro data centers) of the
Internet (Satyanarayanan 2010). Edge computing is a mesh network of micro-data
centers that process or store data locally and push all received data to a centralized
data center or cloud-storage repository (Butler 2017). By implementing computation
closer to the edge of the network, analytics of complex data can be realized in near-
real time. In applications, the forms of edge are various; for example, a gateway at
a smart home is the edge between home devices and the central cloud; a micro-data
center and a cloudlet are the edge between a smartphone and the central cloud.

The main function of edge computing is to ingest, store, filter, and send data
to the central cloud systems (“What Is Edge Computing?|GE Digital” n.d.). At the
heart of a smart city, there is widespread deployment of IoT sensor networks, which
provide a regular flow of data that allows for effective and efficient management of
services and assets. Typical deployment scenarios include a large scope of content:
from bus tracking to traffic light management, street lighting control, air quality, and
pollutionmonitoring.We envision that edge-computing could have similar impact on
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our society as that of cloud computing. Edge computing provides new possibilities in
IoT applications, particularly for those tasks relying on AI techniques such as object
detection (Ananthanarayanan et al. 2017), face recognition (Hu et al. 2016), language
processing (Lewis et al. 2014), and obstacle avoidance (Zhang and Ye 2016).

41.4.2 Challenges, Motivations, and Opportunities

Nowadays, a smart city relies on the infrastructure of edge computing to leverage
most of the up-to-date data-driven technologies. With edge computing, services can
be ensured to flow continuously through local data processing even when the Web
connection is interrupted (Abbas et al. 2017). For example, driverless cars and other
modern IoTdevices are designed to be builtwith enough processing capability, so that
they can perform some of the computation themselves at the edge, without sending it
to the central cloud. Edge-computing technology provides an attractive and resilient
platform for cities, while at the same time reducing backhaul costs (Tran et al. 2017a,
b), both in terms of the amount of data required and the sharing of connections by
creating a mesh network.

There are challenges both in the big data generated and in creating the neces-
sary network infrastructure to support an increasing number of end devices. Edge
computing offers a solution tomany of the challenges described in Sect. 41.2.2,which
opens up many possibilities for smart cities. According to the advantages discussed
above, edge computing can contribute to the following computing challenges of
smart cities:

(1) Latency and efficiency. In a high-efficiency computing system, any device
connected to the Internet has to be responsive in a short period of millisec-
onds. Any lag in the communication between network and devices is termed
latency. Edge computing can eliminate the latency issue as it works on the
principle of a more distributed network. This kind of system has the capability
to guarantee real-time information processing and maintains a more reliable
network (Hu et al. 2015). On the other hand, edge-computing processes the
massive data generated by different types of IoT devices at the edge of network,
instead of transmitting them to the centralized cloud infrastructure. Therefore,
edge computing can provide services with faster response and greater quality
in comparison with cloud computing, which greatly improves the efficiency of
collecting, transferring, processing, and analyzing data generated by arrays of
IoT devices.

(2) Privacy and security. Security concerns are more related to the transfer of data
over a network to the central cloud. In an edge architecture, any outage would be
limited to the edge devices and local applications. Therefore, edge computing
will improve privacy and security by omitting the transmission since the data
are stored and processed in or closer to the edge devices (He et al. 2018).
With the improvement of authentication technology, the privacy and security
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of edge computing can be further guaranteed by the emergence of biometric
authentication such as fingerprint authentication, face authentication, touch-
based, or keystroke-based authentication (Yi et al. 2015; Zhou et al. 2017).

(3) Internet load reduction. According to the Cisco Global Cloud Index (“Cisco
Global Cloud” n.d.), the amount of traffic running through cloud-computing
networks will increase to 14.1 zettabytes per year in 2020. This immersive
amount of traffic can be removed from the central cloud by processing some of
the data closer to the edge. Additionally, moving the processing of data away
from the central cloud can minimize the network burden where the Internet
bandwidth is limited (Lyu et al. 2018).

(4) Sustainability. Edge-computing systems provide the capability of decentralizing
computation power, which support fault tolerance in that when one of the edge
devices fails, other nodes and associated IT assets will still remain operational
(Ning et al. 2019). This concept is similar to the cloud disaster recovery strategy
(“Disaster Recovery Planning Guide|Architectures,” n.d.) by using multiple
available zones and regions to ensure that the data and applications are not
lost in a catastrophic event.

Edge computing introduces a new concept that computing should happen as close
as possible to the data sources. With this architecture, a request could be generated
from the top of the computing paradigm and processed at the edge. By deploying edge
computing, software engineers can create additional applications that utilize edge-
computing platforms to leverage existing technology and benefit the smart cities in
the following ways (“Smarter Cities with Edge Computing” n.d.):

(1) Streetlighting. A number of cities are in the process of upgrading their street-
lights to lower-power LEDs. With the major cost of these upgrades being the
physical fitting, edge appliances can be added to provide lighting controls (Xing
et al. 2018).

(2) Security cameras. Nowadays, CCTVcameras have been a critical tool inmodern
policing systems. Edge computing can allow low-cost wireless IP cameras to
be deployed in these systems, which will offer considerably less cost (Yi et al.
2017).

(3) Health emergency and public safety management. For applications that require
real-time prediction and low latency such as health emergencies (Wang et al.
2017) and public safety (Zhang and Ye 2016) management, edge computing is
also an appropriate paradigm since it could save the data transmission time as
well as simplify the network structure. Decisions and diagnosis could be made
and distributed from the edge of the network, which is more efficient compared
with collecting information and making decisions at a central cloud.

(4) Location awareness. For geoinformatics-based applications such as transporta-
tion and utility management, edge computing exceeds cloud computing due to
location awareness (Shi et al. 2016). In edge computing, data could be collected
and processed based on geographic location without being transferred to the
central cloud.
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41.4.3 Urban Heat Island Use Case

Unlike cloud computing, edge devices are commonly decentralized. In order to
monitor UHI from distributed sensors, edge computing offers closer contacts to
each individual sensor, thus reducing energy consumption and response time during
the transfer of observation data (Ngoko et al. 2018). Edge devices are those mounted
directly on the edge for urban sensing of properties such as microclimate, having
better durability compared towireless devices. Densely distributed buildings in urban
areas work as an ideal candidate for the deployment of edge devices, providing close
proximity to the UHI impact factors such as temperature, humidity, and wind speed.
Due to climate change, heating and cooling consume significant energy in buildings.
These sectors contribute greatly to UHI and can be monitored by smart building
sensors (Seitz et al. 2017). Lightweight tasks like data cleaning and basic decision
support can be performed, and therefore contributes to UHI mitigation. Applications
that support edge computing can benefit the field of UHI in: (1) allowing users to
browse and query the UHI of cities around the world from a gateway; (2) providing
a means to access real-time datasets from the edge without any latency; and (3)
allowing users to search for a city of interest, query cities to generate charts of
seasonal and long-term surface UHI, and download the UHI data.

41.5 Mobile Computing for Smart Cities

41.5.1 Methodology

Mobile computing could be described as a form of human–computer interaction
where the computer is portable and transported during normal usage (Qi and Gani
2012; Akherfi et al. 2018). The fundamental concepts of mobile computing include:
(1) communication, (2) hardware, and (3) software. Specifically, the communication
concept refers to the wireless networks, data traffic, and protocols. The hardware
could be any type of mobile device, which includes: (1) laptops, (2) tablets, (3)
smartphones, (4) carputer, and others. The category boundaries of such devices are
blurry, as more and more portable devices are installed with microchips and wireless
modules, all of which have some computing power and the ability to transfer data
through networks as a part of the mobile-computing hardware (Tong et al. 2016).
The software in mobile computing consists of the applications in mobile device
hardware, such as customized industry software, data collection applications, and
Web browsers.

In the past decade, mobile computing has developed in two ways (Kumar et al.
2013): (1) deployment of sensors, and (2) growth in smartphones. It was also chal-
lenged by the explosion of big data (Laurila et al. 2012). Different from purpose-
oriented IoT, mobile devices are integrated with multi-purpose sensors, such as GPS
receivers, accelerometers, gyroscopes, and microphones. With the growth in both
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smartphone technologies and number of users, mobile devices are transitioning from
specialized and customized platforms to powerful computing interfaces (Al-Turjman
2018). Mobile computing itself is also becoming a computing offloading contrib-
utor. The application layer of mobile computing faces various challenges due to its
features. However, with the fast growth in communication technologies, including
4G and 5G networks and high-speed city Wi-Fi (Tran et al. 2017a, b), and mobile
technologies in general, the number of applications running on mobile devices is
growing at an exponential rate.

41.5.2 Challenges, Motivations, and Opportunities

In addition to most computing architectures in a wired network, mobile computing
is different in the following aspects (Qi and Gani 2012): (1) Mobility: mobile-
computing nodes or devices are expected to be portable and transportable; the
computing power is not physically limited to a certain location and follows the prin-
ciple of bringing computing to the data instead of transferring the data to computing
resources. (2) The diversity of network conditions: the networks that mobile devices
use are often not fixed; communication could be achieved through high-bandwidth or
low-bandwidth networks; and the mobile device may even operate offline. (3) Incon-
sistency: as mobile devices are limited by their battery power and wireless network
conditions, the inconsistency of communication and change of working status are
expected and requires the mobile devices to switch modes to adapt to specific situa-
tions. (4) Asymmetric communication: wireless networks are often set with different
bandwidths for downlink and uplink, which causes asymmetric communications
between backend servers and local devices. (5) Low reliability: wireless commu-
nications are susceptible to interference; the security issues are enlarged in such
networks and affect the reliability of mobile computing (Qi and Gani 2012).

The rapid development of mobile computing and smartphone applications is
enabling integrated growth of smart-city applications. As stated in Sect. 41.2.2,
mobile computing can help to improve the following challenges of smart-cities
computing:

(1) Satisfy the need of users fromdifferent areas.Mobile computing supports smart-
city computing in the forms of mobility and flexibility, which could help both
end users and policy makers to meet different computing demands in different
scenarios. Application use cases include services in higher education (Gikas
and Grant 2013), and location-based services in general, which all utilize the
mobility side of smart devices and allow them to act as both a data collector and
data user (Raja et al. 2018).Another application ofmobile computing is to utilize
and integrate smart devices in smart spaces (Zheng and Ni 2010). The concept
of the smart city is a big domain with enough space for the expansion and adapt-
ability of mobile computing. Research topics including dynamic offloading for
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mobile devices (Huang et al. 2012) and mobile cloud computing are all inter-
active examples of smart devices in smart spaces. Mobile cloud computing has
been envisioned since 2009 as a combination of cloud computing and mobile
computing, which leverages the mobility side of mobile computing and inte-
grateswith the elastic computing power fromcloud computing (Tong et al. 2016;
Dinh et al. 2013; Fernando et al. 2013). When integrated with cloud-computing
power, it could also serve as an edge-computing device in the cloud-computing
network.

(2) Computing efficiency and near-real-time analysis and feedback. Smart device
holders are often fed with various information or data through sensors on the
smart devices; withmobile-based computing power, stream-like data flow could
be analyzed locally and uploaded to the centralized databases at the same time.
End userswith smart devices on hand could get feedback or results immediately;
routing andmapping services, language translation services, and instant weather
services are all good examples of this (Talukdar 2010). At the same time, public-
security services and danger-awareness services could also be provided through
mobile computing and locally based services (Aubry et al. 2014), such as the
lost child and healthcare applications discussed in Sect. 41.1.2. The challenges
in smart-city implementations bring new motivations and opportunities for the
development of mobile computing and vice versa.

As one of its important components, mobile computing is enhancing the smart-
city experience in the following aspects: (1) Transport and traffic management for
both personal end users and policymakers; (2) Utilities and energymonitoring across
the network, and (3) Improving public safety and smart-city security awareness.

41.5.3 Urban Heat Island Use Case

Mobile computing and mobile-based technologies are integrating innovative
concepts and ideas to increase UHI awareness and aid city design to reduce the
UHI effect. As Wong et al. (2014) mentioned in their reviews, tools have been
developed and implemented to allow users to gather instantaneous energy perfor-
mance feedbacks on their decisions and plans of building designing, such as the
building orientation and thermal performance, through mobile-based applications
(i.e., iPad/smartphone application). At the same time, mobile devices provide volun-
teered geographic information (VGI) to enhance the near-real-time estimation of
UHI. For example, Koukoutsidis (2018) utilized mobile crowdsensing to estimate
the mean area temperature in a linear region that exhibits the UHI effect.
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41.6 Case Study

41.6.1 Urban Heat Island (UHI)

The direct cause of UHI is urbanization, which leads to the loss of more vegetation
and causes more surfaces to be paved or covered with impervious materials such as
cement, asphalt, buildings, and walls. Challenges are revealed due to the complexity
of the composition of UHI impact factors. Major ones are stated by Oke (1982) in
his previous studies and include: (1) the inherent complexity of the city-atmosphere
system; (2) the lack of clear conceptual and theoretical frameworks; and (3) the
expense and difficulty of observation in cities. UHI is a very common challenge to
all urban areas in the world, although in megacities it is serious and less so in small
towns.

UHI is usually measured in three scales: boundary UHI, canopy UHI, and surface
UHI. BoundaryUHI ismeasured from the altitude of the rooftop to the atmosphere. It
is generally used to investigate the UHI effect at mesoscale and is acquired by using,
for example, radiosondes. Canopy UHI is measured at the altitude that ranges from
the ground surface to the rooftop. An assessment of canopy UHI is most suitable for
a microscale study and is generally derived based on weather station data. Surface
UHI is measured at the Earth surface level. Researchers have often used satellite
images (e.g., thermal bands of Landsat TM/ETM/OLI, MODIS, AVHRR) to obtain
the effect of surface UHI (Zhang et al. 2009). Researchers used remotely sensed
data and stationary meteorological monitoring data to analyze the UHI changes and
effects in the long or short term (Earl et al. 2016), as well as the relationship between
UHI and land cover changes (Chen et al. 2006; Charkraborty and Lee 2019). A lot
of research has simulated and evaluated UHI and its effect on the future by using
numerical modeling based on real-time meteorological data (Morris et al. 2015).

41.6.2 UHI Challenges and Opportunities

From the aforementioned scientific challenges, UHI introduces its own computing
challenges, mostly concentrated on handling the aspects of the expense and diffi-
culty of observation in cities. These challenges include: (1) management of hetero-
geneous data sources; (2) integration of a huge volume of remotely sensed data and
real-time meteorological data; and (3) a large amount of computation in modeling,
visualizing, simulating, and predicting. Cloud computing has existed in the long
term for allocating computing resources to enable the auto-scalable modeling and
detecting in many study fields and has proved to be an efficient and economical
solution (Yang et al. 2017a). Google Earth Engine is a cloud-computing platform,
offering intrinsically parallel computational resources, and enabling monitoring and
measurement of changes in the Earth’s environment, at planetary scale, on a large
catalog of Earth observation data (Moore and Hansen 2011). An implementation of
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large-scale correlation between land surface temperature and land cover alteration
research is conducted upon this platform and has illustrated the capability of using
cloud computing for efficient UHI monitoring (Ravanelli et al. 2018a, b).

The emergence of 5Gand IoT technologies in the current era is bringingopportuni-
ties to facilitate advances in urbanmicroclimate studywith finer spatiotemporal reso-
lution beyond just satellite imagery analysis (Li et al. 2018). Voogt and Oke (2003)
argued that thermal remote sensors have a credible ability to observe the surface
UHI and require consideration of the intervening atmosphere and surface radiative
properties, leading to extra conversions and corrections. With implementing sensor
device networks directly into the environment, urban environmental factors like air
temperature are more accurately measured. These sensor networks can be designed
and implemented for advanced urban microclimate and environment modeling (Jha
et al. 2015). Challenges follow when considering the real-time streaming nature of
IoT, as it requires the capacity of ingesting the large number of data and producing
results with higher speed that is beyond the capability of conventional architec-
tures (Rathore et al. 2018). Santamouris (2015) analyzed heat island magnitude and
characteristics in one hundred cities and regions and indicated that analysis of 43%
station measurements are only based on one station from urban and one from rural.
According to the Gartner, up to 20.4 billion IoT devices will be connected machine-
to-machine by 2020 (Meulen 2017), offering great potential to increase the number
of sensors utilized for UHI research.

Since the first time it was introduced by Howard (1818), in the past 200 years,
numerous studies have been developed to model UHI intensity, simulate, and
predict UHI effects. However, it was proved from analyzing one hundred Asian
and Australian cities and regions, that a systematic analysis like a workflow is still
needed (Santamouris 2015). Coupling with aforementioned computing techniques
(cloud computing, edge computing, andmobile computing), the following introduces
a theoretical integrated workflow to enable the efficient data storage and processing
for handling urban informatics challenges and using UHI as an example. This work-
flow targets the last two scientific challenges of UHI, and the overall architecture is
illustrated in Fig. 41.4, starting from collecting urban observation data with mobile
devices to the centralized cloud-based data analysis, and finishing with generating
intelligent supportive materials for UHI monitoring and managing.

41.6.3 Integrated Workflow

41.6.3.1 Mobile Computing for Local Fast Response

Data in Fig. 41.4 are directly collected by sensors within a large sensor network
deployed in the urban environment. Data streams into the workflow by entering the
first gate:mobile computing. In general, the capacity ofmobile devices is low, and due
to the limitations like battery life, only lightweight preprocessing like data cleaning
and reorganizing can be performed at the mobile computing stage. However, in situ
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Fig. 41.4 Overall architecture of computing for UHI

monitoring coupled with light data understanding can reduce time latency for jobs
that do not require extensive computation but only the ability to make simple judg-
ments. For instance, alarms setup on a mobile device with constrained temperature
threshold can be triggered responsively when unexpected heat is detected. Though
the computing capabilities of mobile devices are low, with hundreds and thousands
of contributions from them, appreciable computational resources are preserved for
more intensive works like microscale UHI modeling (Mirzaei 2015).

41.6.3.2 Edge Computing for Data Preprocessing and Direct
Microcontrol

Besides collecting data on the edge and passing the raw data to the cloud like mobile
computing, edge computing offers more capacities for better data preprocessing.
With the increasing data volume, uploading everything raw to the cloud can take a
significant amount of time, and the heavy duty that is loaded to the center cluster
can exceed the limit of the computing resources. To fill the gap between mobile
computing and cloud computing, enhancing the performances regarding response
time, data transform, data safety, and privacy, edge computing is integrated to the
workflow to allow downstream data representing cloud services and upstream data



782 Q. Liu et al.

representing IoT services (Sun andAnsari 2016; Shi et al 2016; Yannuzzi et al. 2014).
Similarly, works that do not require much computation can be done directly from the
edge and provide feedbacks to the sensors to reduce time lag (Gerla 2012). Data from
the Array of Things (AoT) (University of Chicago 2019; see Sect. 4.7) project at the
University of Chicagomonitors local temperatures and other environmental elements
from networks composed of hundreds of sensors, providing observations with the
resolution of seconds. The high-velocity data transfers within the network can cause
traffic congestion due to the limited bandwidth. The Google cloud platform supports
edge computing with AI, enabling potential real-time data analytics (Google 2019).

41.6.3.3 Cloud Computing for Massive Data Processing and Analytics

Like every big data problem, a sensor dataset at fine temporal resolution for
UHI monitoring (e.g., streaming AoT data) introduces a data storage challenge.
Cloud computing as the final layer of UHI data processing and analyzing has been
well studied for enabling heavy computations by transferring big data storing and
processing from a local to a centralized cluster (Yang et al. 2017b). Empowered with
the auto-expandable nature of the virtual storage mechanism, data streamed from
sensors transfer through edges to the center for better management. With the well-
resourced computing capacity, the cloud cannot only process the data that mobile and
edge devices cannot, but also accelerate the processing beyond a standalone server.

IoT networks are massive and can be distributed with different protocols estab-
lished by different management departments. Therefore, UHI-related attributes like
temperature, humidity and wind speed from different networks are potentially
captured with sensors powered by different standards. Data heterogeneity is one
of the major concerns and the massive data cleaning workload requires significant
computational capability. The cloud as a centralized computing resource pool offers
sufficient capacity for such workload (Botta et al. 2014). As mentioned, there are
many factors contributing to UHI study. Changing the composition leads to require-
ments for model parameter adjustments. SaaS as introduced in Sect. 41.3.1 and
provided with cloud computing allows users to duplicate a model directly from a
current version and customize the new one to fit the new environment. Advantages
include reduced model-building time and decreased human error when transferring
the experimental environment.

41.6.3.4 Mobile-Edge-Cloud Integrated Computing for UHI

A weather forecast example provided by a previous study indicated the basic work-
flow when the simulation is decomposed into a process-oriented pipeline (Tsahalis
et al. 2013). Weather research shares conceptual similarities to UHI, and thus, their
example is applied here as a base version of the conventional workflow. Heusinkveld
et al. (2010) carried out an assessment of UHI intensity in Rotterdam using an inno-
vative mobile bio-meteorological measuring platform mounted on a cargo bicycle.
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Physiologically equivalent temperatures were calculated directly from the measure-
ments and the intensity of UHI was evaluated in real time. Coupling with the IoT
and mobile devices empowered a real-time urban microclimate analysis framework
that integrated with the sensor network and cloud computing (Rathore et al. 2018);
our workflow gains the experience from both. This enhanced framework composed
of cloud computing, edge computing, and mobile computing is able to success-
fully address the previously introduced UHI challenges. Starting frommeasuring the
geographic environmental of ground, air, and water, mobile computing can directly
sense these parameters and give a quick response (e.g., a UHI detection alarming
system) with minor data manipulation before entering the major processing and
modeling procedures. Edge computing offers a higher computational capacity, miti-
gating the heavyworkload that is initially carriedby the centralizedmodule.Building-
scale UHI (i.e., building energy model) is limited to the study of an isolated building,
requiring less computational resources as it considers less neighborhood environ-
mental impacts (Mirzaei 2015). Therefore, UHI modeling, visualizing, simulating,
and predicting for a smaller UHI study scale (i.e., building scale) can be directly
computed on the edge for more efficiency. There are many tasks that cannot be satis-
fied with the limited resources from mobile computing or edge computing, such as
heterogeneous data integration, and larger scale (e.g., microclimate) UHI modeling.
The cloud as a big centralized resources pool is powered with enormous computing
capabilities. UHI-related observation data like temperature, humidity, and wind-
speed are transferred from sensors to the cloud after a certain effort made by mobile
computing and edge computing for data cleaning and preprocessing. Heterogeneous
data integration on the cloud will be triggered for the massive data coupled with
mixed data types and data standards. Large-scale UHI modeling, simulating, etc.,
are performed within the cloud. Elasticity that is offered as one of the key features of
the cloud dispatches computing resources on demand and surpasses the traditional
method of using a single computer for analysis, saving resources while providing
enough capacity for the heavy tasks. All three computing paradigmswork seamlessly
from getting the sensor data to processing, analyzing, and decision support, enabling
an efficient and effective workflow as a whole to handle the UHI challenges.

These three computing components should be leveraged and kept in balance
when applied to UHI monitoring, data analysis, and problem solving. For instance,
deploying edge nodes with higher computing capacity may increase the operational
cost for processing the IoT data streams compared to processing them in the central-
ized cloud (Sun and Ansari 2016). Understanding the tradeoffs among the different
interfacings of the three is crucial for maximizing the workflow efficiency and opti-
mizing the computing architecture design. Many other smart-city applications are
encountering similar problems, and the demonstrated UHI analytical workflow can
be broadly applied when integrating computing components.
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41.7 Summary

This chapter introduced the contribution and recent advances of computing for smart
cities. The general challenges of computing in smart cities were introduced and
include heterogeneous sources of big data, resulting from the unprecedented number
of smart sensors and devices, various needs from users in multiple domains, data
security, sustainability, and efficiency. To address the challenges, cloud computing,
edge computing, and mobile computing were discussed for their advantages and
limitations in smart-city applications. Cloud computing provides a unified and effi-
cient platform, large-scale base infrastructure, sustainable and green software and
hardware development and addresses system security and recovery issues. Edge
computing helps reduce observation latency and increase the efficiency of data collec-
tion, improve data privacy and security, reduce data transmission load on computer
network, and provide a sustainable decentralization of computing needs. Mobile
computing contributes to the smart city with computational mobility and flexibility,
and computing efficiency and near-real-time analysis. The characteristics of different
computing paradigms were exemplified in the case study of urban heat island. With
multiple computing paradigms leveraged, smart-city applications and services can
be provided in a more efficient and effective fashion.

41.7.1 The Future of Urban Computing for Smart Cities

Big data and IoT are labeled as the primary drivers for the cloud, edge, and mobile
computing. The development of mobile computing is increasing at an accelerating
speed. With the fast implementation of 5G networks and closer integration with
cloud computing, themobile-computing system ismergingwith the cloud-computing
network and serving as the network edge. The phrase mobile cloud computing has
been frequently referenced in the mobile-computing field (Fernando et al. 2013;
Akherfi et al. 2018).When themobility ofmobile computing interacts with the elastic
computing power fromcloud computing, it will push thewhole computing network to
a new decentralized computing stage and accelerate the smart-city process. Smarter
devices, faster networks, and longer battery lives are the foreseeable future; the
transformation of mobile computing and interaction with other computing fields will
be the norm.

With the increasing number ofmobile devices (phones, drones, cars, etc.), the need
for interactionwith nearby edge resources will become apparent. Coupledwith better
processing, computing, and power capacity, aswell as the decentralized characteristic
of mobile computing, edge computing is expected to provide significantly improved
throughput, better performance, and real-time responses, moving both computing
and data closer to the user and customizing the processing requirements from each
user. Edge computing and mobile computing are both capable of handling localized
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data for fast action for a certain range of area size. However, the increasing urban data
volume and cross-city geo-analysis are also driving centralized cloud computing.

Ever since the infrastructure was developed for cloud computing, the combined
use of private and public clouds is engaged for many more individual and busi-
ness purposes. As a mature platform to integrate powerful computing capabili-
ties, large data storage and on-demand data analysis, cloud computing will lead
cities toward a smart age—an age based on fully connected, interactive decision-
supporting environment. Within the smart city, a variety of devices (e.g., domestic
appliances and semiautomatic vehicles) will connect to the cloud-based Internet
for sensing, recording, sharing, and analyzing numerous human-related activities.
Coupled with the help from artificial intelligence algorithms, cloud computing will
serve companies, governments, and individual residents with smarter solutions.
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Chapter 42
Data Mining and Knowledge Discovery

Chao Zhang and Jiawei Han

Abstract Our physical world is being projected into online cyberspace at an
unprecedented rate. People nowadays visit different places and leave behind them
million-scale digital traces such as tweets, check-ins, Yelp reviews, and Uber trajec-
tories. Such digital data are a result of social sensing: namely people act as human
sensors that probe different places in the physical world and share their activities
online. The availability of massive social-sensing data provides a unique opportu-
nity for understanding urban space in a data-driven manner and improving many
urban computing applications, ranging from urban planning and traffic scheduling
to disaster control and trip planning. In this chapter, we present recent develop-
ments in data-mining techniques for urban activity modeling, a fundamental task for
extracting useful urban knowledge from social-sensing data. We first describe tradi-
tional approaches to urban activity modeling, including pattern discovery methods
and statistical models. Then, we present the latest developments in multimodal
embedding techniques for this task, which learns vector representations for different
modalities tomodel people’s spatiotemporal activities.We study the empirical perfor-
mance of thesemethods anddemonstrate howdata-mining techniques canbe success-
fully applied to social-sensing data to extract actionable knowledge and facilitate
downstream applications.

42.1 Overview

Our physical world is being projected into cyberspace at an unprecedented rate.
People nowadays visit different places and leave behind them million-scale digital
traces such as tweets, check-ins, Yelp reviews, and Uber trajectories. The malls they
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go to, the restaurants they visit, the movies they watch, the concerts they attend—
almost everything people do during a day can now result in rich cybertraces. For
example, Foursquare has collected more than 8 billion check-ins as of today, Twitter
has more than 10 million geo-tagged tweets published every day, and Instagram
witnesses more than 20 million geo-tagged photos being shared every day. Such
digital data represent a result of social sensing: people act as human sensors to probe
different places in the physical world and leave online traces of their spatiotemporal
activities.

The availability of massive online social-sensing data provides an unprecedented
opportunity for modeling people’s offline spatiotemporal activities.While traditional
approaches to urban activity modeling often require costly surveys and field studies,
the understanding is often coarse-grained and limited. In contrast, social-sensing data
provide a fine-grained coverage of our physical world (Leetaru et al. 2013) and serve
as a unique proxy for human activities (Cheng et al. 2011; Jurdak et al. 2015; Noulas
et al. 2011). For the first time, it becomes possible to develop data-driven techniques
for modeling people’s spatiotemporal activities, which can potentially revolutionize
many applications, including urban planning, traffic scheduling, disaster control, and
trip planning.

Social-sensing data often comprise modalities (e.g., location, time, and text) that
can have totally different representations and distributions. When using massive
social-sensing data for spatiotemporal activity modeling, the key is to capture the
correlations of these data modalities and make predictions across them. For a subset
of the modalities (Fig. 42.1), the model is expected to predict the remaining ones. For
example: (1) Given a location and time, what are the typical activities around that
location and time? (2) Given an activity and time, where does this activity usually
occur? and (3) Given an activity and a location, when does the activity usually occur?

In the remainder of this chapter, we first summarize key data-mining methods
for urban analysis tasks (Sect. 42.2). Generally, these methods fall into four broad
categories: (1) urban pattern discovery; (2) urban activity models; (3) urban mobility
models; and (2) urban event detection. We will describe techniques in each category.

In addition to overviewing how data-mining techniques can address urban-
analysis tasks, we introduce the latest development of urban activity modeling
techniques based on multimodal embedding (Sect. 42.3). At a high level, multi-
modal embedding directly captures cross-modal correlations by mapping items from

Fig. 42.1 An illustration of spatiotemporal activity modeling using social-sensing data
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different modalities into the same latent space. If two elements are correlated (e.g.,
the JFK airport region and the keyword ‘flight’), their latent representations are
encouraged to be close to each other. Compared with existing generative models,
multimodal embedding does not impose any distributional assumptions and incurs
much lower computational cost in the learning process. We show the performance of
the multimodal embedding method and demonstrate its superiority for urban activity
modeling.

42.2 Data Mining for Urban Analysis

Generally, data-mining techniques for urban analysis tasks can be categorized into
four classes: (1) urban pattern discovery; (2) urban activity modeling; (3) urban
mobility modeling; and (4) urban event detection. In the following, we overview
these tasks and describe key techniques for each task.

42.2.1 Urban Pattern Discovery

Urban pattern discovery aims to discover various forms of spatiotemporal patterns
from social-sensing data. Sequential pattern is an important type of spatiotem-
poral pattern which captures sequential transition regularities of people’s activi-
ties. Giannotti et al. (2007) defined a T-pattern as a region-of-interest sequence that
appears frequently in the input trajectories. By partitioning the space, they used
sequential pattern-mining techniques to extract the T-patterns. Zhang et al. (2014)
extracted frequent movement patterns from semantic trajectory data. With a top-
down approach, they first discovered coarse-grained sequential patterns, and then
partitioned them into fine-grained sequential patterns by clustering pattern-matching
snippets. Several studies have investigated how to find objects that frequently move
together. Examples in this line includemining flock (Laube and Imfeld 2002), swarm
(Li et al. 2010a), and gathering (Zheng et al. 2013) patterns.

Periodic patterns represent user behaviors that regularly occurwith one ormultiple
time periods. To extract periodic patterns, Li et al. (2010b) first extracted reference
spots by using density-based clustering, and then detected periodic patterns at those
spots. They have also studied how to find periodic patterns from sequences with
incomplete observations (Li 2012b). The idea is to partition the time series into
small chunks and then overlay them for each candidate period. Cho et al. (2011)
found that the mobility of each user usually centers around several regions. Based
on this observation, they proposed a periodic mobility model that predicts a user’s
location by estimating the regions where a user most likely stays. Following this
paper, Tarasov et al. (2013) modeled a region based on radiation models (Simini et
al. 2012).
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42.2.2 Urban Activity Modeling

Urban activity modeling aims to use statistical models to describe people’s activity
regularities and learn such models from data. There are two subcategories along this
line: global activity models and personalized activity models.

Global activity models aim at characterizing people’s activities over space and
time at the global level without distinguishing personal preferences. Most existing
techniques (Hong et al. 2012; Kling et al. 2014; Mei et al. 2006; Sizov 2010;Wang et
al. 2007; Yin et al. 2011; Yuan et al. 2013) are latent variable models, which extend
the classic topic models (Blei et al. 2003; Hofmann 1999) to handle spatiotemporal
contexts. For example, Sizov (2010) extended LDA (Blei et al. 2003) by assuming
that each latent topic was characterized by a multinomial distribution over text as
well as two Gaussian distributions over latitudes and longitudes. Later, they further
extended the model to discover topics that have non-Gaussian distributions (Kling et
al. 2014). Yin et al. (2011) extended the PLSA model (Hofmann 1999) by modeling
each region with a Gaussian distribution for location generation and a multinomial
distribution for text generation.

In contrast, personalized activity models aim at describing spatiotemporal activi-
ties at an individual level. Hong et al. (2012) andYuan et al. (2013) proposed tomodel
the user factor in geographic topic models. In this way, users’ individual-level pref-
erences can be inferred. Yuan et al. (2017) later proposed a Bayesian non-parametric
model, which can automatically discover the regions a user visits periodically.

42.2.3 Urban Mobility Modeling

The task of human mobility modeling is a corner-stone task for various applications,
including urban planning, traffic scheduling, location prediction, and personalized
recommendation. In the past years, this task has attracted much research attention
from the data-mining community.

The first line of human mobility modeling is law-based methods. Such methods
study the physical laws that govern humanmobility. Brockmann et al. (2006) discov-
ered that human mobility can be approximated by a continuous random-walk model
with long-tail distributions. Gonzalez et al. (2008) usedmobile phone data for human
mobility modeling. They found that people return to a few locations periodically,
and such mobility can be modeled by a stochastic process centered on a fixed point.
Song et al. (2010) found that more than 93% of human movements are predictable,
because of the high regularity of humanmobility. They thus proposed a self-consistent
microscopic model for individual mobility prediction.

Along another line, many model-based approaches have been explored to learn
statistical models from human movement data. For example, Cho et al. (2011) found
that a user usually moves around a few center locations (e.g., home, work) in fixed
time periods. Based on this observation, they proposed to model user movement
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as a mixture of Gaussian distributions. Their model can be further extended by
incorporating social influence, as a user is more likely to visit a location that is close
to the locations of friends. Wang et al. (2015) proposed a hybrid mobility model,
which improved location prediction by using heterogeneous mobility data.

One important area along the line ofmode-based approaches is the hiddenMarkov
model (HMM), which is a powerful statistical model for sequential data. In early
work, Mathew et al. (2012) first partitioned the space into equally sized triangles
using a hierarchical triangular mesh. Based on the assumption that each latent state
imposes a multinomial distribution over the triangles, they trained an HMM for the
input trajectories. Deb and Basu (2015) proposed a probabilistic latent semantic
model. This model uses HMM to extract latent semantic locations from cell-tower
and Bluetooth data. Ye et al. (2013) have explored how to use HMM to model user
check-in data generated from location-based social networks (LBSNs). Their HMM
model can incorporate the category information of places and thereby is capable
of predicting the category for the user’s next location. Zhang et al. (2016a) have
applied HMMs to model people’s sequential behaviors. The key idea of their model
is that there are a few latent states underlying people’s daily activities and that people
typically move among these states with strong regularity. Instead of using one model
for all the users, they proposed to group users based on their sequential patterns and
learn a set of HMMs to characterize group-level activities.

42.2.4 Urban Event Detection

An urban event, such as a protest or a disaster, is an unusual activity occurring in a
local area and having a specific time duration, while engaging a considerable number
of participants. Detecting urban events in real time was nearly impossible years ago
because of the lack of timely and reliable data. However, the recent availability of
social-sensing data sheds light on this problem.

Many studies have explored how to detect urban events, which are also termed
spatiotemporal events, from social-sensing data (Abdelhaq et al. 2013; Chen and
Roy 2009; Feng et al. 2015; Lee et al. 2011; Sakaki et al. 2010; Zhang et al.
2016b). Existing techniques for identifying abnormal events can be categorized
into document-based approaches and feature-based approaches. Document-based
approaches consider documents as basic units and group similar documents to detect
abnormal events. For example, Allan et al. (1998) performed single-pass clustering
of the document stream and used a similarity threshold to determine whether a
new document is a new topic or should be merged into an existing topic. Aggarwal
and Subbian (2012) also proposed to detect events by clustering the tweet stream.
However, their similarity measure jointly considers tweet content relevance and user
social proximity. Zhang et al. (2016b) first detected geo-topic clusters as candidate
events and then employed a z-score to identify abnormal clusters as true events.

The second line of event detection has adopted feature-based approaches (Fung
et al. 2005; He et al. 2007; Li et al. 2012a; Mathioudakis and Koudas 2010; Weng
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and Lee 2011). The idea is to identify a set of bursty features (e.g., keywords or
phrases) from the text stream and then cluster them into events. Specifically, Fung et
al. (2005)modeled feature occurrences using a binomial distribution to extract bursty
features. He et al. (2007) constructed the stream for each feature and then performed
a Fourier transform to identify bursty events. Krumm and Horvitz (2015) monitored
the spatiotemporal distributions of tweets and identified spikes in the spatiotemporal
signal as abnormal events. There has also been work on detecting specific types of
events. Sakaki et al. (2010) investigated real-time earthquake detection. They trained
a classifier to judge whether a tweet was earthquake-related or not and then proposed
to release an alarm whenever the number of earthquake-related tweets was large.
Li et al. (2012a) detected crime and disaster events using a self-adaptive crawler,
which can dynamically retrieve crime and disaster-related tweets. Abdelhaq et al.
(2013) proposed the EvenTweet model, which could detect local events with the
following steps: (1) examine several previous windows to identify bursty words; (2)
compute the spatial entropy of each bursty word and discover localized words; (3)
group localized words into clusters based on their spatial distributions; and (4) rank
the resultant clusters based on event-indicative features such as burstiness and spatial
coverage.

42.3 Multimodal Embedding for Urban Activity Modeling

We now describe the latest development of multimodal embedding techniques for
urban activity modeling. Different from existing latent variable models that rely on
latent states to bridge different modalities indirectly, such embedding-basedmethods
can capture the cross-modal correlations directly. This is achieved bymapping all the
modalities into a common vector space. In the following, we first describe the high-
level idea (Sect. 42.3.1), then detail the multimodal embedding method for activity
modeling (Sect. 42.3.2), and finally present the optimization process (Sect. 42.3.3).

42.3.1 Method Overview

At a high level, our embedding-basedmethod, namedCrossMap (Zhang et al. 2017a),
maps items fromdifferentmodalities into the same latent spacewith their correlations
preserved, as shown in Fig. 42.2. Formally, it aims to learn the embeddings L, T, and
W where: (1) L is the embeddings for regions; (2) T is the embeddings for hours;
and (3) W is the embeddings for keywords. Take L as an example. Each element is a
D-dimensional (D > 0) vector, which represents the embedding for region l. Once the
embeddings are learned, cross-modal predictions can be made by simply searching
for items nearest to the given query in the latent space.
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Fig. 42.2 An illustration of multimodal embedding for urban activity modeling. The idea is to
map items from different modalities (e.g., location, time, text) into the same latent vector space to
preserve their correlations. Their latent representations are then used for cross-modal prediction

42.3.2 Multimodal Embedding via Attribute Reconstruction

The key principle for multimodal embedding is to optimize the embeddings L, T,
W such that the observed relationships among location, time, and text can be recon-
structed. We thus define an unsupervised attribute reconstruction task. The goal is to
learn the embeddingsL,T,W such that the attributes of a record r can be reconstructed
by assuming that the other attributes are observed.

Let r be a record. Given any attribute i ∈ r with type X (could be location, time,
or keyword), we compute the likelihood of observing attribute i as follows:

p(i |r−i ) = exp(s(i, r−i )/
∑

j∈X
exp(s( j, r−i ))

where r−i represents the set of all the attributes in r except for i, and s(i, r−i ) denotes
the similarity between i and r−i .

The key question for the above is how to define s(i, r−i ). A straightforward idea
is to average the embeddings of all the attributes in r−i and then compute s(i, r−i )

as s(i, r−i ) = vi T
∑
j∈r−i

v j/|r−i |, where vi denotes the embedding for attribute i.

However, this simple definition fails to consider spatial and temporal continuities.
Consider the spatial continuity as an example.According to the first lawof geography,
“everything is related to everything else, but near things are more related than distant
things.” To achieve spatial smoothness, two spatial items that are close to each other
should be considered correlated instead of independent. We thus introduce spatial
smoothing and temporal smoothing to capture the spatiotemporal continuities. With
the smoothing technique, the method can not only maintain local consistency of
neighboring regions and periods, but also alleviate data sparsity. One can refer to
Zhang et al. (2017b) for more details about the smoothing techniques.
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In addition to the above pseudo-region and period embeddings, we also introduce
pseudo-keyword embeddings for notational ease. Given r−i , its pseudo-keyword
embedding is defined as:

vŴ =
∑

w∈Nw

vw/|Nw|

where Nw is the set of keywords in r−i . With these pseudo-embeddings, we define a
smoothed version of s(i, r−i ) as s(i, r−i ) = vi Thi where if i is a keyword then:

hi = (vl + vt + vŴ)/3

If i is a region then:

hi = (vt + vŴ)/2

If i is a period, then:

hi = (vl + vŴ)/2

Let RU be a collection of records for learning the urban activity model. The final
loss function for the attribute reconstruction task is simply the negative log-likelihood
of observing all the attributes of the records in RU:

JRU = −
∑

r∈RU

∑

i∈r
log p(i |r−i ) (42.1)

42.3.3 The Optimization Procedure

To efficiently learn the embeddings, we can use stochastic gradient descent (SGD)
and negative sampling (Mikolov et al. 2013) for optimizing the objective function
shown in Eq. (42.1). At each step, we can use SGD to sample a record r and an
attribute i ∈ r . Based on negative sampling, we then randomly select K negative
attributes that have the same type as i but do not appear in r. Then the loss function
for the selected samples becomes:

Jr = log σ(s(i, r−i )) −
K∑

k=1

log σ(−s(k, r−i ))
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In the above, σ (·) is the sigmoid function. The updating rules for vi ,vk , and hi can
be obtained by taking the derivatives of Jr . We omit the details because of the space
limit.

42.4 Experiments

We now demonstrate the empirical performance of different algorithms on three
real-life datasets:

• The first dataset, called LA, contains ∼1.10 million geo-tagged tweets published
in Los Angeles. We crawled the LA dataset by monitoring the Twitter Streaming
API during 2014.08.01–2014.11.30 and continuously gathering the geo-tagged
tweets in the bounding box of LA. We preprocessed the raw data as follows. For
the text part, user mentions, URLs, stopwords, and the words that appear less
than 100 times were removed. For space and time, we partitioned the LA area
into small grids with size 300 m * 300 m and broke the one-day period into 24
one-hour windows.

• The second dataset, called NY, was also collected from Twitter. It consisted of
∼1.20 million geo-tagged tweets published in New York City during the time
period 2014.08.01–2014.11.30.

• The third dataset was called 4SQ. It was collected from Foursquare. It consisted of
about 0.7 million Foursquare check-ins posted in New York City, during the time
period 2010.08–2011.10. This dataset was mainly used to evaluate the perfor-
mance of the multi-modal embedding method for the downstream task of activity
classification. Similarly, user mentions, URLs, stopwords, and the words that
appeared less than 100 times were removed.

We study the following methods for urban activity modeling: (1) the geographic
topic model LGTA (Yin et al. 2011); (2) the non-Gaussian geographic topic model
MGTM (Kling et al. 2014); (3) the tensor factorization method Tensor (Harshman
1970); (4) the SVD method, which first constructs the co-occurrence matrices
between each pair of location, time, text, and category, and then performs singular-
value decomposition on the matrices; (5) the TF-IDF method, which constructs the
co-occurrence matrices between each pair of location, time, text, and category and
then computes the TF-IDF weight for each entry in the matrix; (6) the multimodal
embedding method CrossMap (Zhang et al. 2017a) as discussed in the previous
section.

We investigated two types of urban activity prediction tasks. The first was to
predict locations for a given textual query. Specifically, recall that each record reflects
a user’s activity with the following three attributes: a location, a timestamp, and a
bag of keywords. In the location-prediction task, the input was the timestamp and
the keywords, and the goal was to accurately pinpoint the ground-truth location from
a pool of candidates. We predicted the location at two different granularities: (1)
coarse-grained region prediction of the ground-truth region that r falls in; and (2)
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fine-grained POI prediction of the ground-truth POI that r corresponds to. Note that
fine-grained POI prediction was only evaluated on the tweets that had been linked
with Foursquare. The second task was to predict activities for a given location query.
In this task, the input was the timestamp and the location, and the goal was to pinpoint
the ground-truth activities at two different granularities: (1) coarse-grained category
prediction of the ground-truth activity category of r (again, such a coarse-grained
activity prediction was performed only on the tweets that had been linked with
Foursquare); and (2) fine-grained keyword prediction of the ground-truth message
from a candidate pool of messages.

To summarize, we studied four urban activity prediction subtasks in total: (1)
region prediction; (2) POI prediction; (3) category prediction; and (4) keyword
prediction. For each prediction subtask, we first generated a candidate pool bymixing
the ground truth with a set ofM random negative samples. Take region prediction as
a concrete example. For the ground-truth region, we mixed withM randomly chosen
regions. Then, we tried to pinpoint the ground truth from the size-(M + 1) candidate
pool by ranking all the candidates. Generally, the better a model captures the patterns
underlying people’s activities, the more likely it can rank the ground truth for top
positions. We thus used mean reciprocal rank (MRR) to quantify the effectiveness
of a model.

Tables 42.1 and 42.2 report the quantitative results of different methods for loca-
tion and activity predictions, respectively. As shown, on all of the four subtasks,
CrossMap and its variants achieved much higher MRRs than the baseline methods.
Compared with the two geographic topic models (LGTA and MGTM), CrossMap
showed as much as 62% performance improvement for location prediction, and 83%
for activity prediction. Tensor, SVD, and TF-IDF had better performance than LGTA
and MGTM by modeling time and category, yet CrossMap outperformed them by
largemargins. Interestingly, TF-IDF turned out to be a strong baseline, demonstrating
the effectiveness of the tf-idf similarity for the prediction tasks. SVD and Tensor can
effectively recover the co-occurrence matrices and tensor, but the raw co-occurrence
seems a less effective measure for location and activity prediction.

Table 42.1 MRRs of various methods for location prediction. For each test tweet, we assume
its timestamp and keywords are observed, and perform location prediction at two granularities: (1)
region prediction retrieves the ground-truth region; and (2) POI prediction retrieves the ground-truth
POI (for Foursquare-linked tweets)

Method Region prediction POI prediction

LA NY LA NY

LGTA 0.3583 0.3544 0.5889 0.5674

MGTM 0.4007 0.391 0.5811 0.553

Tensor 0.3592 0.3641 0.6672 0.7399

SVD 0.3699 0.3604 0.6705 0.7443

TF-IDF 0.4114 0.4605 0.719 0.776

CrossMap 0.5373 0.5597 0.7845 0.8508
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Table 42.2 MRRs of different methods for activity prediction. For each test tweet, we assume
its location and timestamp are observed, and predict activities at two granularities: (1) category
prediction of ground-truth category (for Foursquare-linked tweets); and (2) keyword prediction
retrieves the ground-truth message

Method Category prediction Keyword prediction

LA NY LA NY

LGTA 0.4409 0.4527 0.3392 0.3425

MGTM 0.4587 0.4640 0.3501 0.3430

Tensor 0.8635 0.7988 0.4004 0.3744

SVD 0.8556 0.7826 0.4098 0.3728

TF-IDF 0.9137 0.8259 0.5236 0.4864

CrossMap 0.6225 0.5874 0.5693 0.5538

We now performed a set of case studies to examine how well CrossMap predicted
across modalities. Specifically, we performed one-pass training of CrossMap for LA
and NY, and launched a bunch of queries at different stages. For each query, we
retrieved the top-ten most similar items with different types from the entire search
space.

Figure 42.3a shows the results when we queried with the keyword ‘beach’. As
shown, the retrieved items in each type are very meaningful: the top locations mostly
fall around famous beaches in the LosAngeles area; the top keywords canwell reflect
people’s activities on the beach, including ‘sand’ and ‘boardwalk.’ Fig. 42.3b shows
the results for an example spatial query, at the GPS location of the centroid of LAX
airport. One can see that the retrieved top spatial, temporal, and textual elements are
closely related to the airport. Given the query at the airport, the top keywords are all
concepts that reflect flight-related activities, such as ‘airport,’ ‘tsa,’ and ‘airline.’

Figures 42.4a–c further show temporal-textual queries which can demonstrate
the temporal dynamics of people’s urban activities. When we fix the query keyword
as ‘restaurant’ and vary the time point in the query, the retrieved top items vary
obviously. By examining the top keywords, we can see the query ‘10am’ results in
many breakfast-related keywords, such as ‘bfast’ and ‘brunch.’ In contrast, when the
query is changed to ‘2 pm,’ many lunch-related keywords are retrieved.When ‘8 pm’
is specified as the query, many dinner-related ones are retrieved. Another interesting
observation is that the top locations for the queries ‘10am’ and ‘2 pm’ fall in working
areas, while the results for ‘8 pm’ distribute mostly in residential areas. Such results
show that the time factor plays an important role in determining people’s activities,
and CrossMap captures such fine-grained temporal dynamics.

We proceeded to examine the performance of multimodal embedding models for
downstream applications. For this purpose, we chose activity classification as an
application. In the 4SQ dataset, every check-in belongs to one of nine categories:
Food, College & University, Nightlife Spot, Shop & Service, Travel & Transport,
Residence, Arts & Entertainment, Outdoors & Recreation, Professional & Other
Places. We used those categories as the labels for people’s urban activities and aimed
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(a) Query = ‘beach’  

(b) Query = ‘(33.9424, -118.4137)’ (LAX airport centroid)  
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Fig. 42.3 Two example queries and the top-ten results returned by CrossMap

to learn classifiers that can predict those labels for any given check-in. We performed
a random shuffling of the dataset, and then randomly chose 80% for training and 20%
for testing. For any check-in r, all the studied methods can obtain vector represen-
tations for the location, time, and text; we concatenated the vectors as the feature
representation of a check-in.

With the above feature transformation,we then trained amulticlass logistic regres-
sion for activity classification. Figure 42.5 reports the performance of different
methods for the activity classification task. As shown, CrossMap outperformed the
other methods significantly. Using the simple linear classification model, the F1
score of the method can reach as high as 0.843. Such results show that the embed-
dings obtained by multimodal embedding can well distinguish the semantics of
different categories. We further verified this fact using data visualization. As shown
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Fig. 42.4 Three temporal-textual queries and the top ten results returned by CrossMap
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Fig. 42.5 Activity classification performance on 4SQ

in Fig. 42.6, we chose three categories and used the t-SNE method (Maaten and
Hinton 2008) to visualize the feature vectors. One can observe that the learnt repre-
sentations of the multimodal embedding method resulted in much clearer inter-class
boundaries compared to the baselines such as geographic topic models.

42.5 Summary

We have presented data mining techniques for modeling people’s urban activi-
ties from massive social-sensing data. We first overviewed data mining techniques
for four important urban analysis tasks: (1) urban pattern discovery; (2) urban
activity modeling; (3) urban mobility modeling; (4) urban event detection. Then,
we presented the latest development of multimodal embedding techniques for urban
activity modeling, which maps items from different data modalities into a common
latent space with their correlation preserved. Compared with previous latent variable
models,multimodal embedding techniques donot imposedistribution assumptions of
people’s spatiotemporal activities, and scale well with the data size. We have studied
the empirical performance of these methods on real datasets, and demonstrated that
these techniques can enable the building of predictive urban activity models and can
benefit downstream tasks like activity classification.

42.6 Future Directions

In the future, social-sensing data will continue to serve as an invaluable source for
urban analysis. Data-mining techniques have already shown promising results when
acquiring insights from social-sensing data for various tasks. However, there are still
challenges that need to be addressed to fully unleash the power of social-sensing
data. Below, we list several key challenges in this direction.

Integrating diverse data modalities. Modern social-sensing data often involve
multiple modalities, such as text, image, location, and time. Considering the totally
different representations of those data modalities and the complicated correlations
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(a) LGTA  

(b) CrossMap  

Fig. 42.6 Visualizing the feature vectors generated by LGTA and CrossMap for three activity
categories: ‘Food’ (cyan), ‘Travel & Transport’ (blue), and ‘Residence’ (orange). The feature vector
of each 4SQ is mapped to a 2D point with t-SNE (Maaten and Hinton 2008)

among them, how to effectively integrate them for urban activity modeling and
prediction remains a challenging problem.

Extracting insights from noisy data. Studies have shown that about 40% social-
sensing data are pointless babbles. Even among those informative posts, most are
rather short and noisy. It is nontrivial to analyze such noisy and short text messages
and distill the information for end tasks.

Real-time data analysis. Many urban-analysis tasks require real-time perfor-
mance. For instance, when an emergent event happens, it is important to report the
event as soon as possible to allow for timely actions. As massive social-sensing
data stream in, it is an important yet challenging problem to design on-line learning
algorithms that can handle large-scale streaming data efficiently.
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Chapter 43
AI and Deep Learning for Urban
Computing

Senzhang Wang and Jiannong Cao

Abstract In the big data era, with the large volume of available data collected by
various sensors deployed in urban areas and the recent advances in AI techniques,
urban computing has become increasingly important to facilitate the improvement
of people’s lives, city operation systems, and the environment. In this chapter, we
introduce the challenges, methodologies, and applications of AI techniques for urban
computing. We first introduce the background, followed by listing key challenges
from the perspective of computer science when AI techniques are applied. Then we
briefly introduce theAI techniques that arewidely used in urban computing, including
supervised learning, semi-supervised learning, unsupervised learning, matrix factor-
ization, graphic models, deep learning, and reinforcement learning. With the recent
advances of deep-learning techniques, models such as CNN and RNN have shown
significant performance gains in many applications. Thus, we briefly introduce
the deep-learning models that are widely used in various urban-computing tasks.
Finally, we discuss the applications of urban computing including urban planning,
urban transportation, location-based social networks (LBSNs), urban safety and secu-
rity, and urban-environment monitoring. For each application, we summarize major
research challenges and review previous work that uses AI techniques to address
them.
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43.1 Background

In the big data era, sensing technologies (e.g., GPS and environment sensors) and
large-scale computing infrastructures (e.g., distributed storage and computing) have
produced and stored a variety of big data generated in urban space in real time,
such as human-mobility data, air-quality data, transportation data, urban noise data,
and urban crime data. Generally, big data can be defined as a field that studies the
methodologies of effectively and efficiently storing, processing, extracting informa-
tion from, discovering valuable knowledge from, and visualizing the datasets that are
too large in data volume or too complex in data formats to be handled by traditional
data storage, processing, and analytic paradigms. Usually, big data can be charac-
terized by five Versus: volume, variety, velocity, veracity, and value (Ishwarappa
and Anuradha 2015). The first primary characteristic of big data is its sheer volume.
Variety means that the data can be unstructured, and the data types are much richer,
including images, texts, videos, graphs, etc. As the data are usually generated in
real-time and new data keep on coming, the characteristic of velocity requires that
the new streaming data can be processed in near real time. Veracity refers to the trust-
worthiness of the data. Big data usually also mean big noise, such as in social-media
data. The value hidden in the data can be low and may require carefully designed
machine-learning or data-mining methods to discover useful knowledge from the
massive data.

Mining knowledge hidden in the big data generated in urban areas is critically
important to facilitate many real applications for smart cities, including relieving
traffic congestion, urban crime prediction, real-time air pollution monitoring, urban
planning, etc. To this aim, artificial intelligence (AI) techniques are urgently needed
for knowledge discovery from the large-volume, noisy, heterogeneous, and ever-
growing urban data (Zheng et al. 2014a, b). Recently, AI techniques driven by big
data, such as the popular deep-learning models, have been widely used to solve
diverse urban-computing tasks and have achieved success (Wang et al. 2019, 2020).
For example, urban-traffic prediction and navigation driven by AI have been widely
explored and applied in many applications such as the Gaode map for navigating and
the City Brain system developed by Alibaba (Zhang et al. 2019a, b). As an interdisci-
plinary research field, knowledge discovery from urban big data is an indispensable
part of urban computing, and AI techniques play a critically important role in mining
correlations and patterns and predicting trends from the data.

Figure 43.1 shows a general framework to illustrate howAI techniques, especially
machine learning, are used for various applications in urban computing. As shown
in Fig. 43.1, there are three phases in general. The first phase is data acquisition.
Diverse types of data generated from various sensors deployed in different locations
in a city are collected, including GPS position data, air-quality data, weather data,
data on social relations, points of interest (POIs), transportation networks, and social
events. The collected raw data usually need to be preprocessed for further analysis.
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Fig. 43.1 Framework of applying AI techniques for urban computing

The data preprocessing operations include data cleaning, normalization, transfor-
mation, and instance selection. Next, the machine-learning phase performs pattern
learning or knowledge discovery from the data. For traditional machine-learning
methods, features need to be first extracted and selected from the data manually
through feature engineering. In machine learning, features refer to a set of measur-
able properties or characteristics of the objects under study. They are used as the
input of the machine-learning algorithms to be mapped to the output. Discriminating
features can be extracted and selected from the raw data based on domain knowledge,
and then fed into a machine-learning model such as the SVM classifier or logistic
regression for training. Note that for the deep-learning models that are extremely
popular nowadays, they do not need handcrafted features. Deep-learning models
can automatically learn features from the raw data and integrate the feature learning
and model learning in an end-to-end way, which is a significant advantage. The
third phase is using the trained machine-learning models to support various urban-
computing applications, such as urban planning, traffic prediction, public safety, and
energy saving. The results of machine-learning models can provide us with knowl-
edge, predictions, and guidance to help us make decisions on how to build a smarter
city.
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In the remainder of the chapter, we first present the challenges of using AI tech-
niques for analyzing and discovering knowledge fromurban data. Then, we introduce
both traditional AI models and recent deep-learning models that are widely used in
various tasks of urban computing. Next, we classify urban computing into several
application categories and review-related work, respectively.

43.2 Challenges

Compared with other types of data, there are some unique challenges for conducting
machine learning using the big data generated from various urban sensors.

Data acquisition: Usually, a large number of sensors should be deployed in
different locations of a city for data collection. However, there are several reasons
why the sensors cannot bemassively deployed all around the city. First, some sensors
are expensive, such as cameras and sensors in air-qualitymonitoring stations. Second,
due to the energy consumption constraint, the number of sensors is usually limited.
Sometimes it is difficult to select suitable locations to deploy sensors for data acqui-
sition. It is also nontrivial to estimate the data at a location where there are no sensor
readings, based on the observed sensor data from other locations.

Large volume and streaming data: The volume of the data generated from an
urban area is usually very large considering the large number of sensors deployed in
a city; and the data volume grows quickly, considering that the sensors generate data
continuously in real time. Traditional machine-learning or data-mining techniques
usually need a large number of labeled training samples and thus are time consuming.
Many urban-computing tasks need real-time data analysis, such as traffic prediction
and air-quality monitoring. Therefore, it is challenging for existing AI techniques to
process this large volume of data continuously and almost instantly.

Heterogeneous data: Solving a specific task in urban computing usually involves
multiple datasets rather than only one dataset. For example, city-wide air-pollution
prediction involves the simultaneous study of multiple types of data, including traffic
flow,weather, and land uses.Different datasets usually present diverse data formats or
types. Traditional data-mining andmachine-learning techniques are usually designed
to handle one type of data, such as image, text, and graphics. How to fuse the hetero-
geneous data with different formats and structures involved in one learning task to
serve the urban-computing application of interest is difficult, and also a hot research
topic currently.

Complex dependencies among the data: Different types of urban data can be
highly correlated, such as traffic data, air-quality data, and weather data. Traffic
congestion is usually highly correlated with POI distribution, time of day, and social
events. It is difficult for traditional statistics-basedmethods to capture the correlations
and dependencies among the data without the help of domain expertise. Mining the
dependencies among the data may be especially important to help improve various
urban-computing applications such as urban planning, policy making, and intelligent
transportation systems.
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Noisy and incomplete data:Most data in urban computing are generated by urban
sensors which are deployed in an open environment (e.g., the air-quality sensors
deployed on the field). The sensors may fail to work normally and produce wrong
or noisy data from time to time. In addition, some sensors are expensive, and only a
limited number of sensors are deployed due to this cost limitation. For example, the
road cameras for traffic monitoring are usually only installed in some intersections of
a road network due to the high cost. Performing a task such as city-wide air-quality
and traffic monitoring with such noisy and incomplete data is challenging.

Distributed data storage and processing: As the urban sensors are deployed at
different locations, and the data volume increases rapidly, a distributed data-storage
and processing infrastructure is usually required for more efficient computation of
variousmachine-learning anddata-mining algorithms.Considering the heterogeneity
of the urban data, the complex dependencies among the data, and the nonuniform
distributions of the data sensors, it is very challenging to design such a distributed
data-storage and processing infrastructure.

Data privacy: Urban data are mostly collected from users. For example, users’
mobility data can be collected from users’ smartphones, and the urban-traffic
data can be collected from the GPS module installed in private vehicles. How to
protect the data privacy of the users and at the same time use the data to facilitate
various applications such as navigation and travel route recommendation is a non-
trivial problem. There needs a tradeoff between data privacy and data utility (see
Chap. 32).

To address the above-mentioned challenges, various AI techniques are being
explored in different application scenarios of urban computing, such as super-
vised learning, semi-supervised learning, unsupervised learning, matrix factoriza-
tion, graphic models, deep learning, and reinforcement learning. Next, we briefly
introduce the concept and preliminary knowledge of the methods and then discuss
how these models can be used in different tasks of urban computing in detail.

43.3 Traditional AI Techniques

43.3.1 Supervised Learning

Supervised learning, such as classification and regression, is a type of machine
learning that learns a function mapping the input features to an output label or vari-
able, based on a set of training input–output pairs (Caruana and Niculescu Mizil
2006). Note that in supervised learning, a training dataset that contains both the
input data and the corresponding output labels or variables is needed, and the goal
is to learn a mapping function from the training dataset.

Supervised learning is widely used in many urban-computing tasks when a large
number of labeled training data samples are available, such as traffic prediction
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(Castro-Neto et al. 2009), region classification (Toole et al. 2012), and POI recom-
mendation (Daniel and Sebastian 2000). For example, Toole et al. (2012) studied the
problem of inferring the types of urban land-use from users’ mobile-phone activity
data. A supervised classification algorithm was used to identify four types of land
uses with similar zoned uses and mobile-phone activity patterns. The training data
of the algorithm contained three weeks of call records for about 600,000 users in the
Boston region. Castro-Neto et al. (2009) proposed a supervised regression algorithm
called online support vector machine to predict short-term freeway traffic flow under
both typical and atypical conditions.

43.3.2 Unsupervised Learning

Significantly different from supervised learning, unsupervised learning does not need
any labeled data for training. Unsupervised learning aims to capture the underlying
structures, patterns, or distributions from the input datawithout the guidance of output
labels or variables. Unsupervised learning can be generally grouped into clustering
and association. Clustering is the task of grouping a set of objects so that objects in
the same group are more similar to each other than to those in other groups. Each
object group is called a cluster. Association-rule learning is a rule-based machine-
learningmethod for discovering interesting relations between variables or patterns in
large databases. Association-rule learning algorithms intend to identify such strong
rules or patterns in the given dataset using measures of interestingness.

In many real application scenarios, there are no labeled data at all. In such a
case, unsupervised learning techniques can be used for mining knowledge from the
massive data. For example, mining patterns from the trajectories of moving objects is
an important research topic in spatial–temporal data mining (Giannotti et al. 2007).
There are no labeled training data for discovering new patterns in trajectories, and
thus the unsupervised pattern-mining methods are applied. Another example is city-
boundary detection driven by big data. This task aims to discover the real borders
of a city according to the interactions between people, using GPS tracks or phone-
call records, and there are no ground-truth labels for the boundary of a city. To
solve this problem, Rinzivillo et al. (2012) proposed to first build a location network
based on human interaction and then partition the network using an unsupervised
community-detection method. The boundaries of regions can be thus characterized
by the discovered location clusters, with denser interaction between locations in the
cluster.

43.3.3 Semi-supervised Learning

Semi-supervised learning falls between unsupervised learning, which does not have
labeled training data at all, and supervised learning which has complete labeled
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Fig. 43.2 Three types of machine-learning methods

training data. Semi-supervised learning makes use of both a small amount of avail-
able labeled data and a large amount of unlabeled data for training (Zhu 2005).
As it is usually expensive and time-consuming to label a large number of training
data for supervised learning, semi-supervised learning is widely used based on the
observation that unlabeled data, when used in conjunction with a small amount of
labeled data, can achieve considerable performance improvement over unsupervised
learning. Semi-supervised learning also has broad applications in urban computing.
For example,Zheng et al. (2013) proposed a semi-supervised learning approachbased
on a co-training framework to predict the air quality of a location where there is no
air-quality monitoring station already. The used co-training framework consisted of
two separated classifiers, with one using spatially related features and the other using
temporally related features. Figure 43.2 compares three types of machine-learning
methods.

43.3.4 Matrix Factorization

Matrix factorization,which is also calledmatrix decomposition, decomposes amatrix
into a product of twoor three smallermatrices. It is an approach that can simplify some
complex matrix operations, since these can be performed on the decomposed smaller
matrices rather than on the original largematrix (Daniel and Sebastian 2000). Popular
matrix factorization methods include LU decomposition, QR decomposition, Jordan
decomposition, and SVD. From an application point of view, matrix factorization
can be used to discover the latent features underlying the interactions between two
types of entities, such as users and items in recommendation systems. For example,
SVD is widely used in collaborative filtering (Zhou et al. 2015), which factorizes the
product-rating matrix A into the product of three smaller matrices, the left singular
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Fig. 43.3 Illustration of SVD

vectors U, the singular values D, and the right singular vectors VT as shown in
Fig. 43.3. Matrix factorization has very broad applications in machine learning, such
as image processing, data compression, spectral clustering, recommendation, and
matrix completion. For example, when the original matrix A is incomplete, with
many unknown entry values, we can approximate it with three factorized low-rank
matrices and estimate the missing entries in A to complete it.

Matrix factorization is widely used inmany estimation or inference-related urban-
computing tasks such as location recommendation, urban noise estimation, and
urban-traffic estimation. For example, Zheng et al. (2010) proposed to collaboratively
recommend location and activity to users through factorizing the location-activity
matrix constructed from users’ GPS historical trajectory data. Zheng et al. (2014a, b)
integrated tensor composition and matrix composition to infer the fine-grained noise
distribution at different times of day for each region of NYC. The noise distribution
of NYC was modeled with a three-dimension tensor, whose three dimensions are
regions, noise categories, and time slots. Supplementing the missing entries of the
noise distribution tensor using the proposed tensor-matrix co-factorization approach,
the noise distribution throughout the entire NYC can be inferred. Wang et al. (2019,
2020) proposed a locally balanced inductive matrix factorization model to infer the
bike usage of a city at different hours of the day for dockless bike-sharing systems.
The bike usage demand was modeled as a matrix whose two dimensions are region
ID and time slot, and the entries are the needed number of bikes. The unknown
entries of the bike-demand matrix are inferred through a proposed inductive matrix
factorization method.
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43.3.5 Graphical Model

A graphical model uses a graph to express the conditional dependency relationships
among different random variables and is also called the probabilistic graphical model
(PGM; Koller and Friedman 2009). It is widely used in probability theory, Bayesian
statistics, andmachine learning.Generally, graphicalmodels use a graph-based repre-
sentation to encode the variable distributions over a multi-dimensional space, which
provides a general framework for modeling large collections of random variables
with complex interactions. There are two types of commonly used graphical repre-
sentations of variable distributions: Bayesian networks and Markov random fields.
Figure 43.4 shows an example of a simple graphical model. Each node in the graph
denotes a variable, and each arrow indicates a dependency relationship between two
variables. In this example, D depends on A, B, and C; and C depends on B and D;
whereas A and B are independent to each other.

Inmany urban-computing tasks, the data can be heterogeneous and collected from
different sources, and the interactions and correlations among the data are usually
complex. Graphical models can be used to model the dependencies among the data
and make accurate estimates or inference. For example, in urban-traffic estimation
and prediction, the traffic conditions of a road segment can be affected by both
the neighboring road segments and the external factors such as weather, holidays,
and rush hours. Wang et al. (2016a, b) proposed to use a coupled hidden Markov
model for road-network-level traffic-congestion estimation. In this model, the traffic
condition of a road segment at time t depends on its previous traffic condition at t −
1 and the traffic conditions of its neighboring road segments at t − 1. To model the
complex dependencies among them, a graphical model that uses multiple coupled
Markov chains was proposed. Shang et al. (2014) studied the problem of instantly
inferring the gas consumption and pollution emission of the vehicles traveling on a
road network of a city, based on the GPS trajectory data collected from a sample

Fig. 43.4 A toy example of
a graphical model
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of vehicles. To address this task, they proposed an unsupervised dynamic Bayesian
networkmodel called the traffic volume inferencemodel (TVI) to infer the number of
vehicles passing each road segment per minute. TVI can model the effect of multiple
external and internal factors on the traffic volume, including the travel speed, weather
conditions, and the geographic features of a road.

43.4 Deep Learning

Deep learning is a type of machine-learning method whose structure, called an arti-
ficial neural network (ANN), is inspired by the structure and function of the human
brain. The initial form of an artificial neural network is the perceptron, which was
proposed in the 1950s (Rosenblatt 1957). Although ANNs have been proposed and
studied for many years, early ANN models were not that successful compared with
other machine-learning models, such as the Bayesian model and SVM, due to their
shallow structures with only two or three layers of neurons. In recent years, ANN
models with much deeper model structures containing tens of or even hundreds of
neural layers are gaining popularity due to their supremacy in terms of prediction
accuracy when trained with huge amounts of data (LeCun et al. 2015). Figure 43.5
shows the performance curves of deep-learning methods and most other traditional
machine-learningmethods with increasing amounts of training data. One can see that
the learning performance of traditional methods first increases with an increase in
the data amount and then reaches a performance bottleneck. More data will not lead
to better performance due to the limited learning ability of traditional methods. For
deep learning; however, the performance keeps on increasing with more and more
training data, which is mainly due to its deep structure and powerful hierarchical
feature-learning ability.

Fig. 43.5 Performance curves of deep learning and traditional machine learning with increasing
amounts of training data
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Fig. 43.6 Traditional machine learning vs deep learning

Besides the powerful learning ability from big data, another significant difference
and advantage of deep learning compared with traditional machine learning is that
deep learning does not need handcrafted features and can learn features from the input
raw data automatically. Figure 43.6 shows a pipeline comparison between traditional
machine learning and deep learning.We can see that for traditional machine-learning
models, given the raw input data, feature engineering is first conducted to manually
extract the features, and then, the features are input into the machine-learning model
for classification. For deep-learning models, feature engineering is not needed any
more. Feature learning and model learning are performed in an end-to-end learning
way for deep-learning models.

Deep-learning architectures such as deep neural networks (DNN), deep belief
networks (DBN), recurrent neural networks (RNN), and convolutional neural
networks (CNN) have been widely applied in the fields of computer vision,
speech recognition, natural-language processing, audio recognition, social-network
analysis, machine translation, bioinformatics, medical-image analysis, and urban
computing, where they have produced results comparable to and in some cases supe-
rior to humans. Next, we will briefly introduce some deep-learning models that are
widely used in the tasks of urban computing.

43.4.1 Restricted Boltzmann Machines (RBM)

A restricted Boltzmann machine is a two-layer stochastic neural network (LeCun
et al. 2015),which is broadly used for dimensionality reduction, classification, feature
learning, and collaborative filtering. As shown in Fig. 43.7, RBM generally contains
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Fig. 43.7 Structure of RBM

two layers. The first layer of RBM is called the visible layer with the neuron nodes
{x1, x2, …, xm}, and the second layer is the hidden layer with the neuron nodes {h1,
h2, …, hn}. The structure of RBM can be considered as a fully connected bipartite
undirected graph. All nodes in RBM are connected to each other across layers by
undirected weight edges {w11, w22, …, wnm}, but no two nodes of the same layer
are linked. The standard type of RBM has binary-valued neuron nodes and also bias
weights. Depending on the particular task, RBM can be trained in either supervised
or unsupervised ways.

43.4.2 CNN

Aconvolutional neural network (CNN) is initially designed to analyze visual imagery.
Typically, CNN contains the following layers as shown in Fig. 43.8: the input layer,
the convolutional layer, the pooling layer, the fully connected layer, and the output
layer. Some CNN structures also have the normalization layer after the pooling layer.
When it is used for image processing, the raw images are first input into the convo-
lutional layer to learn the high-level and more abstract features. The convolutional
layer captures the high-level latent features through multiple filters called kernels.
A kernel is usually a k × k square matrix, which moves in the input image matrix
from left to right and from top to bottom. A filtering operation is performed with
the kernels on the corresponding positions of the input image matrix for generating
high-level features. Then, the pooling layer performs a down-sampling operation on
the high-level features based on the spatial dimensionality, to reduce the number of
parameters. Finally, several fully connected layers are stacked to perform nonlinear
transformation of the output high-level features from the pooling layers. Compared
with a traditional multi-layer perceptron neural network, CNN has the following
distinguishing characteristics that make it generalize well on vision problems: 3D
volumes of neurons, local connectivity, and shared weights.
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Fig. 43.8 Structure of CNN

43.4.3 RNN and LSTM

ARecurrent neural network (RNN) is designed to recognize the sequential character-
istics of the input data and use the previous patterns to predict the future output. It is
widely used in many areas such as speech recognition, natural-language processing,
and time series data analysis. Figure 43.9 shows the general structure of an RNN
network, where xt is the input data, A are the parameters of the RNN network, and
ht is the learned hidden state. As shown in Fig. 43.9, the output of the previous time
step t – 1 is input into the neurons of the next time step t. In this way, the histor-
ical information in the past time steps can be stored and conveyed to the future. A
major shortcoming of the standard RNN is that it only has a short-term memory
due to the issue of vanishing gradients. To solve this problem, the LSTM network
was invented, which is capable of capturing the dependencies of the input data in a

Fig. 43.9 Structure of an RNN
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Fig. 43.10 Structure of an LSTM

much longer time period. Compared with RNN, LSTM can remember the long-term
historical information of input due to its specially designed memory unit. As shown
in the middle part of Fig. 43.10, an LSTM unit is composed of the following three
gates: input gate, forget gate, and output gate. The input gate controls whether to let
new input in, the forget gate controls whether to ignore some unimportant historical
information, and the output controls whether to let the historical information impact
the current output.

43.4.4 Autoencoder (AE)

An autoencoder is a type of artificial neural network that aims to learn compact data
coding in an unsupervised manner (Hinton and Salakhutdinov 2013). As shown in
Fig. 43.11, AE generally contains three types of layers: the input layer, the hidden
layers, and the output layer. The raw data are first fed into the input layer, and then,
one or multiple hidden layers are stacked to form an encoder for coding the input as
compact latent representation vectors. Then, a decoder which is also composed of
one or several hidden layers is used to reconstruct the raw input from the compact
latent vector learned by the encoder. AE learns a compact representation of the input
data in an unsupervised manner, which can be considered as a way of dimensionality
reduction. As an effective learning technique for unsupervised feature representation,
AE facilitates various downstream data-mining and machine-learning tasks such
as classification and clustering. A stacked autoencoder (SAE) is a neural network
consisting of multiple stacked AEs in which the outputs of the current AE are wired
to the inputs of the successive AE (Bengio et al. 2006).

43.5 Reinforcement Learning

Reinforcement learning is more general than supervised/unsupervised learning
(Richard and Andrew 1998). It learns from the interactions with the environment to
get as much reward as it can over the long term. Intuitively, reinforcement learning
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Fig. 43.11 Structure of an autoencoder

tries to imitate the human stress reaction. As shown in Fig. 43.12, imagine that you
are a child in a living room with a stove in it, assume that you feel cold and are far
from the stove, and then you try to approach it. You feel good and understand that
the stove is a positive thing. But if you stay too close to the stove, your hand will be
burned. From the interaction with the stove, you will learn that the stove is positive
when you are a sufficient distance away because it produces warmth. But if you get
too close to it, you will be burned. So too close to the stove will produce negative
reward.

Fig. 43.12 A toy example to illustrate how humans learn through interaction with the environment
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Fig. 43.13 General view of
reinforcement-learning
algorithms

Similar to humans learning through interaction with the environment, the
reinforcement-learning algorithms learn to choose the most appropriate action
through trail-and-error. The general idea of reinforcement-learning algorithms is
illustrated in Fig. 43.13, which mainly consists of the four key elements: environ-
ment, reward, action, and state. A reinforcemsent-learning agent tries to learn how
to best match states and actions in order to get the maximum long-term accumulated
return (reward). As a result, the strategy will more frequently perform the actions that
obtain positive rewards, while the actions that lead to negative punishment are less
frequently performed.

Reinforcement-learning algorithms have broad application in the fields of
robotics, optimal control, chess games, strategic games, flight control, missile guid-
ance, predictive decision making, financial investment, and urban-traffic control, as
they try to solve the general issues about how to best match the states and actions
(Haldorai et al. 2019). Taking urban transportation as an example, where the city
transportation network needs to control the traffic lights of multiple intersections
and roads. Even without domain knowledge about how to control, by specifying the
rule of reward, the reinforcement-learning algorithms can autonomously learn an
optimal traffic light control strategy, such that all vehicles can pass the intersection
in the shortest time (Rizzo et al. 2019). Even today, due to the complexity of urban-
computing problems, learning control strategies through reinforcement-learning
algorithms still face challenges of consuming a huge amount of computational time.
However, with the development of computing power, reinforcement learning will
enable an evolution from computational intelligence to artificial intelligence (Li
et al. 2019).

43.6 Applications of AI Techniques in Urban Computing

The AI techniques described above have been widely applied in various urban-
computing application scenarios, including urban planning, intelligent transporta-
tion systems, location-based social networks LBSNs, urban safety and security, and
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urban environmental monitoring. Next, we discuss these applications in detail. For
additional discussion of the use of urban-mobility data, see Chaps. 28 and 29.

43.6.1 Urban Planning

Urban planning refers to the technical and political process concernedwith the design
and development of land use, and especially the spaces that the public share in urban
areas. The goal of urban planning is to make cities safe, healthy, and enjoyable places
to live. Urban planning is a very challenging task because a lot of complex factors
should be considered, such as urban-traffic flow, human mobility, POI distribution,
and urban functional regions. Traditionally, urban planners need to conduct surveys
to guide them in making decisions on urban planning, which is less accurate, time
consuming, and labor intensive. In the big data era, a lot of data generated in the
urban area are increasingly available, and such data can be used to facilitate more
effective and rational urban planning. Recently, research has tried to use big data
and AI techniques in various urban planning tasks such as road-network planning
(Zheng et al. 2011; Berlingerio et al. 2013), functional-regions discovery; (Zheng
et al. 2014a, b; Yuan et al. 2012; Manley 2014), and city-boundary detection (Ratti
et al. 2010; Rinzivillo et al. 2012).

Zheng et al. (2011) used the GPS trajectories of taxicabs traveling in urban areas
to detect flawed urban planning in a city. They focused on detecting the pairs of
regions with salient traffic problems and discovering the linking structure as well as
correlations among them. The proposed model contains two steps: city-wide traffic
modeling and flawed planning detection. In citywide traffic modeling, the urban area
is first partitioned into disjoint regions based on major roads, and thus each region
stands for a community containing someneighborhoods. Then, the origin–destination
locations of the GPS trajectories of taxicabs are mapped to the partitioned regions, so
that in each hour of a day the region transition matrices can be constructed. In flawed
planning detection, the skyline of each region transition matrix is first detected, and
then, a graph pattern-mining method is used to identify flawed planning from the
skylines. Berlingerio et al. (2013) studied how to use large-scale cellphone mobility
data of users to help transit operators better perform urban transportation planning.
A system called AllAboard was developed for optimizing public transport with the
guidance of people’s cellphone data. AllAboard first infers the origin–destination
(OD) flows in the city through a large volume of people’s mobile phone location
data. The OD flows are then converted to ridership on the existing transit network.
Next, the sequential travel patterns are extracted from the flow data over the transit
network, which can be used to propose new candidate transit routes. Finally, an
optimization model is proposed to evaluate which new routes would best improve
the existing transit network to increase ridership.

A functional region refers to a geographic area centered around a specific focal
point with a specific function such as education, business, or transportation. Auto-
matic functional-regions discovery and identification are particularly helpful tomany
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urban-computing applications such as urban planning and city management. Yuan
et al. (2012) proposed a data-driven approach called DRoF to discover different func-
tional regions of a city by using both the human-mobility data among regions and the
POI distributions in the regions. DRoF first segments a city into disjointed regions
based on the major roads such as arterial roads, highways, and urban expressways.
Then, the functions of each region are inferred by a proposed graphic-based proba-
bilistic inferencemodel. By borrowing the idea from topicmodel in natural-language
processing, DRoF regards a region as a document, a region function as a topic, and
the human-mobility trips (when people reach or leave which region) as words. The
POI distribution in each region is also incorporated as the side information to help the
model achieve more accurate inference accuracy. Evaluations are conducted on the
three-month taxi GPS trajectory data generated by over 12,000 taxicabs in Beijing.
Nine types of different functional regions labeled by humans are identified by DRoF.
Manley (2014) applied the community-detection algorithm over the traffic network
of a city to identify functional urban regions. The traffic network was constructed
from the travel routes of about 1.5 million minicab trips. The region communities
discovered from the large volume of traffic flow data can help identify areas of the
road network that are used together, and thus help city planners to have a better
understanding of the functional structure of the city. People’s mobile phone data of
a city can be also used to understand the spatio-temporal distribution of people in
different regions of the city. For example, call detail records (CDR), which provide
information on the locations of mobile phones where a call is made or a text message
is sent, can be used to infer the dynamics of urban land use (Toole et al. 2012). A
supervised classification algorithm is used to identify clusters of functional zones
that present similar mobile phone activity patterns.

As the city expands rapidly and people move among different regions of the city,
the boundaries of a city and its regions change quickly. It is very challenging for
traditional methods to capture the dynamics of city boundaries. To tackle this issue,
recently there have been studies using human-mobility data or activity data (e.g., GPS
trajectories and CDR data) to better discover the real borders of city regions with
data-driven approaches. Ratti et al. (2010) proposed a novel approach for regional
delineation by analyzing networks of billions of individual human transactions.Given
a geographic area and some measure of the strength of links between its inhabitants,
Ratti et al. (2010) partitioned the area into disjoint smaller regions based on the rule
that the disruption to each person’s links in different regions should be minimized.
The proposed method was tested on a large human interaction network containing
20.8 million nodes, which is inferred from a large telecommunications database in
Great Britain. The human interaction network can be also inferred from other types
of data such as the vehicle GPS tracks. Rinzivillo et al. (2012) first extracted region
clusters from the human-interaction network constructed from the vehicle GPS data.
Then, the region clusters were mapped back onto the territory of a city and were
shown to match well with the existing administrative city borders.
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43.6.2 Urban Transportation

Currently, most vehicles are installed with GPS devices for real-time positioning and
navigation. The large-scale vehicle GPS data reflect the urban-traffic conditions in
real time and thus are crucially important for intelligent transportation systems. Both
deep-learning models and traditional machine-learning models are used to address
various issues in urban transportation such as traffic flow prediction (Zhang et al.
2019a, b; Du et al. 2019) and traffic-congestion prediction (Wang et al. 2015; Wang
et al. 2016a, b).

To address the issue that traditional traffic flow-prediction methods cannot effec-
tively capture the nonlinear, stochastic, and time-varying characteristics of the traffic
data, Zhang et al. (2019a, b) proposed a network-scale deep traffic-prediction model
GCGAN. The framework of the GAGAN model is shown in Fig. 43.14, which
combines adversarial training and graph CNN. GCGAN is a prediction framework

Fig. 43.14 Framework of the GCGAN model (Zhang et al. 2019a, b)
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based on a Generative Adversarial Net, and thus can make more robust predictions
by introducing adversarial training loss. As shown in the upper part of Fig. 43.14,
GCGAN uses an encoder–decoder framework that is sequence-to-sequence based
to encode the traffic conditions of a road network in previous time intervals and
to decode the traffic conditions in future time intervals as the prediction. To model
the spatial correlations among the road links of a transportation network, a graph
convolution network (GCN) is used in both the generator and the discriminator
for feature learning. LSTM is also used to capture the temporal dependencies. Du
et al. (2019) studied the problem of predicting urban-traffic passenger flows with
various types of traffic passenger flow data, including subway, taxi, and bus flows.
Considering the complex factors such as hybrid transportation lines, mixed traffic
models, transfer stations, and some extreme weather, a deep irregular convolutional
residual LSTM network model called DST-ICRL was proposed by Du et al. (2019).
The passenger flows among different traffic lines in a transportation network are
first modeled as multi-channel matrices analogous to the RGB pixel matrices of
an image. Then, a deep-learning framework that integrates an irregular convolu-
tional residential network and LSTM units is proposed to learn the spatial–temporal
feature representations from the passenger flow matrices. DST-ICRL samples both
the short-term and long-term historical traffic data for model training to capture both
the periodicity and the long-term trend of the traffic passenger flows.

Although deep-learning models are popular nowadays, some traditional machine-
learning models such as matrix factorization andMarkov models may perform better
when there are multiple types of heterogeneous traffic data that need to be fused
for traffic analysis. Wang et al. (2015) used a coupled matrix and tensor factor-
ization model to infer city-wide traffic-congestion conditions by fusing multiple
types of data including social-media data, social-event data, road physical features,
and traffic-congestion patterns. As shown in Fig. 43.15, the proposed model used
a coupled matrix and tensor factorization scheme to collaboratively factorize the
traffic-congestion matrix X with the congestion correlation matrix Z, event tensor
A, and the road feature matrix Y. By assuming that these matrices and tensor share
the common latent factor matrix U in the road-segment dimension, these data are
jointly factorized in order to fuse all the information. The traffic-congestion matrix
of an entire city is then completed by multiplying the low-rank latent factor matrices
U and V. Wang et al. (2016a, b) further extended the model of Wang et al. (2015)
by incorporating GPS probe data. Wang et al. (2016a, b) constructed two traffic-
congestion matrices: one was inferred from social-media data and the other from
GPS probe data. The final estimation result is the weighted combination of the two
matrices.Wang et al. (2016a, b) proposed an extended coupled hiddenMarkovmodel
(E_CHMM) to combine GPS probe data and social-media data for traffic-congestion
prediction. Figure 43.16 shows the framework of E_CHMM, which contains a data
collection and processing part and the model part. Besides the vehicle GPS probe
data, the tweets that report traffic events are also collected and used in this model.
From each traffic-related tweet, the traffic event type, location, and time information
are extracted. For each road link, Wang et al. (2016a, b) assumed that the occurrence
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Fig. 43.15 Coupled matrix and tensor factorization model for traffic-congestion estimation (Wang
et al. 2019, 2020)

Fig. 43.16 Extended coupled hidden Markov model (E_CHMM) for traffic-congestion prediction
(Wang et al. 2016a, b)

of traffic events follows a multinomial distribution, and the traveling speed of vehi-
cles in a particular time interval follows a Gaussian distribution. In the model part,
the traffic-congestion states of the road links in a road network are hidden and need
to be inferred, while the GPS probe readings and traffic events extracted from tweets
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are observations. The goal of E_CHMM is to accurately infer the hidden traffic-
congestion states of a road network based on the fusion of two types of observations:
GPS probe readings and traffic event-related tweets.

43.6.3 Location-Based Social Networks (LBSNs)

LBSNs such as Foursquare and Flickr are social networks that use GPS features to
locate users and enable users to share their locations and contents to their friends
through mobile devices. They are more and more popular as they can connect users
in both physical and virtual worlds. When users come to favorable restaurants, new
POIs, or tourist attractions, they can check-in through their mobile phones immedi-
ately, so that their friends nearby can know their locations and join. AI techniques
can be used to support many applications in LBSNs, including next check-in loca-
tion prediction or recommendation (Ye et al. 2010; Gao et al. 2013; Bao et al. 2012),
potential friends recommendation (Scellato et al. 2011; Bao et al. 2015), and check-in
time prediction (Yang et al. 2018).

In LBSNs, there usually exist strong social and geospatial ties among users and
their favorite locations. To take this into consideration for better check-in location
recommendation, Ye et al. (2010) proposed a novel friendly collaborative filtering
(FCF) approach for location recommendation based on the collaborative ratings on
the places made by social friends. Motivated by the fact that a user’s preferences
for the check-in locations may change continuously over time, Gao et al. (2013)
considered the temporal effects in location recommendation in LBSNs. Two types of
temporal properties of a user’s daily check-in preferences were considered: (1) non-
uniformness, which means that a user has different check-in preferences at different
hours of a day; and (2) consecutiveness,whichmeans that a user’s check-in preference
in consecutive hours is more similar than that in non-consecutive hours. The two
properties demonstrate that a user’s check-in time and the corresponding preferred
check-in locations can be highly correlated. Therefore, Gao et al. (2013) proposed
a new check-in location recommendation framework by considering the temporal
effects based on the observed two temporal properties. Besides a user’s preference,
other factors such as a user’s current location and the opinions about a location
given by the others may also be helpful for location recommendation. Bao et al.
(2012) proposed a location-based and preference-aware recommender system that
recommended POIs such as restaurants and shopping malls to a user by considering
the user preferences, the current location of the user, and the opinions of the POIs
given by other users.

Friend recommendation is a critically important service in social networks to
help users find new friends and expand their social circles. In LBSNs, the location
information can help to improve the effectiveness of social-friend recommendation.
The basic intuition is that a user’s preference can be revealed by his or her visited
locations in LBSNs. Similar location histories imply similar preferences, thus such
users are more likely to become friends (Bao et al. 2015). For example, Scellato et al.
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(2011) analyzed the LBSN data from Gowalla, from which they found that the link-
prediction space can be largely reduced by considering the similarity of the visited
locations of the users. Based on this observation, a supervised link-predicationmodel
that considers the users’ visited locations was proposed by Scellato et al. (2011) to
predict which users will become friends in the future. Check-in time prediction aims
to predict the time when a user will check-in to a given location. Generally, check-
in time prediction can be formulated as a regression problem by considering time
as a continuous variable. However, directly applying a regression model may not
achieve desirable performance due to the check-in data scarcity issue. To deal with
this, Yang et al. (2018) formulated check-in time prediction as a survival analysis
problem and proposed a recurrent-censored regression (RCR) model to address it.
RCR first uses the gated recurrent units (GRUs) to learn the latent representations
of historical check-ins of a user and then inputs the latent representations into a
censored regression model to predict the check-in time at a given location.

43.6.4 On-Demand Service

On-demand services (e.g., Uber, Mobike, DiDi, GoGoVan, etc.) are becoming
increasingly popular nowadays due to the wide use of mobile phones and the preva-
lence of the sharing economy. A large volume of on-demand service data is generated
continuously and needs to be analyzed in real time to help the service providers meet
customer needs and improve the user experience. Many challenging tasks in on-
demand services, such as demand–supply prediction (Wang et al. 2019, 2020) and
user behavior prediction (Wang et al. 2017a, b), require effective AI techniques.

Wang et al. (2017a, b) studied the order response-time prediction problem in on-
demand logistics services. In on-demand logistics services, users can make goods
delivery orders via a mobile application, and registered van drivers would respond
to take these orders in a very short period of time (usually less than several minutes).
Making and taking orders through such an online app installed in mobile phones
is much faster than the traditional way through van calling centers, and thus makes
the logistics service much more efficient. An important task to help the service
providers improve their services is the accurate prediction of the response time of
the van drivers to the posted delivery orders, because the response time can largely
reflect the preference of the drivers for the order. Wang et al. (2017a, b) formulated
the response-time prediction task as a matrix factorization problem, and proposed a
coupled sparse matrix factorization model to fuse the heterogeneous and sparse data
from different domains, including historical order data, personalized requirements
of the user, and location-relevant features, for more accurate prediction. Currently,
dockless bike-sharing systems have emerged as a new type of on-demand service in
China. Users can check-out and check-in a bike conveniently at any location through
scanning the QR-code on the bike with an app installed in their mobile phones.
The demand–supply analysis of the bikes in dockless bike-sharing systems is a very
important yet challenging problem for efficient and effective system management.
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Wang et al. (2019, 2020) proposed a data-driven approach for bike usage demand–
supply inference in dockless bike-sharing systems. The idea is that before massively
deploying a large number of bikes in an entire city, the system operator will first
pre-deploy a relatively small number of bikes in certain regions of the city for data
collection. The demands in some regions are first estimated from a small number of
observed bike check-out/in data directly, and then, they are used as seeds to infer bike
usage demands in other regions of the city. Wang et al. (2019, 2020) formulated the
problem as a matrix completion task by considering the regions and time intervals
as the two dimensions of the bike usage demand and supply matrices. As the two
matrices are sparse and only partial entries are known due to the bike trip data in
limited regions, a matrix factorization model was designed to complete the demand
and supply matrices.

Deep-learning models such as CNN and LSTM are also widely used for demand–
supply prediction in on-demand services. Lin et al. (2018) proposed a graph CNN
model to predict the station-level hourly demand in a large-scale bike-sharing
network. The model proposed by Lin et al. (2018) combined convolutional neural
networks and LSTM to learn the underlying correlations of bike usage between the
bike stations. Wang et al. (2017a, b) studied the supply–demand prediction problem
for online car-hailing services with deep-learning methods. An end-to-end learning
framework calledDeepSDwas proposed byWang et al. (2017a, b)which used a novel
deep neural network structure to automatically discover complicated supply–demand
patterns from the car-hailing service data.

43.6.5 Urban Safety and Security

Crimes, traffic accidents, and environmental disasters can seriously threaten urban
safety and security. In the big data era, urban safety- and security-related data such as
crimes and traffic accidents can be recorded and stored in a database. Recently, there
has been increasing research interest in studying whether and how AI techniques
can be applied to analyzing these data, and to help address various urban safety- and
security-related issues such as disaster detection (Lee and Sumiya 2010; Song et al.
2013) and crime prediction (Duan et al. 2017; Huang et al. 2018).

Lee and Sumiya (2010) developed a nation-wide geo-social event detection and
monitoring system by collecting a large number of messages from Twitter. The
proposed geo-social event detection model contains the following main steps: (1)
collecting geo-tagged tweets using a Twitter monitoring system; (2) identifying
regions of interest of Twitter users and measuring geographic regularities of crowd
behaviors, and (3) detecting geo-social events through a comparison of the regular-
ities. Song et al. (2013) analyzed and modeled the evacuation behaviors of people
during the Great East Japan Earthquake and Fukushima nuclear accident based on
a large volume of people’s real mobility data in daily life. A population mobility
database was constructed to store and manage people’s mobility data of GPS records
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from approximately 1.6 million individuals throughout Japan over one year. A prob-
abilistic inference model was developed to effectively represent people’s mobility
patterns. The proposed model can help researchers toward a better understanding
of human evacuation behaviors during a disaster, and how those behaviors can be
impacted by various cities during disasters. The system developed by Song et al.
(2013) can be used to simulate and predict populationmobilitywhen disasters happen
in cities so as to improve future disaster relief and management.

Many governments and law-enforcement agencies make city crime data (e.g.,
crime type, location, and time information) publicly available, so that researchers can
use AI techniques for crime-data analysis. An important application of AI for crime-
data analysis is crime prediction. Huang et al. (2018) developed a crime-prediction
framework based on a deep neural network, called DeepCrime. DeepCrime can
capture the dynamic crime patterns and explore the evolving inter-dependencies
between different types of crimes to predict how many crime incidents will occur
in the future in different regions of a city. A region-category interaction encoder is
used to learn the complex interactions between regions andoccurred crime categories.
Then a hierarchical recurrent frameworkwas proposed to jointly encode the temporal
dynamics of crime patterns and capture the inherent interrelations between crimes
and other ubiquitous data such as POIs. Finally, an attention mechanism was used
to capture the unknown temporal relevance and automatically assign importance
weights to the learned hidden states in different time frames. Duan et al. (2017)
applied deep convolutional neural networks (CNNs) for automatic crime-referenced
feature extraction and crime prediction. The urban area under study was first divided
into grid regions. Then, the crimes in all the grid regions can be considered as an
image, where each grid region is a pixel and the crime number is the gray value of
the pixel. CNNs are applied on the image-like crime data of all the grid regions for
feature learning.

43.6.6 Urban Environment Monitoring

Currently, a large number of diverse sensors are deployed all around a city to monitor
environmental variables, weather conditions, and air-quality indexes (AQI) in real
time. With a large amount of data collected from these sensors, AI techniques are
required to process and analyze the data for smart environment monitoring.

Some air-quality monitoring stations have been built in different locations to
collect a city’s real-time air-quality indexes (AQI) such as PM2.5, NO2, and CO.
However, due to the high cost of building and maintaining such stations, only a very
limited number of stations can be built in a city; it is then a challenge to accurately
obtain theAQI data of the entire city. Zheng et al. (2013) inferred the fine-grainedAQI
throughout a city by fusing the AQI data of limited locations with other types of data,
including the meteorology, traffic flow, human mobility, structure of road networks,
and POIs. A semi-supervised learning approach based on the co-training framework
was proposed. This approach contains an artificial neural network tomodel the spatial
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correlation between the AQI of different locations, and a temporal classifier to model
the temporal dependency of AQI in a location. Cheng et al. (2018) proposed a deep-
learning model named ADAIN for urban air-quality inference. ADAIN combines
feedforward and recurrent neural networks formodeling static and sequential features
as well as capturing deep feature interactions effectively. An attention mechanism
was also applied in a pooling layer of ADAIN to automatically learn the different
weights of features from different monitoring stations.

Due to population expansion in big cities, urban noise pollution currently is
becoming a more and more serious issue that threatens public health. AI techniques
can also be used to helpmonitor, estimate, and analyze urban noise. Rana et al. (2010)
designed an end-to-end participatory urban noise mapping system called Ear-Phone.
Ear-Phone leverages compressive sensing to address the issue of recovering the noise
map from the incomplete and random samples obtained by crowdsourcing noise-
pollution data. The noise data are collected by the sound sensors installed in mobile
phones. Zheng et al. (2014a, b) studied how to infer the fine-grained noise situa-
tion, including a noise-pollution indicator and the composition of noises at different
times of a day in New York City, by using multi-sourced data including citizens’
complaint data about city noise, social media, road-network data, and POIs. The
noise situation of New York City was modeled as a three-dimensional tensor, where
the three dimensions stand for regions, noise categories, and time slots. By filling
in the missing entries of the tensor through a context-aware tensor decomposition
approach, the noise situation throughout New York City can be recovered.

43.7 Conclusion

Recently, mining knowledge from the data generated in urban spaces for supporting
urban-computing tasks to help build smart cities is a critically important and substan-
tially challenging research topic. The large volume of heterogeneous data that are
continuously generated in urban spaces, and recent advances in AI techniques, espe-
cially deep learning, have provided us with unprecedented opportunities to tackle
the big challenges in urban computing. In this chapter, we conducted a comprehen-
sive review of the challenges, methodologies, and frameworks that arise when AI
techniques are applied in urban computing, and categorized the application domains
of urban computing. To address the unique challenges for learning knowledge from
urban data, we introduced both the traditional AI techniques and recently popular
deep-learning models that are widely used for urban computing, including super-
vised learning, semi-supervised learning, unsupervised learning, matrix factoriza-
tion, graphic models, deep learning, and reinforcement learning.We also categorized
the utilization of AI techniques in different urban-computing applications including
urban planning, urban transportation, location-based social networks (LBSNs), urban
safety and security, and urban environmental monitoring.
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Chapter 44
Microsimulation

Mark Birkin

Abstract From origins in economics and financial analysis, microsimulation has
become an important technique for spatial analysis. The method relies on conver-
sion of aggregate census tables, sometimes complemented by sample data at the
individual level, to synthetic lists of people and households. The individual records
generated by the microsimulation can be aggregated flexibly to small areas, linked to
create new attributes, and projected forward in time under stable conditions, or in the
context of ‘what-if’ policy scenarios. The chapter outlines the basic building blocks of
microsimulation and shows how these are combined within a representative practical
application. It is argued that further progress can be expected through advances in
computation, assimilation of data into models, and greater capacity to handle uncer-
tainty and dynamics. We also expect the creation of more sophisticated architectures
to reflect the interdependence between population structures at the micro-scale, and
the supply-side infrastructures and urban environments in which they evolve.

44.1 Background to Microsimulation

Microsimulationmodelswere introduced to the literature byGuyOrcutt in the 1950s.
The approach was initially conceived as a powerful way to evaluate the distributional
impact of economic and financial policies. The essence and distinctive feature of the
method is that it proceeds through the specification and analysis of discrete entities
which typically represent persons or households, in contrast to array-based repre-
sentations which count the number of occurrences of a particular type. Consider
for example an appraisal of the consequences of a series of changes in taxation
which depend on the age, marital status, and income of the subject. A microsimu-
lation approach would specify the population as a list of individuals, including age,
marital status, and income as characteristics, to which an updated set of taxation
rules can easily be applied. The notion of applying one or more discrete rules to a
list of elements in order to determine an outcome (“list processing,” see below) is a
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central feature of the microsimulation modeling approach. The individual elements
may then be combined into groups for cross-sectional analysis as required (“flexible
aggregation,” see below).

The addition of a spatial label to the list of population characteristics provides
a straightforward means to introduce a geographical element. Spatial microsimula-
tion approaches have been popular in the analysis of health-care systems, educa-
tion, transport and mobility, labor markets, retailing, and demographic analysis.
Often the spatial disaggregation of the model rules (or parameters) can add further
value, for example by specifying place-based variations in migration rates within a
demographic model, but this need not necessarily be a fundamental element of the
approach. Just as economic microsimulation models were originally established to
investigate the effect of changing rules, spatial microsimulation models (MSM) are
equallywell suited to the assessment of scenarios involving changing parameters (e.g.
future demographic change) or in the provision of infrastructure or services. Hence,
the models can be powerful components within spatial decision-support systems for
city planning.

Another important feature of spatial MSM is that they can be used to deter-
mine the impacts of policy or scenarios across a population even when detailed
profiles for individuals or households are not available. The relevant methods usually
involve synthetic estimation of individual records, typically using iterative propor-
tional fitting from aggregate data or equivalent methods. Aggregate data are often
easily accessible from sources such as neighborhood-level census tables, and MSM
can prove to be a very efficient means to leverage these data. However, the methods
can also be adapted to exploit real individual records which are increasingly available
in the age of big data, for example through government departments, service opera-
tors, and consumer-facing organizations. Since individual databases of this type are
rarely comprehensive or completely representative, in this case a major interest is in
reweighting samples in order to maximize their value.

In this chapter, wewill provide an introduction to fundamental issues and concepts
in microsimulation modeling. Through an idealized but meaningful example, the
major features and techniques will be described. Against this background, a more
practical and powerful implementation will be outlined, concentrating on a specific
but wide-ranging program of MSM for infrastructure assessment. We will discuss—
in relation to both the main case study, and other relevant applications—some of the
major areas of interest and further development potential for MSM at the present
time. Conclusions and reflections on the evidence will be presented.
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44.2 Overview of Methods and Concepts

44.2.1 Population Synthesis

When dealing with spatial data, it is typically the case that a range of counts will be
known for various attributes across an array of small areas. Consider the example in
Table 44.1, where distributions are presented across four typical areas in a region.
These are the kinds of data which have been available to researchers from population
censuses and surveys for many years. The five dimensions of variation displayed
are lifestage, household size, tenure, car ownership, and socio-economic status, and
these vary in a natural way across area types. For example, there are more people
living in flats (apartments) in urban areas, a heavy concentration of young adults in
student areas, and the highest rates of car ownership in the countryside.

The essence of the microsimulation is to substitute synthetic individuals for the
cell counts in each area. So for example, in Area 1, we will move to a list showing
1000 people, each with five attributes, rather than counts for every possible attribute
of each state summing to 1000. In early applications (e.g. Birkin and Clarke 1988,
1989), a straightforward sequential estimation process is adopted. Let us suppose that
the first attribute to be estimated is lifestage, and then,wewould proceed immediately
by creating 500 individuals in Area 1 who are young adults, 300 as family members,
100 as empty nesters and 100 as retired. In Area 2 there are 100 young adults, and
so forth.

Next, we add car ownership as an attribute, and since the rate of car ownership
in Area 1 is 40%, then 200 young adults become owners of a car, and 300 are not.
We continue this process for tenure, household size, and socio-economic status.
The number of simulated individuals adhering to each attribute combination can be

Table 44.1 Population distributions in four idealized urban areas

1: City 2: Country 3: Students 4: Suburbs

Lifestage Young 500 100 400 100

Family 100 200 300 500

Empty-nest 100 300 200 300

Retired 300 400 100 100

Household Single 600 200 750 200

Multi-person 400 800 250 800

Tenure House 400 800 200 800

Apartment 600 200 800 200

Car-owners Car 400 800 200 600

No car 600 200 800 400

Socio-economic status Managerial 250 600 200 800

Manual 750 400 800 200
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expressed as:

Xkm
i =

∏
k

(
pkmi

)
X∗∗
i

for characteristics m relating to attribute k in area i, where X is a count and p is a
probability.

For example, the most numerous group in Area 1 (City) within the simulation
will have a profile reflecting the most numerous characteristics for each attribute,
that is, young non-car-owners, living alone in apartments, with manual occupations.
Members of this group will appear 81 times (= 0.5 × 0.6 × 0.6 × 0.6 × 0.75 ×
1000). A natural way to represent members of this group is simply as a list (11222)—
lifestage is 1 (young), household is 1 (single), tenure is 2 (apartment), car ownership
is 2 (does not have a car), and occupation is 2 (manual worker; see Table 44.1).
The reader should be easily satisfied that the most numerous grouping in Area 2 is
(42111); in Area 3, it would be (11222); and in Area 4 (22111).

Amongmany objections to this excessively simplified, presentation of themethod
is that the value in converting a small number of counts (N = 12) for each area into
a list of 1000 people with 5 attributes (N = 5000) is not immediately apparent—but
this should be more obvious by the end of this short exposition. Another problem is
that it is unlikely a simple integer value will result from the product of a number of
residents in an area (rarely likely to be as convenient a number as 1000 in practice)
multiplied by a number of probabilities. This issue is usually addressed in MSM
using Monte Carlo sampling—if there is a 60% chance that an individual lives alone
then we draw lots, or random numbers, to assign household size. If that number is
less than 0.6, then a single person household is the result (Lovelace and Ballas 2013
is one instance of a more sophisticated presentation and discussion of using integer
weights to avoid any problems which might result from the assignment of fractions
of individuals or households in spatial MSM).

44.2.2 Iterative Proportional Fitting

A third obvious objection to the simplified example in 2.1 is that independence
between characteristicswill rarely be a useful assumption. Thus, affluentwhite-collar
workers are much more likely to be car owners than the unemployed, regardless of
geographical location. Young people are more likely to be apartment dwellers, and
so on.

This problem is usually handled using iterative proportional fitting (IPF). In the
example above, it has in effect been assumed that compound probabilities for five
attributes can be created as a linear combination of five independent constraint
vectors, that is:

p
(
xk1i , xk2i , xk3i , xk4i , xk5i

) = p
(
xk1i

)
p
(
xk2i

)
p
(
xk3i

)
p
(
xk4i

)
p
(
xk5i

)
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In practice, more complex tables will allowmuch better estimates to be generated.
For example, in the UK Census 2011, it is possible to utilize tables of car ownership
by age (V1, V4), socio-economic status by age (V1, V5), household size by age and
tenure (V1, V2, V3), and household size by age and socioeconomic status (V1, V2,
V5). IPF provides the means to assemble such multidimensional constraints into a
single set of estimates of the combined probability distribution:

p
(
xk1i , xk2i , xk3i , xk4i , xk5i

) = f I PF
[
p
(
xk123i

)
p
(
xk125i

)
p
(
xk14i

)
p
(
xk15i

)]

As the name implies, the mechanics of this procedure involve successive adjust-
ment of the combined probability distribution for consistency with each proba-
bility subset. This iterative procedure is known to be robust and convergent for
the great majority of relevant problems (Fienberg 1970; Lomax and Norman 2016).
Furthermore, IPF can be extended to accommodate large numbers of constraints with
complex interactions.

44.2.3 Reweighting

Thus, IPF provides a robust and effective way for creating combined probability
distributions across attribute sets. Ultimately, however, the method relies on the
statistical estimation of individual data fromaggregate totals.An alternative approach
is to use data which are directly generated at the individual level. For example,
suppose that a local authority holds data on claimants of housing benefits, then it
may be possible to make a direct estimate of the impact of changing benefits rules
on that population. Even in this situation, however, a common situation would be
that changing brings a new target population into view—hence, to identify those
affected, some more comprehensive simulation of the population will be required.
MSM provides the means for extensive assessment of this kind.

A more typical situation is that some sample of individual data may be accessible
(e.g. a Sample of Anonymized Records in the UK Census, or the Public Use Micro-
Sample or PUMS in its U.S. equivalent). Provided that the sampling is robust, then
data of this kind can be relied on to preserve cross-attribute relationships in the under-
lying population. The task for microsimulation is now to reweight the sample data
in order to represent the nature of small areas: So in our example above, one would
wish to apply higher weights to young people still in education when reconstructing
the population of a student area; in the countryside, one oversamples for car-owners;
and so on. Now, the procedure must ensure that weights are generated in such a
way that when the data are aggregated all known constraints are still observed. In
practice, the common approach to this problem is to select at random from a sample
population and then switch individual records in order to improve the fit to known
constraints. Simulated-annealing algorithms which allow backward steps have been
found to be particularly effective (Harland et al. 2012), although genetic algorithms
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and other heuristics such as tabu search have also been applied (Williamson et al.
1998; Zhu et al. 2015; Lidbe et al. 2017).

44.2.4 Data Linkage

An essential characteristic, and strength, of theMSMapproach is an ability to thicken
data sets, that is, to extend from a limited set of attributes into a much more extensive
range of characteristics. In the simple example at Sect. 44.2.1, this is achieved by
adding new characteristics from a different census table with independence. Once
IPF is introduced, then the new attribute is related to the existing ones through a
complex set of interrelationships. A more general approach to this problem, which
is especially useful when data are reweighted from an individual sample, is to link
between data sets.

Suppose we continue our example in which a population is characterized by age,
socio-economic status, car ownership, etc. A lifestyle data set is made available in
which respondents have declared their income based on age, car ownership, and
occupation. The linkage problem is simply to add an income attribute by connecting
the lifestyle data to the core demographics of theMSM.For straightforwardproblems,
this can be achieved by creating a set of conditional probabilities for different income
states in relation to the various independent variables and then using Monte Carlo
sampling as above. A more general approach would be to create similarities between
the individual records in each data set and then to combine the records. Where the
number of records in the data is large relative to the attribute combinations, then
this might result in multiple matching records in the target database. Again, this
situation could be resolved by Monte Carlo sampling, that is, by selecting any of
the matching records at random.Where the number of attribute combinations is very
rich, or perhaps the linkage is to quite a small sample, then a perfect matchmay not be
achievable. An alternative would be to create probabilistic linkages between the data
sets, and so the linkage problem is to find a record in the target data set which has a
high level of similarity to the origin record. This is tricky problem to resolve in view
of the difficulty in equating (say) a situation in which two individuals are similar in
every respect except they have different genders, as against two individuals who are
identical except that one is a car owner and the other is not. Methods to resolve this
difficulty, including a general application across ordinal, nominal, and categorical
data sets, have been proposed and implemented by Burns et al. (2017). Of course,
this method extends easily and naturally to the linkage of multiple attributes, either
sequentially or simultaneously (e.g. if the lifestyle data set also includes expenditure,
hobbies, or attitudes).
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44.2.5 Efficient Representation and Flexible Aggregation

In Sect. 44.2.1 above, a question was raised as to why it might be advantageous to
represent a city with a modest population as a list, rather than an array. Regardless
of the other benefits described elsewhere, the value of this approach can quickly
be seen as soon as the number of attributes and classes becomes more substantial.
Van Imhoff and Post (1998) describe such an example in pure demographic terms,
with a focus on a sub-model of reproduction. The likelihood of becoming pregnant
might reasonably be supposed to vary substantially by single years of age in the
mother, let us say in the range 15–44, but also according to marital status (married,
single, widowed, or divorced), size of family (0,1,2,3,4+ ), socio-economic group (6
classes), educational attainment (4 classes), employment status (3 classes), ethnicity
(6 classes), and tenure (4 classes). In this situation, the number of potential unique
states is evidently 30 × 4 × 5 × 6 × 4 × 3 × 6 × 4 = 1.08 million. So in any
city or region with less than a million women of child-bearing age, it makes more
sense to represent this population in the form of a list of individuals, rather than as a
huge array with even more cells. Introduce some additional attributes (health status,
socio-economic group, and educational attainment of the partner, perhaps), and the
same consideration would apply across quite a large country.

This issue is doubly significant when considering small areas, especially when
there are interactions, as for example in the consideration of migration, commuting,
or retail flows. For example, the city of Leeds is frequently examined at a geography
of more than 1000 census output areas, for example, when considering new housing
developments, investments in transport infrastructure, or retail provision. Between
these areas, there are evidentlymore than onemillion origin–destination pairs—many
more than the number of workers, shoppers, or movers in the city. Hence, spatial
MSM provides a powerful basis for efficient representation of both the structure and
interaction patterns of population groups at a variety of geographical scales.

The representation of populations at the atomic level of individuals or house-
holds also permits flexible aggregation to any desired level of spatial or sectoral
detail, provided only that the attributes of concern are appropriately embedded in
the underlying data model. Of course, the census itself uses a complete (or almost
complete) register of individual and household returns, and then aggregates these
across specific topic areas for neighborhoods and regions—as we saw above, for
example, in the case of car ownership or household composition by age of head. If
car ownership, household composition, and age of head are included in the MSM
along with a spatial identifier, then it is a straightforward matter to reproduce this
logic, with the potential to cross-tabulate all three variables simultaneously if that
is desirable. Should the MSM be extended to include twenty, thirty, or forty plus
variables, then the potential attribute combinations become explosive, and the scope
for diverse perspectives on a wide range of problems becomes very rich indeed.
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44.2.6 List Processing

Another essential strength of MSM is the ability to apply rules for individual units of
the population. A straightforward and common example of this would be in applying
changing regimes for taxation: The impact of a new budget might be a change of
income tax according to the earnings and marital status of a householder; the effect
of changing fuel duty would depend on vehicle ownership and utilization; the impact
of duties on cigarettes and alcohol would vary in relation to specific behaviors and
habits. Each of these elements can quite easily be computed through aMSM,provided
only that the determinants (i.e. income, car ownership, alcohol consumption, and so
on) have already been represented in the base population. This means that not only
is it possible to estimate potential benefits to the tax authorities, but also to evaluate
distributional impacts on demographic sub-groups or small area populations in a city.

The concept of list processing can be applied in a different form, but with similar
power and impact, to problems involving projection or forecasting of the population
over time. For example, in relation to the attribute of age (in years), if we wish to
project a population in time at single-year intervals, then age also increments by
one at each interval. Other demographic processes, such as marriage, migration,
or transitions within the labor market, may be subject to transition rates between
classes. In this situation, changing states may be handled by Monte Carlo sampling
of conditional probabilities (e.g. likelihood of marriage according to age, gender,
and economic activity) as before.

44.3 An Example: Models of National Infrastructure

44.3.1 Overview

In 2010, partners from seven UK universities began working together on a Research
Council program to explore future infrastructure options, requirements, and future
scenarios. The Infrastructure Transitions Research Consortium (ITRC) considers the
five sectors of transport, energy, water, wastewater, and IT, working in partnership
with utilities, engineers, and regional and local providers, and acts as a trusted adviser
to government through the National Infrastructure Commission. A second phase of
funding with a focus on multi-scale infrastructure systems analytics (MISTRAL),
including the translation of experience to international contexts, will continue until
2020.

Infrastructure projects are expensive and return on investment takes place over
long-term horizons, regardless of whether these returns are measured in financial,
social, or environmental terms. ITRC has a temporal frameworkwhich looks forward
as far as possible toward the end of the twenty-first century. In order to create a
more detailed understanding of the demand for infrastructure and its spatial and
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Fig. 44.1 Model structure for infrastructure assessment

sectoral composition, ITRC requires highly disaggregate estimates of future popu-
lation in relation to individual attributes, household groupings, and the character of
neighborhoods and small areas.

The overall structure of the ITRC assessment process is shown in Fig. 44.1 below.
ITRC uses a spatial microsimulation model to provide demographic inputs to the
demand-estimation process for each of the five infrastructure sectors. The MSM is
specified to the level of individuals with rich attributes, including demographics,
social and economic profiles, housing, health, and labor market characteristics.
Working with domain specialists in the research team, a consensus is established
on the attributes representing the most important direct or proxy measures for the
major drivers of infrastructure demand. Linking to consumption data from market-
research surveys or direct measures of service use, for example from smart meters,
sensors, or utility bills, makes it easy to translate population estimates into demand
for infrastructure. Each of the demand sub-models which are driven from the MSM
is linked to supply-side representations and policy options in order to drive a rich
decision-support structure for infrastructure assessment. In the next sub-section, we
explore the detail and a specific example.

44.3.2 An Application of Spatial MSM to Energy Modeling

44.3.2.1 Population Reconstruction

In the first phase of development of the ITRC, the UK population was recreated from
the Sample of Anonymized Records (SAR; Thoung et al. 2016). Each element of the
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SAR represents a real individual or household from the 2011 census fromwhich small
area labels and other potential identifiers have been removed in order to maintain
the privacy of the subjects. The SAR therefore contains all of the demographic
and socio-economic identifiers of the census including age, marital status, ethnicity,
general health, education, occupation, car ownership, household composition, tenure,
dwelling type, and a number of others.

The SARs are reweighted to reflect the composition of each census output area (a
neighborhood with a typical size of no more than 200 households) using a simulated-
annealing algorithm developed at Leeds (Harland 2013).

An approach to creating demand estimates for an indicative sector (energy) is
described by Zuo and Birkin (2014). The English Housing Survey (EHS) contains
in-depth household interviews and physical surveys for 17,000 households. EHS
facilitates profiles of energy consumption and expenditure by fuel type and purpose
for a rich selection of population and housing characteristics. The MSM used a
CHAID (chi-square automatic interaction detection) approach to cluster households
in both theMSM and the EHS into 41 categories based on a combination of dwelling
type, household size, age and occupation of the household head, lifestage, and house-
hold composition. A simple probabilistic match was applied to link records from the
MSM and the EHS (i.e. records from the EHSwere selected at random from the rele-
vant cluster). Some contrasting energy-consumption profiles for different household
types are shown in Fig. 44.2.

Fig. 44.2 Outputs from a microsimulation of energy consumption by household
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44.3.2.2 Population Projection

The base populations within the ITRC MSM are projected forward in time using
inputs from both the Office for National Statistics (ONS) National and Sub-National
Population Projections (SNPP). The national projections provide the basis for esti-
mation of aging, fertility, and mortality (“natural change”) within the population,
whereas the SNPP allows the introduction of migration and the calibration of the
natural change parameters to local areas. The essence of this process is therefore to
list-process the base populations using a combination of demographic change rates
(for fertility, mortality, andmigration). The parameter estimates aremanaged in order
to ensure consistency of the simulation outputs with theONS regional and population
profiles. For more detail, see Zuo and Birkin (2014) and Thoung et al. (2016).

This simulation process adds considerable richness to the ONS estimates by
permitting detailed spatial disaggregation on the sub-national projections—which
are only available over a 25 year planning horizon—and by their extrapolation along-
side the national medium (50 year) and long-term projections (75 years). The flexi-
bility of MSM is also fully exploited in ITRC through the use of variant population
projections. For much of the work which has been presented to policy-makers, eight
scenarios are presented which illustrate the impact of future changes in technology,
affluence, and political circumstances on the population (Thoung et al. 2016).

44.3.2.3 Scenarios

The spatial detail of the MSM is particularly important when considering future
infrastructure investments which have strong local dependencies, including renew-
able energy, personal mobility, and the supply of water. In the outline above, it has
been seen that energy consumption is expected to grow in relation to expansion
of the population, and be subject to compositional shifts in relation to changes in
supply. One of the major motivations of ITRC is to consider the potential impacts of
climate change on infrastructure (Jenkins et al. 2014). In one published application
from the ITRC, climate-change projections from the Met Office Hadley Center were
combined with the spatial MSM, with modified energy consumption rules relating
variations in energy use to regional and seasonal variations in the climate within
the EHS. This scenario was extended to 2100. A significant reduction in household
energy use was expected due to global warming (see Fig. 44.3). The authors note
that the potential to counterbalance due to increased use of air conditioning was
not examined because of limitations in the base data. However, a variety of other
behavioral shifts were also considered, with evidence drawn from extant published
studies. These included adoption of solar power, insulation, double glazing, adoption
of low energy lighting, and shifts to more efficient central heating systems. Behav-
ioral change was not expected to affect cooking or the use of electrical appliances
(Zuo and Birkin 2014).
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Fig. 44.3 Reductions in energy consumption from a behavioral simulation

44.3.3 Extensions

The architecture of spatial microsimulation which underpins the ITRC project has
recently been completely overhauled. A technology platform for Synthetic Popula-
tion Estimation and Scenario Projection (SPENSER) now services the infrastructure
sub-models. It is also designed to support extensions to sectors such as education
and health. The capability of the new system to represent diverse behavioral compo-
nents has already been demonstrated through a flexible application to consumer
spending across a full range of expenditure categories (James et al. 2019). This
implementation is specifically aligned to the study of future meat consumption under
various alternative scenarios for production, sustainability, affluence, and lifestyle
preferences.

SPENSER has amoremodular design than the previous deployment within ITRC,
with separate routines for data mobilization, population recreation, forecasting,
and scenario building. It is hoped that a more robust design will make SPENSER
amenable to a wider range of substantive improvements in the underlying scientific
approach. In the next section, somekey elements of the agenda for future development
are discussed.
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44.4 Priorities for Spatial Microsimulation

44.4.1 Computation

The computational burden attached to spatial microsimulation models is often quite
considerable. This need arises from a desire to represent the population with signif-
icant variety (i.e. many attributes) at a fine level of spatial resolution (i.e. a lot of
zones), and potentially with complex spatial or behavioral interactions to model or
represent. Significant computation is needed in both the generation of the initial popu-
lation, including both reconstruction and linkage, and in projections of the model
forward in time.

Simple approaches to reweighting baseline populations, or using conditional prob-
abilities from iterative proportional fitting, are not especially expensive in computa-
tional terms when they are based on one-shot estimates of the parameters. Iterative
approaches including genetic algorithms (GA) and especially simulated annealing
(SA) have persistently yielded better results, but are often slow to converge. These
techniques depend on complex evaluations of the fitness of a model: in principle a
single step of either GA or SA involves exchanging the position of two elements
in the simulation (e.g. moving and replacement of an individual from one zone
to another), then reaggregating the population at zone level, calculating the fit to
multiple constraining totals, and then applying an evaluation function to assess the
utility of the switch. This activity can be repeated multiple times for each member
of a population of millions, within a loop which could itself be executed hundreds
of times within the algorithm. The dynamics of the modeling also involve complex
processing across a large population size, often with small time steps and multiple
scenario combinations. The impacts could become explosive if adopting methods
such as ensemble modeling as a means for exploring sensitivities or robustness in
the model outcomes. There is no doubt that the difficulty in accessing adequate
computational resources has been an impediment to exploration of some potentially
fertile approaches, such as the use of ensembles.

More intense applications of spatial MSM are being permitted to some degree
by the availability of high-performance computing. For example, SPENSER has
access to the Data Analytics Facility for National Infrastructure (DAFNI) as a plat-
form for executing complex model runs. Similar capability exists within the Inte-
grated Research Campus at the Leeds Institute for Data Analytics. Nevertheless,
data-services infrastructures remain scarce, difficult, and expensive to access.

Rather than the provision of enhanced computational power, simplification of the
models themselves is clearly an alternative to consider. A natural strategy would
be to reduce the population size, for example by sampling, or the representation
of subsets rather than individuals (Parker and Epstein 2011). This approach seems
more feasible for national applications than those involving small spatial zones in
which the full variety of the population must be retained. A more promising method
which has been adopted in dynamic microsimulation is to lengthen the time interval
between processing steps. When considering discrete events such as birth, migration
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or death, the usual method is to apply transition probabilities (or hazards; Clark and
Rees 2017) to a population at risk at regular intervals, generally annualized. If the
occurrence of such events is on average significantly less than once a year, then an
option would instead be to process the time to next event and save the trouble of
repeated assessments for change of state in the intervening period. This technique
has been successfully introduced within the Canadian MSM DynaCan (Morrison
2007), and adopted elsewhere.

44.4.2 Uncertainty

The potential for error, and consequent uncertainty in model estimates and projec-
tions, is widespread in the microsimulation framework. While MSM are usually
created from high-quality sources, including censuses and national statistics, these
data are by no means free of bias and inaccuracy. For example, censuses are never
completely enumerated, giving rise to errors in the imputation of missing records.
Students, transient populations, and the homeless all have significant potential for
misrepresentation.When these data are combined, then sophisticatedmodels have the
capability to reproduce aggregate constraints with minimal variations. However, the
individual estimates are subject to unknown errors which are by definition unobserv-
able to the extent that the purpose of the model is to simulate individual distributions
which are not directly measured.

These issues become more challenging for more ambitious applications, for
example if a demographic microsimulation is linked to big data for mobility,
consumer spending, health, and behavior (Birkin 2018), because such data sets are
themselves more variable in data quality and in view of distortions in the linkage
process itself.

When the purpose of microsimulation modeling is to assess the effect of changing
financial regulations, taxation, or benefits thenmodeling scenarios can be expected to
be relatively robust. When the what-if models are reliant on changing infrastructure,
uncertain behaviors, policy environments, and economic circumstances, then any
attempts at projection and impact analysis are hugely uncertain. The MSM commu-
nity has largely sidestepped the problems associated with uncertainty by offering
single model estimates, occasionally flexed through defined scenarios with variant
input assumptions. This may change if microsimulation chooses to align itself more
closely with emerging disciplines in data science. A particular instance of this could
be through the adoption of probabilistic programming (Improbable Research 2019).
In this new style of model implementation, state variables are assigned distributions
rather than discrete values, and operators may be treated in the same way. Hence, this
approach lends itself naturally to the expression of outcomes in terms of likelihoods,
confidence intervals, or other dimensions incorporating variability and uncertainty.
A drawback of this style of research is that tools are still relatively inaccessible and
in early stage of development, and experience of complex applications is limited.
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44.4.3 Data Assimilation

Theorigins of spatialmicrosimulation are as ameans to estimate unknown individual-
level variations from aggregate data about neighborhoods and small areas. Later,
applications incorporate more information by the addition of sample data, in which
case the essence of the problem may be more about reweighting. In either of these
cases, the ambition is to create simulations in detail from relatively restricted data,
and in all circumstances, evaluation of the success of the models is a challenge,
because by definition we are estimating things which are unobserved. In the age of
Big Data, where increasingly more is known about the world at ever finer scales, the
nature of the challenge is beginning to shift toward a view of the world in which it is
possible to steermodels towardmore effective representations through the absorption
of evidence. This could be facilitated by data assimilation.

It has been recognized for some time in the complex domain ofweather forecasting
that methods are needed to update models as new information becomes available.
This process of data assimilation has been adopted into agent-based simulation, for
example through the adaptation of pedestrianmovement models to absorbmovement
data from street sensors (Ward et al. 2016). There seems no reason in principle that
the philosophy and techniques of data assimilation might not be used to calibrate
longer-term effects such as spatial diffusion or policy impacts in a microsimulation.

44.4.4 Dynamics

MSM is typically used in one of three modes, which can be characterized as static,
comparative static, and dynamic. StaticMSMmay refer to population reconstruction
processes in which aggregate data are decomposed to generate refined distributions
at household or individual levels. These outputs may be valuable in their own right,
for example to understand the prevalence of at risk groups, or provide inputs to
agent-based models (ABM) or other policy models.

Linkage to other data sets is also a static or baseline process, for example using
MSM to estimate expenditures or market potential in a retail model (James et al.
2019). As noted above, comparative static is a core mode for tax and benefits assess-
ment (Sutherland and Figari 2013). Comparative-static applications are perhaps the
most common in which some variation in the initial conditions allows theMSM to be
applied in what-if mode. In SPENSER, many of the scenarios look to the future but
are essentially comparative static since they start from the premise that higher level
forecasts (such as ONS estimates of the future population) can be disaggregated, and
then input to secondary models of demand for infrastructure or consumption of other
services.

Truly dynamicmodels are not entirely absent (Morrison2007;Li andO’Donoghue
2013; Rutter et al. 2011) but challenging in that they require the incorporation of
longitudinal processes in relation to core demographics (e.g. fertility, mortality, and
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migration) or more specific elements such as morbidity or energy consumption.
Backward propagation of MSM as a basis for validating both the structure and logic
of dynamic MSM is another concept that might usefully be borrowed from climate-
modeling literature, but is as yet relatively unexplored.

Fast and slow dynamics are also a consideration for MSM. Much more atten-
tion has been focused on long-term or slow dynamics, and these kinds of models
are important for decision making in relation to major infrastructure investment and
policy making. However, fast dynamics are becoming more relevant in relation to
real-time observation. This makes a connection to data assimilation, and opportu-
nities for real-time evaluation and model enhancement. We will see increasing use
of machine learning techniques like reinforcement learning for traffic lights or store
promotions, and blurring of boundaries between data science,MSM,ABM, and other
forms of individual-based modeling. It is surprising that these approaches are rela-
tively unexplored in commercial applications, where personalization and precision
targeting are a priority with the growing availability and fidelity of individual data.

44.4.5 Interdependence

Applications of MSM are well-suited to the problems of demand estimation, which
are typified by the uses of SPENSER as a tool within the ITRC framework for future
infrastructure assessments. Similar applications can be seen in the estimation of retail
expenditure (James et al. 2019), educational attainment (Kavroudakis et al. 2013),
health care (Clark and Rees 2017) and even the incidence of crime (Kongmuang
2006) and the need for jobs (Ballas and Clarke 2000). The beauties of the technique
in this regard are multiple (as we have seen), providing a powerful means to connect
aggregate data to individual-level modeling, introducing rich and multiple simulta-
neous representations of individual attributes, and a sophisticated understanding in
changing drivers of consumption over time.

Nevertheless, conceptual architectures which view microsimulation purely as a
foundational layer in the modeling process are often in danger of simplifying away
many of the subtle and vitally important interactions which underpin real-world
problems. The importance of interaction and interdependence between individuals
has always been fundamental to ABM, in which the capacity for complex structures
to emerge—often in unexpected ways—is a cornerstone of the method (Schelling
1969). However, while conceptually rich in this sense, ABM is typically less strongly
grounded in the empirical realities of everyday life.

The benefits of linking microsimulation to meso-scale representations of land-use
and service provision have been recognized in early applications to a retail market
(Birkin and Clarke 1987; Nakaya et al. 2007). In this framework, a microsimulation
is used to create a rich population, which in turn forms the basis for expenditure
assessments across a tapestry of small areas. These expenditure estimates are then
combined with networks of service provision through a spatial interaction model
(SIM), hence creating revenue flows from neighborhoods to shopping centers. These
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flows can then be sampled in order to create assignments of retail preferences for
individual consumers, thus closing the loop fromdemand to supply. A similar process
underlies a module within SPENSER which connects the microsimulation to migra-
tion flows through a spatial interaction model of internal migration (SIMIM; Lomax
and Smith 2019). In order to fully embed microsimulation within land-use trans-
port interaction models, however, it might be argued that the reciprocal dynamics
of infrastructure systems including housing and transport must be fully incorporated
within the model system.

The resulting applications would be somewhat analogous to the network plan-
ning models developed in Leeds by Geographical Modeling and Planning (GMAP)
Limited the 1990s, in which service delivery was co-designed with retail demand.
George et al. (1997) provide a good description of a representative problem. The
broader significance, perhaps, of the GMAP experience (Birkin et al. 1996; Birkin
et al. 2002, 2017) is in seeing spatial analysis approaches includingMSMas elements
of spatial decision-support systems (Geertman andStillwell 2009).Robust translation
of such ideas into the urban planning domain, for example through the integration of
SPENSERwith othermodels such asUCL’sQuantitativeUrbanAnalytics (QUANT)
model of land-use and transport interactions, could provide stronger foundations for
spatial decision support than hitherto.

While MSM is almost exclusively used to represent both individuals and house-
holds as the entities within a modeling system, there is no reason why other elements
such as vehicles, houses, schools, hospitals, firms, or retail outlets might not equally
be represented in a similar way, with rich characteristics and complex behavioral
drivers. Indeed, one might argue whether cellular automata, in which the building
blocks are land-use parcels changing in character through time, are so different to
microsimulation. Hybridmodelswhich combineMSMwith SIM, land-use and trans-
port interaction models, or even cellular automata are likely to become increasingly
popular, but the absorption of more complex actors representing complementary
sectors might be seen as a fully viable alternative strategy.

44.5 Conclusions

Spatial MSM has been developed as an important variant from the introduction of
similar individual-based models in economics and financial policy. The technology
of spatial microsimulation has progressed steadily over a period of more than thirty
years, allowing population distributions in very small areas to be faithfully repre-
sented. The models benefit from increasingly detailed and diverse sources of data.
This also provides underpinning for applications to a diverse range of problems.

The scope for further enrichment of spatial MSM is substantial, for example
drawing on computational advances and progression of techniques in data science,
machine learning, and artificial intelligence. This could help to increase the robust-
ness of models, especially when their dynamic qualities are considered as a basis for
projection and forecasting.
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Chapter 45
Cellular Automata Modeling for Urban
and Regional Planning

Anthony G. O. Yeh, Xia Li, and Chang Xia

Abstract In recent decades, cellular automata (CA) have become popular for evalu-
ating and forecasting urban transformation over time and space, especially in rapidly
developing countries. These models enhance the understanding of urban dynamics
and the complex interplay between land-use changes and urban sustainability. CA
help governments, planners, and stakeholders to predict and evaluate the poten-
tial outcomes of future policy alternatives before making decisions. Thus, CA are
frequently used to create what-if scenarios for policy implementation. This chapter
includes an overview of the basic and state-of-the-art concepts and methods in urban
CA modeling, as well as the latest studies, applications, and current problems. First,
we conduct a systematic review of urban CA modeling to provide critical comments
on previous and recent studies. The basic techniques, including the components of a
basic CA model, modifications for urban modeling, and collection of data sources,
are then provided, along with a classification of different types of urban CA. Finally,
the applications of CA in urban studies and planning practices are presented, as well
as discussions of further research. We also point out the major problems in recent
studies and applications for further research.
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45.1 Introduction

Urbanization is a global issue characterized by continuous urban land expansion and
rural–urban migration (Alcock et al. 2017; Seto et al. 2012). Urban development
has brought social, economic, and technological changes, particularly, in developing
countries,where cities are sprawling at high rates andmetropolitan areas are emerging
(Bai et al. 2012; Shahbaz et al. 2016; Zhou et al. 2004). However, large-scale popula-
tion growth often leads to urban development beyond the carrying capacity of cities.
Most of the urban development in developing countries is in the form of sprawl
in urban fringes, causing many negative consequences to urban development and
the eco-environment at unparalleled scales (Burak et al. 2017;Weeberb 2015). Thus,
research into the mechanisms of urban expansion is of great significance for planners
and governments to enhance their understanding of urban sustainability.

For understanding the complexity of urban systems, cellular automata (CA), that
can provide a powerful simulation tool to predict and understand urban transfor-
mation over space and time, is one of the most prevalent urban modeling methods
in recent years (Aburas et al. 2016; Santé et al. 2010; Musa et al. 2017). CA offer
governments, planners, and stakeholders a tool to forecast and evaluate potential
social benefits and environmental outcomes of urban development before imple-
mentation. CA also advance our fundamental understanding of urban dynamics and
the complex relationships among urban changes, socio-economic development, and
sustainable systems.

CA are a kind of discrete dynamic model with unique advantages for simulating
complex nonlinear problems. CA originated in the 1940s, when S. Ulan and J. von
Neumann considered the possibility of a self-replicating machine. Subsequently,
many scholars undertook further studies of CA and helped with its advancement
(Codd 1968; Gardner 1971). Wolfram (1984) demonstrated the capacities of CA
for modeling complicated natural processes and generating spatio-temporal global
changes through local interactions among components. The application of cellular-
space models in geographic research was first proposed by Tobler in 1979. Then,
the first theoretical approaches of urban CA modeling emerged in the 1980s (Batty
and Xie 1994; Couclelis 1985; White and Engelen 1994). The integration of CA
and geographic information systems (GIS) led to the simulation of real-world urban
development. After the initial wave of urban CA modeling led by Batty, Couclelis,
Clarke, and Tobler, research on urban CA moved to China quickly (Li et al. 2017;
Zhuang et al. 2017). Since the end of the 1990s, Yeh and Li have developed a series
of CA techniques, mainly combining CA with other models and extending cellular
states, neighborhood definitions, and transition rules (Yeh and Li 2001; Li and Yeh
2002a). These models have been successfully applied to solving the environmental
and ecological problems of rapid urban development in China.

The increasing popularity of CA in urban modeling could be largely attributed to
their simplicity, flexibility, controllability, and ability to incorporate the spatial and
temporal dimensions of urban development processes. CA can simulate complex
dynamic urban systems through simple rules that can work with remotely sensed
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data and GIS (Santé et al. 2010; Musa et al. 2017). CA are more convenient than
other models, such as agent-based models, because of methodologies developed in
the past two decades. Another reason why CA have been widely applied in urban
modeling is because CA can be easily integrated with GIS. The integration of CA
with GIS provides a tool for performing complicated computations based on local
information, thus producing better results than differential equations (Musa et al.
2017). However, despite the popular use of CA in urban modeling, errors in input
spatial data sources and uncertainty in policies (Yeh and Li 2006) pose challenges in
using CA to solve real planning problems (Poelmans and Rompaey 2010).

CA are increasingly being used to simulate spatio-temporal urban expansion and
to addressmany environmental problems. However, defining themost suitablemodel
structures for a specific application problem is difficult. To help users who are not
familiar with CA, this chapter provides an overview of the basic and state-of-the-art
concepts and methods in urban CA modeling, as well as the latest studies, appli-
cations, and current problems. The aim of this chapter is to provide an overview
of defining, modifying, and applying CA for urban studies and planning from the
perspectives of cell, cell space, neighborhood, time step, and transition rule, along
with the collection of required data sources. The different types of CA and their
characteristics are described, and the applications and urban issues involved in CA
modeling are presented. These discussions attempt to answer the question, “what can
and cannot CA provide for the modeler?” In addition, the strengths and weaknesses
of CA are identified and common problems of current studies are discussed.

45.2 Methodology and Data Collection

45.2.1 Urban CA for Formulating Urban and Regional
Planning Scenarios

The basic components of CA include cell space, cell, neighborhood, time steps, and
transition rules. In an urban CA model, each component has geographic implica-
tions (Triantakonstantis and Mountrakis 2012). The cell space represents the two-
dimensional geographic space composed of regular cells, and the states of cells
represent different land uses. The core of a CA model is formed by transition rules.
Each cell changes constantly in accordance with its states and the transition rules as
time goes on, which represents the systemic deduction and change from an overall
perspective.

A formal cell can be a regular grid consisting of square cells, which is particu-
larly suitable for computer processing and compatible with remotely sensed data.
Scholars have defined a hexagonal cell space such that the neighborhood could be
homogeneous (Iovine et al. 2005). Besides, a cell space can be three-dimensional to
represent the vertical growth of urban areas. To make the simulation process closer
to the real world, relaxations to the two components are needed. The modified cell
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space can be based on irregular spatial units, such as Voronoi polygons (Shi and
Pang 2000) or graphs (O’Sullivan 2001). Irregular cell space is sometimes presented
as a patch-based space (Chen et al. 2014; Wang and Marceau 2013). The irregular
spatial unit, such as a cadastral parcel or a census block, is usually represented as a
polygon, to reflect land use, population, and economic conditions. Compared with
regular cells, parcels or blocks provide a good representation of reality, but lead to
complicated definitions of neighborhood. Cell space is normally assumed homoge-
neous in standard CA, indicating identical and exclusive cells characterized by their
states. Nevertheless, the great influence of land attributes on land-use changes, such
as transport accessibility or physical conditions, varies the suitability of different
cells for certain land uses. Subsequently, the requirements for a non-uniform cell
space emerge.

As for neighborhood, there are often two kinds of relaxations. In standard CA,
neighborhood is isotropic and homogeneous for each cell (Wu 2002; Xie 1996) and
consists of a fixed set of geometrically closest cells (i.e. Moore neighborhood). In
urban applications, an extended neighborhood is adopted to consider the neighboring
effect of geographic entities (White and Engelen 2000). Neighborhood size can be
extended to a specified distance and a weight can be introduced according to the
distance, to consider the effect of distance decay. If it is based on irregular units,
adjacent units within a certain distance or degree of proximity are used to represent
a neighborhood (Shi and Pang 2000). Another widely acknowledged modification is
to a non-stationary neighborhood, which defines different neighborhood spaces for
different cells (Couclelis 1985). However, this relaxation has been seldom applied
due to the difficulty of implementation and vague geographic meanings.

As the core of CAmodel, transition rules usually entail substantial modifications,
considering the particularities and complexity of specific applications. Original tran-
sition rules only depend on the states of a cell and its neighborhoods. Given that
urban processes are influenced by numerous factors, such as transport accessibility
and physical conditions, urban CA models are modified to consider external effects.
As CA are flexible, transition rules can be defined in different ways according to the
preferences of modelers. Randomness and uncertainty of urban growth, as well as
many urban theories, can be reflected in themodel structure. Besides, in standard CA,
transition rules are static and the same at every time step. However, urban processes
and determinants change over time and space, which leads to the necessity of cali-
brating transition rules based on the specific characteristics of different periods and
areas (Clarke et al. 1997; Geertman et al. 2007; Li et al. 2008). For example, Clarke
et al. (1997) proposed a self-modifying CA in which transition rules vary over time.
The time steps in a formal CA are discrete, which assumes that urban growth occurs
at the same time. Many urban CA models apply time steps of different lengths or
various time steps for different cells to reflect the influence of specific events with
different duration.However, comparedwith other components ofCA, less relaxations
have been implemented for time steps.

The future state of a cell depends on the transition rules and its state in the previous
moment. A standard CA can be mathematically expressed as follows (Ahmed and
Ahmed 2012):



45 Cellular Automata Modeling for Urban and Regional Planning 869

St+1 = f (St , N ) (45.1)

where t and t + 1 represent discrete time points, St and St+1 represent the states of the
cell at time t and t + 1, respectively, N represents the set of states of neighborhood
cells, and f is a transition rule.

The straightforward nature of standardCA limits the ability to represent real-world
geographic phenomena (Couclelis 1985). To adapt standard CA in urban applica-
tions, the particularities of geographic processes should be included for representing
geographic heterogeneity, which leads to the relaxation of original CA components
(Couclelis 1997). For example, geographic features in the neighborhood can be
embodied in a simplified CA using rule-based structures (Batty 1997; Fig. 45.1):

By integrating CA with GIS databases, a constrained urban CA can be further
developed for formulating planning scenarios. It is assumed that the evolution of real
cities is influenced by a series of complicated factors which can be defined at various
local, regional, and global levels. Some kinds of constraints should be used to regu-
late the simulation to improve modeling performance. Without constraints, urban

Central Cell
{x, y}

Neighbourhood 
Cell

{x+1, y+1}

IF any neighbourhood cell {x±1, y±1} is already developed
THEN p{x,y}=∑ ij∈Ω p{i,j}/8 
&
IF p{x,y} > some threshold value
THEN central cell {x,y} is developed 

where p{x,y} is the development probability for the central cell {x,y}, and 
cells {i,j} are all the cells which form the Moore neighbourhood Ω including 
the central cell {x,y} itself.

(Source: M Batty, 1997)

Fig. 45.1 Neighborhood and basic transition rules of cellular automata
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Fig. 45.2 Constrained CA with GIS and planned development database

simulation will generate patterns as usual based on historical trends. Constraints
can be added into urban CA models to reflect environmental and sustainable devel-
opment considerations. They are the important factors for the formation of ideal-
ized patterns. The generic constrained CA model takes into account not only the
influences of neighboring states, but also a series of economic and environmental
constraints. These constraints may include environmental suitability, urban forms,
and development density (Yeh and Li 2001, 2002; Li and Yeh 2000; Fig. 45.2).

45.2.2 Data Collection and Model Calibration

As a bottom-up model, urban CAmodels are data hungry and usually require a large
set of data input for real-world simulation. Remotely sensed data are often used for
monitoring and measuring alterations and characteristics of land-use changes on the
Earth’s surface. Time series of historical remotely sensed images or land-use maps
with different time phases in the same area can be used for model calibration and
validation. In addition, traffic networks, natural attributes (i.e. elevation), and other
physical factors are commonly used to evaluate the suitability of land for devel-
opment. Land-use plans can provide land-development information, for example, a
planned regional development center, which is crucial for considering the effects of
urban planning on future development. Many studies have used fine socio-economic
data, such as population density, to produce more realistic simulation results.

The data quality of these input data sources is a concern in urban CA applications
(Aburas et al. 2016). Supervised classification is adopted to classify remote-sensing
images into different land-use types: for example, urban and non-urban. Moreover,
GIS software tools are used to create maps with different spatial resolutions for
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Fig. 45.3 Flow chart of urban CA modeling

comparative analysis. Errors and uncertainty can be produced by these common
operations and the input data sources themselves, thus, influencing the results of
urban simulation (Yeh and Li 2006). There are debates on whether urban CAmodels
can provide meaningful results, especially for urban planning, due to inherent errors
and uncertainty. Overall, considering the above two aspects, modelers can follow the
flow chart in Fig. 45.3 to create an urban CA model.

45.3 Types of Urban CA Models

The model developed by Batty and Xie (1994) in Amherst, New York was one of the
first applications of urbanCA in real-world simulation. However, the first widespread
empirical applications of urbanCAwere carried out byWhite et al. (1997) andClarke
et al. (1997). The application of White and Engelen was based on the previous work
of White and Engelen (1993, 1997). In the model of White et al., the transition
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potential of conversion into different land uses is calculated for each cell, which can
be regarded as a function of various factors, including suitability for different land
uses, neighborhood and inertia effects, and stochastic disturbance. Several models of
this functional type were applied to Cincinnati (White et al. 1997), the Netherlands
(Engelen et al. 1999), Tokyo (Arai and Akiyama 2004), Dublin (Barredo et al. 2003),
Lagos (Barredo et al. 2004), and San Diego (Kocabas and Dragicevic 2006). These
applications confirmed the capacity of urbanCAmodels in highly realistic simulation
of urban transformation. Several improvements have been proposed to reinforce the
methodological and theoretical basis of this type of model (Arai and Akiyama 2004;
Caruso et al. 2005). Another application is the SLEUTHmodel, which is an acronym
of the input maps: slope, land use, exclusion, urban extent, transportation, and hill
shade (Clarke et al. 1997). SLEUTH considers four types of growth behaviors, which
are spontaneous, diffusive, organic, and road-influenced. This model is designed to
learn from the feedback of its local settings over time through self-modification, and
its calibration is based on combining different metrics of the goodness-of-fit between
observed and simulated results. SLEUTH has been applied to many cities, initially in
North America (Berling-Wolff and Wu 2004; Clarke and Gaydos 1998; Dietzel and
Clarke 2006; Herold et al. 2003; Yang and Lo 2003), and later in Europe (Silva and
Clarke 2002), South America (Leao et al. 2004), and Asia (Feng et al. 2012; Mahiny
and Gholamalifard 2007). Efforts have been made to improve SLEUTH, such as
introducing new metrics and functionality (Guan and Clarke 2010; Jantz et al. 2010;
Liu et al. 2012).

Other early urban CA models include those developed by Wu (2002, 1998), Wu
and Webster (1998), and Wu and Martin (2002), in which the probability of urban
development for each cell was calculated based on a group of factors, such as neigh-
borhood. The first urban planning CA models proposed by Li and Yeh (2002b)
and Yeh and Li (2001, 2002) adopted gray cells to represent continuous cell states
and cumulative degrees of development. They developed a family of constrained
CA urban planning models that can be used to generate different planning options
according to different environmental considerations, urban forms, and densities, for
the evaluation of urban development and planning for sustainable development. They
added some constraint functions in CAmodeling that incorporate environmental and
urban-form data obtained from GIS.

The methods of multi-criteria evaluation and logistic regression were first intro-
duced by Wu and Webster (1998) and Wu (2002) to allocate weights to different
factors, which are simpler and require lesser computation compared with Monte
Carlo (Chen et al. 2002). As urban development is a complicated and nonlinear
process, Yeh and Li (2003) proposed to define transition rules using a neural network
as a black box. Instead of mathematical transition rules, Li and Yeh (2004) defined
explicit transition rules using IF–THEN statements, which are straightforward and
intuitive. Several statistical, probabilistic, and artificial-intelligence algorithms were
used to calibrate these types of urban CA models (Wu and Martin 2002; Almeida
et al. 2008; Li and Liu 2006; Feng and Liu 2013).
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Other popular urban CA models were derived from other research fields, such as
DINAMICA, which is a CA-basedmodel originally designed for deforestation simu-
lation (Soares-Filho et al. 2002; Almeida et al. 2003,2005). As a bottom-up dynamic
model, urban CA can be integrated with top-down models to gain complexity
and power. The integration with the Markov approach compensates for its growth
constraints and thus has received much attention recently (Al-Shalabi et al. 2013;
Araya and Cabral 2010; Arsanjani et al. 2011; Li et al. 2014; Memarian et al. 2012;
Samat et al. 2011; Deep and Saklani 2014; Olusina et al. 2014).

45.4 Applications of Urban CA in Urban Planning

The development of CA for urban and regional applications is considerably influ-
enced by the intended use and functionality of models. Urban CAmodels are applied
for exploring spatial complexity, testing urban theories and ideas, and as planning
support tools (Fig. 45.4).

For exploring spatial complexity, urban CAmodels are used to advance the under-
standing of cities as complex adaptive and dynamic systems. Limited adjustments
in the CA formalism are required for the models applied in exploring the principles
governing urban spatial development. CA are the combination of a spatial structure
and a set of states and transition rules. The idea behind CA is to find simple elements
of complexity in cities and to compare these elements with similar models in other
fields. The original work by Tobler and Couclelis in the 1970s and 1980s empha-
sized the conceptual and theoretical aspects of CA and related them to the theory of
complex systems (Tobler 1979; Couclelis 1985). CA were taken as an epistemolog-
ical tool to show how spatial development can be produced out of simple rules. CA
for exploring spatial complexity were further developed along with fractal theory,
chaos, nonlinearity, computer graphics, and complexity (Batty 2007; Torrens and
O’Sullivan 2001).

CA can be used to test theories and ideas of urban development, examining the
roles of complexity in the driving dynamics of urban processes, such as urban sprawl,

Fig. 45.4 Potential applications of urban CA modeling
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diffusion and coalescence, and polycentricism. CA models are used as laboratories
to test theories and ideas in urban economics, geography, and sociology. The formu-
lation of transition rules is the key to developing close and direct links between urban
CA models and urban theories. The transition rules derived from urban theories can
help to explore various hypothetical ideas about cities. The complex relationships
between physical and socio-economic processes and urban environments have been
explored (Alberti 1999; Dietzel et al. 2005). Efforts have been extended to embrace
other urban theories, including urban ecology, design, and sociology (Batty 1998;
Benati 1997; Portugali et al. 1997). These studies have advanced the theoretical basis
of urban CA models. However, CA models of urban theories are often concerned
with details on how to build the model, but fail to explain the theories that they
intended to explore (Torrens and O’Sullivan 2001). Thus, they are interesting but not
well explored in urban CA modeling.

The use of urban CA models as planning support systems requires modifications
of the above two applications of CAmodels to produce more realistic results relevant
to urban planning, management, and policies. These CA models serve as planning
support tools that can assist governments, planners, and stakeholders in evaluating
the social benefits and environmental and ecological consequences of different urban
planning goals, options, and policies. Various urban issues have been addressed in
these types of urban CA models, including the delineation of urban growth bound-
aries, assessment of urban planning options, and prevention of illegal development
(Jantz et al. 2010;Xia et al. 2020a). Despite the fact that urbanCAmodels are increas-
ingly developed in applied research, a gap exists in supporting practical planning of
urban spaces and land uses (Santé et al. 2010).

In addition to using CA as a planning support system to (1) construct baseline
growth simulation and prediction; (2) evaluate existing development as compared
with optimal development; and (3) simulate development alternatives according to
different planning objectives for assisting the urban planning process (Yeh and Li
2009), another example of using CA in urban planning is to delineate urban growth
boundaries (UGBs). UGBs have become an important part of territorial planning
in China. The objective is to ensure smart urban growth, which can increase the
density of urban services and protect surrounding natural ecosystems (Jun 2004).
UGBs have been regarded as an important element in designing land-use plans in
China, although the concept can be traced to Great Britain’s green belts in the 1930s
(Nelson and Moore 1993). China needs to restrain its chaotic urban expansion via
the delineation of UGBs to sustain its shrinking farmland stock.

The designers of UGBs should understand the mechanism of urban dynamics and
consider various geographic factors. These models can assist planners in delimiting
optimal UGBs for directing the future urban expansion from a spatial optimiza-
tion perspective. Traditionally, evaluation models for land-use suitability provide a
simple way for delimiting UGBs (Bhatta 2009). A major problem is that cities are
dynamic systems influenced by anthropogenic activities and natural processes. These
suitability-based methods ignore landscape characteristics during the delineation of
UGBs (Santé et al. 2008). This approach requires efficient and feasible techniques
to delimit those boundaries. CA can satisfy multiple objectives in delineation of
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UGBs, including maximum urban suitability, high-quality farmland preservation to
the greatest extent, and the most compact landscape pattern (Ma et al. 2017; Liang
et al. 2018).

An example is to use the software GeoSOS-FLUS (https://www.geosimulatio
n.cn), which is available on the Internet, to serve as an effective tool to delineateUGB.
The implementation of UGB using GeoSOS-FLUS involves several procedures.
First, we retrieved various spatial variables and historical land-use data for estimating
the transition probability of each land-use type. Second, we defined the simulation
subject to different planning visions according to a number of scenarios, such as base-
line, economic zoning development, and excessive urban growth scenarios. Third,
we carried out the simulation of UGBs on the basis of the above urban development
probability and multi-scenarios constraints, as well other constraint factors. Fourth,
the simulated UGBs can be further modified by using two common morphology
operators, namely, dilation and erosion.

Figure 45.5 shows the example of using GeoSOS-FLUS to simulate UGBs in the
study area ofGuangdong-Hongkong-MacauBayArea (GHMBA),which is one of the
fastest-developing urban agglomerations in China, projected to 2030. This GeoSOS-
FLUS has also been applied to the delineation of UGBs in other fast-growing cities
of China, such as Foshan, Zhengzhou, and Chongqing. The simulated UGBs can be
used to guide future urbanmaster plans, which can prevent wastage of land resources.

Fig. 45.5 Simulation of UGBs in the study area of GHMBA in 2030

https://www.geosimulation.cn
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45.5 Discussion and Conclusion

45.5.1 Current Issues in Urban CA Modeling

Urban CA models have strengths and weaknesses. The fast development of urban
CAmodels is mainly due to their simplicity. However, simplicity often limits the CA
capacity to represent realistic urban phenomena, leading to extensive modifications
and introduction of complexity into the model. Questions are raised over whether
these elaborated models actually constitute CA at all, if the relaxations are too much.
Another strength of urban CAmodels is flexibility, which allows them to be adopted
to different applications. However, flexibility may cause confusion and difficulties
for users if there is no standard definition of transition rules. Although difficult,
finding the balance between simplicity and realism, as well as between flexibility
and standardization, is needed. As descriptive models, urban CA models have the
ability to examine hypothetical ideas related to cities. In terms of data requirements,
input data collected for different models can vary greatly. In the past, the software
available for implementing general urban CA models has been very limited and
inconvenient to use; users are usually required to modify or re-design their models
for specific purposes (Xia et al. 2018, 2020b).

In recent years, more user-friendly CA packages have been developed to solve
various simulation and planning problems, such as the CA_MARKOV module
in IDRISI, and GeoSOS. The CA_MARKOV module in IDRISI adopts a hybrid
Markov-CAmodel to allocate land use until the areas that are predicted by aMarkov
chain are achieved (Yang et al. 2014). GeoSOS also provides a variety of CAmodels
(e.g. neural network CA, logistic regression CA, decision tree CA), which can be
freely downloaded at https://www.geosimulation.cn.Moreover, GeoSOS for ArcGIS
(a software add-in that runs in ArcGIS Desktop) has been developed to provide
the full functions of simulating, predicting, optimizing, and displaying a variety of
geographic patterns and dynamic processes, such as land-use changes, urban evolu-
tion, zoning of natural areas for protection, and facilities sitting. As the only soft-
ware integrating spatial simulation and optimization capability together, GeoSOS
for ArcGIS comprises a geographic simulator and optimizer, which use multiple
CA models and ACO-based model, respectively, by coupling their results to solve
complex spatial simulation and optimization problems. GeoSOS for ArcGIS is a
free and open-source software and is also available for freely downloading at the
GeoSOS Web site (https://www.geosimulation.cn). So far, this ArcGIS Desktop
added-in component has been downloaded by users in 46 countries all round the
world.

The current literature on CA applications reflects problems that have arisen from
researchers who just applied CA, but were not familiar with the CA models them-
selves. First, many users have claimed that their simulation results can support urban
planning and management without offering good examples of real-world applica-
tions. Successful applications should demonstrate that governments or planners can

https://www.geosimulation.cn
https://www.geosimulation.cn
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make better decisions due to the use of CA models. Second, many users have diffi-
culty in obtaining details of the input data, especially the dates in acquiring them. In
some cases, the present road network that was built after the simulated period was
used in the simulation, making the simulation somewhat questionable. Third, they
evaluated their simulation results by comparing the simulated map to the reference
map of the entire study area, but failed to compare the percentage of errors to the
percentageof converted areas (Liu et al. 2014; Pontius andMillones 2011). Therefore,
they used flawed metrics for assessing model performance such as the goodness-of-
fit (Pontius and Millones 2011). Finally, they just separated calibration information
fromvalidation information through space (by selecting pixels randomly), rather than
through time (by using an urban map in another year), leading to overestimation of
the accuracy of the model.

45.5.2 Summary and Future Research Directions

This chapter has summarized the basic concepts and techniques of CA modeling for
urban and regional planning from the perspectives of basic CA components, formu-
lation of urban CA, and data collection. Urban CA were classified into different
types, and systematic and critical reviews on previous and recent studies and appli-
cations were provided. Finally, the strengths and weaknesses of urban CA models
were pointed out for new modelers, along with current problems in the literature.

Further studies are needed to provide new insights into the uses of CA in
geographic and urban theories, which would advance the theoretical basis of urban
CA. The integration of urban CAmodels and other models may overcome the weak-
nesses of CA, such as with economic models, thus improving model performance.
More effort should be made on improving CA by incorporating microlevel interac-
tions and multiple processes. So far, the calibration is often based on two years of
land-use maps. There is an issue of over-calibration because of bifurcation effects
inherited from complex systems. Bifurcation refers to the fact that a small smooth
change in the parameter values may cause a sudden change in the model’s behavior.
Finally, elaboration is also required to demonstrate howurbanCAmodels can support
planning and management in practice. Urban CA models should not be used to
provide exact predictions of urban systems, but to simulate interactively different
what-if scenarios for policy implementation through the modification of transition
rules.

Concern for global changes has grown tremendously in recent years. CA should
incorporate factors of climate change in urban planning, such as the effects of urban
heat islands, changes in agricultural production, and changes in land-use patterns.
CA simulation could be integrated with climate and hydrological models in future
studies (Chen et al. 2020). For example, urban simulation could incorporate the
universal climate scenarios developed by the Intergovernmental Panel on Climate
Change, such that future land use can meet the demand required by economic and
social development. This integration can facilitate the simulation of future changes
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in global and regional land covers. For example, the simulation of urban evolution
with finer urban land categories should be attractive for actual planning practice.
This requires the integration of current CA with big data or social media data.
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Chapter 46
Agent-Based Modeling and the City:
A Gallery of Applications

Andrew Crooks, Alison Heppenstall, Nick Malleson, and Ed Manley

Abstract Agent-based modeling is a powerful simulation technique that allows one
to build artificial worlds and populate these worlds with individual agents. Each
agent or actor has unique behaviors and rules which govern their interactions with
each other and their environment. It is through these interactions that more macro-
phenomena emerge: for example, how individual pedestrians lead to the emergence
of crowds. Over the past two decades, with the growth of computational power
and data, agent-based models have evolved into one of the main paradigms for urban
modeling and for understanding the various processes which shape our cities. Agent-
based models have been developed to explore a vast range of urban phenomena from
that of micro-movement of pedestrians over seconds to that of urban growth over
decades and many other issues in between. In this chapter, we introduce readers
to agent-based modeling from simple abstract applications to those representing
space utilizing geographical data not only for the creation of the artificial worlds but
also for the validation and calibration of such models through a series of example
applications. We will then discuss how big data, data mining, and machine learning
techniques are advancing the field of agent-based modeling and demonstrate how
such data and techniques can be leveraged into these models, giving us a new way
to explore cities.

46.1 Introduction

The start of the twenty-first century marked a milestone in human history: for the
first time more than half of the world’s population, approximately 3.9 billion people,
lived in urban areas. This trend is expected to continue in the foreseeable future,
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with 6.3 billion people living in cities by 2050 (United Nations 2014). Population
growth will cause more urban land to be developed during the first 30 years of the
twenty-first century than in all of human history (Angel et al. 2011). Less than five
percent of the earth’s surface is urbanized and with the urban population predicted to
grow to 5 billion by 2030, the urban footprint will still be less than 10% (Seto et al.
2011). Combine this with the unprecedented urban expansion, especially in the form
of megacities—cities with more than 10 million in population—which have grown
from eight in the 1970s to 36 in 2016 and are expected to rise to 41 by 2030 as shown
in Fig. 46.1, and society as a whole will be faced with unprecedented challenges and
questions to be askedwith respect to all aspects of city life.Will cities be sprawling or
compact? How will cities adapt to climate change? How will new technologies such
as autonomous cars, for example, affect our lives? These are challenging questions
made more complicated by the fact that cities are excellent examples of complex
systems, composed of people, places, flows, and activities (Batty 2013), all of which
interact in a variety of different ways.

An exact definition of a complex system is difficult to pin down, as it has a different
meaning to different people (Thrift 1999). A simple definition is one whereby a
small number of rules or laws, applied at a local level and among many entities,
are capable of generating complex global phenomena such as collective behaviors,
extensive spatial patterns, and hierarchies, in such a way that the actions of their
parts do not simply sum to the activity of the whole, due to self-organization, nonlin-
earities, feedbacks (both positive and negative), and path dependencies.1 Cities are
complex systems, composed of many parts, dynamic, and containing large numbers
of discrete actors interacting within space and with other systems from nature and
technology, and have a wide-ranging impact on the economy, public policy, national
defense, social trends, public health, climate change, etc. As Wilson (2000) writes,
understanding cities is “…one of the major scientific challenges of our time.” Human
behavior cannot be understoodor predicted in the samewayas in the physical sciences
such as physics or chemistry. The actions and interactions of the inhabitants of a city,
for example, cannot be easily described in a physical-science theory such as that of
Newton’s Laws of Motion. This notion is captured quite aptly by a quote by Nobel
laureate Murray Gell-Mann: “Think how hard physics would be if particles could
think.” In the remainder of this chapter, we will introduce agent-based modeling
(Sect. 46.2) as it offers a way to explore the processes that lead to the patterns we see
in cities from the bottom up, but also allows us to incorporate ideas from complex
systems (e.g. feedbacks, path dependency, emergence) alongwith providing a gallery
of applications of geographically explicit agent-based models. Next, we discuss how
we can incorporate various decision-making processes within such models, and also
how we can integrate this style of modeling with data, with a specific emphasis on
geographical and social information (Sect. 46.3). This section also discusses how

1Readers wishing to know more about cities and complexity are referred to the works of Allen
(1997), Wilson (2000), and Batty (2007).
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Fig. 46.1 Globalmegacities in 2016 and estimatedmegacities by 2030 (data source:UnitedNations
2016)

agent-based modelers are utilizing machine learning within their models. Finally, in
Sect. 46.4, we will provide a summary and discuss new opportunities with respect
to agent-based modeling and the city.
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46.2 What is Agent-Based Modeling?

Over the past two decades, with the growth of computational power and data (which
we will discuss in more detail in Sect. 46.3), agent-based models have evolved
into one of the main modeling paradigms for urban systems and understanding the
problems that today’s cities face (see: Benenson and Torrens 2004; Batty 2005;
Crooks et al. 2019). In this section, we first give a general yet brief overview of
agent-based modeling before discussing the various reasons to model (Sect. 46.2.1).
We then discuss steps in building such models (Sect. 46.2.2) before turning our
attention to geographically explicit agent-based modeling examples (Sect. 46.2.3)
which demonstrate the types of problems such a style of modeling can explore.

Agent-based modeling, as with other modeling techniques (e.g. spatial interac-
tion models, microsimulation) is a way to take the complexities of the real world
and, through abstraction, reductionism, and simplification, to focus on the important
task at hand (Gilbert and Troitzsch 2005). The main difference between agent-based
modeling and other styles of modeling is that the focus is on interactions of indi-
vidual entities and their behaviors, and howmore aggregate patterns emerge through
such interactions (e.g. how individual cars can lead to the emergence of traffic jams).
Broadly defined, an agent-basedmodel can be considered as an artificial world inhab-
ited by autonomous and heterogeneous agents, eachwith their set of goals and prefer-
ences. It is through interactions with other agents that the agent makes decisions and
decides what actions are to be carried out based on specific goals. These interactions
lead to more aggregate patterns emerging as shown in Fig. 46.2.

For example, if one were to build an agent-based model of a housing market,
individual agents could be considered as households. Each household has to decide
where to live and as with real households, each can have its own preferences for
hosing style and neighborhood type, and each has its own income constraints. The
interactionswith other households in the formof buying and selling a house lead to the
emergence of property markets (e.g. Geanakoplos et al. 2012). Or considering traffic
congestion during the morning rush hour, individual agents could be considered as
drivers of cars: each agent has to decide what time to leave home to go to work, and
by driving on the road its interactions with other agents (i.e. cars) is what leads to
traffic jams forming (e.g. Manley et al. 2014).

46.2.1 Examples of Why to Model

As with other modeling styles, within agent-based modeling, there are multiple
reasons for why one should model, from understanding a certain phenomenon to
predicting and forecasting (see Epstein 2008 for a discussion on the various reasons
to model) and therefore agent-based models range from abstract thought experi-
ments to more empirically applied applications. For example, Schelling’s (1971)
model of segregation is not only a classic example of an abstract model, but it also
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Fig. 46.2 Schematic of an agent-based model, showing how interactions between agents lead to
emergent phenomena within an artificial world

demonstrates how emergent phenomena (in this case segregation) can occur through
individual preferences. Moreover, it demonstrates howmacro-level segregation does
not necessarily reflect micro-level preferences. For example, in Fig. 46.3, we show
two types of agents, those who prefer football versus those who prefer baseball. In
this simple example, based on notions from Schelling’s (1971) model, agents (i.e.
individuals) want to be in locations (a cell on a 11 by 11 grid which acts as our arti-
ficial world) where a certain percentage of their neighbors are similar to themselves
(in this example 30%).

Over time (T ), agents move if their preference for their neighborhood compo-
sition is not met. As one can see, from an initial randomly distributed population,
segregated neighborhoods emerge due to agents interacting with other agents and
taking actions (in this case moving) and to the resulting feedbacks and past locational
choices of others. Also, the model demonstrates how the actions of one agent might
affect others. For example, an agent may be satisfied in a certain location but another
agent moving into the neighborhood might cause this agent to become dissatisfied
and therefore cause it to move. By altering the agent’s preferences for certain neigh-
borhood compositions (e.g. from 30 to 70% of similar neighbors), we can also see
how individual preferences and interactions at the micro-level lead to more macro-
level phenomena emerging as we show in Fig. 46.4; specifically in this example, we
see how more segregated communities emerge as preferences are increased.

What is interesting about this phenomenon is that often when we see segregated
neighborhoods, the process and actions that led to this pattern have already occurred.
However, through agent-based modeling, we can explore what processes or actions
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Fig. 46.3 Example of segregation emerging over time as agents move to locations where their
preferences are met (note smaller balls are dissatisfied agents)

Fig. 46.4 Examples of how different preferences lead to different patterns of segregation
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might have led to such patterns emerging in the first place, and thus devise potential
interventions before it is too late. However, as noted above, agent-based models can
also be empirically grounded. Take for example the work of Benenson et al. (2002),
which explored how people’s preferences for certain neighborhoods and building
types lead to distinct residential patterns emerging inTelAviv, Israel.While both have
their own purpose, Schelling’s (1971) to explore basic behavior and that of Benenson
et al. (2002) to explain residential choice based on empirical data and test various
scenarios, both show that individual preferences for certain types of neighborhoods
lead to distinct residential patterns emerging, which would be difficult to explain
from just looking at aggregate data alone. It should however be noted that agent-
based modeling is not just an academic exercise, but has been used by companies
and organizations for a variety of decision-making purposes. These range from the
potential impact of decimalization of theNASDAQStockMarket (Darley andOutkin
2007), to that of understanding store design, consumer markets, or hiring strategies
for companies (see Bonabeau 2003). Readers of this chapter might also be surprised
to know that they have probably seen agent-based models while at the cinema or
watching TV as they are often used formassive crowd scenes inmovies, replacing the
need for a large cast of extras (seeMassive 2019). Companies, especially engineering
ones, are also utilizing agent-based models to study pedestrian (e.g. products such
as Legion 2019 and STEPS 2019) or traffic dynamics (e.g. PTV Visum 2019 and
Paramics 2019) in order to assess new designs for buildings or trafficmeasures before
they are built or implemented.

46.2.2 Steps in Building an Agent-Based Model

When it comes to building an agent-based model, the process can be broadly viewed
as having three steps. First, before we can get to the model itself, we need to identify
the research question we are trying to solve with the model (e.g. reasons for traffic
patterns), define the target of the model, know specifically what we are we trying
to solve (e.g. traffic dynamics), and consider if there are any observations of the
target we wish to include to provide parameters and initial conditions for the model
(e.g. origin–destination data). We then need to make assumptions and design the
model. Once the model has been designed and implemented (often in computer
code), the second step is to run (execute) the model, which creates an artificial
world. This is then populated with agents (e.g. cars) that are assigned attributes
and rules (depending on the application or phenomena of interest). We then run the
model until a certain condition is met or a specific time epoch is reached, and report
and observe the results which are shown in Fig. 46.5a (while Fig. 46.5b shows a
simple worked example of the segregation model discussed in Sect. 46.2.1). While
this figure and the description given above are highly generalized and simple, in
essence, one could make the argument that agent-based models are just rule-based
systems, in the sense that they could be considered as just a series of if-then-else
statements. For example, if the fire alarm goes off, then exit the building, else stay in
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Fig. 46.5 Highly generalized flow of an agent-based model a and the corresponding flow of the
basic segregation model b

the building. However, the richness of agent-based modeling is that while the agents
themselves might be highly specified and their rules of interactions are well-known,
and it is not until the model is run that we can know the outcome, due to the variety
of possible interactions of autonomous heterogeneous decision-making agents. In
essence, like complex systems themselves, agent-based models are more than the
sum of their parts. Once the model is run, the third step is to evaluate the model (e.g.
verification, calibration, validation, sensitivity analysis). For further guidelines on
designing, implementing, and evaluating agent-based models, readers are referred to
Gilbert and Troitzsch (2005) and Crooks et al. (2019).

46.2.3 Application Areas for Geographically Explicit
Agent-Based Models

Geographically explicit agent-based models (i.e., those utilizing geographical infor-
mation which we will go into more detail about in Sect. 46.3) have been developed to
explore a range of problemswhich society faces over a variety of spatial and temporal
scales from the micro-movement of pedestrians over seconds (e.g. Torrens 2012) to
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that of the macro-evolution of city systems over centuries (Pumain and Sanders
2013). The flexibility that the agent-based modeling approach provides has allowed
such models to be used in a diverse set of applications. These range from arche-
ology (Axtell et al. 2002), agriculture (Hailegiorgis et al. 2018), basketball (Oldham
and Crooks 2019), crime (Malleson et al. 2013), diseases (Perez and Dragicevic
2009), disasters (Jumadi et al. 2018), invasive species (Anderson and Dragićević
2018), to urban growth (Xie and Yang 2011), housing markets (Geanakoplos et al.
2012), gentrification (Jackson et al. 2008), slum formation (Patel et al. 2018), and
traffic (Manley andCheng 2018). So, while agent-basedmodelers have been utilizing
geographical data in their models, what has changed is the growth of data andways of
integrating such data within models (which will be discussed more in Sect. 46.3.2).

Open-source agent-based modeling toolkits such as GAMA (Taillandier et al.
2019), MASON (Luke et al. 2018), Repast (North et al. 2013), and NetLogo
(Wilensky 1999) have evolved substantially over the past 20 years and many have
built-in functionality to directly integrate data into models (e.g. raster and vector data
structures), thus lowering the bar for creating geographically explicit models (for a
review of these platforms and their applications readers are referred to Crooks et al.
2019). For example, in Fig. 46.6, we show a selection of models created utilizing
the MASON toolkit and its GeoMason extension for GIS integration that span both
spatial and temporal scales. These include such things as the micro-movement of
pedestrians over seconds to that of the macro-movement of migrants over years,
and many things in between such as modeling traffic, responses to disasters, disease
outbreaks, and urban growth (for access to these models see MASON 2019, and for
equivalent geographically explicit models in NetLogo see https://www.abmgis.org/).

Fig. 46.6 Selection of GeoMason models across various spatial and temporal scales

https://www.abmgis.org/
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In addition to these general-purpose open-source toolkits which allow for a range of
urban phenomena to be simulated, where one could argue that the only constraint
is that of the modeler’s imagination, there are others that are dedicated to specific
domains such as the open-source transportation simulations (e.g. MATSim of Horni,
Nagel, Axhausen 2016, POLARIS of Auld et al. 2016, or TRANSIMS 2019), which
are being used to study a wide range of transportation issues (e.g. daily trips, route
planning, evaluation of intelligent transportation systems) in multiple cities around
the world.

46.3 Integrating Data and Decision-Making
into Agent-Based Models

Apart from the individual entities within agent-based models interacting with each
other, these entities are also interacting and are affected by the artificial world (or
environment) which they inhabit; similar to how the world around us affects our
lives. For example, take land-use change. Developers may buy agricultural land,
convert the land to residential use, and then sell it to residents who then move into it
(e.g. Magliocca et al. 2011). Agents can also perceive their environment and respond
to it (e.g. changing climatic conditions may alter farming practices as discussed
in Hailegiorgis, Crooks, Cioff-Revilla 2018). Initially, many agent-based models
represented space rather abstractly as we showed with the Schelling (1971) model
in Sect. 46.2.1. However, perhaps with the demonstration of the Sugarscape model
by Epstein and Axtell (1996), which showed how the environment can affect agents’
wealth and survival, modelers started to realize that the artificial world that the agents
inhabited could be stylized on geographical data. From earlier works such as those
by Gimblett (2002) or Benenson and Torrens (2004) to current day work (e.g. Crooks
et al. 2019), researchers have utilized data not only to represent the physical aspects
of the artificial world (e.g. land cover, road networks) but also to help inform the
social aspects (e.g. census data to help with knowing how many agents live in an
area). Such data take the abstract representations of space andmake it more grounded
in real-world locations as we show in Fig. 46.7.

Different data layers in the form of rasters (e.g. land-use and land-cover, elevation)
and vector formats (e.g. census areas, road networks) can act as the environment for
the artificial world in which our agents interact. For example, vector data about roads
can be used for a traffic simulation in the sense of allowing agents to navigate from
one location to another. Or census data can be used to create a specified number
of agents for a given location with associated socio-economic characteristics (e.g.
Burger et al. 2017). Raster data such as those from the national land-cover dataset
(Wickham et al. 2014) can be used for initialization of an urban growth simulation
as they provide details on urban and non-urban land extents which affect where
cities can and cannot grow (see Crooks et al. 2019 for further details and examples
of how one can use such data in models). Such social and physical data layers in
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Fig. 46.7 Using geographic information as a foundation for artificial worlds

Fig. 46.7 replace the abstract artificial world presented in Fig. 46.2 and ground the
model to actual real-world locations, which can have an impact on individual agents’
interactions. Compare, for example, the abstract room in Fig. 46.8a which is used
to test basic pedestrian movement to that of Fig. 46.8b which is based on actual

Fig. 46.8 Moving from an abstract room a to one where the artificial world is based on a real-world
building floor plan b
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CAD data of a real-world building. Here, actual walls, corridors, and exits constrain
the agent’s movement. While we already have discussed in Sect. 46.2.3 application
areas, where researchers have created geographically explicit agent-based models to
explore a wide range of phenomena, in the remainder of this section, we first discuss
how one can incorporate decision-making into agent-based models (Sect. 46.3.1),
before turning our attention to how new forms of data are being used in such models,
to help inform decision-making (Sect. 46.3.2) and howwith such data researchers are
utilizing machine learning methods for various phases (steps) within the agent-based
modeling (Sect. 46.3.3).

46.3.1 Incorporating Decision-Making into Agent-Based
Models

As noted in Sect. 46.2.2, agent-based models are essentially rule-based systems in
the sense that an agent’s actions are programmed directly into them. Therefore, it is
important to consider how we go about choosing these rules. However, as discussed
in Sect. 46.1, modeling human behavior is not as simple as it sounds. This is because
humans do not just make random decisions, but base their actions upon their knowl-
edge and their abilities. In addition, it might be nice to think that human behavior is
rational, but this is not always the case. Decisions can be based on emotions, such
as self-interest, happiness, anger, or fear (see Izard 2007). In addition, emotions can
influence one’s decision-making by altering perceptions about the environment and
future evaluations (Loewenstein and Lerner 2003). The question therefore is: how
do we model human behavior? This is where agent-based models excel over other
modeling approaches (as discussed in Sect. 46.2). Agent-basedmodeling allows us to
focus on individuals or groups of individuals and give them diverse knowledge and
abilities, which is not possible in other modeling methodologies. As such, agent-
based models act as a testing ground for a variety of theoretical assumptions and
concepts about human behavior (Stanilov 2012) within the safe environment of a
computer simulation.

Broadly speaking, there are three main approaches to capturing such decision-
making processes within agent-based models (Kennedy 2012). The first is a math-
ematical approach such as the use of ad hoc direct and custom coding of behaviors
within the simulation, such as using random number generators to select a prede-
fined possible choice (e.g. to buy or sell; Gode and Sunder 1993). But, people are
not random, which has led researchers to develop other methods such as directly
incorporating threshold-based rules; that is, when an environment parameter passes
a certain threshold a specific agent behavior will result (e.g. move to a new loca-
tion when the neighborhood composition reaches a certain percentage) as in the
Schelling (1971) example introduced in Sect. 46.2.1. One could argue that these
modeling approaches are appropriate when behavior can be well-specified. The
second approach to modeling human behavior within agent-based models uses
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conceptual cognitive frameworks. Within such models, instead of using thresh-
olds, more abstract concepts such as beliefs, desires, and intentions (BDI; Rao and
Georgeff 1991) or physical, emotional, cognitive, and social factors (PECS; Schmidt
2002) are given to individual agents. Both the BDI and PECS frameworks have been
successively applied to modeling human behavior in a number of applications, such
as what drives people to crime (see Brantingham et al. 2005 andMalleson et al. 2010,
respectively).

These conceptual cognitive frameworks and mathematical approaches for repre-
senting behavior, like agent-based models more generally, can both be considered
as rule-based systems and are often applied to tens to millions of agents. The
third approach, that of cognitive architectures, (e.g. Soar (Laird 2012) and ACT-
R (Anderson and Lebiere 1998)) focuses on abstract or theoretical cognition of one
agent at a time with a strong emphasis on artificial intelligence. This approach is
rarely used to model more than a small number of agents, which makes their utility
for modeling challenges faced by cities rather limited. However, while there are
multiple ways of representing decision-making within agent-based models, why a
modeler chooses one over the other is rarely discussed (Schlüter et al. 2017) or why
a certain theory was chosen (if at all) to build upon (Groeneveld et al. 2017). Readers
wishing to knowmore about decision-makingwithin agent-basedmodels are referred
to Balke and Gilbert (2014) and to learn how such models can be used in a policy
context see Calder et al. (2018).

46.3.2 The Growth of Data and Its Utilization Within
Agent-Based Models

Coinciding with the ease of incorporating data into agent-basedmodels (as discussed
in Sects. 46.2.3) is the growth and availability of digital data (i.e. big data) for urban
areas, many of which have an explicit or implicit geographic component (Stefanidis
et al. 2013). Such data range from more traditional types such as census data, or
remotely sensed imagery or in situ sensing devices (e.g. weather stations and air-
pollution monitoring systems) to data from mobile sensors such as smartphones,
GPS devices attached to taxis, or social media. This rise in data in a variety of
shapes and forms coupled with increased computational resources has led to the rise
of urban analytics. There are several definitions for urban analytics: for example,
Singleton et al. (2017) defines it as a “multidisciplinary area of research concerned
with using new and emerging forms of data, alongside computational and statistical
techniques to study cities,” while Batty (2019) places urban analytics in the wider
scope of analytics more generally, stating the “term analytics implies a set of methods
that can be used to explore, understand and predict properties and features of any
system, in our case of cities.” What is common between the definitions is utilizing
data and computational techniques to explore cities. If we first turn to data, we are
not only referring to traditional datasets such as census and infrastructure (e.g. roads)
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traditionally collected and distributed by governmental organizations and industry
but also to volunteered geographic information (e.g. OpenStreetMap) and social
media, Internet of things (IoT), and cell phones, which are giving us new ways to
explore the urban environment (Batty et al. 2012; Crooks et al. 2015b).

By bringing and analyzing these data together, we can begin to understand the
wider patterns of cities. For example, smart-city data are founded at the individual
level and through the analysis of travel cards can tell us how many people commute
into a city every day (e.g. Zhong et al. 2015) and hint at the purpose of trips when
combined with land-use information and social-media check-ins (Yang et al. 2019b).
Dockless-bike data can provide information on urban flows and impacts of new
infrastructure (e.g. Yang et al. 2019a) Similarly, cell-phone data can show origin–
destination pairs for urban mobility (e.g. Louail et al. 2015) or patterns of movement
and interactions (e.g. Malleson et al. 2018; Manley and Dennett 2019). What such
data cannot tell us explicitly is the purpose of one’s trip or their experience of the city
while one is there. Bringing in data about the individual (social data) from multiple
sources (e.g. Twitter, Facebook) might help complete the picture but still gives us
only patterns and not necessarily the processes and the underlying motivations that
led to the patterns emerging.

Identifying how and when these patterns will emerge is extremely difficult. Take
for example congestion: it arises as a result of individual mobility decisions based
on factors such as life stage, accessibility to workplace, shops, or other facilities
which are constantly changing. Congestion can build locally at pinch points, placing
sections of the city’s transportation networks under severe strain. There is some irony
that while we inhabit a data-rich world, without modeling it is extremely challenging
to understand how the combination of physical environment and social dynamics
contributes to how our cities function and grow. Data alone will not solve all the
problems cities face, especially when using data from the past to look at the future.
For example, with respect to financial or housing markets, we might have data on the
stock market from 2010 to 2019 but this does not capture the 2007–2008 financial
crisis. What happens if there is a structural change or some sort of evolution of the
system or something happens outside of these bounds? Data capture only what they
see, not necessarily extreme market events. Or to quote Heraclitus: “No man ever
steps in the same river twice, for it’s not the same river and he’s not the same man.”
This is one of the motivations for modeling, specifically agent-based models. We can
explore such issues and pose what-if scenarios based on individuals making their
own decisions. For example, what would be the implications of imposing congestion
charging, in terms of improvements to both congestion and people’s activities (e.g.
Zheng et al. 2012)?

If we refer back to Fig. 46.7, we can utilize such data to inform our models, act
as inputs to a model, or validate model outcomes. For example, there are numerous
applications that are utilizing OpenStreetMap data to act as the foundation of their
artificial worlds. These range from assessing route choice for humanitarian support
after an earthquake (Crooks and Wise 2013), or utilizing building and infrastructure
information during disease outbreaks (Crooks and Hailegiorgis 2014) to vehicle
routing over a network (Horni et al. 2016) or as a basis for evacuation-route choice



46 Agent-Based Modeling and the City: A Gallery of Applications 899

(Goetz and Zipf 2012). If we turn our attention to pedestrian movement, which is
of paramount importance if we wish to design more walkable cities, new sensor
technology such as GPS has been used to test walking behaviors (Torrens et al.
2012), while others have utilized CCTV to calibrate how people move through small
areas (Crooks et al. 2015a) or calibrate crowd densities (Batty et al. 2003). Crols
and Malleson (2019), on the other hand, used footfall data collected via sensors to
validate their pedestrian model of daily mobility in the town center of Otley, West
Yorkshire in order to better understand how the town center is being used by its
inhabitants. Similarly, Grübel et al. (2019) used footfall data to validate their model
of pedestrian flows through Westminster in London.

New sources of data are also shedding light into how people navigate around the
city; for example, Manley et al. (2015) found in analyzing GPS data from London
minicabs that the shortest path models often used in transportation studies poorly
predicted the actual behavior of minicab drivers; but through an agent-based model
they showed how drivers used specific urban features (i.e., “anchor points”) with
respect to navigating around the city. Moving beyond just geographic data, others
are using natural language processing (NLP) to mine textual data to inform agent
decision-making (Runck et al. 2019). In another example, Wise (2014) developed an
agent-basedmodel to explore a wildfire event and subsequent evacuation in Colorado
Springs over the space of a week in 2012. Specifically, Wise mined social media,
in this case, Twitter, to derive the moods of people in the area and fed this into an
evacuationmodel. For example, if one of the agents (i.e. a Colorado Springs resident)
knew that the fire was nearby, and this information was passed along his or her social
network to other agents who then decided whether to evacuate or not. This decision
to evacuate or not also led to congestion, which was validated based on data that
were harvested from the crowd and news outlets. What the above examples show is
that new sources of data can be utilized in many aspects of agent-based modeling,
especially those related to urban applications over a variety of spatial and temporal
scales.

46.3.3 The Potential of Machine Learning and Agent-Based
Modeling

While there has been a tremendous growth over the past decade in machine learning,
a subfield of artificial intelligence, which is partly due to increases in computa-
tional power and the availability of data and is leading to new areas of research
within urban analytics, and terms such as geographic data science are appearing (see
Singleton and Arribas-Bel 2019). By using machine learning techniques (such as
genetic algorithms, artificial neural networks, Bayesian classifiers, decision trees, or
reinforcement learning) and datamining (i.e. finding patterns in the data), researchers
have been exploring many aspects of city life such as the identification of slums via
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decision trees (Mahabir et al. 2018) and using natural language processing to find
meanings of place (Jenkins et al. 2016).

However, while machine learning and data mining have seen a large growth in
urban analytics, there has only been limited uptake of these methods in agent-based
models, even though as Rand (2006) notes they are similar in the sense that both can
be considered as rule-based systems (as we discussed in Sect. 46.2.2), and as both
need to be initialized with a specific set of parameters. Both need to be run, and while
in agent-based models, we observe the dynamics, in machine learning, we observe
the outputs of the machine learning process (such as numbers, rules, or categories),
and conclude when the stopping conditions are met (Rand 2006).2 For example, in
an agent-based model, this might be when all agents are happy, while in machine
learning, it could be when the algorithm completes its processing (e.g. the value of
the objective function cannot be further improved).

As noted in Sect. 46.2.2, agent-based modeling has broadly three major steps:
the design of the model, the execution of the model, and evaluation of the model.
Machine learning techniques have been applied to all three of these phases (see
Abdulkareem et al. 2019). For example, in the first phase, the designing of the
model, machine learning has been used to derive parameter values for agent-based
models such as in cases of humanmobility and obesity (e.g. Kavak 2007; Padilla et al.
2016). Machine learning has also been used during the running of the model, often
for agents to learn from past experiences andmakemore informed decisions via rein-
forcement learning or genetic algorithms or random forests (e.g. Ramchandani et al.
2017; Rand 2006; Wolpert et al. 1999). Zhang et al. (2018) used neural networks for
traffic prediction under various traffic configurations. In another example, Abdulka-
reem et al. (2019) used Bayesian networks and survey data to explore the spread of
cholera in Kumasi, Ghana. Specifically, they used Bayesian networks with respect
to improving risk perception and decision-making about where to get water during
a cholera outbreak. Others have used reinforcement learning with respect to retire-
ment planning (Ramchandani et al. 2017) or Bayesian networks to infer agents’
locational choice and how this affects land-use change (Kocabas and Dragicevic
2013). Bone and Dragicevic (2010) used reinforcement learning to achieve optimal
forest harvesting strategies. With respect to using machine learning algorithms to
analyze model outputs (i.e. Step 3), Heppenstall et al. (2007) used a genetic algo-
rithm to validate model outcomes of an agent-based model which simulates the retail
gasoline market.

The examples above are just a few agent-based models utilizing machine learning
and are intended to show the reader that researchers are exploring the use of such tech-
niques in various aspects of the agent-basedmodeling process. However, unlike in the
data science community, the use ofmachine learning is rather limited. Perhaps, this is
because in the data science community packages exist (such as those implemented in
Python or R) for machine leaning, but this is not the case for agent-based modeling.
While agent-based toolkits exist, modelers still need to design and implement their

2For a greater discussion on the similarities between agent-based modeling and machine learning,
readers are referred to Rand (2006).
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ownmodels,which in itself is a time-consuming task.Also, agent-basedmodels focus
on individual behavior, and to fully utilize machine learning one needs training data
which are often not available (due to ethical implications, privacy concerns, etc.)
at the level of detail for agent-based models (e.g. Runck et al. 2019; Weinberger
2011). We do not have space to delve deeper into why there has only been limited
uptake of machine learning within agent-based models, but we envisage that with the
growth of data, more agent-based modelers will utilize machine learning, especially
as there are increasing calls to incorporate empirical data into models (e.g. Janssen
and Ostrom 2006; Robinson et al. 2007) along with efforts to validate such models.
For example, there might be abundant fine-resolution trajectory data about people’s
movement in cities which can be used to validate movement models and thus test
ideas and theories of what motivates such patterns to emerge.

46.4 Summary and Outlook

As the world is increasingly becoming more densely urbanized, it is becoming more
important to understand each city as a complex system whose whole is more than the
sum of its parts.Without such understanding, it will be difficult to grapple with future
societal challenges such as climate change. Cities are composed of many individuals
whose interactions and behaviors lead to many issues emerging (Sect. 46.1). In this
chapter, we have introduced agent-based modeling (Sect. 46.2) which allows one to
model social systems from the bottom up. The focus of such models is the creation
of artificial worlds in which individuals are given unique behaviors and rules and
interact with each other and their environment. It is through such interactions that
more macro-patterns emerge: for example, how individuals form crowds, or people
going to and from work result in traffic jams, or people buying and selling homes
lead to property markets emerging. By integrating geographic information into such
models, we can turn abstract artificial worlds to those that mimic real-world locations
(Sect. 46.3).

We also discussed how agent-based modeling has seen a large uptake over the
past 20 years, spurred by the growth and availability of data (Sect. 46.3.2), which
is providing many application domains for study. Such data when mined not only
provide new ways to explore how people perceive and use the space around them,
but also through machine learning methods can be integrated into the various aspects
of agent-based modeling, from model parameterization to validation and calibration
(Sect. 46.3.3). However, this is still an area which is evolving and there is still
a significant amount of research to be done. New sources of data can potentially
be mined to provide information pertaining to who, what, when, where, and why
people do what they do. However, as Robert Axtell notes “…there is a large research
program to be done over the next 20 years, or even 100 years, for building good high-
fidelity models of human behavior and interactions” (cited by Weinberger 2011).
Potentially, machine learning methods could help with, this especially with respect
to improving decision-making within agent-based models.
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Moreover, readers might have noted that a gallery of applications was discussed
in this chapter, but there were very few attempts to integrate or couple various urban
processes together, which was often the case with more traditional styles of land-use
transportation interaction (LUTI)models (seeWise et al. 2017 for such a discussion).
Perhaps, this is because agent-based models are being applied on a variety of spatial
and temporal scales depending on the question at hand. For example, rush-hour
traffic or various longer-term processes such as urban growth make it difficult to
resolve temporal clocks or computational issues when scaling models to larger areas
or greater numbers of agents, etc. However, the argument could be made that we
are still in the initial stages of understanding cities from the bottom up, and the
focus until now has been on specific problems but not on the city as a whole system.
There is some justification for this based upon Simon’s (1996) concept of the near-
decomposability of systems, in which parts of a system interact among themselves in
clusters or subgraphs, with interactions among subsystems being relativelyweaker or
fewer but not negligible, and therefore in the short term, one can study such systems
(or problems) in isolation.

Looking ahead, as we noted above, today we are in a data-rich world and we
discussed how one can utilize such data for model initialization, the parameterization
of agents’ attributes, or for the validation of model outcomes. However, as agent-
based models are often used to simulate the behavior of complex systems, these
systems often diverge rapidly from initial starting conditions. One way to prevent a
simulation from diverging from reality would be to occasionally incorporate more
up-to-date data and adjust the model accordingly. Data, especially streaming data
produced through near-real-time observational datasets (e.g. social media or vehicle
routing counters) could be utilized in such a case as shown in Fig. 46.9.

This process is known as dynamic data assimilation. There is a range of techniques
that come under the banner of data assimilation that are designed for exactly this
purpose. However, they have largely evolved from fields such as meteorology (i.e. to
incorporate up-to-date environmental data into weather forecasts) and only recently
have they started to be applied to agent-based modeling (e.g. Malleson et al. 2017;
Rai and Hu 2013; Ward et al. 2016). The marriage of data assimilation methods
and agent-based models could be transformative for the ways that some systems, for
example, smart cities, are modeled. In addition to this, with new sources of big data
and methods from machine learning and the growth of computational resources, we
are perhaps nearing a point where we can explore and model cities from the bottom
up at resolutions and scales that have not yet been possible.
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Fig. 46.9 Dynamic data assimilation and agent-based modeling
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Chapter 47
Transportation Modeling

Eric J. Miller

Abstract Informatics are rapidly and radically transforming urban transportation
in ways not seen since the introduction of the automobile over a hundred years
ago. Near-ubiquitous smartphone usage, pervasive cellular and Wi-Fi connectivity,
powerful and cost-effective computing capabilities, advanced GIS software and
databases, advanced platforms for managing and scheduling service operations, etc.,
are combining to enable the introduction of new mobility services and technologies
that are increasingly disrupting conventional trip-making behavior and the “rules
of the game” in terms of transportation network operations and the regulation of
system performance. The implications of these major informatics-driven changes
for transportation modeling are equally disruptive and major. These include changes
in: travel behavior; transportation system performance; the data available for model
development and application; and modeling methods. Each of these broad areas of
impact are discussed in this chapter.

47.1 Introduction

Use of large, computer-based models of travel demand and transportation system
performance is standard practice in urban regions worldwide for transportation plan-
ning and decision-support purposes (Meyer and Miller 2013). They enable planners
to estimate quantitatively the likely future impacts of a wide variety of policy options,
including investment in major new transportation infrastructure (roads, transit, etc.),
land-use policies, pricing/fare policies, new technologies, population and employ-
ment growth trends, etc. Detailed discussion of thesemodels is well beyond the scope
of this chapter, but the state of the art is extensively documented in the literature (see,
for example, Ben-Akiva andLerman 1985; Train 2009;Ortuzar andWillumsen 2011;
Castiglione et al. 2015). Rather, this chapter explores current and emerging impacts
of urban informatics on transportation modeling needs, capabilities, opportunities,
and challenges1.
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Informatics are rapidly and radically transforming urban transportation in ways
not seen since the introduction of the automobile over a hundred years ago. Near-
ubiquitous smartphone usage, pervasive cellular and Wi-Fi connectivity, powerful
and cost-effective computing capabilities, advanced GIS software and databases,
advanced platforms for managing and scheduling service operations, etc. are
combining to enable the introduction of new mobility services and technologies
that are increasingly disrupting conventional trip-making behavior and the “rules of
the game” in terms of transportation network operations and the regulation of system
performance.

The implications of these major informatics-driven changes for transportation
modeling are equally disruptive and major. These include:

• Changes in travel behavior.
• Changes in transportation system performance.
• Changes in the data available for model development and application.
• Changes in modeling methods.

Each of these topics are discussed in detail in the following four sections. Looming
over this discussion of technology-driven changes in the transportation system and
associated modeling needs is the potential for the introduction into widespread usage
within a currently ill-defined but still foreseeable future of electric vehicles (EVs) and
connected and autonomous vehicles (CAVs), whichmay also be electrified (CAVEs).
Full discussion of these technologies and their potential impacts goeswell beyond the
topic of urban informatics per se. But some possible impacts of eventual CAV impacts
on travel behavior and transportation network performance are briefly discussed in
Sects. 47.2 and 47.3.

47.2 Informatics and Travel Behavior

The primary impacts of informatics on travel behavior to date derive from two related
informatics-based services:

• Real-time travel-related information.
• New mobility services and technologies.

These are discussed in the following two sub-sections. As becomes clear in this
discussion, the driving technology enabling all these services are cellular- and Web-
based apps running on smartphones and other computing devices, tied to centralized
computing platforms that receive and send massive amounts of data and that process
customer data requests for information and services, match customers with service
providers, etc. The evolution andwidespread adoption of smartphones among a broad
segment of trip-makers, in particular, has been fundamental to the development and
implementation of these various services.
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47.2.1 Real-Time Travel-Related Information

A veritable plethora of Web- and smartphone-based apps exist that trip-makers can
use to plan their trip destination, mode, and route choices prior to traveling and
to dynamically choose their travel route during their trip. Many of these apps are
provided by private companies, but public-sector apps also exist. For example, most
public transit agencies provide some form of route guidance, as well as schedule and
fare information.

Perhaps the most pervasive and impactful of these apps are the wide range of
route-guidance apps based on the Global Positioning System (GPS) and available
either on-boardmany automobiles or as apps for smartphones or othermobile devices
such as tablets. These sense the current location of the device (and, hence, vehicle)
and provide real-time estimates of current traffic conditions on the roadway being
used. They also provide estimates of current travel times to a user-specified destina-
tion, along with recommended best routes to take to this destination. The definition
of best route may be based either on shortest distance or shortest expected travel
time, with the latter being the preferred and, increasingly, the most common option.
Link and route travel times are determined based on crowd-sourced information on
speeds gathered from all the users of the service, as well as possibly other information
that may be available to the service provider (police/traffic center advisories, other
roadway sensor data, etc.). They also depend critically on access to very precise and
accurate geographic information system (GIS) representations of the road network,
including speed limits and other road attributes. Huge effort over the past several
decades has gone into developing such detailed maps for much of the world, partic-
ularly, in urbanized areas. Thus, these route-guidance apps represent an advanced
marriage of GPS tracking and GIS mapping and analysis capabilities.

Both real-time and historical data are used in the calculations. The quality of
the travel-time and route-selection calculations obviously depends on the number of
users in the system at any one time, the depth and relevance of the available historical
information, and, critically, the quality and accuracy of the (typically proprietary)
algorithms used by the service provider to do these calculations. Machine learning
methods (running on powerful cluster/cloud computing platforms) play a key role in
sifting through themassive real-time and historical data to identify traffic patterns and
to make short-term predictions of best routes to recommend. While these algorithms
still are not 100% perfect under all conditions and in all places, their accuracy in
making short-run predictions of roadway performance is typically quite impressive.

In addition to on-board route-guidance apps, conventional variable message signs
on roadways and radio traffic reports have for decades provided a certain amount
of high-level, real-time information concerning current travel conditions on major
roadways, although these rarely provide route guidance. That is, a variable message
sign might indicate that the roadway is congested ahead, but will not actually suggest
or advise to take an alternative route. This is both due to legal concerns (if a driver
takes a suggested alternative route and gets into an accident, who is liable?) and to
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minimize the potential for introducing instability into the system (what if everyone
took the alternative route?).

Many apps also exist for providing static or real-time information concerning
public transit routes, schedules, fares, and travel times. Most transit agencies now
provide such an app, but many private and open-source public apps also exist. Such
apps may provide information concerning: when the next transit vehicle is expected
to arrive at a given stop; assistance for planning a trip from a given origin to a given
destination at a given time of day; fare policies and payment options; service disrup-
tions notices, etc. In addition to mobile-device-based apps, many transit agencies
also provide real-time information at transit stops and stations concerning expected
next-vehicle arrival times, by transit line. Various apps also exist to help bicyclists
track their bike usage and routes are taken. Personal fitness apps for tracking distance
walked also exist.

Although not generally thought of as being particularly travel-related, a vast array
of Web sites provides information concerning every form of activity imaginable—
restaurants, stores, entertainment venues, hotels, etc. These activity locations are
potential destinations for trip-making that is not related to work or school, and the
ubiquitous and voluminous availability of such data may well influence trip-makers’
decision-making, especially regarding trip destination.

In general, most of these apps and services can be used for pre-trip planning
(“Where should I go for dinner tonight”? “Should I drive or take transit for this
trip?”) as well as for on-route dynamic decision-making (“Accident ahead; let’s get
off the freeway”). While usage of these various apps is clearly very widespread,
the actual impacts of this usage on travel behavior are not at all well understood.
What percentage of the population are using what kinds of apps? Does this usage
significantly influence choice of mode or destination, or timing of trips? Route-
guidance apps must be affecting route choices, given their widespread use, but how
great are the resulting deviations from the routes that drivers would have chosen in
the absence of the app? To what extent is congestion being reduced (or increased?)
through extensive use of these apps? These issues are discussed in greater detail
below.

47.2.2 New Mobility Services and Technologies

Current and emerging information and communications technology (ICT) is not
only dramatically increasing and improving the information available to trip-makers
to help them in their travel decision-making, it is also revolutionizing the services
available to them by which they may travel. New ICT-based mobility services and
technologies are emerging virtually daily that provide new travel options for trip-
makers.Aswith the new information services, these critically dependon smartmobile
devices for communicating with potential customers of the service and on powerful
computing platforms to manage the service.
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As discussed in detail by Calderón and Miller (2019, 2020), a mobility service
can be defined as an operation that enables a person to complete a trip from an origin
to a destination by means of a given mode (technology) and service process. Public
transit and conventional taxis are traditional mobility services. But a wide range of
informatics-enabled mobility services has emerged in recent years. These take many
forms, including:

• Ridehailing: Services such as Uber and Lyft (also conventional taxi), in which a
service provider connects drivers with passengers to provide passengers with a
door-to-door trip from their origin to their destination. Ridehailing can be further
sub-divided into single-user and shared-ride services, with the latter involving
passengers sharing the vehicle with other passengers and, as a result, experiencing
some amount of trip deviation from a direct origin-to-destination trip in order
to accommodate the pickups and drop-offs of the other passengers sharing the
vehicle.

• Vehicle-sharing: These services provide short-term rentals of vehicles to
customers who pick up the vehicle from where it is parked, use it to execute
one or more trips, and then leave the vehicle safely parked once they are finished
with it. Different services use different types of vehicles, including: automobiles
(car-share), bicycles (bike-share, using both conventional bicycles and e-bikes),
and, most recently, e-scooters. Vehicles usually are parked at designated stations
(parking lots, bike-share docking stations, etc.), but dockless systems increasingly
exist, in which the car, bike, e-scooter, etc., can be left anywhere, and is picked
up by the next customer from wherever it was last left. Such dockless systems
obviously depend on GPS tracking of the vehicle so that its location is known at
all times. Vehicle-sharing services are usually provided by a for-profit company,
but examples of peer-to-peer systems also exist in which private individuals offer
their vehicle for usage by others when they do not need it for their personal use.1

• Demand-responsive transit (DRT)/microtransit: A wide variety of transit services
exist (or can be imagined) that deviate from conventional fixed-route, fixed-
schedule (typically large-vehicle) transit operations, including various combina-
tions of route deviation, flexible stop location, on-demand scheduling of vehicle
routing, and, usually, use of smaller vehicles that are cost-effectively matched
to travel demand levels. Various forms of DRT have operated basically as long
as public transit has existed. In particular, in much of the world jitney oper-
ations (along with other forms of privately operated informal transit services)
are critical components of urban transportation, especially for lower-income trip-
makers. In additional, DRT (often referred to as paratransit) services are a standard
means of providing on-demand transit to mobility-impaired trip-makers who are
unable to use conventional transit services. Platform-based informatics systems
are redefining and enhancing the capabilities and potential applications of such

1Examples of peer-to-peer shared-ride systems also exist in which a platform connects private
individuals who are willing to share rides with other individuals. A common example of such a
system occurs on many university campuses, in which students offer rides to other students to travel
back and forth between the university and nearby home cities during holiday weekends, etc.
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services by significantly improving both the quality of service that can be offered
to customers (through improved real-time scheduling and more efficient routing)
and the cost-effectiveness with which the service can be provided.

While a wide diversity of mobility services exists, they all involve some combina-
tion of a generic set of operating functions (Calderón and Miller 2019, 2020). These
consist of:

• Matching trip-maker requests for service with drivers and vehicles.
• Rebalancing vehicle fleets to maintain an appropriate spatial distribution of

vehicles available for service.
• Trip pricing and payment.
• Pooling customers within vehicle tours for shared-ride operations.

Clearly not all operations pertain to all services. Bike-share services, for example,
only provide real-time information concerning the current availability of bicycles by
location, leaving customers to find their way to and rent one of these available bicy-
cles. They do, however, have to deal with rebalancing, since usage patterns often
result in large numbers of bicycles at popular destinations and too few bicycles
at some origin locations. Ridehailing operators, on the other hand, primarily are
concerned with matching customers to vehicles so as to both maximize the customer
experience (usually meaning minimizing service wait times) and minimizing oper-
ating costs (e.g. avoiding very long dead-heading of vehicles). They may or may
not engage in active attempts to rebalance the locations of the vehicles currently in
service.2 Pooling, of course, only pertains to shared-ride operations, but is a very crit-
ical component of the service, since the classical weakness of shared-ride services
has been poor customer experiences: long wait times and circuitous routing (and
hence long travel times relative to a more direct origin–destination journey).

Pricing levels and policies vary from one service to another and vary to the
extent that prices dynamically vary with demand levels (so-called surge pricing)
and, possibly, other factors (such as weather). Online payment systems based on
credit cards are, however, an important feature of all new mobility systems. The
convenience of this automated payment system should not be underestimated. At the
end of the day, differences between a conventional taxi and an Uber are arguably
not that great,3 but the convenience of being able to simply step out of the car at the
end of the trip (as well as the convenience of booking the trip with a few key-strokes
on a smartphone) appears to be a significant factor in the success of new mobility
services.

The role of informatics-basedplatforms, involving an integrated ofGPS,GIS, real-
time cell- andWeb-based communications, combined with high-capacity computing
and data processing and analytics based on artificial intelligence (AI) is fundamental

2Since ridehailing services currently depend on independent driver contractors, the ability of the
ridehailing platform provider to influence their locations when not in service tends to be indirect at
best.
3Although differences clearly exist, particularly, perceptual differences. Taxis, for example, are
often criticized as being “dirty”. Safety/security differences also exist, as do price differentials.
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to all such mobility services. It is such platforms that have allowed both conventional
taxi and transit services to be re-invented and for new technologies and services such
as bike- and e-scooter share services to emerge.

The concept of mobility as a service (MaaS) generalizes mobility services by
extending the platform concept to integrate two or more mobility services to provide
seamless, and door-to-door mobility solutions that dynamically mix and match
mobility services customer by customer to optimize their travel experience within
a one-stop-shopping process. MaaS is seen by many as the future of transportation,
with MaaS platforms acting as brokers that piece together different mobility services
to bestmeet the trip-maker’s needs and preferences. In such a future, a trip-makermay
be picked up at her door in a suburb by a ridehailing company, taken to a commuter
rail station just in time to board her train, and then have an e-bike waiting for her at
her downtown egress station to complete her journey to her office, all for one fare
automatically charged to her credit or debit card (perhaps with various loyalty points
as well).

Such complete mobility solutions do not generally currently exist, although many
companies and organizations are working toward their implementation. A particu-
larly important policy question exists concerning the extent to whichMaaS solutions
can be integrated to improve the cost-effectiveness and attractiveness of public transit,
so as to maintain it as a primary mass mover of trip-makers in high-density corri-
dors. Urban areas worldwide are currently overwhelmed by auto congestion, and it is
essential, however MaaS plays out, that it enables more efficient usage of transporta-
tion networks through the promotion of transit (where appropriate) and congestion
reductions, while still accommodating the growth in travel that is inevitable as urban
regions continue to grow. Notably, there is a growing literature that indicates that
current mobility services are both adversely impacting conventional transit usage
and increasing the amount of congestion (at least in central areas) in many cities (Li
et al. 2019; Graehler et al. 2019; Rayle et al. 2016).

While an academic literature exists that explores the potential impact of route-
guidance information on travel behavior, most of this is based on stated preference
surveys or hypothetical simulation experiments rather than real-world data. A major
barrier to investigating these questions is that the vast bulk of data concerning app
usage and subsequent behavior is proprietarily held by private companies who are
usually unwilling to share it with public agencies or academic researchers.

Enormous speculation currently exists concerning the potential impacts on travel
behavior of the ubiquitous availability of fully autonomous vehicles. Exploration
of this issue is well beyond the scope of this chapter. We simply note that CAVs
potentially might dramatically alter auto ownership levels (people may simple rent
mobility on a per-trip basis), public transit usage, and roadway congestion levels,
among many possible other impacts. Transit ridership impacts are a particularly
important policy question. CAVs might be used to support the use of higher-order
transit by providing first- and last-mile solutions for getting to and from transit in
low-density suburban neighborhoods. Or ubiquitous automated ridesharing services
might decimate transit usage, likely leading to increased, rather than decreased,
congestion on urban streets. In any event, increasing connectivity and automation of
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the transportation system will further increase the availability of massive, dynamic
real-time information concerning travel and the associated need for advanced infor-
matics methods for the storage and analysis of these data for transportation planning
and operations purposes.

47.3 Informatics and Transportation Network Performance

Transportation network performance is the emergent outcome of a short-run (day-
to-day, hour-by-hour, minute-by-minute) demand–supply interaction, in which the
performance of a network link (road or transit line segment) depends on the volume
of flow (cars, passengers, etc.) using the link at a given time. That is, the travel time
required to traverse the link (and associated congestion level) depends on the level
of link usage, while the number of users of the link depends (at least in part) on the
travel time experienced on the link.

Route-guidance apps surely have an impact on the route choices of individual
trip-makers (otherwise, why would they use them?), and, hence the distribution of
flows across links and paths within the network, and ultimately on link and path
travel times. Such apps are used both for pre-trip planning (What’s the best way of
getting there? What’s a good time to leave to avoid traffic?) and dynamic on-route
guidance. The actual impacts of such route-guidance apps on trip-makers’ route
choices, however, are typically unknown, since only the app companies usually see
the data and they are generally not telling.

Note that a major impact of CAVs is likely to be to take route choice deci-
sions largely out of the hands of the trip-maker and place them under control of
the vehicle and its associated automated route-guidance system. This should help
improve roadway performance since vehicles will be more likely to be spread across
network paths so as to minimize overall congestion. But this may also involve an
ethical issues of whether it is appropriate to impose a longer trip on one user so that
other users may benefit from shorter travel times (which is usually what is required
in order to reduce overall delay in the system).

Informatics-based connectivity (whether in an automated or conventional vehicle)
offers the potential for ubiquitous road pricing, in that if every vehicle’s location is
known and local roadway congestion levels are also known at each point in the
network, then usage of the road system can be dynamically priced to encourage
more system-optimal route choices by trip-makers, or, at least, to charge trip-makers
the actual social cost of their trip. Such a system addresses the ethical issue raised
above by creating the potential of offering multiple route choices to trip-makers: for
example, a quicker but more expensive route (since it involves higher social marginal
costs associated with the trip) or a slower but less expensive one (in which socially
beneficial behavior is encouraged or rewarded by a discounted travel cost).

Parking could be similarlymonitored and dynamically charged to reduce on-street
parking on congested streets, direct cars to vacant parking spaces, etc. Parking lots
and garages take up an enormous amount of valuable space, on-street parking very



47 Transportation Modeling 919

significantly reduces the capacity of our streets to carry traffic of all sorts (i.e. bicycles,
transit, etc. in addition to cars and trucks), and drivers cruising to find (cheap) parking
is a major source of congestion in its own right in most urban centers. Even with
conventional cars, informatics-based parking apps and usage monitoring systems
in parking lots can reduce these impacts considerably, as is being demonstrated,
for example, by the SF Park demand-responsive parking pricing experiment in San
Francisco (https://sfpark.org/). A major asserted benefit of CAVs is that they may
eliminate most on-street parking as well as significantly reduce parking lot needs,
especially in urban cores. As with all aspects of CAVs, these benefits are at the
moment speculative, but are the subject of considerable research (Nourinejad et al.
2018).

Informatics is also extensively (and increasingly) used in transportation network
operational control. Traditionally, roadway performance (volumes, speeds, conges-
tion levels) has beenmonitored by electromagnetic loop detectors embedded in road-
ways that detect vehicles passing over the detector by the magnetic signature of
the vehicle. While useful, such loop-detector systems are expensive to install and
maintain and are often subject to failure. Numerous other technologies now exist for
monitoring roadway traffic, including video cameras (which require advanced image-
processing methods for automated data gathering from the video images), Bluetooth
detectors (which detect the unique MAC addresses of vehicles, smartphones, and
other Bluetooth-enabled devices, thereby being able to trace the paths and average
speeds of these vehicles as they pass a sequence of detectors within the network),
and purchasing of on-board route-guidance and other passive location-detection app
data from third-party providers. In the case of public transit, many agencies have
automatic vehicle location (AVL) systems for tracking transit vehicles in real time
and automatic passenger counting (APC) systems for measuring real-time passenger
boardings and alightings per vehicle at each stop along a given transit route.

47.4 Informatics and Data Support for Travel-Demand
Modeling

The informatics-based services and apps discussed in Sect. 47.2 are generating
tremendous amounts of data, day after day, concerning millions of trips being made
within a given metropolitan region.

Travel-demand modeling has always depended heavily on large cross-sectional
surveys of trip-makers within an urban region. Such surveys are expensive and time-
consuming to undertake, subject to various sampling and other biases, and often
facing increasing challenges in terms of being able to generate representative samples
(Miller et al. 2012; Srikukenthiran et al. 2018). While traditional large household
travel surveys are likely to continue be undertaken for the foreseeable future (Miller
et al. 2018), current and emerging informatics methods offer promising alternatives
and complements to traditional surveys in terms of both newmodes and technologies

https://sfpark.org/
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for conducting surveys and new passive (non-survey) methods for observing travel-
related behavior, which are discussed in the following two sub-sections. Common to
all these sources of data is the problem of imputingmissing attributes of the trip or the
trip-maker, which requires advanced statistical data fusion and modeling methods,
which are briefly discussed in the third sub-section.

47.4.1 Informatics-Based Survey Methods

The primary two informatics-based survey methods are Web-based surveys and
smartphone-app-based surveys and trackers. Web-based surveys have become a de
facto standard method for undertaking travel surveys, replacing or complementing
more traditional methods such as telephone interviews, self-completed mail-back
surveys, and face-to-face interviews.4 Web-based surveys can be very cost-effective
since they eliminate the need to hire interviewers, and the marginal cost per survey
completion is very low once the up-front cost of the survey development and imple-
mentation is accounted for. On the other hand, establishing and contacting a repre-
sentative sample can be challenging, response rates can be low, and the quality of
responses can also be sometimes problematic given the lack of supervision and assis-
tance provided by an interviewer. This last problem, however, can be significantly
mitigated by very careful software design to maximize the clarity of the questions
being asked and to minimize respondent burden (Loa et al. 2015; Chung et al. 2020;
Srikukenthiran et al. 2018).

Similarly, many custom smartphone apps exist that have been explicitly designed
to track persons’ trip-making and to gather information concerning trip and trip-
maker attributes. These generally involve a brief up-front survey to gather key demo-
graphic and socio-economic information concerning the trip-maker (and, ideally, the
trip-maker’s household). The app then is designed to actively track all movements by
the person over multiple days, or even possibly weeks, using the smartphone’s on-
board GPS and other tracking capabilities. This generates space–time traces of the
person’s movements while carrying the smartphone (assuming that it’s turned on!).
The potential to gather detailed information concerning personal travel behavior is
considerable. In particular, route choice and information concerning active modes,
both of which are typically challenging to gather with conventional survey methods,
are readily gathered by such apps (Grond and Miller 2016; Lue and Miller 2019).
Numerous technical issues, however, are not fully resolved, thus limiting their current
widespread usage. These include issues of phone battery life versus the precision of
the route tracking (the more precise the tracking, the greater the drain on the battery);
the ability to impute travel mode and trip purpose purely from the trip trace; and the
representativeness of the smartphone-based samples and sample recruitmentmethods
(Rashed et al. 2015a; b).

4Even for these traditional survey modes, tablet-based Web software is being used to conduct and
record the interviews. See, for example, Chung et al. (2020) and Harding et al. (2017).
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Considerable processing of the raw traces also needs to be undertaken in order
to identify the end (stop) point of a trip in space and time (e.g. has the person
stopped for a quick shopping activity in a store or is she or he just waiting a long
time at a bus stop?), the purpose of the trip (i.e. the type of activity engaged in at
the trip end), and the mode of travel used to undertake the trip. Location, purpose,
and mode are all essential trip attributes if these data are to be useful for travel-
behavior analysis and modeling. Ideally, these attributes should be imputable from
the trace data themselves, combined with additional available data, notably GIS
datasets concerning land use and points of interest (POI—schools, stores, etc.) and
transportation network data concerning road and transit networks. That is, the respon-
dents are passively tracked, without having to explicitly query them concerning their
trip-making. If sufficient multiple-day data for enough trip-makers are available, then
machine learning methods can, in principle, be used to impute trip stop, mode, and
purpose. The current state of practice, however, is such that it is generally required
to actively gather at least some information concerning the trips being made, either
on the fly as the trips are being detected or at the end of a day through retrospective
questioning of the respondents. This active questioning allows labels to be attached
to the detected trips (this trip was by car to go shopping) that greatly enhances the
ability to train the automated attribute imputation models, at the price of imposing
an on-going response burden on the survey participants. Thus, active questioning is
often undertaken for a few days at the beginning of the survey period and then turned
off with the tracking app running totally passively for the remainder of the survey
under the assumption that the imputation apps can be sufficiently trained with the
sample of active data obtained (Faghih Imani et al. 2020;Harding et al. 2020;Harding
et al. 2016a, b).

47.4.2 Passive Trip Tracking

Numerous informatics-based methods exist to gather information concerning trip-
making behavior. These include (Miller et al. 2012):

• Passive smartphone-based location trackers.
• Cellphone traces.
• Transit smartcard transaction data.
• Bluetooth sensors.
• Credit card transaction data.

Passive Location Trackers: As discussed in Sect. 47.2.1, vast quantities of infor-
mation concerning trip-making are being collected by route-guidance apps, as well
as other apps that track smartphone locations for a variety of purposes. In addition
to facilitating route guidance, the data collected by such apps can be used to identify
origin-destination trips by time of day. These data can be distinguished from the
smartphone-app data discussed in the previous section in that they do not require
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involvement of the phone user in any way and they are completely anonymized (and
generally aggregated in one way or another).

CellphoneTraceData:Whenever turned on, all cellphones are in constant commu-
nication with their cellular network. Movements of cellphones (and, hence, their
owners) can thus be tracked through time and space. These cellphone traces require
significant processing in order to be useful for the analysis of travel behavior, but
many analysts are working with such processed data to develop datasets on origin-
destination trips by time of day in many urban regions (see Faghih Imani and Miller
(2018) for a comprehensive review). The primary attraction for cellphone trace data
is its ubiquity in providing massive amounts of travel data, day after day, in virtually
every urban region worldwide. Also, given the very deep penetration of cellphones in
today’s society, these traces can likely be treated as being reasonable representative
of the trip-making public. The major limitation of these, data, however, is that the
spatial-temporal resolution of the traces is inherently limited by the spacing of the cell
towers receiving the cellphone transmissions. Achievable resolutions vary consider-
ably within an urban region. The relatively gross resolution generally achieved poses
significant challenges with respect to imputing trip mode (which generally requires
good speed measurements) and trip destination activity type (Caceres et al. 2013;
Faghih Imani et al. 2018).

An interesting special use of cellphone tracking data is to identify intercity trips.
When a cellphone is detected in a city other than its home city, one can impute that
an intercity trip has occurred. Intercity travel is a particularly difficult travel market
to survey effectively, and so use of cellphone data for this purpose is a promising
avenue of research (Bekhor et al. 2013; Janzen et al. 2017).

Transit Smartcard Transaction Data: Another major informatics-enabled source
of travel data are data from smartcard transactions collected by public transit agen-
cies. Most major cities worldwide employ some form of smartcard for riders to
use to pay their fares, with these cards becoming almost universal in usage. These
data thus provide a near-complete record of transit usage in a city. These smart-
card systems vary in technical sophistication, but they generally involve one of two
primary designs: tap-on systems, in which transit riders tap into the system when
they first board a transit vehicle or enter a transit station; and tap-on-and-off systems,
in which riders must also again tap the card when they exit the system. These latter
systems obviously provide a complete record of all trips made from a first-boarding
stopor station to a last-alighting stopor station, by timeof day.Tap-on systems require
extensive processing to impute trip-alighting locations (typically by observing the
boarding location of the next transit trip), but still provide very usable information
concerning transit usage (Trépanier et al. 2007; Munizaga and Palma 2012; Parada
and Miller 2017).

Bluetooth Sensor Data: As noted in the previous section, Bluetooth detectors can
be used to track the passage of Bluetooth-enabled vehicles and personal devices as
they pass by detectors mounted along the side of a road. Using records frommultiple
antennas makes it possible to derive travel times between antenna locations. Hence,
depending on the setting, data could be used to derive O-D matrix and partial route
choice of a sample of vehicles (cordon setting). While the available data have mostly
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been used to provide information on vehicle movements, it is also becoming possible
to study pedestrian behavior. Malinovskiy et al. (2012) investigated the feasibility of
using Bluetooth for pedestrian studies using two separate sites. Their results suggest
that “given sufficient populations, high-level trend analysis can provide insights into
pedestrian travel behavior.”

Credit Card Transaction Data: Although not currently widely used due to lack of
access to the data, credit card transaction records can provide detailed information
concerning travel for a wide variety of purposes (basically any activity that involves
paying with a credit card at an out-of-home location for a good or a service). It also
provides expenditure data along with the activity/travel data, something which is not
generally gathered in conventional surveys, but could be very useful in modeling
not just time but monetary budget allocations. Further, it could provide information
concerning in-home versus out-of-home shopping/recreation expenditures, again,
something that is of considerable interest for understanding travel behavior. The
major limitations of this data source, of course, are whether access to such data can
be obtained, and the protection of the confidentiality of the data.

While each of these passive data types have their individual strengths and
weaknesses, they share common strengths in terms of:

• Providing a continuous stream of data over days, weeks, and even longer periods
of time, thereby permitting time-series analysis of travel trends and dynamics
(as opposed to the typically one-day cross-sectional snapshots obtained through
conventional surveys).

• Generating massive amounts of data, potentially for thousands or even millions
of trip-makers in a large urban region (as opposed to the small samples that can
typically be observed in conventional surveys); they truly are big data.

• Being total passive—they require no effort (or perhaps even awareness) on the
part of the trip-maker for the data to be collected.

They also, however, share common, significant challenges in their usage in travel-
behavior analysis and modeling:

• The data are inevitably anonymized to preserve confidentiality, and, thus, no
personal attributes of the trip-makers are known.

• The data are individual-based, not household-based. That is, we generally know
nothing about the other members of the trip-maker’s household. Household inter-
actions and constraints, however, generally significantly affect an individual’s
travel behavior.

• As with passive smartphone-app survey data, trip attributes beyond origin, desti-
nation, and trip start and end times are generally unknown. That is, trip mode5

and purpose need to be imputed.
• The spatial-temporal precision of the trace data can vary considerably from one

type of data source to another, and even fromone trip to anotherwithin a given data

5Except, of course, in the case of transit smartcard data, where the travel model obviously is transit.



924 E. J. Miller

type. Cellphone traces are particularly problematic in this regard, often making
mode and purpose imputation challenging.

47.4.3 Data Fusion and Imputation

As discussed above, there are many sources of information concerning travel
behavior, ranging from traditional surveys to various informatics-based passive data
streams. Virtually all such datasets are incomplete in one way or another in terms of
missing one or more attributes of the trip-maker or the trip that are desirable for travel
analysis andmodeling purposes. Thismay range from trip-makers’ incomes not being
collected in a household travel survey to a complete lack of information concerning
trip-maker characteristics in most passive datasets. Passive location-tracking data
also often lack explicit information concerning key trip attributes such as travel mode
and trip purpose. In all such cases, it is desirable to impute the missing information
through the fusing of two or more datasets to create a new, combined dataset that
contains a richer set of attributes than either original dataset. A common, relatively
simple example of this is using census data to impute missing income information
in a household travel survey. This is done by using the correlation between income
and other household attributes observed in the census data to impute the missing
incomes for households observed in the survey, based on the household attributes
that are observed in both the census and survey datasets (Bonnel et al. 2009).

Awide typology of data fusion and imputation use cases exist, withmanymethods
available for addressing these cases. Detailed discussion of these use cases and
methods is well beyond the scope of this chapter, but can be found in a range of
sources, including the work of Miller et al. (2012) and Srikukenthiran et al. (2018).
Only two observations are included here. The first is that a particularly important
type of data needed for many data fusion exercises that have not yet been mentioned
herein are data based on GIS concerning the spatial distributions of people (and their
attributes), jobs, and other economic and social activities (stores, schools, etc.). These
may be stored at various levels of spatial aggregation (traffic zones, census tracts,
etc.), but are also often available in increasingly accurate and comprehensive POI
datasets from a variety of commercial and open-source providers. POI data provide
information concerning land uses at the very fine level of detail of the individual
building, parcel, or geocoded point in space. They thus enable highly disaggregated
analysis of point-to-point travel behavior, which is increasingly the level of detail at
which travel-demand models are being developed.

Second, as in virtually every sphere of data analysis today, machine learning
methods are being increasingly applied to a wide variety of transportation data fusion
problems (Gao et al. 2017). One such example involves the use of transit smartcard
transaction data, combined with conventional household survey travel data, to train
a deep neural network model to predict travel mode. This model is then applied to
cellphone trace data to impute the travel mode for the trips represented by these
traces (Vaughan et al. 2020).
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47.5 Informatics and Modeling Methods

As noted at the beginning of the chapter, a thorough discussion of travel-demand
modeling methods is well beyond the chapter’s scope. A few characteristics of the
current state of best practice, however, include those by Miller (2018, 2019):

• Essentially, all best-practicemodels are based on activities and tours, in which: (a)
travel is the emergent outcome of the need to participate in out-of-home activities;
and (b) individual trips are modeled within the context of the overall tours or
trip-chains that people engage in throughout their daily activity pattern, so that
within-tour decision-making interactions can be accounted for (e.g. if a car leaves
the driveway it must eventually return home).

• Travel behavior is largely modeled using sophisticated discrete-choice models
based on random utility theory, which provides a very strong behavioral
foundation for operational models.

• Increasingly, these activity- and tour-based models are implemented within an
agent-based microsimulation modeling framework (see Chap. 44).

• The development of such models has been based on sophisticated, but
classic, econometric parameter-estimation techniques (typically maximizing
log-likelihood functions).

• Even very complex model systems for large urban regions are developed based
on relatively small, cross-sectional samples of a region’s trip-making population.

Modern informatics is providing both challenges to the current modeling status
quo and opportunities for the development of next-generation models. As noted in
Sects. 47.1 and 47.2, informatics-based apps are providing enhanced information
and influencing travel choices in ways that are not completely understood and that
definitely are not being captured in currently operational models. However, it might
also be noted that current models typically assume implicitly that trip-makers have
perfect information concerning their travel options and attributes. Hence, it might be
argued that these new information sources are actually bringing behavior more in line
with modeling assumptions since trip-makers now do have much better information
to use in their decision-making!

While the future is perhaps more uncertain than ever before, a few important,
specific, and informatics-related observations concerning the current and emerging
state of the art in travel-demand modeling can be made with reasonable confidence
and are provided below.

First, current best-practice models definitely are not well suited for analyzing new
mobility systems, let alone CAVs (Miller 2019). These models need to be redesigned
and rebuilt to much better represent both demand decisions and the performance and
supply characteristics of these new services (Calderón and Miller 2019, 2020). As
data concerning the performance and usage of a wide variety of mobility services
become available, the potential for developing improved models increases. New
informatics-enabled survey methods also provide the opportunity to gather data on
trip-maker preferences and attitudes that will assist in this endeavor.
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Second, the increasing availability of massive and passive big data is going to
profoundly change how we model travel behavior. While significant technical issues
remain, they will provide the opportunity to:

• Develop dynamicmodels of travel-behavior evolution, freeing us from the tyranny
of infrequent, cross-section survey datasets as a basis for model building.

• Establish much more comprehensive and complete representations of travel in an
urban region, freeing us from dependency on small-sample surveyswhich, despite
their richness in socio-economic information, inevitably contain significant
sampling and response biases.

Third, machine learning and other AI-based methods are rapidly being applied
to travel-demand modeling (Yin et al. 2016). While such methods often produce
better fits to base data than conventional econometric methods, whether they actually
represent improved models for policy analysis and forecasting is very much an open
question.A very interesting panel sessionwas held at theUSTransportationResearch
BoardAnnualMeeting in 2017 titled “MachineLearning Is fromVenus, Econometric
Modeling Is from Mars: Two Different Travel Forecasting Perspectives.” The very
strong consensus coming out of this session was that the two modeling approaches
are primarily complementary, and that travel-demand modeling needs to optimize its
exploitation of both modeling disciplines if it is to meet the profession’s modeling
needs. In particular, the notion that the advent of big data and AI-based analysis
methods will mean the death of (travel demand) models does not appear to be either
a likely or attractive alternative. Longer-term, strategic forecasting requires models
that can generate emergent, out-of-sample, extrapolated behavioral responses to new
scenarios, policies, etc. They cannot just extrapolate current patterns. Further, the
interpretability of model sensitivities, elasticities, etc., is a critical component of
travel-demand modeling, something that machine learning methods are notoriously
poor.

More speculatively, two final questions concerning how informatics-based data
and methods might fundamentally change travel-demand modeling in the coming
years are the following.

First, can the relatively rich theory of travel behavior that the field has devel-
oped over the past sixty years, combined with advanced simulation, data fusion, and
machine learning methods be used to both bridge the socio-economic information
gaps typical in big data and to merge complementary data sets together to create
much more comprehensive representations of travel behavior? Vaughan et al. (2019)
provide one example of this approach, in which cellphone traces, transit smartcard
transactions, and conventional home-interview travel survey datasets are merged to
create a more comprehensive representation of base-year travel than it is possible to
achieve from any of the three datasets independently.

Second, is there a quantum theory of travel behavior out there? That is, is there
a more explicitly statistical (as opposed to behavioral) approach to modeling that
is better suited to the strengths (and weaknesses) of the new datasets? But such a
theory or model would still need to be predictive to answer what-if questions. In
physics, prediction is the ultimate proof of a theory: Einstein’s theories of special
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and general relativity were accepted, not because of their elegance, but because they
are capable of predicting actual behavior. And, indeed, quantum theory’s acceptance
rests on its ability to predict real-world phenomena (and despite the objections of
Einstein on philosophical grounds). The great question facing travel behavior theo-
rists and modelers going forward is how urban informatics-based data and methods
will enable us to obtain deeper understanding of actual travel behavior, and, building
on this understanding, to developmore powerful and compelling theories andmodels
of travel behavior that enable us to better predict travel behavior in support of
transportation policy analysis and forecasting.

47.6 Chapter Summary

This chapter has examined the many ways in which informatics has been changing
transportation modeling. These include disruptive changes to: travel behavior,
transportation system performance, the data available for model development and
application, and modeling methods themselves.

Travel behavior is being influenced primarily by two types of informatics-based
services. The first is travel-related Web- and smartphone-based apps that provide
a wide range of real-time information, including roadway route guidance, transit
service information, and information concerning alternative activity locations. This
information is used in both trip preplanning and on-route dynamic decision-making.
The second disruptor of travel behavior is the wide variety of new informatics-
enabledmobility services that provide trip-making alternatives to conventional travel
modes such as public transit, taxis, and even the privately owned car. Most notable
are the Uber and Lyft ridehailing services. Other mobility service types include
ridesharing (UberPool), car-sharing, bike-sharing, e-scooters, and various forms of
demand-responsive transit and microtransit. The mobility service field is evolving
rapidly, and the final steady state with respect to these services and their impacts on
travel behavior is very difficult to predict. It is clear, however, that travel-demand
models will need to evolve considerably if they are to be adequate tools for modeling
these impacts and to provide the level of policy guidance needed to ensure socially
beneficial outcomes with respect to these services.

These changes in travel behavior and mobility service options are also impacting
transportation network performance, notably in terms of roadway congestion and
transit usage. Informatics also can support improved real-time control of road and
transit operations, implementation of road pricing schemes, and managing parking
supply and pricing.

Informatics technologies are also dramatically changing the data available to
support travel-demand modeling. Web-based and custom app-based survey methods
are complementing, and increasingly replacing, conventional survey methods for
collecting travel-behavior information. In addition, a wide variety of sources for
passively tracking trips are available, where by passive is meant that the trip-maker is
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not required to interact with the tracking device or answer any questions. Passive trip-
tracking data sources include: smartphone-based location-tracking apps (the route-
guidance apps discussed above, but many other apps routinely track the phone’s
location); cellphone traces; transit smartcard transaction data; Bluetooth sensors;
and credit card transaction data. All these data sources offer massive amounts of
information, gathered continuously over time concerning trip-making in a given
region. They also share common issues concerning lack of socio-economic infor-
mation about the trip-makers, as well as lack of key trip attributes such as travel
mode and trip purpose. A variety of data fusion and imputation methods (including
machine learning methods), however, can often be used to augment the passive data,
thereby enhancing their utility for modeling.

Given the increasing availability of large, passive datasets, travel-demand
modeling will inevitably evolve to exploit these data. Continuous time-series streams
of data should support the development ofmore dynamic (adaptive)models. The very
large samples of trip-makers observable within these datasets should lead to models
that are more representative and comprehensive relative to current models, which
have relied on relatively small-sample survey data for their development. Machine
learning and other AI-basedmethods will continue to play an increased role in model
development and application. And, finally, it is possible that travel-demand models
may adopt a more explicitly statistical approach to modeling travel behavior (as
opposed to the current emphasis on a more behavioral approach) as the optimal way
of exploiting the massive, passive datasets with which modelers will be increasingly
working.

The challenges facing transportation modelers in the emerging informatics-
enriched and informatics-enabled world are large. But the opportunities to develop
significantly improved and more powerful models for policy analysis and decision
support are also great. It is an exciting time to be a transportation modeler!
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Chapter 48
A Final Word: The Value of Urban
Informatics

Michael F. Goodchild

48.1 Introduction

The chapters of this book include a rich collection of novel forms of data acquisition,
techniques of analysis and visualization, and broader concerns about such topics
as privacy, urban governance, and urban planning. It is clear from this outpouring
of material that urban informatics is a large and burgeoning field. In some cases,
especially the chapters in Part IV, the objectives have been the traditional ones of
science: the acquisition of new and general knowledge, in the tradition of the UK’s
Royal Society (to give it its full seventeenth-century title as devised by Isaac Newton
and others: the Royal Society of London for Improving Natural Knowledge). In other
cases, the objectives are more those of planning; they are normative, in the sense
that they assume an ability to design and intervene according to certain principles,
using established scientific knowledge. In yet other cases, the authors have been
satisfied simply to report capabilities and to discuss the new kinds of data that urban
informatics is generating, without any explicit statement of the objectives to which
those capabilities and new data are to be applied or how value should be assessed.
The finale of the book seems an appropriate place to indulge such broader issues of
context.

Several chapters have been concerned with big data, which they have defined
in terms of characteristics beginning with V (see, for example, Chap. 43, which
cites five Vs: volume, variety, velocity, veracity, and value). Volume, variety, and
velocity are central to discussions of big data: volume implying an abundance of
data, variety implying amultiplicity of sources, and velocity implying near-real time.
Veracity clearly refers to data quality, which big data often lack when compared to
more traditional data-production programs; in a sense, then, the fourth V might
be identified as an anti-V. Including value, however, begs the question of purpose:
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whose interests are served by big data? More fundamentally, we can ask the same
question about urban informatics: whose interests does it serve, and whose interests
are marginalized?

To what extent should specialists in urban informatics concern themselves with
these issues? In the early 1990s, a number of scholars drew attention to the social
implications of geographic information systems (GIS; Pickles 1995; Schuurman
2000), with the implicit or explicit suggestion that developers of GIS were ignoring
such concerns. Much of the early technical development of GIS originated in Eisen-
hower’s military–industrial complex, where its purposes could easily be seen as
diametrically opposed to the immediate concerns of a civilian society (Smith 1992).
GISs were being used even then to track andmonitor citizens (https://www.co.pierce.
wa.us/1964/Sex-Offenders-in-Pierce-County), and today geospatial technologies are
an essential part of many programs of public surveillance (Chap. 32). Asking these
questions about urban informatics recalls the kinds of soul-searching that occurred
during and after the development of the atomic bomb, though that case is clearly
more extreme. For example, it is hard to imagine anyone working in urban infor-
matics to be driven, as Oppenheimer was on witnessing the first nuclear explo-
sion, to quote from the Bhagavad Gita: “Now I am become death, the destroyer of
worlds” (https://www.wired.co.uk/article/manhattan-project-robert-oppenheimer).
Nevertheless, it seems appropriate at the end of the book to enquire about that
fifth V and its implications for the future. What kind of urban world is likely to
result from all of this research and development, and what can be done to ensure
that the field moves in a positive rather than a negative direction? In developing and
advancing urban informatics, are we headed for a future utopia, and what kinds of
dystopias might emerge as unforeseen and unintended consequences? Are we, like
Mark Zuckerberg and the early days of Facebook, in favor of technical disruption
for its own sake (Taplin 2017), or would we rather a more considered future, a slow
urban informatics if you like? In short, what constitutes value in urban informatics?

To focus this discussion of the bigger picture somewhat, the next section proposes
several alternative visions of what urban informatics is about, and its corresponding
form of accountability.

48.2 Visions for Urban Informatics

48.2.1 Urban Intelligence

James Clapper, who retired in 2017 as the US’s Director of National Intelligence,
a position in which he oversaw the activities of 17 distinct government organiza-
tions including the National Geospatial-Intelligence Agency, argues strongly in his
recent autobiography (Clapper 2019) that the gathering, assembly, and interpreta-
tion of intelligence should be driven by a simple vision: the speaking of truth to
power. The policy decisions that result from that intelligence are the responsibility

https://www.co.pierce.wa.us/1964/Sex-Offenders-in-Pierce-County
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of other leaders and branches of government to whom the intelligence community
(IC) reports, and should not bias or distort the community’s primary function. We
could argue, then, that the value of urban informatics lies in the scientific quality of
the data acquired, and the compilations, interpretations, analyses, and visualizations
performed. Urban informatics should be replicable so that independent investigators
should reach the same conclusions, should capture and address uncertainties, and
should use terms, definitions, and practices that are as far as possible shared and
standardized. The urban IC should be driven by an objective of speaking truth to
urban power, whether it be city administration, elected representatives, or the urban
public.

Is this a useful vision for urban informatics? It is certainly aligned with much
writing on smart cities. Its ultimate goal would be the development of data acquisi-
tion programs to capture a representation of the city and its enormous complexity—
as close as possible to a digital twin—that could then support the city’s decision-
making processes. It implies a simple kind of accountability, and a taxonomy of
different kinds of intelligence somewhat comparable to the signals intelligence
(SIGINT), geospatial intelligence (GEOINT), intelligence derived from social media
and other social sources (HUMINT), etc., of the IC. But there are several compelling
alternatives.

48.2.2 Urban Science

Many chapters, especially those in Part IV, are driven by the traditional goals of
science: the acquisition of knowledge about urban systems. Such knowledge should
be generalizable, since urban science looks for processes that are replicable across
many urban environments. Just as physics searches for general laws and principles,
it would be of little interest in urban science to discover knowledge about London,
or some part of London, that cannot usefully be applied and implemented in other
cities and neighborhoods, at least in those that bear some resemblance to London;
and cannot be usefully applied at other times. Urban science is driven by the belief
that such general principles exist, and can be discovered through the kinds of natural
experiments that rely on observations, public-sector programs that gather statistical
data, crowdsourcing, remote sensing, and data that can be cajoled from the private
sector’s enormous stocks.

Geography as a discipline has long struggled with finding a balance between
the search for general principles on the one hand, and the documentation of the
unique on the other, since the latter is after all what drove the Age of Discovery
in Portugal and the explorations that have always captivated the human imagina-
tion. It concerned Varenius, the Polish-Dutch geographer of the seventeenth century
(Warntz 1989),whowrote aboutwhat he termedSpecial (idiographic)Geography and
General (nomothetic) Geography. It drove a debate in the 1950s between Schaefer
and Hartshorne (Harvey 1969) that remains a cornerstone of graduate courses in
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geographic thought. The more prestigious sciences will often describe idiography
using perjorative (to them) terms such as “journalism” and “mere description.”

Today, this debate has become more nuanced. Techniques such as geographically
weighted regression (GWR; Fotheringham et al. 2002) and local indicators of spatial
association (LISA; Anselin 1995) represent a form of compromise: a set of structures
whose forms can be generalized, but whose parameters are allowed to vary in space
and perhaps also in time. We might term this weak generalizability, and several
arguments can be presented in its favor. In the social and environmental sciences, it
is hard to imagine any principle being truly deterministic, since there will always be
unaccounted factors. In short, the goal of an R2 of 1 will always be unattainable. If
those unspecified factors vary spatially, then the effect will be a spatial variation in the
parameters of the model. Alternatively, we might argue that processes do truly vary
with location: that growing up in Detroit is fundamentally different from growing up
in New Orleans, all other things being equal.

If urban science is indeed driven by curiosity, then its responsibilities end when
knowledge is shared through the process of publication. Application and implemen-
tation become the responsibility of others, as in the first vision of urban intelligence,
and one can imagine an applied urban science emerging that is devoted to the use of
general urban knowledge—or perhaps, it would be better termed urban engineering.
The value proposition is now different: instead of the abstract concepts of under-
standing and explanation that drive curiosity-driven science, applied urban science
would be accountable through its broader impacts.

48.2.3 Urban Planning and Design

The fifth V has already taken two different meanings in these sub-sections. Value in
the case of urban intelligence will be determined by policy- and decision-makers,
based on the degree of support given by the information provided to them. In the
case of urban science, value derives in the first instance from the production of
generalizable knowledge, and less directly from its usefulness in application. But the
urban planning and design that have been discussed in several chapters of this book
proceed according to a prior definition of value: the extent to which plans and designs
are consistent with agreed principles. In short, they are normative, unlike the previous
two visions. In some cases, these principles may be at least partially embedded in
software, as in Chap. 35 and in the broader area of spatial optimization, which seeks
to design solutions to problems that are optimal against defined objectives.

Many issues complicate that simple vision. First, except in the simplest instances,
it will be difficult to reach an agreement on the principles that drive planning and
design. Will they serve the interests of a minority at the expense of the majority?
Will they adequately address the needs of those whose voices are often muted or
unheard? The field of multicriteria decision-making has evolved as a model of how
decisions can be made in the face of conflicting goals; its tools include methods
for determining consensus weights to be applied to alternative numerical criteria
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(Saaty 1977). Second, while we might argue that a decision based on agreed criteria
is inherently more fair, in practice any solution is bound to be seen to favor one
position or another.

48.2.4 Urban Development

The value proposition for business is of course amatter of simple economics: innova-
tions are driven in the first instance by their ability to make money.While disruptions
such as Uber or dockless bikes can certainly have redeeming social value, it is their
eventual profitability that ultimately drives their growth. Many businesses invite the
users of their apps to allow locations to be shared andmay argue that the result will be
more specific information to the user. This is the case for wayfinding apps, and also
for many news or weather apps. But the business case for such apps relies at least in
part on the market value of those user locations to retailers, advertisers, and others.
This trading of location data will be consistent with the app’s terms and conditions
of use, but the user is unlikely to have taken the time to read their tens of pages of
fine print and to have realized what they imply.

48.3 Unintended Consequences

Although the previous section has outlined how value can be assessed under different
visions of urban informatics, it is often the unintended consequences of actions and
developments that determinewhether outcomeswill eventually be assessedpositively
or negatively. How, for example, should we assess the impacts of online shopping?
The individual citizen benefits from having goods delivered quickly, without the time
and expense of a shopping trip. New jobs are created in the city’s delivery industry,
and profits are made by the owners of shopping Web sites and their suppliers. But
the impact on traditional shopping is severe, with significant loss of local employ-
ment and the closure of conventional retail businesses, and in some cases, wholesale
abandonment of shopping centers. Supply chains may have to be reorganized, and
the city’s function as a regional shopping center may be undermined.

The advent of connected and autonomous vehicles (CAVs) provides a suitable
case in point. Already many new vehicles are connected to the Internet, and capable
of reporting details of location, driving habits, and even driver biometrics. Such data
can be useful to the parents of young drivers, to insurance companies following a
crash, and to mechanics when a vehicle is serviced. They have commercial value, as
already noted in Sect. 48.2.4. But they also potentially have more sinister value to
traffic-control systems and law enforcement, and to what has been termed automated
social control (New York Times 2020).

Cities are complex phenomena, performing functions that are not only internal but
also regional and global. The growth of IoT will benefit the city through the services
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it provides, but will also benefit employment in high-tech industries in cities that
may be half a world away; and the waste created by the city will almost certainly be
exported to the city’s hinterland, to areas downwind and downstream, and to foreign
markets for recycled material. What may be out of sight and out of mind to a city’s
citizens may be very real to people elsewhere in the world.

48.4 The Future of Urban Informatics

Whether as a means for gathering urban intelligence, or as a basis for new urban
science, or as a tool for planning and design, or as a source of profit for developers,
urban informatics is clearly destined for accelerating growth. There is little danger
of it experiencing a quick death as a short-term fad. Yet it can also be a source of the
future dystopia, given its potential for surveillance and control.

This short piece has drawn attention to two issues: the different ways in which
parts of the urban informatics community address the value of what they are doing;
and the temptation to focus on the internal complexity of the city without addressing
the complexity of its external linkages.

There are obvious similarities between the emerging field of urban informatics
in 2020 and the state of GIS in the early 1990s: both are growing strongly, with
enormous promise. It is important therefore that the kinds of concerns for broader
social impacts that emerged at that time in the GIS research community, and led to
an outpouring of important research, should also become part of the agenda of urban
informatics. We are the people to explore these broader impacts and to raise these
issues with our governments and with the public.
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