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Abstract: This paper presents the constitution of a computationally intelligent self-adaptive steering
controller for a lawn-mowing robot to yield robust trajectory tracking and disturbance rejection
behavior. The conventional fixed-gain proportional–integral–derivative (PID) control procedure
lacks the flexibility to deal with the environmental indeterminacies, coupling issues, and intrinsic
nonlinear dynamics associated with the aforementioned nonholonomic system. Hence, this article
contributes to formulating a self-adaptive single-neuron PID control system that is driven by an
extended Kalman filter (EKF) to ensure efficient learning and faster convergence speeds. The neural
adaptive PID control formulation improves the controller’s design flexibility, which allows it to
effectively attenuate the tracking errors and improve the system’s trajectory tracking accuracy. To
supplement the controller’s robustness to exogenous disturbances, the adaptive PID control signal
is modulated with an auxiliary fuzzy-immune system. The fuzzy-immune system imitates the
automatic self-learning and self-tuning characteristics of the biological immune system to suppress
bounded disturbances and parametric variations. The propositions above are verified by performing
the tailored hardware in the loop experiments on a differentially driven lawn-mowing robot. The
results of these experiments confirm the enhanced trajectory tracking precision and disturbance
compensation ability of the prescribed control method.

Keywords: lawn-mowing robot; steering control; single-neuron PID; Kalman filtering; fuzzy immune
system; trajectory tracking; disturbance rejection

1. Introduction

Wheeled mobile robots (WMRs) are considered a core constituent of contempo-
rary robotics, with applications spanning industrial automation, service robotics, and
autonomous vehicles [1]. Their popularity arises from their relatively simple mechani-
cal structure, energy efficiency, and ease of control, making them versatile for various
tasks in both structured and unstructured environments [2,3]. The growing demand for
automation in agricultural and domestic applications has significantly increased interest
in WMRs capable of performing repetitive tasks with minimal human intervention [4].
One such application is lawn mowing, where autonomous robots offer a sustainable and
labor-saving alternative to traditional methods [5–7]. The challenge in developing effective
lawn-mowing robots, however, lies in achieving precise and robust trajectory tracking over
uneven terrains and amidst various environmental disturbances [8]. To address these chal-
lenges, advanced control strategies must be employed to enhance the system’s adaptability
and reliability [9]. Agile feedback control strategies ensure robust trajectory tracking for
lawn-mowing robots, where precision and resilience to environmental disturbances are
necessary for optimum performance [10].
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1.1. Literature Review

The development of WMRs has seen significant advancements, particularly in develop-
ing control systems that ensure accurate and efficient locomotion of the robotic system [11].
The kinematics of a differentially driven robot offer straightforward navigation in planar
environments with minimal computational requirements [12]. However, as WMRs are
increasingly deployed in complex and dynamic environments, more sophisticated control
systems have been developed to enhance their performance [13]. Thus, agile feedback
control strategies are crucial in ensuring robust trajectory tracking for lawn-mowing WMRs,
where precision, adaptability, and resilience to environmental disturbances are necessary
for optimal performance [14].

Control systems for WMRs can be categorized into classical, modern, intelligent,
and inverted control approaches, each offering unique advantages and challenges [10,15].
The straightforward design and efficacy of the proportional–integral–derivative (PID)
controllers make them popular in trajectory-tracking applications [16]. Nevertheless, tradi-
tional PID controllers often struggle with nonlinearities and time-varying uncertainties in
dynamic environments [17]. The fractional order PID controller offers improved design
flexibility and increased degrees of freedom, making the control procedure more responsive
to nonlinearities and random perturbations [18]. Nevertheless, it also introduces several
new variables that complicate the controller parameterization [19]. Additionally, the com-
putational implementation of the non-integer order integral and differential operators used
in fractional controllers is quite complex and thus typically necessitates specialized numer-
ical techniques and approximation methods for real-time applications. Gain-scheduled
adaptive PID controllers can vary the controller parameters online based on the current
state error, improving performance over a broad range of operating conditions [20]. How-
ever, establishing sufficient closed-loop stability conditions poses a challenging problem.
Sliding mode controllers (SMCs) offer high robustness against parameter variations and
external disturbances, making them ideal for trajectory tracking on rough and unpre-
dictable terrains [21,22]. However, it unavoidably introduces high-frequency oscillations
and chattering, which cause actuator saturation or mechanical wear of the actuator(s) [23].
Model predictive control (MPC) provides a more flexible framework by optimizing con-
trol actions over a future time horizon while adhering to system constraints [24]. This
allows for better handling of complex dynamics and environmental uncertainties [25].
Despite its robustness, MPC is computationally intensive, which can be a drawback for real-
time applications [26].

The pervasive intelligent control strategies can learn from data and adapt to changing
conditions, offering superior performance in unpredictable environments [27]. Intelligent
control systems, which include approaches such as fuzzy logic and neural networks-based
methods, have shown significant promise in enhancing the trajectory tracking accuracy of
WMRs [28]. Fuzzy logic control provides an intelligent method for handling parametric
uncertainties in the WMR’s environment [29]. By incorporating a fuzzy-inference system
(FIS), the controller can handle the inherent fuzziness in real-world conditions like uneven
terrain, obstacles, or changes in grass height [30]. The fuzzy rules tend to improve the
system’s adaptability without requiring an exact mathematical model [31]. Artificial neural
networks (ANN) can also be used to approximate nonlinear control laws for trajectory
tracking [32]. A neural controller learns the robot’s dynamics and environment through
training, providing self-adapting capabilities that make it highly suitable for environments
with unknown disturbances or complex dynamics [33,34]. However, it requires extensive
training data and computational resources [35].

The single-neuron adaptive PID controller (SN-APID) is a specific neural network
control procedure where only a single neuron is commissioned to modify the PID controller
gains in real-time, enhancing its capability to handle environmental indeterminacies while
preserving computational economy of the control algorithm [36,37]. An online training
process is typically used to adaptively self-adjust the weights associated with the single-
neuron model. A plethora of neural network training techniques have been published [38].
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However, the majority of them suffer from poor learning rates and excessive sensitivity the
operating conditions [39]. The extended Kalman filter (EKF) and its variants have recently
gained a lot of attention because they use fewer neurons and epochs [40]. As compared
to the conventional backpropagation algorithm, the EKF yields improved convergence
time and faster learning speeds [41]. The EKF has demonstrated promising results for
both offline as well as online training of various recurrent and feedforward neural network
applications [42].

Another promising intelligent control approach is the integration of fuzzy logic and
immune regulation mechanisms, which mimic the human immune system’s ability to detect,
adapt, and respond to disturbances [43]. This combination offers a robust and adaptive
control framework capable of maintaining high performance in uncertain environments [44].
The fuzzy-immune-based controller is highly resilient and adaptable, making it ideal for
environments where disturbances can affect the robot’s performance [45].

1.2. Main Contributions

This article proposes a fuzzy-immune-regulated single-neuron PID control system
specifically designed for trajectory tracking in a lawn-mowing robot. The single-neuron
adaptive PID (SN-APID) control law enhances the controller’s adaptability by self-adjusting
its gains in real-time, while the serially connected fuzzy-immune block acts as an auxiliary
self-regulation mechanism that improves the closed-loop system’s resilience to disturbances.
The SN-APID control law is driven by a preset cubic polynomial of the tracking error
variable. The modified error signal creates amplified and attenuated regions of error,
resulting in a stiff and soft control application, respectively. The fuzzy-immunological
computations further refine the system’s adaptability, offering a cascaded control strategy
that dynamically reconfigures the control trajectory as a function of state variations and
control input dynamics. By integrating these elements, the proposed control procedure
achieves robust trajectory tracking, even under disturbance conditions, such as varying
terrain gradients and obstacles. The key contributions of this paper are listed below:

1. Computation of the WMR’s modified tracking error along the linear and angular
positions using a pre-configured odd-powered cubic polynomial.

2. Constitution of error-cube-driven SN-APID controllers to track the WMR’s linear and
angular positions.

3. Formulation of the cascaded fuzzy-immune regulator to robustify the APID control signals.
4. Verification of the prescribed control scheme by performing credible experiments, in

the physical environment, on a lawn-mowing WMR platform.

Feedback control strategies for robust trajectory tracking in lawn-mowing robots
require adaptability and resilience to handle environmental disturbances and nonlinear
system dynamics. Thus, the proposed hybrid control strategy integrates fuzzy-immune
regulation with single-neuron PID control to provide a pragmatic approach for robust
and precise trajectory tracking. The fuzzy-immune regulation addresses uncertainties and
enhances adaptability to disturbances, whereas the single-neuron PID controller dynami-
cally adjusts the control gains to respond to changing conditions, such as varied terrain or
unexpected disturbances. This approach increases the robot’s ability to maintain robust
trajectory tracking in uncertain and nonlinear environments.

The rest of the article is structured as follows: the kinematic modeling and the velocity
control procedure for a differentially driven WMR are discussed in Section 2. This section
also describes the systematic constitution of the EKF-driven SN-APID control law. The
proposed fuzzy-immune-regulated SN-APID control system is described in Section 3,
along with its design process and associated mathematical formulae. Experimental results
and their comparative analysis are presented in Section 4 to authenticate the proposed
controller’s efficacy in the physical environment. The paper is finally concluded with key
insights and future research directions in Section 5.
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2. System Description

Differentially driven WMRs are widely favored in various applications due to their
simple design, controllability, and versatility in navigating different types of terrain [12].
They are typically equipped with two independently controlled wheels, each capable of
rotating at different velocities to achieve both forward motion and steering [29]. Under-
standing the motion dynamics of a differential drive WMR typically requires a kinematic
model that captures the robot’s configuration and wheel dynamics.

2.1. WMR’s Kinematic Model

The mathematical relationship between the WMR’s overall motion and the individual
wheel velocities is described by its kinematic model [46]. Specifically, this involves mapping
the WMR’s angular and linear velocities to the velocities of left and right wheels [47].
Assuming that the WMR operates on a plane and the wheels do not slip, its motion can be
described via the following set of velocity components.

.
z(t) =

[
.
x(t)

.
y(t)

.
θ(t)

]T
(1)

where
.
x(t) is the WMR’s linear velocity along the x-axis dictating the forward (or backward)

motion,
.
y(t) is its linear velocity along the y-axis dictating the sideways motion, and

.
θ(t)

is its angular velocity around the vertical axis dictating the rotation. The configuration of
a differentially driven WMR in a global coordinate frame is summarized in terms of the
following state variables.

z(t) =
[
x(t) y(t) θ(t)

]T (2)

where x(t) is the robot’s position along the x-axis, y(t) is the robot’s position along the
y-axis, and θ(t) is the robot’s heading angle (or orientation). The forward kinematics of the
WMR are described through the formulations in (3) and (4) of the WMR’s linear velocity
v(t) and angular velocity

.
θ(t).

v(t) =
r
2
(vR(t) + vL(t)) (3)

.
θ(t) =

r
L
(vR(t)− vL(t)) (4)

where vR(t) is the velocity of right wheel, vL(t) is the velocity of left wheel, r is the wheel’s
radius, and L is the gap between the two wheel’s centers (wheel base). The posture of the
WMR about a given set of coordinates

(
xo, yo, θo

)
is shown in Figure 1.
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The linear velocity components of the WMR along the x-axis and y-axis are represented,
as shown in (5) and (6).

.
x(t) = v(t)cos θ (5)
.
y(t) = v(t)sin θ (6)

The WMR’s forward kinematics are expressed in terms of
.
x(t),

.
y(t), and

.
θ(t), as

shown below.
.
x(t) =

( r
2

cos θ
)

vR(t) +
( r

2
cos θ

)
vL(t) (7)

.
y(t) =

( r
2

sin θ
)

vR(t) +
( r

2
sin θ

)
vL(t) (8)

.
θ(t) =

r
L

vR(t)−
r
L

vL(t) (9)

The equations above are rearranged, as shown in (10) and (11), to express vR(t) and
vL(t) in terms of

.
x(t),

.
y(t), and

.
θ(t), [48].

vR(t) =
cos θ

r
.
x(t) +

sin θ

r
.
y(t) +

L
r

.
θ(t) (10)

vL(t) =
cos θ

r
.
x(t) +

sin θ

r
.
y(t)− L

r

.
θ(t) (11)

The above relationships can be represented in matrix form, as shown in (12), facilitating
the transformation from robot velocities into wheel velocities.

[
vR(t)
vL(t)

]
= T


.
x(t)
.
y(t)
.
θ(t)

 (12)

where T is the transformation matrix. It is defined as shown in (13), [48].

T =

[ cos θ
r

sin θ
r

L
r

cos θ
r

sin θ
r − L

r

]
(13)

The WMR platform used for experimentation in this study has a wheel base of
L = 0.60 m and wheel radius of r = 0.15 m (See Figure 1).

2.2. Measurement of Robot’s Orientation and Position

The proposed robotic platform uses two different sensors to measure the WMR’s
orientation and position. The wheel encoders measure wheel rotation directly to estimate
the robot’s orientation and position. However, wheel slippage, wheel wear, and interaction
with uneven terrains tend to distort its measurements by accumulating errors over time. The
IMUs, on the other hand, provide the measurements of angular velocity and acceleration to
estimate sudden changes in orientation and position. Since they have no contact with the
wheel, their measurements remain unaffected by the terrain or wheel slippage. However,
the measurements drift over time due to sensor noise and bias.

This study uses a complementary filter to compensate for the limitations of each
sensor type (encoder drift and IMU noise) by fusing high-frequency data from the IMU
with low-frequency data from wheel encoders [49]. It leverages the IMU’s responsiveness
and the encoder’s long-term precision to provide a more accurate and reliable estimate
of the system’s position and orientation. Apart from reducing cumulative drift, it is
computationally efficient and relatively simple to implement [49].

The detailed implementation of the complementary filter is discussed as follows. The
IMU provides the robot’s angular velocity (

.
θimu) as well as its linear velocities in the x and

y directions (as
.
ximu and

.
yimu). The encoder provides the robot’s angular position (θen) as
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well as its position in the x and y directions (as xen and yen). The complementary filters
used to acquire the value of each state variable are formulated as shown below [49].

θ(t) = (α)θen + (1 − α)
∫ .

θimudt (14)

x(t) = (β)xen + (1 − β)
∫

.
ximudt (15)

y(t) = (β)yen + (1 − β)
∫

.
yimudt (16)

where α and β are the filter’s weighting coefficients that balance the contribution of the
encoder and IMU data. Typically, α and β are restricted between [0 and 1]. Since the robot is
moving on an uneven terrain, the values of α and β, therefore, are kept low to impose more
weight on the IMU data. This avoids measurement distortion caused by wheel slippage.
The weighting coefficients are manually tuned by trial and error. Their values are selected
as α = 0.38 and β = 0.42. The acquired state variables θ(t), x(t), and y(t) are fed to the
velocity control architecture to compute the desired corrective actions. Smoothing out the
sensor noise and drift indirectly minimizes the control chattering.

2.3. Velocity Control Architecture

This section presents a detailed discussion regarding the high-level velocity control
design for the differentially driven WMR. To track the reference trajectory, the WMR
requires accurate wheel velocity commands to help move it from its current position to the
reference position [46]. For this purpose, the velocity control architecture, shown in Figure 2,
is proposed in this research. The proposed control design acquires the instantaneous error
in the positions x(t) and y(t) as well as the angular position θ(t) of the robot using the
onboard wheel encoders and inertial measurement unit, respectively. The tracking errors
εx(t), εy(t), and εθ(t) between the desired position and the current position are defined as
shown in (17).

εx(t) = x(t)− xre f (t), εy(t) = y(t)− yre f (t), εθ(t) = θ(t)− θre f (t) (17)

where xre f (t) is the reference position along the x-axis, yre f (t) is the reference position along
the y-axis, and θre f (t) is the reference orientation of the robot, as shown in Figure 3. These
tracking error signals are modulated through a customized odd-powered cubic polynomial,
enhancing the influence of large errors while reducing the impact of smaller errors [50].
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The nonlinear modulation is carried out as shown below.

ez(t) = βz(εz(t)) + αz(εz(t))
3 (18)

such that z = x, y, or θ

where ez(t) is the modified error signal associated with each state variable, βz is the
attenuation coefficient, and αz is the transition coefficient. This arrangement distinctly
improves the flexibility of the control procedure by creating an error amplification and
an error attenuation region across the entire error regime of the system [51], as shown in
Figure 4. The customized cubic polynomials help generate an aggressive control input
under disturbance conditions due to the nonlinear magnification of the classical error signal
εz(t), as well as a gentle control input under equilibrium (steady-state) conditions due to
the nonlinear attenuation of εz(t). The aggressive control effort yields a faster response
speed while strongly attenuating the disturbances, whereas the gentle control effort allows
for a smoother oscillation-free response at or around the reference positions. The setting
of the transition coefficient αz decides the transition pattern of the error signals from the
attenuation region to the amplification region. Its value is limited between 0 and 5 [51].
The coefficient βz modifies the size of the attenuation region, which regulates the gentle
control effort. The impact of error attenuation continues to get weaker if the value of βz is
set larger than unity because this setting relocates the transition point closer to the origin.
This arrangement continually degrades the influence of the gentle control effort. Thus, the
value of βz is limited between 0 and 1 [51]. The nonlinear modulation of the error signals is
realized via the following cubic polynomials.

ex(t) = βx(εx(t)) + αx(εx(t))
3 (19)

ey(t) = βy
(
εy(t)

)
+ αy

(
εy(t)

)3 (20)

eθ(t) = βθ(εθ(t)) + αθ(εθ(t))
3 (21)

The values of the transition and attenuation coefficients are manually calibrated offline
via the trial-and-error method by minimizing the integral-squared-error (ISE) cost function
expressed in (22).

J =
t∫

0

[
(ex(t))

2 +
(
ey(t)

)2
+ (eθ(t))

2
]
dτ (22)
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The tuning procedure is concluded when the global minimum cost of J is acquired.
The following set of parameter values are thus acquired: βx = 0.28, αx = 1.87, βy = 0.24,
αy = 1.91, βθ = 0.22, and αθ = 1.82.
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The modified error signals are then fed to their respective pre-calibrated SN-APID
controllers to compute the robot’s velocity control commands, which direct the robot’s
linear and angular positions. The ubiquitous PID controller is typically constituted by
linearly combining the system’s state error, error integral, and error derivative. The pro-
portional control term attenuates the present state error, the error integral term dampens
the overshoots and oscillations while improving the system’s trajectory tracking behavior,
and the derivative control term accelerates the transient reaction and forecasts future state
changes for the system. The formulations of the PID controllers synthesized to regulate the
linear position and orientation of the WMR are presented in (23)–(25).

ux(t) = kP,xex(t) + kI,x

t∫
0

ex(t)dτ + kD,x
.

ex(t) (23)

uy(t) = kP,yey(t) + kI,y

t∫
0

ey(t)dτ + kD,y
.

ey(t) (24)

uθ(t) = kP,θeθ(t) + kI,θ

t∫
0

eθ(t)dτ + kD,θ
.

eθ(t) (25)

where kP,x, kI,x, and kD,x represent the proportional gain, integrator gain, and differentiator
gain associated with the x-axis position PID controller, respectively. Similarly, kP,y, kI,y,
and kD,y represent the proportional gain, integrator gain, and differentiator gain associated
with the y-axis position PID controller, respectively. Finally, kP,θ , kI,θ , and kD,θ represent
the proportional gain, integrator gain, and differentiator gain associated with the angular
position PID controller, respectively.

Attaining a non-trivial optimum set of PID gains that yield the best control per-
formance under every operating condition is indeed a challenging task. Hence, in this
research, the PID gains of each controller are dynamically adjusted online by using the
single neuron-based adaptation mechanism discussed in Section 2.4. The robot velocity
control commands, ux(t), uy(t), and uθ(t), yielded by the respective SN-APID controllers
are subjected to the transformation matrix T to generate the corresponding wheel velocity
control commands, uR(t) and uL(t).

The utilization of three individual SN-APID controllers is beneficial as compared to
using a single multiple-input and multiple-output (MIMO) neural network structure with
three inputs (ex, ey, and eθ) and two outputs (uR and uL). The proposed control architecture
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with three single-neuron models offers three key benefits for real-time control systems:
modularity, computational efficiency, and the capacity to effectively control each axis
independently. The responsiveness and adaptability of the control systems in a real-time
situation tend to become degraded using a MIMO network, as it necessitates extensive
training which typically leads to slower convergence.

Compared to MIMO networks, the implementation of three single-neuron models
is intrinsically simpler, requiring fewer parameters and less complicated training. These
attributes increase the algorithm’s computational efficiency, which is crucial for real-time
applications. In contrast, multiple outputs and hidden layers in a MIMO network usually
require more processing power and time to train, which inadvertently introduces control
lag. Each single-neuron model in the proposed architecture focuses on independently
regulating the dynamics of the state variable (x, y, and θ) assigned to it. Because of this
independence, the weights of each neuron can be dynamically adjusted via the EKF to better
suit the distinct properties of each control axis, resulting in precise control modifications and
enhanced responsiveness. EKF parameter estimation becomes more complex in a MIMO
system with multiple neurons, making it more difficult to effectively modify the weights.
The additional computational load affects the system’s adaptability and convergence.
Finally, with three separate neurons, there is a minimal risk of unintended cross-coupling
between control actions, as each neuron operates solely on one state variable.

2.4. Baseline SN-APID Controller

An artificial neuron is a mathematical representation of a biological neuron [52].
Despite its simplicity, an artificial neuron can perform a variety of functions. They are
able to learn a specific task by acquiring knowledge from the environmental data. The
information thus acquired is preserved in the synaptic weights, w.

2.4.1. Control Law Formulation

The control output of an artificial neuron is calculated as indicated in (26), [36,37].

uz(t) = fz

(
wT

z (t) mz(t)
)

(26)

such that z = x, y, or θ

where uz represents the neuron’s final control output for the linear (or angular) velocity
regulation, wz represents the weight vector, mz represents the input vector, and fz(.) is the
nonlinear activation function driven by the product of wT

z with mz. Various approaches are
available in the scientific literature to precisely train the single neuron. In this work, the EKF
is used for the neuron’s online training. The single-neuron PID controller is synthesized by
fusing the artificial neuron’s self-learning and self-tuning capacity with a PID controller.
This combination allows the PID gain settings to be dynamically updated in response to
the tracking error variations. Consequently, the suggested control method achieves better
flexibility and resilience to disturbances.

The vector mz contains the error, error-integral, and error-derivative variables linked
with a particular state of the robot. The input variables m1,z(t), m2,z(t), and m3,z(t) are
expressed in (27).

m1,z(t) = ez(t), m2,z(t) =
t∫

0

ez(t)dτ, m3,z(t) =
.

ez(t) (27)

The coefficients of the weight vector w are self-adjusted online via the EKF algorithm
discussed in the next subsection. It is to be noted that PID gains kP,z, kI,z, and kD,z are
indirectly represented by the online self-tuning weights w1,z(t), w2,z(t), and w3,z(t), respec-
tively. This arrangement, in turn, transforms the controller into an online adaptive PID
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controller. The function hz(t) represents the neuron’s raw output. It is formulated as a
weighted sum of input variables, as shown in (28), [36].

hz(t) =
3

∑
j=1

wj,z(t) mj,z(t) (28)

To introduce nonlinearity into the model, the neuron’s raw output is fed to the hyper-
bolic tangent function, tanh(.). This activation function enables the neural model to address
the intrinsic unmodeled nonlinearities. It exhibits the odd symmetry of a traditional signum
function while avoiding the hard limits imposed by it. Its waveform is shown in Figure 5.
The tanh(.) function normalizes the neuron’s output between [−1 and 1] and modulates it
with a pre-determined scaling constant δz,o. This nonlinear modulation yields the neuron’s
final output as expressed in (29), [36].

uz(t) = δz,o tanh(hz(t)) (29)
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The values of the scaling constants are restricted between 0 and 1 to prevent actuator
saturation post-transformation. These constants are calibrated offline by minimizing the
ISE-based objective function J, expressed in (22). The following set of parameter values
are thus acquired: δx,o = 0.32, δx,o = 0.29, and δθ,o = 0.21. The schematic diagram of the
single-neuron adaptive PID (SN-APID) control scheme is depicted in Figure 6.
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2.4.2. EKF-Based Online Training

The primary goal of the training procedure is to online adapt the coefficients of weight
vector wz that efficiently reduce the prediction error while handling the nonlinearities
associated with the control problem [36].

Hence, in this neural control problem, the EKF training process is utilized owing to its
fast convergence speed, improved learning, and ability to handle nonlinear mapping of the
neural network. The EKF is a probabilistic estimator that predicts the measurement that
could result from estimating the system states [42]. The estimation procedure is carried
out recursively until the algorithm has converged to the optimum estimate. The weights
of the single neuron are treated as the state variables to be estimated after every sampling
interval. The EKF-driven online-training process is performed individually for each PID
controller. Consider the nonlinear system in (30), [53].

sn+1 = f (s n) + φn, dn = g(sn) + ωn (30)

where sn is the system’s state vector at the nth instance, φn is the process noise, dn is the
observation vector, g(.) is a nonlinear state function, and ωn is the observation noise [40].
The composition of the system’s state vector for the online adaptation of the weighting
coefficients is expressed as shown in (31).

sn =
[
w1,z w2,z w3,z

]
(31)

The EKF estimation is carried out by using the following system of equations [53].

Fn = I (32)

Gn =
∂g(sn)

∂qn
=

∂z
∂sn

=
[

∂z
∂w1,z

∂z
∂w2,z

∂z
∂w3,z

]
(33)

Kn = PnGn
T
(

Rn + GnPnGn
T
)−1

(34)

ŝn+1 = ŝn + ηKnen (35)

Pn+1 = Pn − KnGnPn + Qn (36)

where ŝn is the updated estimate of the state (weight) vector, Gn is the estimated state’s
measurement model, Kn is the Kalman gain-vector, Pn refers to the covariance of prediction
error, Rn is the covariance matrix of ωn, Qn is the covariance matrix of φn, and η is a
diagonal matrix of the learning rates used to adjust each weight independently [40]. It is
formulated as η = diag

[
η1 η2 η3

]
. The same set of learning gains is used for each of the

three SN-APID controllers. The partial derivative of the system with respect to the synaptic
weight(s) is evaluated as shown in (37), [53].

∂z
∂wj,z

=
∂z

∂uz
× ∂uz

∂hz
× ∂hz

∂wj,z
(37)

such that
∂z

∂uz
=

z(t)− z(t − 1)
uz(t)− uz(t − 1)

,
∂uz

∂hz
= δz sech2(hz(t)),

∂hz

∂wj,z
= mj,z(t).

where j = 1, 2, or 3. The coefficients of the diagonal matrices P and Q are manually set
as P11 = P22 = P33 = 1 and Q11 = Q22 = Q33 = 0.1. The other parameters of the EKF are
tuned offline by minimizing the cost function J, mentioned in (19). The coefficient of R
is set as 0.0014. The settings of the EKF’s learning rates are η1 = 0.281, η2 = 0.322, and
η3 = 0.021. The initial weights associated with each neuron are chosen randomly.

The EKF filter inherently reduces the impact of noise and chattering in the estimated
values of weights, which ensures that the consequent control actions are smooth and
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responsive to the system’s current state. The SN-APID control law augmented with the
EKF algorithm, for each state variable, is thus formulated in (38)–(40).

ux(t) = δx,o tanh(hx(t)) (38)

uy(t) = δy,o tanh
(
hy(t)

)
(39)

uθ(t) = δθ,o tanh(hθ(t)) (40)

The PID gains are updated online after every sampling instant. The corresponding
velocity control signals, ux(t), uy(t), and uθ(t) are then transformed to deliver the up-
dated wheel velocity-control signals, uR(t) and uL(t), of the WMR by using the following
transformation, as shown in Figure 2.

[
uR(t)
uL(t)

]
= T

ux(t)
uy(t)
uθ(t)

 (41)

3. Proposed Fuzzy-Immune-Regulated SN-APID Control Procedure

The immune-inspired control systems are modeled after the human immune sys-
tem, which adapts to external disturbances by detecting and neutralizing threats [45].
In trajectory tracking, an immune-regulated control system detects deviations from the
desired path and quickly adapts the control response to maintain the trajectory under
adverse conditions.

The biological immune system, which is primarily made up of lymphocytes and
antibody molecules, is resistant to pathogen infiltration [54]. The B-cells, suppressor T-cells
(TS cells), and helper T cells (TH cells) aid in the production of lymphocytes. The B-cell
surface receptors gauge the extent of the foreign antigen invasion. As per their diagnosis,
the B cells stimulate a proper concentration of TH cells to aid in the production of plasma
cells. To repel the antigen infiltration, the plasma cells produce antibodies. The production
of TS cells is triggered to inhibit the growth of antibodies as the antigen attack weakens. The
TS and TH cells synergistically work together to balance the process of antibody formation
by activating and inhibiting it in turn. This action efficiently recovers the biological system
and increases its resistance to the invading antigens. The following set of formulations is
used to describe the B-cell concentration produced during this procedure [54].

c(n) = TH(n)− TS(n) (42)

such that TH(n) = ρ d(n), TS(n) = ρ λσ
(
c(n),

.
c(n)

)
q(n)

where n is the generation of antigen and antibody proliferation, c(n) is the stimulus (or
B-cell concentration), TH(n) is the TH cell concentration, TS(n) is the TS cell concentration,
q(n) is the antigen concentration, σ(.) is a preset nonlinear scaling function that adaptively
modulates the antibody inhibition rate, and ρ and λ are positive weighting coefficients that
ascertain the immune system’s response speed and damping strength. The total stimulation
is expressed in (43), [54].

c(n) = ρ
(
1 − λσ

(
c(n),

.
c(n)

))
q(n) (43)

In practice, bounded external disturbances have the potential to deteriorate the perfor-
mance of robotic systems. In order to effectively reject the disturbances while maintaining
the tracking accuracy, a fuzzy-immune regulator is therefore developed in this study. A
logic map that compares the components of a vertebrate immune response system with
those of the artificial immune-regulated WMR system is shown below.
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Biological system Physical system
Immune system → WMR
The nth generation of antibody
reproduction

→ The sampling interval of the WMR

The antigen concentration, q(n) → The normalized control variable,
tanh(hz(t))

The B-cell stimulation, c(n) → The control signal, uz(t)

The following artificial immune control equation is derived from the map above.

uz(t) = δz(t)× tanh(hz(t)) (44)

The fuzzy-immune regulator modifies the control input uz(t) as per the variations
in tanh(hz(t)) as well as the self-adjusting gain δz(t). The gain δz(t) is dynamically self-
adjusted as a function of control input variables, as shown in (45).

δz(t) = δz,o
(
1 − λzσ

(
uz,

.
uz
))

(45)

where δz,o is the base value of the gain. The fuzzy-immune-regulated control law in-
dividually directing the robot’s motion along the linear and rotational axes is shown
in Figure 7.
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The traditional two-input fuzzy-inference mechanism is used to realize the stimulation
factor σ(.), which utilizes a two-input qualitative rule base to describe the prescribed
immunological defense system [45]. The fuzzy system utilizes the control variable uz(t)
and its derivative

.
uz(t) as its inputs. Its output is the stimulation factor σ

(
uz,

.
uz
)
. Seven

linguistic variables Positive Big (PB), Positive Medium (PM), Positive Small (PS), Zero (Z),
Negative Small (NS), Negative Medium (NM), Negative Big (NB) are used to categorize
the universe of the inputs and the output. Thus, the fuzzy implication is implemented
by using 49 logical rules. The variances of the output and input variables are normalized
within the range [−1, 1]. The stimulus σ(.) is synthesized as per the immune regulation
rules presented in Table 1 [45].

The fuzzy implication is carried out via the min–max inference technique expressed
in (46).

µi = min
(
τi(uz), τi

( .
uz
))

(46)

where i is the rule number, µ is the membership function’s (MF) degree, and τi(.) is the
triangular MF formulated as shown in (47).
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Table 1. Fuzzy rule base for the stimulus factor [45].

uz↓/
.
uz→ NB NM NS Z PS PM PB

NB PB PB PM PM PS PS Z
NM PB PM PM PS PS Z NS
NS PM PM PS PS Z NS NS
Z PM PS PS Z NS NS NM
PS PS PS Z NS NS NM NM
PM PS Z NS NS NM NM NB
PB Z NS NS NM NM NB NB

τ(ϵ) =


1 + ϵ−ci

bi
− , −bi

− ≤ ϵ − ci ≤ 0

1 − ϵ−ci
bi
+ , 0 ≤ ϵ − ci ≤ bi

+

0, other wise

(47)

where ϵ represents the fuzzy input variable uz or
.
uz, and ci, bi

+, bi
−, are the centroid,

right-half width, and left-half width of the input MF, respectively. The fuzzy implication
and aggregation are performed using symmetrical MFs. Figures 8 and 9 illustrate the input
and output fuzzy MF waveforms, respectively. The centroid method of defuzzification is
used to determine the crisp value of σ

(
uz,

.
uz
)
, as shown in (48), [45].

σ
(
uz,

.
uz
)
=

∑N
i=1 µi co

i

∑N
i=1 µi

(48)

where co
i is the output MF’s centroid and N = 49 is the total number of rules. Using this

method, the nonlinear stimulation factor σ
(
uz,

.
uz
)

is recalculated and updated online after
each sample period. The proposed fuzzy-immune-regulated SN-APID control laws for the
x-axis, y-axis, and orientation are shown below.

ux(t) = δx,o
(
1 − λxσ

(
ux,

.
ux

))
tanh(hx(t)) (49)

uy(t) = δy,o
(
1 − λyσ

(
uy,

.
uy

))
tanh

(
hy(t)

)
(50)

uθ(t) = δθ,o
(
1 − λθσ

(
uθ ,

.
uθ

))
tanh(hθ(t)) (51)

The parameters λx, λy, and λθ are tuned by minimizing the cost function J, mentioned
in (19). These parameters are restricted within the range [0, 1]. The optimized values of
these parameters are: λx = 0.84, λy = 0.75, and λθ = 0.68. The SN-APID signal modulated
by using the fuzzy-immune regulator (FIR) is referred to as “FSN-APID”. The schematic
diagram of the FSN-APID is illustrated in Figure 10.
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4. Results and Discussion

The results of the customized hardware experiments performed to assess the proposed
controller’s effectiveness under the influence of bounded environmental disturbance are
discussed in this section.

4.1. Experimental Setup

The experiments were performed using a differentially driven lawn-mowing robot
setup. The lawn-mowing robot chassis is demonstrated in Figure 11. It comprises
two motorized wheels. The rotational speed of each wheel is measured via dedicated
rotary encoders attached to the shafts of the respective motors. The raw encoder mea-
surements are acquired by an 8-bit embedded microcontroller at a sampling rate of
0.2 kHz [55]. The robot’s trajectory tracking profile, and hence, the error is recorded
with the aid of an inertial measurement unit, commissioned at the top of the robot assembly.
For velocity control computations, the digital sensor measurements are serially communi-
cated (at a baud rate of 9600 bps) to a customized computer application that is developed
using the MATLAB-Simulink R2018b Software (MATLAB 9.5 version), via an onboard
wireless Bluetooth transceiver. The prescribed computations are executed on a 1.8 GHz and
64-bit personal computer with 8.0 GB RAM. Customized first-order (low-pass) Butterworth
filters are applied to the WMR’s velocity control signals, uR(t) and uL(t), to smoothly
attenuate the high-frequency components. The filter’s cutoff frequency is set to 30 Hz in
order to eliminate unwanted frequencies while maintaining the control signal’s integrity.
The WMR’s pilot test runs were used to experimentally determine this cutoff frequency
setting. The robot’s trajectory tracking profile, as well as its tracking error along the x-
axis, y-axis, and orientation were captured in real time for graphical visualization via the
aforementioned sensors. The onboard microcontroller receives the filtered velocity control
signals, for each of the two motors, serially after each sample instant and transforms them
into corresponding pulse-width-modulated (PWM) signal. The computed PWM signals
are amplified and then applied to the onboard H-Bridge DC motor driver circuits.
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Figure 11. Lawn mowing robot chassis used for experimental analysis.

These motor driver circuits are used to actuate their respective 90 Watt and 24.0 V
permanent magnet DC geared motors. The entire robot is powered by a +24.0 V battery
pack, which is assembled by serially connecting two 12.0 V, 10.0 AH sealed lead-acid
batteries. The motor drivers are retrofitted with snubbing circuits to compensate for the
flyback effects.

4.2. Tests and Results

The experimental trials were carried out by tracking a rose-curve trajectory, which
was generated after each step time T as shown in (52), [36].

xr = acos(0.04πT), yr = asin(0.04πT), θr =
π

4
(52)

where a = 4 + cos(0.2πT)
The rose-curve reference trajectory, shown in Figure 12, was chosen owing to the

complexity of its geometric features. This trajectory does not require precise polynomial
formulations to guarantee smooth transitions. However, the variations in curvature and
transitions along the path help to better ascertain the disturbance rejection and nonlinear
dynamics handling capability of the designed tracking controller. The following three
customized experiments were performed to benchmark the efficacies of the proposed
FSN-APID control technique in comparison to the baseline SN-APID control technique.

A. Trajectory tracking under nominal conditions: This test case examines the controller’s
time-varying reference trajectory tracking accuracy in a disturbance-free grassy field.
Each control procedure is tasked to track the rose-curve trajectory expressed above.
The corresponding state variations, exhibited by each control procedure, are displayed
in Figure 13. The error profiles of each state variable are shown in Figure 14. The
resulting rose-curve trajectory tracking plots are displayed in Figure 15.
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B. Trajectory tracking under impulsive disturbances: This experiment analyzes the con-
troller’s resilience and ability to recover from the impact of sudden collisions, sudden
wheel skidding, motor voltage spikes, and uneven terrains or surface bumps. The said
disturbance conditions are emulated by injecting software-generated displacement
pulses, of magnitude 1.0 m and a period of 1.5 s, in xre f and yre f . These pulses are
injected randomly. A pulse of magnitude 0.2 rad and a duration of 1.5 s is added in
θre f at t ≈ 30 s. The experiment is performed in a grassy field. The state variations
corresponding error profiles are displayed in Figures 16 and 17, respectively. The
resulting rose-curve trajectory tracking profiles are shown in Figure 18.
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C. Trajectory tracking under step disturbances: This test case assesses the controller’s capac-
ity to compensate for the disruptions contributed by the sudden changes in the robot’s
payload, transition of the robot from a flat surface to a ramped surface, changes in the
mechanical friction encountered by the wheels, and battery voltage drop. The said
experiment is performed by injecting software-generated displacement step signals of
magnitude 0.75 m in xre f and yre f , at t ≈ 25.0 s mark. The experiment is performed in
a grassy field. The corresponding state variations, exhibited by each control procedure,
are displayed in Figure 19. The error profiles are illustrated in Figure 20. The resulting
rose-curve trajectory tracking plots are displayed in Figure 21.
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D. Trajectory tracking under randomized step disturbances: This experiment assesses the
controller’s resilience against the perturbations caused by random changes in the
robot’s payload or unprecedented terrain irregularities. This experiment is performed
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by injecting software-generated displacement step signals of ±0.75 m in magnitude
and 15 s in duration in xre f and yre f at random. The experiment is performed in a
grassy field. The corresponding state variations, exhibited by each control procedure,
are displayed in Figure 22. The disturbance signals and state error profiles are illus-
trated in Figure 23. The resulting rose-curve trajectory tracking plots are displayed in
Figure 24.
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4.3. Discussion

The results of the aforementioned experiments are examined using the following key
performance indicators (KPIs).

• RMSE: The root-mean-squared value of ex, ey, and eθ . It is evaluated as ∑
√

(ez(n))2

n .
• tset: The time taken by the response along the x-, y-, and about the θ-axis to settle

within ±2% of time-varying reference after the initial startup.
• MAD: The maximum absolute deviation in the response along the x-, y-, and about

the θ-axis contributed by the external disturbances or environmental uncertainties.
• trec: The amount of time it takes for the response to recover and stabilize within ±2%

of the time-varying reference after being disturbed.

The results of the hardware experiments (A–D) verify that, in comparison to the base-
line SN-APID controller, the proposed FSN-APID controller exhibits a strong disturbance
rejection while maintaining an accurate trajectory tracking performance, validating the
practical applicability of the proposed approach. The experimental results of the FSN-APID
controller are quantitatively analyzed and compared to those of the baseline SN-APID
controller for experiments A, B, and C in Table 2.

In Experiment A (Figures 13–15), the SN-APID control technique demonstrates mod-
erate tracking accuracy despite the adaptive nature of the neural networks. While tracking
the rose-curve trajectory, the SN-APID controller is observed to struggle with variations in
the curvature of the reference path. In contrast, the proposed FSN-APID control exhibited
relatively stronger damping against path deviation and a significantly improved tracking
accuracy, despite the intricate geometric features of the reference trajectory. Moreover, the
transient and settling times of the FSN-APID controller are relatively better than those of
the baseline SN-APID controller.

In Experiment B (Figures 16–18), the SN-APID control technique manifests a moderate
adaptability to abrupt dynamic changes. Although the single-neuronal model self-adjusts
the critical controller parameters, the aforementioned controller exhibits a relatively slower
error convergence rate. The proposed FSN-APID control scheme primarily leverages the
single-neuron PID controller’s flexibility to adaptively modify gains. Additionally, the
fuzzy-immune regulator robustly reconfigures the control response on the fly to supplement
the system’s adaptability and strengthen its damping against impulse-like disturbances by
quickening the controller’s convergence speed and attenuating the peak overshoots in the
state response(s).
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Table 2. Overview of experimental findings.

Test
KPI

State
Control Technique

Improvement (%)
Symbol Unit SN-APID FSN-APID

A

RMSE
m. x 0.038 0.036 5.3
m. y 0.006 0.004 33.3

rad. θ 0.008 0.006 25.0

MAD
m. x 0.541 0.225 58.4
m. y 0.424 0.289 31.8

rad. θ 0.056 0.048 14.3

tset

s x 9.8 6.6 32.6
s y 7.6 5.4 28.9
s θ 15.1 11.3 25.1

B

RMSE
m. x 0.040 0.038 5.0
m. y 0.011 0.007 36.4

rad. θ 0.009 0.007 22.2

MAD
m. x 0.930 0.601 35.4
m. y 0.975 0.628 35.6

rad. θ 0.239 0.144 39.7

trec

s x 3.5 2.7 22.9
s y 5.4 3.1 42.6
s θ 9.7 7.2 25.8

C

RMSE
m. x 0.041 0.039 4.9
m. y 0.010 0.008 20.0

rad. θ 0.006 0.005 16.7

MAD
m. x 1.201 0.835 30.5
m. y 0.794 0.648 18.4

rad. θ 0.162 0.092 43.2

trec

s x 8.6 5.4 37.2
s y 8.0 7.1 11.2
s θ 9.8 7.2 26.5

D

RMSE
m. x 0.039 0.038 2.6
m. y 0.012 0.009 25.0

rad. θ 0.006 0.005 16.7

MAD
m. x 0.679 0.447 34.2
m. y 0.841 0.448 46.7

rad. θ 0.105 0.086 18.1

trec

s x 8.2 6.8 17.1
s y 7.7 7.2 6.5
s θ 8.8 7.5 14.8

In Experiment C (Figures 19–21), the SN-APID control technique demonstrates a rea-
sonable disturbance rejection behavior. Although its online self-learning ability enables it
to compensate for external disturbances, it still shows oscillations under environmental
indeterminacies. The proposed FSN-APID controller, once again, demonstrates a signifi-
cantly robust disturbance rejection capacity. It effectively rejects the parametric disruptions
with minimal oscillations.

In Experiment D (Figures 19–21), the SN-APID control technique demonstrates a
deficient disturbance compensation capacity. Despite its inherent self-learning capability,
the SN-APID control law exhibits relatively large fluctuations in the trajectory tracking
response, whereas, in the proposed FSN-APID control scheme, the fuzzy-immune regulator
flexibly manipulates the control trajectory, enabling the system to demonstrate a relatively
superior adaptability and stronger resilience to randomized step disturbances.
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The proposed enhancement of the EKF-driven single-neuron PID controller with the
immune regulation mechanism, allows the system to remain effective against disturbances
by self-adjusting control parameters, thus reducing tracking error. The SN-APID control
law adaptively modifies the PID coefficients as per the system’s error variations and
environmental perturbations. The weights of the SN-APID controller (which correspond
to the PID coefficients) are reconfigured online by the EKF. This error-driven adaptive
adjustment of weights aids in maintaining high tracking accuracy and reduces error under
varying conditions. Additionally, the bio-inspired fuzzy-immune mechanism adaptively
adjusts the scaling gain of the SINN, facilitating the system’s quick response to disruptions.
The adaptive self-learning introduced by the fuzzy-immunological computations flexibly
inflates the scaling gain as the error enlarges, yielding prompt corrective actions, and
decreases the said gain as the error reduces, which dampens the overshoots and oscillations.

The proposed FSN-APID control scheme makes a trade-off between performance
and computational simplicity when benchmarked against a ubiquitous fixed-gain PID
controller. A fixed-gain PID is significantly simpler to implement, which reduces the
system’s overall complexity. However, it inherently lacks the robustness to effectively
handle nonlinear disruptions and time-variant behaviors linked with the system due to its
static parameter setting. The proposed FSN-APID controller, on the other hand, adapts in
real-time to system changes providing improved tracking accuracy, better compensation
of disturbances, quicker convergence rate, and stronger damping against oscillations.
However, it achieves this superior performance at the cost of increased computational
demands and the implementation complexity required for real-time parameter adjustment
and learning. Nevertheless, the computational requirements of the proposed controller
can be effectively managed using modern digital computing resources, preventing any
excessive computational load.

5. Statistical Analysis of Experimental Findings

The experimental results are statistically examined in this section to verify the perfor-
mance enhancement of the proposed controller over the baseline scheme, as indicated in
Section 4.3. Confidence interval analysis and hypothesis testing are used to statistically
examine the quantitative results of experiments A, B, C, and D, which are contributed by
each control scheme.

5.1. Confidence Interval Analysis

The confidence intervals (CIs) are essential for quantifying the dependability, degree
of uncertainty, and practical importance of the proposed FSN-APID control procedure.
As applied in this study, a 95% CI means that the (true) average absolute values of the
tracking error variations (ex, ey, and eθ) have a 95% chance of falling within the speci-
fied range. Table 3 displays the CI analysis of the state variations contributed by each
unique control scheme under experiments A, B, C, and D. The CI analysis confirms the en-
hanced robustness of the FSN-APID controller by indicating the consistency of performance
improvements across all testing scenarios.

Table 3. Confidence interval analysis.

Test Tool (m)
|ex|

∣∣ey
∣∣ |eθ|

SN-APID FSN-APID SN-APID FSN-APID SN-APID FSN-APID

A

Mean 0.16 0.092 0.11 0.088 0.087 0.058
Median 0.10 0.066 0.065 0.074 0.018 0.017
Standard Dev. 0.17 0.14 0.099 0.062 0.17 0.12
CI (95%) 0.014 0.011 0.008 0.005 0.014 0.010
Upper CI (95%) 0.174 0.103 0.118 0.093 0.101 0.068
Lower CI (95%) 0.146 0.081 0.102 0.083 0.073 0.048
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Table 3. Cont.

Test Tool (m)
|ex|

∣∣ey
∣∣ |eθ|

SN-APID FSN-APID SN-APID FSN-APID SN-APID FSN-APID

B

Mean 0.20 0.11 0.18 0.11 0.11 0.063
Median 0.14 0.058 0.14 0.038 0.042 0.017
Standard Dev. 0.18 0.14 0.19 0.14 0.18 0.13
CI (95%) 0.016 0.012 0.016 0.011 0.014 0.010
Upper CI (95%) 0.216 0.112 0.196 0.121 0.124 0.073
Lower CI (95%) 0.184 0.098 0.164 0.099 0.096 0.053

C

Mean 0.33 0.16 0.19 0.15 0.079 0.057
Median 0.29 0.11 0.15 0.12 0.029 0.022
Standard Dev. 0.25 0.17 0.16 0.14 0.13 0.12
CI (95%) 0.021 0.015 0.013 0.011 0.010 0.009
Upper CI (95%) 0.351 0.175 0.203 0.161 0.089 0.066
Lower CI (95%) 0.309 0.145 0.177 0.139 0.069 0.048

D

Mean 0.26 0.17 0.25 0.15 0.051 0.038
Median 0.26 0.12 0.20 0.12 0.033 0.022
Standard Dev. 0.17 0.14 0.20 0.11 0.052 0.046
CI (95%) 0.014 0.011 0.016 0.008 0.0043 0.0038
Upper CI (95%) 0.274 0.181 0.266 0.158 0.0553 0.0418
Lower CI (95%) 0.246 0.159 0.234 0.142 0.0467 0.0342

5.2. Hypothesis Testing

Hypothesis testing is used to evaluate the degree to which the suggested FSN-APID
controller optimizes the trajectory tracking accuracy in comparison to the baseline SN-APID
controller. It involves the statistical analysis of an assumption (the hypothesis), as discussed
below, about the state variations under the influence of the proposed controller.

• Null Hypothesis (H0): The FSN-APID controller does not substantially reduce the
trajectory tracking errors compared to the baseline SN-APID controller.

• Alternative Hypothesis (H1): The FSN-APID controller substantially reduces the trajec-
tory tracking errors compared to the baseline SN-APID controller.

The t-test examines the hypothesis for the experimental data sets of SN-APID and
FSN-APID controllers. The significance level for this test is set at 0.05. Table 4 provides
a summary of the t-test findings. It is observed that the t-stat value is greater than the
corresponding t-critical value in each state variable. This observation concludes that the
trajectory tracking accuracy of the FSN-APID controller is superior to the baseline controller,
and hypothesis H0 is thus rejected. Furthermore, in each instance, the p-value is smaller
than the significance level (0.05), supporting the choice to reject H0 in favor of H1.

Table 4. Hypothesis testing results.

Test Tool (m) |ex|
∣∣ey

∣∣ |eθ|

A
t-stat 7.57 5.38 3.53
t-critical 1.96 1.96 1.96
p-value 7.64 × 10−14 9.15 × 10−8 4.32 × 10−4

B
t-stat 2.08 7.34 5.36
t-critical 1.96 1.96 1.96
p-value 3.74 × 10−2 4.32 × 10−13 9.94 × 10−8

C
t-stat 2.96 4.77 3.18
t-critical 1.96 1.96 1.96
p-value 3.12 × 10−3 2.09 × 10−6 1.50 × 10−3
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Table 4. Cont.

Test Tool (m) |ex|
∣∣ey

∣∣ |eθ|

D
t-stat 4.75 11.20 4.22
t-critical 1.96 1.96 1.96
p-value 2.28 × 10−6 2.10 × 10−27 2.69 × 10−5

6. Ablation Study of the Proposed Controller

This section presents the following three ablation studies of the proposed FSN-APID
controller by systematically varying its key parameters (or components) to analyze their
influence on the controller’s time-domain performance, particularly in terms of tracking
precision and robustness.

6.1. Ablation of the Fuzzy Inference Parameters

To assess the effectiveness of the selected fuzzy inference parameters as well as their
impact on the behavior of the FSN-APID controller, an ablation study was carried out
by introducing a 10.0% decrement and a 10.0% increment in the optimized values of δx,o,
δy,o, δz,o, λx, λy, and λz as prescribed in Sections 2.4.1 and 3, respectively. For each altered
parameter set, experiment A is conducted to track the rose-curve trajectory of (49) under
nominal conditions. The state variations, exhibited by the FSN-APID controller under the
influence of each parameter set, are displayed in Figure 25. The error profiles corresponding
to each state variable are shown in Figure 26. The rose-curve trajectory tracking profiles
yielded by each parameter set are displayed in Figure 27. The experimental findings are
summarized in Table 5.
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The results validate that the nominal parameter settings yield the optimum tracking
accuracy with reasonable response speed. The parameter settings with a 10.0% increment
offer an aggressive control behavior with a slightly faster response speed at the cost of
persistent oscillations in the response. The parameter settings with a 10.0% decrement
deliver a slower error convergence speed.
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Table 5. Summary of results under different fuzzy parameter settings of FSN-APID controller.

Test
KPI

State
Fuzzy Parameter Set

Symbol Unit +10% Change Nominal −10% Change

A

RMSE
m. x 0.037 0.036 0.038
m. y 0.005 0.004 0.006

rad. θ 0.007 0.006 0.006

MAD
m. x 0.317 0.225 0.361
m. y 0.352 0.289 0.319

rad. θ 0.058 0.048 0.085

tset

s x 6.3 6.6 6.8
s y 5.2 5.4 5.5
s θ 9.8 11.3 13.6

6.2. Evaluation of Different Activation Functions

This test is used to investigate the inclusion of various activation functions in the single-
neuron model of the FSN-APID controller to minimize oscillations. Three commonly used
odd-symmetric activation functions are tested; namely, hard hyperbolic tangent function
(hard-Tanh) [56], typical Tanh (originally used in this study), and soft-sign function [57].
These functions naturally squash their inputs into the range [−1, 1]. These three functions
are formulated in (53).

p1,z(t) =


+1 i f hz(t) > a
hz(t) othewise
−1 i f hz(t) < b

, p2,z(t) = tanh(hz(t)), p3,z(t) =
hz(t)

1 + |hz(t)|
(53)

The values of a = 1.18 and b = −1.18 are empirically selected by trial and error during
the preliminary test runs. The waveforms of the chosen activation functions are illustrated
in Figure 28. To examine the efficacy of each activation function, experiment A is performed
to track the rose curve trajectory of (49) under nominal conditions. The state variations,
exhibited by the FSN-APID controller under the influence of each activation function, are
displayed in Figure 29. The error profiles corresponding to each state variable are shown
in Figure 30. The rose-curve trajectory tracking profiles with respect to each activation
function are illustrated in Figure 31. The experimental findings are summarized in Table 6.
The hard-Tanh function is simplest to compute; however, its abrupt clipping inevitably
introduces oscillations in the response. The soft sign function has a slower saturation rate as
compared to Tanh, which typically prevents oscillations; however, it also inevitably reduces
the system’s responsiveness, which leads to offsets in the response. These behaviors are
also validated in the results. The typical Tanh exhibits optimum tracking accuracy with
minimal oscillations and manageable computational complexity.
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Table 6. Summary of results under different activation functions of FSN-APID controller.

Test
KPI

State
Activation Function

Symbol Unit Hard Tanh Tanh Soft Sign

A

RMSE
m. x 0.037 0.036 0.038
m. y 0.005 0.004 0.006

rad. θ 0.006 0.006 0.007

MAD
m. x 0.603 0.225 0.377
m. y 0.401 0.289 0.480

rad. θ 0.043 0.048 0.039

tset

s x 6.4 6.6 6.6
s y 5.3 5.4 5.4
s θ 11.3 11.3 10.2

6.3. Robustness on Different Terrain Types

This test is performed to analyze the proposed FSN-APID controller’s trajectory-
tracking robustness on different terrain types. For this analysis, experiment A is performed
separately on three different types of terrains; namely, concrete pavements to simulate
urban environments, grassy fields to simulate uneven grassy terrain, and loose soil to
simulate off-road, sandy, and dirty conditions. The state variations, exhibited by FSN-APID
controller under the influence of each activation function, are displayed in Figure 32. The
error profiles corresponding to each state variable are shown in Figure 33. The rose-curve
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trajectory tracking profiles with respect to each terrain type are shown in Figure 34. The
experimental findings are summarized in Table 7. The concrete pavement yields the best
trajectory-tracking behavior with minimal oscillations. This behavior is credited to the high
friction surface of the concrete pavement, which improves traction and enables smoother
(and more precise) trajectory tracking of the robot. The grassy field yields a mediocre
trajectory tracking behavior. The loss of accuracy is caused by the variable friction and
high resistance of the uneven (and possibly wet) field, which affects the tracking control
response. Finally, the loose soil delivers the poorest tracking accuracy owing to its loose
texture, which causes the robot’s wheels to slip, stick, and sink. This phenomenon affects
the sensor readings and degrades the tracking behavior.
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Table 7. Summary of results under different terrain types.

Test
KPI

State
Terrain Type

Symbol Unit Concrete Grass Loose Dirt

A

RMSE
m. x 0.035 0.036 0.041
m. y 0.004 0.004 0.009

rad. θ 0.005 0.006 0.006

MAD
m. x 0.214 0.225 0.575
m. y 0.232 0.289 0.609

rad. θ 0.039 0.048 0.056

tset

s x 6.4 6.6 6.9
s y 5.1 5.4 5.6
s θ 8.2 11.3 13.2

7. Conclusions

This article presents the constitution of an intelligent-adaptive steering control system
for a differentially driven lawn-mowing robot, which effectively manages the environmen-
tal uncertainties, nonholonomic dynamics, and the system’s intrinsic nonlinearities. The
baseline SN-APID control procedure manifested improved convergence learning capabili-
ties by leveraging the EKF for adaptive training, which yielded notable enhancement in
trajectory tracking accuracy. The augmentation of the baseline controller with the proposed
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fuzzy-immune regulator further supplemented the controller’s robustness, allowing it to
emulate the self-tuning characteristics of biological immune responses.

The proposed hybrid approach offers a pragmatic solution by integrating the strengths
of two different innovative control techniques. The proposed control scheme ensures that
the robot maintains precise and stable trajectory tracking, even in challenging conditions
like uneven terrain and varying surface conditions. These propositions are validated by
conducting customized real-time experiments. The experimental findings justify that the
proposed FSN-APID control scheme facilitates good functioning by effectively rejecting
the impact of bounded external disturbances, guaranteeing dependable performance in
unpredictable operating environments. As per the experimental results, the neural PID
controller enhances tracking accuracy and disturbance rejection due to its inherent adaptive
learning ability. However, its resilience deteriorates in extremely dynamic environment set-
tings. By fusing the advantages of neural learning with the flexibility of the fuzzy-immune
mechanism, the proposed FSN-APID controller provides the best overall performance. This
capability guarantees quick convergence, excellent disturbance rejection, and real-time
adaptation, which makes the proposed controller better suited for highly dynamic environ-
ments. To further improve the flexibility and resilience in dynamic environments, future
research may investigate the extended application of this framework to other mobile robot
configurations and explore other soft computing techniques such as a multilayer neural
network instead of a single-neuron model, reinforcement learning, and fuzzy Q-learning.
Finally, the implications of integrating a well-postulated SINN with a fractional PID con-
trol method, to adaptively modify its gains, can be investigated in future phases of this
research work.
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