
RESEARCH ARTICLE

Blood-glucose regulator design for diabetics

based on LQIR-driven Sliding-Mode-Controller

with self-adaptive reaching law

Omer SaleemID
1, Jamshed IqbalID

2*

1 Department of Electrical Engineering, National University of Computer and Emerging Sciences, Lahore,

Pakistan, 2 School of Computer Science, Faculty of Science and Engineering, University of Hull, Hull, United

Kingdom

* j.iqbal@hull.ac.uk

Abstract

Type I Diabetes is an endocrine disorder that prevents the pancreas from regulating the

blood glucose (BG) levels in a patient’s body. The ubiquitous Linear-Quadratic-Integral-

Regulator (LQIR) is an optimal glycemic regulation strategy; however, it is not resilient

enough to withstand measurement noise and meal disruptions. The Sliding-Mode-Controller

(SMC) yields robust BG regulation effort at the expense of a discontinuous insulin infusion

rate that perturbs the BG concentrations. Hence, the novel contribution of this article is the

formulation of a hybridized LQIR-driven SMC strategy that retrieves the benefits of the

aforesaid control schemes while avoiding their inherent problems. The proposed control

approach is realized by linearly combining a glycemic LQIR law with an innovative sign func-

tion sliding mode reaching law that is driven by a customized LQIR-driven sliding surface.

The hybridized control scheme generates optimal control decisions yielded by the LQIR

while mimicking the robustness characteristic of SMC against bounded exogenous distur-

bances. Additionally, the SMC reaching law in the proposed control scheme is augmented

with a nonlinear adaptation mechanism that flexibly modulates the control activity to effec-

tively compensate for the external perturbations while minimizing the chattering content.

The controller parameters are numerically optimized offline. The efficacy of the prescribed

hybrid control law is analyzed via customized MATLAB simulations that normalize the

patient’s BG level to 80 mg/dL, under measurement noise and meal disruptions, from an ini-

tial hyperglycemic state. The results justify the improved BG regulation accuracy and distur-

bance-rejection capability of the proposed control procedure.

1. Introduction

Type-I Diabetes (TID) is a disorder of the endocrine system, which is characterized by the

degeneration of the insulin-generating pancreatic T-cells caused by an autoimmune attack or

genetic predisposition [1]. This disorder mitigates the body’s capacity to create the insulin

required to maintain the blood glucose (BG) levels in the bloodstream at the desired reference,
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which subsequently induces metabolic dysregulation [2]. This metabolic disorder has

affected the quality of life of millions of people all over the globe [3]. The TID patients rely

upon well-postulated BG regulation control of the exogenous insulin administration to nor-

malize their BG levels under every condition to prevent any diabetic complications [4].

Designing a reliable control law for the aforementioned biological endocrine system that

maintains reasonable resilience against exogenous glycemic disturbances presents a chal-

lenging control problem [5].

1.1. Literature review

The Bergman Minimal Model (BMM) is a widely used mathematical representation of glu-

cose-insulin dynamics in T1D patients [6]. This model is essential for understanding how

insulin impacts glucose levels in the blood. The Cobelli model is an extension of the Bergman

model that incorporates additional physiological processes such as insulin secretion, hepatic

glucose production, and peripheral glucose uptake [7]. It is particularly useful for simulating

the effects of different insulin therapies. The Hovorka model is a comprehensive mathematical

model for glucose-insulin dynamics in TID patients [8]. This model is widely used in the

design and testing of closed-loop insulin delivery systems (artificial pancreas). The Sorensen

model is a detailed compartmental model that describes glucose and insulin kinetics, incorpo-

rating multiple compartments for insulin absorption, distribution, and degradation [9]. The

Dalla Man model includes a detailed description of glucose absorption from the gut, insulin

secretion, and glucose-insulin interaction [10]. This model accounts for both intravenous and

oral glucose tolerance tests, making it suitable for a wide range of simulation scenarios.

In scientific literature, numerous closed-loop BG regulatory control techniques have been

put forth to optimize the exogenous insulin administration for glycemic control of TID

patients [11]. The pervasive Proportional Integral Derivative (PID) controllers are exceedingly

popular for glycemic regulation due to their computational simplicity and reliable control

yield [12, 13]. However, they are rendered ineffective against unmodeled nonlinear distur-

bances owing to their limited degrees of freedom. The augmentation of fractional-order and

complex-order calculus tends to increase the resilience and adaptability of the PID control

procedure by introducing new hyper-parameters in its structure [14, 15]. However, the offline

optimization of these parameters is a laborious task. The neuro-fuzzy intelligent control proce-

dures are known to deliver an agile BG control effort. However, the neural controller requires

a large and reliable training data set to synthesize an accurate inverse control law [16]. The

fuzzy logic controllers, on the other hand, require an elaborate set of well-postulated qualita-

tive rules that are empirically derived as per the expert’s knowledge [17]. Dependence on an

expert’s knowledge inevitably induces imprecision in the empirically derived set of rules. The

computational requirements of the aforementioned intelligent control procedure put an exces-

sive burden on the computer.

The Linear-Quadratic-Regulator (LQR) controller is a renowned state feedback compensa-

tor that minimizes a pre-configured quadratic performance index of state variables and control

inputs to provide optimum control decisions [18]. However, despite its innate optimal behav-

ior, the model-based nature incapacitates the LQR to robustly compensate for the identifica-

tion errors, model changes, and parametric indeterminacies contributed by the bounded

exogenous disturbances [19, 20]. Owing to its versatility and capacity to optimize performance

over a prediction horizon, the Model Predictive Control (MPC) has become a robust method

for glucose regulation [21]. However, resource-constrained situations may find it difficult to

implement MPC since it can be computationally demanding and may require sophisticated

algorithms for real-time realization [22].
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The ubiquitous Sliding-Mode-Controller (SMC) is a variable-structure compensator that is

well-known for its robust control yield [23]. It effectively rejects the parametric variations and

external disturbances by efficiently transitioning between the sliding surfaces with the aid of a

pre-configured switching function [24]. The SMC scheme, and its modified variants, have

been extensively used in the scientific literature to regulate the BG concentration levels in TID

patients, especially under meal-induced perturbations [25]. Modified variants of fast terminal

sliding mode control strategies are particularly beneficial for under-actuated systems, where

precise and rapid control is essential [26, 27]. Despite its inherent robustness, the repetitive

switching in the SMC law leads to highly discontinuous control yield that induces chattering

in the patient’s BG concentration levels [28]. The resulting ripples in the BG state response are

detrimental to the health of the TID patient [29]. The control strategy proposed in [30]

attempts to improve chattering in a conventional SMC technique. The integral sliding mode

control (ISMC) introduces an integral component in the sliding surface that helps in smooth-

ing the control action, whereas the adaptive backstepping can use the online parameter adapta-

tion to reduce the chattering. Utilization of a high-gain, as well as variable-gain differentiator

in the SMC variants, enhances the accuracy of state and derivative estimations under noisy

conditions, which ensures superior trajectory tracking and stabilization for underactuated sys-

tems [31, 32]. However, the aforementioned approaches put unnecessary computational bur-

dens on the computer.

The H-infinity control can robustly reject exogenous disturbances and parametric uncer-

tainties and disturbances, which makes it an effective tool for glucose regulation applications

where patient dynamics and meal disturbances tend to vary randomly [33]. However, it can

also be excessively conservative while aiming to minimize the worst-case scenario, which often

leads to sub-optimal performances. While backstepping control schemes work very effectively

for smooth nonlinearities in BG regulation applications; however, unlike H-infinity, they lack

the necessary resilience against large perturbations contributed by meal intake or stress condi-

tions [34]. The ubiquitous adaptive control strategies self-tune the controller parameters

online as per the changes in the patient’s state variations [35]. The complexity of adaptive algo-

rithms, however, may potentially result in higher processing demands and possible instability

when commuting between various control modes [36]. Recently, machine learning (ML) tech-

niques have gained a lot of traction in enhancing glucose regulation through predictive model-

ing and clinical decision support [37]. However, despite their effectiveness, the

aforementioned techniques necessitate large datasets and intensive training, which inevitably

puts excessive recursive computational burden on the computer [38].

The LQR is ideal for applications where an optimal control yield is required while preserv-

ing the asymptotic stability of the system; whereas, the SMC laws are best suited for applica-

tions where the system is required to robustly nullify the impact of exogenous (bounded)

disruptions [39]. The BG-level regulation system has all the aforementioned requirements

[40]. It requires the control law to robustly and accurately track the reference BG level, even

under the influence of meal disturbances, while guaranteeing an optimal insulin infusion rate

(IIR) as well as the system’s closed-loop stability [41].

1.2. Proposed methodology

The novel contribution of this paper is to formulate and validate a hybrid robust-optimal BG

regulation control procedure for TID patients to normalize their BG concentration levels

while effectively rejecting the impact of bounded meal disruptions and sensor noise. The

dynamics of the virtual patient are simulated via the well-known Bergman Minimal Model

(BMM). The ubiquitous Linear-Quadratic-Integral Regulator (LQIR) is used as the benchmark
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control procedure for comparison with the proposed scheme. The proposed hybrid control

procedure is realized by devising an LQIR-driven self-regulating SMC law. The LQIR’s nomi-

nal control input is used to formulate the SMC law that collaborates with the baseline optimal

regulator to efficiently reject the bounded meal disruptions while maintaining an economical

IIR. The SMC law’s switching gain is dynamically adjusted online via a pre-configured nonlin-

ear hyperbolic adaptation function, which further enhances the reference BG-level tracking

and disturbance attenuation ability of the prescribed hybrid control procedure. The innovative

contributions of this research work are listed below:

1. Design of a nominal LQIR using the BMM to regulate the BG levels in TID patients.

2. Formulation of an SMC law that uses LQIR’s control input to develop the customized slid-

ing surface.

3. Linear combination of the LQIR with the proposed SMC law to constitute the proposed col-

laborative LQIR-driven SMC law that beneficially combines the optimality and robustness

of its constituent controllers. The stability analysis of the prescribed control procedure is

also presented.

4. Self-regulation of the SMC’s switching gain through a customized nonlinear hyperbolic

scaling function of the sliding surface.

5. Investigation of the prescribed control procedure via software simulations that validate its

setpoint regulation and disturbance rejection capacity.

The proposed innovative LQIR-driven SMC strategy innovatively retrieves the benefits of

the aforesaid control schemes while avoiding the inherent problems. The hybridized control

approach generates an optimal control yield (synonymous with LQR) while mimicking the

robustness characteristic of SMC against bounded meal disruptions. Furthermore, the pre-

scribed control procedure avoids the non-robust reachability phase associated with the ubiqui-

tous SMC law while robustly compensating for matched uncertainties [39]. The stability proof

of the prescribed control procedure is also presented. Additionally, the proposed control pro-

cedure is also augmented with a sliding surface-dependent nonlinear hyperbolic adaptation

function that dynamically increases the SMC switching gain under the influence of meal-

induced BG-level disruptions, and vice versa. The said modification also mitigates the chatter-

ing in the state responses by generating a relatively smoother control input while preserving its

robustness. The formulation and simulation of the proposed LQIR-driven self-regulating SMC

law for a BG regulation system has not been investigated in the open literature thus far. Hence,

the idea presented in this paper is novel.

1.3. Innovative features of the proposed control law

The LQIR-driven SMC with adaptive switching gain offers a powerful combination of optimal

control, robustness, and adaptability. It is especially suitable for dynamic environments with

high uncertainty, such as the BG regulation problem. Table 1 presents a brief qualitative com-

parison of the proposed control law with MPC, backstepping, and other controllers. The pro-

posed control scheme ensures fast response and safe insulin administration, with improved

disturbance rejection (against meals and stress) due to adaptive gain tuning.

On the contrary, the MPC offers optimal glucose control but is computationally expensive

and highly sensitive to model variations and prediction errors [21]. Due to ream-time gain

optimization, it has a slower response time and high computation burden. Adaptive backstep-

ping is effective for nonlinear systems but may struggle with meal disturbances [34]. It shows
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gradual adaptation to new and unpredictable disturbances (meals or stress activity). It involves

recursive tuning and subsystem design, which makes the design complex and increases the

computational load. The classical PID controller is easy to implement but lacks robustness

[13]. The fuzzy controllers provide good disturbance handling but may not match the preci-

sion or the computational economy of LQIR-driven adaptive SMC [17]. Moreover, its robust-

ness and computational burden depend on the number of rules used to implement the control

law. Therefore, the LQIR-driven adaptive SMC is a strong candidate for personalized and

robust blood glucose management, addressing the key challenges in maintaining safe and sta-

ble glycemic levels.

The remainder of the paper is arranged as follows: Section 2 presents the glucose-insulin

model and the LQIR’s constitution for BG regulation. Section 3 presents the formation and

stability analysis of the proposed LQIR-driven self-regulating SMC law. Section 4 presents the

controller parameter tuning procedure. Section 5 examines the outcomes of the software simu-

lations. Section 6 discusses the challenges presented by the practical implementation of the

proposed control scheme along with potential future research directions. Section 7 concludes

the work.

2. Glucose-insulin regulation mechanism

This section presents a closed-loop control procedure used for delivering insulin to prevent

hyperglycaemia in TID patients [41]. As described earlier, an excessive (or insufficient) insulin

infusion alters the patient’s BG concentration levels, which has a negative impact on their

health. The BG levels can be normalized by continually infusing appropriate amounts of insu-

lin into the bloodstream of the TID patient. The glucose-insulin regulation schematic is

depicted in Fig 1 [15]. As the subcutaneous injection approach mimics the body’s natural insu-

lin release, it is believed to be the safest way to give the body an insulin dose. The schematic

comprises a glucose sensor that continuously monitors and compares the BG concentration

levels with the setpoint reference (80mg/dL). Based on the instantaneous error in the BG levels,

a feedback control procedure is used to actuate an insulin pump that variably modifies the IIR

in the patient’s bloodstream. The infusion is stopped when the BG level approaches the

setpoint.

2.1. Glucose-insulin dynamic model

The patient’s glucose-insulin dynamics are mathematically modeled by using the BMM

approach [14]. This technique accurately assesses the functionality of the artificial pancreas

and identifies its model while presenting very few biological complications.

Table 1. Comparative analysis of the proposed scheme with other controllers.

Feature Proposed Scheme MPC [21] Adaptive Backstepping [34] PID [13] Fuzzy Logic [17]

Robustness to Uncertainty High Moderate Moderate Low Good

Optimality Optimal Sub-optimal Sub-optimal Low Sub-optimal

Response Time Fast Slow Moderate Fast Moderate

Handling Meal Disturbances Effective Effective Moderate Poor Effective

Chattering Low None None Moderate Moderate

Computational Complexity Moderate High Moderate Low High

Design Complexity Moderate Complex Challenging Simple Moderate

Handling Nonlinear Dynamics Better Better Good Poor Good

Safety against Hypoglycemia High Good Good Limited Fair

https://doi.org/10.1371/journal.pone.0314479.t001
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While the Hovorka, Cobelli, or Sorensen models for simulating the dynamics of insulin

delivery systems offer comprehensive physiological detail, the BMM is chosen in this study

owing to its simplified and flexible structure, which allows for easier implementation, adapta-

tion, and interpretation of results [6–10]. The BMM is an excellent tool for demonstrating fun-

damental glucose-insulin dynamics and developing a reliable control system design without

the added complexity of the aforementioned models. For initial proof-of-concept studies, the

BMM provides a straightforward framework to test hypotheses and develop BG regulation

control algorithms before applying them to more complex models. This approach ensures that

basic functionalities are correctly implemented and potential issues are identified early. The

computational requirements of BMM aid in performing numerous iterations quickly, facilitat-

ing efficient optimization and sensitivity analyses. Additionally, parameter calibration in the

BMM is more straightforward due to the smaller number of parameters involved as compared

to other sophisticated models, making it suitable for scenarios with limited clinical data.

The glucose metabolism process dictated by the BMM is represented via the following set of

differential equations [15, 42].

_G tð Þ ¼ � p1G tð Þ � X tð Þ GðtÞ � Gssð Þ þ
GmðtÞ
V1

_XðtÞ ¼ � p2XðtÞ þ p3IðtÞ

_I tð Þ ¼ � n IðtÞ þ Ibð Þ þ
vðtÞ
V1

_εðtÞ ¼ Gss � GðtÞ
g ð1Þ

where, G(t) is the BG concentration level, X(t) is the insulin concentration level in a “remote”

compartment, I(t) is the blood-insulin concentration level, Gm(t) is the meal disruption input,

v(t) is the modified IIR that serves as the system’s control input, Gss is the steady-state BG con-

centration and is treated as the set point (reference) BG-level, Ib is the steady-state concentra-

tion level of blood-insulin, n is the plasma insulin’s decay-rate, V1 is the blood volume, p1 is

the rate parameter for glucose effectiveness that quantifies the effectiveness of glucose to be

cleared from the bloodstream independent of insulin action, p2 is the insulin clearance rate

that represents how quickly the effect of insulin diminishes after it is released into the blood-

stream, and p3 is the rate parameter for insulin sensitivity that measures the response of glu-

cose uptake by muscle cells to insulin, _εðtÞ is the error between the patient’s actual and steady-

Fig 1. Schematic of the closed-loop glucose-insulin regulation mechanism [15].

https://doi.org/10.1371/journal.pone.0314479.g001
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state BG concentration levels, and ε(t) is the BG error integral variable. The pre-configured

model parameters p1,p2, and p3 are associated with the blood specimen being analyzed. The

error integral supplements the system’s setpoint-tracking accuracy and strengthens its damp-

ing against meal disturbances [43]. The state space representation of the glucose-insulin sys-

tem model is shown below.

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ FdðtÞ þHGss; yðtÞ ¼ CxðtÞ þ DuðtÞ ð2Þ

where, x(t) is the state vector, y(t) is the output vector, u(t) is the control input, d(t) is the dis-

turbance input, A is the system matrix, B is the control input matrix, F is the disturbance input

matrix, C is the output matrix, and D is the feed-forward matrix. The state and input vectors of

the said system are expressed in Eq 3.

xðtÞ ¼ ½GðtÞ XðtÞ IðtÞ εðtÞ ÞT; uðtÞ ¼ vðtÞ; dðtÞ ¼ GmðtÞ ð3Þ

The matrices associated with the system’s state space model are given by Eq 4 [15].

A ¼

� p1 Gb 0 0

0 � p2 p3 0

0

� 1

0

0

� n 0

0 0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; B ¼

0

0

1

V1

0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; F ¼

1

V1

0

0

0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; H ¼

1

0

0

1

2

6
6
6
6
4

3

7
7
7
7
5
;

C ¼ ½ 1 0 0 0 �; D ¼ ½ 0 0 � ð4Þ

The state variable G(t) is also designated as the system’s output variable. Table 2 lists the

model parameters utilized in this study for a healthy individual and three distinct patients

[24].

2.2. Baseline LQIR formulation

The LQIR is an optimal state space control strategy that includes an auxiliary integral error

state variable to improve the setpoint-tracking accuracy and damping against overshoots and

undershoots [44].

An energy-like quadratic performance index (QPI) of the input and state variables is mini-

mized. The Hamilton-Jacobi-Bellman (HJB) equations are then solved to devise the

Table 2. Model parameters for a healthy individual and three distinct patients [24].

Parameter Units Healthy Individual Patient 1 Patient 2 Patient 3

p1 min−1 0.0317 0.012 0.011 0.015

p2 min−1 12.3 × 10−3 20 × 10−3 7.2 × 10−3 14.2 × 10−3

p3 min−1 4.92 × 10−6 5.3 × 10−6 2.16 × 10−6 99.4 × 10−6

n min−1 0.2659 0.3 0.2465 0.2814

Ib mU/L 7 7 7 7

Gss mg/dL 80 80 80 80

V1 L 12 12 12 12

G(0) mg/dL 200 200 200 200

X(0) min−1 0 0 0 0

I(0) mU/L 50 50 50 50

https://doi.org/10.1371/journal.pone.0314479.t002
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aforementioned optimal state-compensator offline [45]. The QPI used here is expressed below.

Slq ¼
1

2

ð1

0

ðxðtÞTQxðtÞ þ uðtÞTRuðtÞÞdt ð5Þ

where R 2 R is a preset positive definite control penalty matrix and Q 2 R4×4 is a preset posi-

tive semi-definite state penalty matrix. The Q and R matrices, respectively, govern input varia-

tions and penalize the state of the system. The following is a symbol representation of these

matrices.

Q ¼ diagð qG qX qI qε Þ; R ¼ r ð6Þ

The coefficients of these matrices are denoted as qx�0 and ρ>0. These coefficients are

adjusted offline through the tuning process covered in Section 4. The following algebraic Ric-

cati equation (ARE) uses the optimized set of aforementioned coefficients to calculate its solu-

tion, the P matrix.

ATP þ PA � PBR� 1BTP þ Q ¼ 0 ð7Þ

where P is a positive definite symmetric matrix with dimensions of R4×4. The state compensa-

tor gain vector K is computed as indicated in (8).

K ¼ R� 1BTP ð8Þ

where, K = [kG kX kI kε]. The nominal LQIR law is expressed as follows.

ulqðtÞ ¼ � KxðtÞ ð9Þ

Fig 2 displays the block diagram of the LQIR scheme.

The LQIR’s convergence is investigated via the following Lyapunov function [46].

WðtÞ ¼ xðtÞTPxðtÞ > 0; for xðtÞ 6¼ 0 ð10Þ

Fig 2. Block diagram of the nominal LQIR law.

https://doi.org/10.1371/journal.pone.0314479.g002
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The first derivative of W(t) is derived, as shown below.

_WðtÞ ¼ 2xðtÞTP _xðtÞ

¼ 2xðtÞTPðA � BKÞxðtÞ

¼ 2xðtÞTPðA � BR� 1BTPÞxðtÞ

¼ xðtÞTðPAþ ATPÞxðtÞ � 2xðtÞTðPBR� 1BTPÞxðtÞ ð11Þ

By substituting Eq (7) in (11), _WðtÞ is simplified as shown in (12).

_WðtÞ ¼ � xðtÞTQxðtÞ � xðtÞTðPBR� 1BTPÞxðtÞ < 0 ð12Þ

If R = RT>0 and Q = QT�0, then _WðtÞ is a negative-definite function. The designed LQIR

law’s asymptotic stability can thus be preserved by meeting the aforementioned conditions.

3. Proposed control methodology

To counteract the effects of parametric uncertainties and input disturbance, the designed

LQIR is integrated with a discontinuous SMC to constitute the proposed hybrid control proce-

dure. The sliding surface of the SMC is thus formulated as a function of the LQIR control

input ulq(t). Once designed, the LQIR-driven SMC is augmented with an online adaptive func-

tion that dynamically adjusts its switching gain as an even-symmetric hyperbolic scaling func-

tion of the BG-level error, _εðtÞ. The formulation of the prescribed hybrid BG controller and its

stability study are presented in the following section.

3.1. Hybrid LQIR-based SMC law

The system’s linear state space equation provides information regarding meal disturbance and

reference BG concentration. To derive the proposed SMC law, the following state equation is

considered.

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ FdðtÞ þHGss ð13Þ

where d(t) is the disturbance input with some known maximum value. The hybrid (collabora-

tive) control law is expressed as follows [39].

uðtÞ ¼ ulqðtÞ þmusðtÞ ð14Þ

where uS(t) represents the sliding-mode control input and m is a real-numbered scaling factor.

Inserting the aforementioned control input in the system’s state equation yields the following

expression.

_xðtÞ ¼ AxðtÞ þ BulqðtÞ þ BmusðtÞ þ FdðtÞ þHGss ð15Þ

The SMC law thus utilizes the following sliding surface [25].

sðtÞ ¼ GxðtÞ þ zðtÞ ð16Þ

where G is an empirically-defined positive state-weighting vector of the form G = [g1 g2 g3

g4], and z(t) is new variable that depends on the system dynamics. The coefficients of the G
vector are adjusted offline through the tuning process covered in Section 4. The derivative of s
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(t) is presented as follows.

_sðtÞ ¼ G _xðtÞ þ _zðtÞ ð17Þ

It is desired for sðtÞ ¼ _sðtÞ ¼ 0 during sliding operation. The substitution of Eq (15) in (17)

delivers the following expression.

_sðtÞ ¼ GðAxðtÞ þ BulqðtÞ þ BmusðtÞ þ FdðtÞ þHGssÞ þ _zðtÞ ¼ 0 ð18Þ

The equation can be simplified as follows.

_sðtÞ ¼ GðAxðtÞ þ BulqðtÞ þHGssÞ þ GBmusðtÞ þ GFdðtÞ þ _zðtÞ ¼ 0 ð19Þ

It is to be noted that GB ¼ g3=V1
and GF ¼ g1=V1

. Hence, if the value of m ¼ g1=g3
, then _sðtÞ

can be written as shown in (20).

_s tð Þ ¼ G AxðtÞ þ BulqðtÞ þHGss

� �
þ

g1

V1

us tð Þ þ
g1

V1

d tð Þ þ _z tð Þ ¼ 0 ð20Þ

During the sliding phase, the SMC signal uS(t) = −d(t) eliminates the bounded exogenous

disturbance(s). Thus, the variable _zðtÞ is expressed as shown below.

_zðtÞ ¼ � GðAxðtÞ þ BulqðtÞ þHGssÞ; zð0Þ ¼ � Gxð0Þ ð21Þ

where x(0) = [200 0 50 0]T as listed in Table 1. As a result of the substitution, m ¼ g1=g3
, it can

be concluded that the effect of matched uncertainty has been eliminated and, thus, the system

is directed by the nominal control input ulq(t) provided by the LQIR. The insertion of _zðtÞ in

(19) guarantees the following simplification of _sðtÞ [39].

_sðtÞ ¼ GBmusðtÞ þ GFdðtÞ ð22Þ

The integration of _zðtÞ delivers the following expression.

� zðtÞ ¼ zð0Þ � G
ðt

0

ðAxðtÞ þ BulqðtÞ þHGssÞdt ð23Þ

Hence, the final expression of the sliding surface s(t) is expressed in (24), [39].

sðtÞ ¼ GðxðtÞ � xð0Þ �
ðt

0

ðAxðtÞ þ BulqðtÞ þHGssÞdtÞ ð24Þ

a. Lyapunov stability proof. Once the sliding surface s(t) is evaluated, the SMC law uS(t)
is derived using the Lyapunov theorem. The following positive Lyapunov function is utilized

for this purpose.

Y tð Þ ¼
1

2
sT tð Þs tð Þ ð25Þ

The Lyapunov function’s first derivative is expressed in (26).

_Y ðtÞ ¼ sTðtÞ_sðtÞ ð26Þ

The substitution of Eq (32) in (36) yields the following expression.

_Y ðtÞ ¼ sTðtÞGBmusðtÞ þ sTðtÞGFdðtÞ ð27Þ
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The SMC law in (28) is used to fulfill the Lyapunov stability criteria, _Y ðtÞ < 0, [39].

usðtÞ ¼ � bsgnðsðtÞÞ ð28Þ

where β is the switching gain of the control law, and sgn(.) is the signum function expressed in

(29).

sgnðsðtÞÞ ¼

� 1; ifsðtÞ < 0

0; ifsðtÞ ¼ 0

1; ifsðtÞ < 0

ð29Þ

8
><

>:

Inserting the SMC law in (27) delivers the modified expression of _Y ðtÞ.

_Y ðtÞ ¼ � GBmb sðtÞ þ sTðtÞGFdðtÞ

¼ sðtÞð� GBmbþ GFdðtÞÞ ð30Þ

As discussed earlier, the _Y ðtÞ < 0 for system to be asymptotically stable. This stability crite-

rion implies that,

� GBmbþ GFdðtÞ < 0 ð31Þ

The substitutions B ¼ g3

V1
;GF ¼ g1

V1
, and m ¼ g1

g3
in (31), deliver the following condition.

b > dðtÞ ð32Þ

The condition in (32) preserves the closed-loop stability of the SMC scheme. If the vector G
and the parameters m and β are selected such that the conditions GB ¼ g3

V1
;GF ¼ g1

V1
;m ¼ g1

g3
,

and β>d(t) are satisfied, the time derivative of the Lyapunov function becomes negative defi-

nite, that is, _Y ðtÞ < 0. This guarantees that the system will converge to the sliding surface

asymptotically, ensuring robust stability.

In lieu of the stability condition in (40), the value of β is adjusted offline through the tuning

process discussed in Section 4. The aforementioned condition states that the modulation gain

β must be chosen larger than the maximum bound of the disturbance d(t) to maintain stability.

In this study, the control input disturbances are bounded in the range 0 to 4 mU/min. This

range is empirically selected based on the pilot simulations. The objective is to avoid abrupt

large IIR requirements, which may cause discomfort to patients due to the switching behavior

of the controller’s SMC component. This range can be altered by the users as per the require-

ment of the application. Consequently, the value of β is chosen from the range 4 and 10 mU/

min. The upper limit of β is set at10 mU/min to avoid an aggressive control approach, which

may eventually lead to hypoglycemia or constantly fluctuating BG levels.

b. Control law formulation. The hybrid LQIR-driven SMC law, as suggested in (14), is

formulated as follows.

uðtÞ ¼ � KxðtÞ � MosgnðsðtÞÞ ð33Þ

where, Mo = mβ. The said control law is referred to as the LQ-SMC law in the following sec-

tions. Fig 3 displays the block diagram of the LQ-SMC scheme.

3.2. Hybrid LQIR-based self-adaptive SMC law

To minimize the chatter in the state response, imposed by the hard limiter, the sgn(s(t)) func-

tion is replaced by a relatively smoother nonlinear function tanh(s(t)) [47]. The modified
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hybrid control law is expressed, as shown in (34).

uðtÞ ¼ � KxðtÞ � MotanhðsðtÞÞ ð34Þ

It is to be noted that the SMC law is majorly needed under external disturbances and

parametric disturbances [48]. However, chattering is inexorably introduced into the state

response due to the disruptive control input contributed by the SMC scheme. Therefore, the

control law in (33) is also augmented with an error-dependent adaptation tool that increases

the SMC’s adaptability by dynamically adjusting its switching gain as the BG levels vary. The

following rationale is thus adopted:

1. Under large BG concentration level errors (hyperglycemia state), the SMC’s switching gain

is inflated to strongly damp the overshoots in the BG level and quickly restore it to the

steady-state value.

2. Under small BG concentration level errors (equilibrium state), the SMC’s switching gain is

reduced to maintain the BG level at the steady-state value with minimal fluctuations.

These properties speed up the transition of the BG level from the state of hyperglycemia to

the normal level and strengthen the closed-loop system’s damping against meal disturbances

while economizing the application of the control input (the IIR) [49]. The aforesaid adaptation

strategy is realized by augmenting the said control law with a nonlinear gain scaling function.

The rationale requires the scaling function to be bounded, differentiable, smooth, and even

symmetric.

The hyperbolic secant function (HSF) yield a smooth and gradual gain adjustment which

aids in stabilizing the state behavior with minimal chattering [50]. However, it requires calcu-

lation of exponentials in both directions. This can be computationally demanding, though

modern processors handle these efficiently. The hyperbolic tangent functions exhibit smooth

yet faster transitions, leading to a good chattering suppression with a risk of overshoot [47].

However, it can be realized by evaluating a single exponential, making it relatively faster than

HSF. The sigmoid functions yield smooth gain adaptation but can introduce slower conver-

gence compared to HSF, causing residual chattering [51]. Its computational complexity is at

par with HSF. The exponential functions, although simplest to compute, but its fast decay risks

under-damping the system if not tuned properly, causing loss of control effectiveness [52].

Hence, based on the qualitative analysis, the HSF driven by the BG-level error _εðtÞ is chosen

Fig 3. Block diagram of the nominal LQ-SMC law.

https://doi.org/10.1371/journal.pone.0314479.g003
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for gain adjustment in this study. The HSF offers a balanced gain adjustment that avoids satu-

ration issues and smoothly regulates the gain under disturbances, enhancing stability for com-

plex systems, without sacrificing control authority. The merits of each of the aforementioned

nonlinear functions are summarized in Table 3.

The comparative analysis in the Table 3 suggests that HSF offers a compelling trade-off

between stability, chattering reduction, and computational cost. Hence, in this study, the HSF

is adopted to adjust the switching gain M(t) as a nonlinear function of the BG-level error _εðtÞ.
The formulation is shown in (35), [50].

MðtÞ ¼ Moð1 � sechðg _εðtÞÞÞ ð35Þ

where, sech(.) Represent the HSF, and γ represent the variation rate of the HSF. The proposed

hybrid LQIR-driven self-adaptive SMC law is expressed in (36).

uðtÞ ¼ � KxðtÞ � MðtÞtanhðsðtÞÞ ð36Þ

The proposed hybrid control law mentioned above is referred to as LQ-ASMC in the article.

Fig 4 displays the block diagram of the LQ-ASMC scheme.

The proposed controller, and its variants, detect the disturbance by monitoring deviations

of the system state G(t) (patient’s BG level) from the desired setpoint BG level, denoted as _εðtÞ.
These measurements are fed to both the LQIR and SMC controllers. A significant deviation

suggests that the nominal LQIR controller might be insufficient, requiring the SMC to take

over.

The system uses nominal LQIR inputs in tandem with the SMC’s corrective actions. The

LQIR is used for optimal control during nominal conditions, ensuring minimal energy

Table 3. Comparative analysis of HSF with other nonlinear functions.

Nonlinear Function Stability Chattering Mitigation Computational Complexity

Hyperbolic Secant [50] High Excellent Moderate

Hyperbolic Tangent [47] Moderate Good Low

Sigmoid [51] Moderate Fair Moderate

Exponential [52] Fast Good Low

https://doi.org/10.1371/journal.pone.0314479.t003

Fig 4. Block diagram of the nominal LQ-ASMC law.

https://doi.org/10.1371/journal.pone.0314479.g004
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consumption and smooth system behavior. Under disturbance conditions, as the error magni-

tude continues to inflate, the SMC action is activated and progressively strengthened. Hence,

instead of abrupt switching, the proposed LQ-ASMC ensures continuous blending of control

effort via a smooth nonlinear scaling function driven by the magnitude of state error ( _εðtÞÞ.
The modulation gain M(t) of the control law in (36) is dynamically adjusted, ensuring that the

SMC contribution only activates and amplifies when needed to counteract disturbances with-

out causing overcompensation or oscillations (chattering). Hence, the LQIR continues operat-

ing to maintain performance in every condition, whereas, the SMC compensates for

uncertainties by providing corrective control inputs based on the sliding surface. The SMC

component cancels out disturbances by compensating with an input equal to the disturbance

but opposite in direction.

By initializing the sliding surface from the start (s(t) = 0), the SMC avoids the unstable

reachability phase, ensuring stability from t = 0. The discontinuous signum function with a

smoother approximation function of the form tanh(s(t)), as shown in (34) and (36). This soft-

ens the switching action, reducing high-frequency oscillations (chattering) while maintaining

robustness.

3.3. Implementation scheme of the proposed control law

The methodological steps used for the execution and implementation of the LQ-ASMC law

are given as follows:

1. Identify Model

a. Define the state variables, x(t).

b. Define the differential equations dictating the glucose-insulin dynamics.

c. Define the state space matrices (A,B,C,D) of the glucose-insulin model.

2. Design LQR

a. Define state and control weighting matrices (Q and R).

b. Solve the Riccati equation to find the optimal feedback gain matrix K.

c. Compute the control input using the LQR.

3. Design ASMC

a. Compute the sliding surface s(t) using the current states, desired states, and LQR control

input.

b. Define the sliding mode reaching law, M(t) tanh(s(t)).

c. Formulate a nonlinear scaling function to online adapt the scaling gain, M(t).

d. Calculate the SMC input.

4. Formulate the LQ-ASMC law by combining LQR and ASMC law.

5. Implement the control algorithm

a. Continuously acquire the system’s current states.

b. Compute the updated LQR control input.
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c. Compute the sliding surface, s(t)

d. Modify the sliding-mode gain, M(t).

e. Calculate the final control input using the LQ-ASMC law.

f. Apply the control input to the system.

g. Update the system state variables based on dynamics.

The flow chart depicting the algorithm implementation of the LQ-ASMC is shown in Fig 5.

4. Parameter tuning procedure

The LQIR design is dependent on the state of the system and changes in control input. To

guarantee an optimal control effort, it is crucial to allocate the proper weights to the control

input and state variables [53]. In lieu of these conditions, the empirical settings of the Q matrix,

R matrix, G vector, and other parameters (β,m, and γ) are limited by the designer’s knowledge

and thus, accurate reference tracking and optimal transient recovery behavior might not

always be achieved [54, 55].

As derived in (12), the state weighting and control weighting matrices are selected such R =

RT>0 and Q = QT�0 to ensure the Lyapunov stability of the LQIR law. Similarly, as derived in

(32), the value of β is selected as β>d(t) to ensure the Lyapunov stability of the proposed SMC

law.

Fig 5. Flow chart of the proposed control scheme.

https://doi.org/10.1371/journal.pone.0314479.g005
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4.1. Offline tuning procedure

The aforementioned parameters are optimized offline by minimizing a new objective function

that captures the variations in BG concentration level error _εðtÞ and control input u(t). This

objective function is expressed in (37).

J ¼ jTsetj þ

ð1

0

ðj _εðtÞj2 þ juðtÞj2Þdt ð37Þ

where, Tset is the time taken by the BG level to stabilize within ±5% of Gref. To deliver optimum

control decisions, the function J imposes equal weight on the two minimization criteria. The

initial values of these parameters can be chosen at random from the aforementioned search

space. The algorithm then coordinates the exploration in the direction of the descending slope

of J [56]. The parameter optimization scheme is demonstrated in Fig 6 [15]. The BMM param-

eters of Patient 1 (See Table 1) serve as the benchmark for the tuning purpose. The simulations

discussed in Section 4 are used for parameter tuning. In every tuning attempt, the controller

parameters are adjusted based on pre-defined increments. Upon the re-adjustment of the

parameters, the control law is commissioned to normalize the virtual patient’s BG concentra-

tion levels at 80 mg/dL from an initial value of 200 mg/dL for 300 min using the refined set of

Fig 6. Flow chart of the parameter tuning algorithm [10].

https://doi.org/10.1371/journal.pone.0314479.g006
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parameters. Once the trial is concluded, the cost Jn is calculated; where, n is the trial num-

ber. In the event that the current trial’s cost (Jn) turns out to be less than the previous trial’s

cost (Jn−1), the local minimum cost Jmin is modified. This configuration guarantees that the

search is moving in the descending gradient direction of J. The exploration for the optimum

parameter values is concluded if either Jmin reaches a predetermined setpoint cost or the

algorithm has completed the maximum number of trials (nmax) permitted [56]. The setpoint

for Jmin is set at 1×107 in this work [10]. Because each simulation takes a long time, the value

of nmax is fixed at 8. The selected parameters are further refined by manually adjusting their

values.

4.2. Parametrization of control law

For designing the baseline LQIR, the coefficients of Q and R matrices are tuned from the range

[0, 1]. The tuning process begins with R = 1 and Q = diag(1 1 1 1). The coefficients thus tuned

via the afore-described tuning procedure are qG ¼ 0:32; qI ¼ 0:22; qX ¼ 0:25; qε ¼ 0:61, and

ρ = 1.05. The gain vector K = [kG kX kI kε], linked with the LQIR law ulq(t) = −Kx(t), is com-

puted using the tuned set of Q and R matrices. The state-compensator gains thus evaluated are

kG ¼ 0:0038; kX ¼ 0:0021; kI ¼ 0:0024, and kε = 1.12×10−4.

For designing the LQ-SMC law, the coefficients of the G vector are picked from the range

[0, 0.01]. The tuning process begins with G = [0.01 0.01 0.01 0.01]. The coefficients of the vec-

tor G = [g1 g2 g3 g4] thus chosen are g1 ¼ 0:0088; g2 ¼ 0:0051; g3 ¼ 0:0052; g4 ¼ 3:65� 10� 4.

Consequently, the value of m is computed as 1.59. As discussed in Section 3.1 (a), the value of

β>d(t) is selected from the range [4, 10]. The initial value of β is 4.0. The value of β yielded by

the tuning procedure for this study is 4.48. Hence, the value of Mo = mβ is computed as 7.12.

The LQ-SMC law is given as follows.

uðtÞ ¼ � KxðtÞ � 7:12tanhðsðtÞÞ ð38Þ

For designing the LQ-ASMC law, the variation rate of the HSF is picked from the range

[0, 1]. The tuning process begins with an initial value of γ = 0.1. The value of γ thus chosen for

this research is 0.06. The LQ-ASMC law is given as follows.

uðtÞ ¼ � KxðtÞ � 7:12ð1 � sechð0:06 _εðtÞÞÞtanhðsðtÞÞ ð39Þ

5. Simulations and analysis

Clinical trials are avoided at this stage because conducting experiments involving human sub-

jects requires extensive ethical approval processes, significant financial resources, and logistical

resources. Instead, this article outlines a phased approach, where successful simulation results

will serve as the basis for experimental validation in future works. The focus of this paper on

establishing the effectiveness and reliability of the controller through rigorous simulation stud-

ies is both appropriate and necessary given the preliminary nature of this study. The simula-

tions allow to iteratively refine and optimize the controller design, which validates the

framework before committing to the more resource-intensive process of human trials, thereby

ensuring a higher likelihood of success in subsequent phases. This approach aligns with stan-

dard research methodologies, where simulation results guide the design and implementation

of human trials.

The test simulations undertaken to verify the time optimality and robustness of the pre-

scribed BG control strategies are presented in this section, along with a comparative analysis of

the attained results.
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5.1. Simulation setup

The time-domain behavior of the LQIR, LQ-SMC, and LQ-ASMC schemes are compared

through customized simulations that test the controller’s behavior under hyperglycaemia state,

transient meal disturbance, and Gaussian noise. The MATLAB/Simulink R2020b software tool

is used to implement the control application and run the simulations [57]. A 64-bit embedded

computer with a 2.1 GHz CPU and 12.0 GB RAM is used to run the software. The samples are

acquired after every 60 seconds. As mentioned in Section 2, three distinct BMMs are used to

simulate the virtual TID patients (See Table 1) to validate the efficacies of designed control

laws in effectively regulating the BG concentration levels from an initial state of hyperglycae-

mia as well as rejecting the transient meal disturbance and measurement (Gaussian) noise. To

avoid hypoglycemia in the patients due to a significant drop in BG levels, the IIR signal u(t) is

limited between 0 mU/min and 100 mU/min.

5.2. Simulation results

The following two testing scenarios are employed to benchmark the proposed LQ-ASMC

against the nominal LQIR and the LQ-SMC. The simulations are used to test the behavior of

the three controllers individually on each patient. The closed-loop system is responsible for

continuously tracking the patient’s BG level to 80 mg/dL setpoint under every operating condi-

tion. In every test case, white Gaussian noise is added to G(t) to observe the impact of random

sensor noise on the reference tracking behavior.

A. BG regulation under hyperglycaemia. The purpose of this simulation is to test the

control law’s ability to bring the patients’ BG concentration levels down from an initial state of

hyperglycaemia (200 mg/dL) to 80 mg/dL. At the start of every trial, a white Gaussian noise

signal with a mean of zero and variance of 0.2 is added to G(t) to simulate the effects of mea-

surement noise from the glucose sensor. Figs 7–9 show the BG level and IIR (control input)

profiles under LQIR, LQ-SMC, and LQ-ASMC for Patients 1, 2, and 3, respectively.

B. BG regulation under transient meal disruption. The purpose of this simulation is to

evaluate the control law’s robustness against bounded exogenous disturbances, which are typi-

cally brought on by the consumption of food. A simulated impulse signal in d(t) and a white

Gaussian noise signal in G(t) are used to simulate the effects of meal disruption and sensor

noise, respectively. The closed-loop system operates to recover from the transient perturbation

and normalizes the patient’s BG levels back to 80 mg/dL baseline after the said disruption. A

white noise signal with a mean of zero and variance of 0.2 is introduced into the system at the

start of the trial, while a simulated impulse signal with an amplitude of 80 mg/dL is injected

Fig 7. (a) BG levels of Patient 1 under hyperglycaemia, (b) IIR (control input) for Patient 1 under hyperglycaemia.

https://doi.org/10.1371/journal.pone.0314479.g007
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into the system at t� 500 min. Figs 10–12 show the BG level and IIR (control input) profiles

under LQIR, LQ-SMC, and LQ-ASMC for Patients 1, 2, and 3, respectively.

C. BG regulation under physical or mental stress. The purpose of this simulation is to

assess the controller’s robustness against unprecedented variations in physiological model

parameters, which are typically brought on by physical or mental stress. To emulate stress con-

ditions, the parameter p1 is decreased to reflect reduced glucose uptake by muscles, parameter

p2 is increased to simulate increased hepatic glucose output triggered by stress hormones, and

parameter p3 is decreased to account for reduced insulin effectiveness due to the release of the

counter-regulatory hormones like cortisol and adrenaline into the blood. These hormones typ-

ically cause the BG levels to rise. To carry out this simulation, the values of p1,p2, and p3 are

changed to 8:0� 10� 3min� 1; 25:0� 10� 3min� 1, and 2.5×10−6min−1 at t� 500 min, respec-

tively. This modification changes the coefficients of the system matrix A presented in (4),

which causes the BG levels to rise. Figs 13–15 show the BG level and IIR (control input) pro-

files under LQIR, LQ-SMC, and LQ-ASMC for Patients 1, 2, and 3, respectively.

5.3. Analysis and discussions

The following Critical Performance Measures (CPMs) are employed to analyze the simulation

results.

• Erms: Root-mean-squared magnitude of the BG-level error _εðtÞ.

• Esa: Sum of the absolute magnitudes of the BG-level errors _εðtÞ.

Fig 9. (a) BG levels of Patient 3 under hyperglycaemia, (b) IIR (control input) for Patient 3 under hyperglycaemia.

https://doi.org/10.1371/journal.pone.0314479.g009

Fig 8. (a) BG levels of Patient 2 under hyperglycaemia, (b) IIR (control input) for Patient 2 under hyperglycaemia.

https://doi.org/10.1371/journal.pone.0314479.g008
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• Tfall: Time needed by the BG level to fall to +10% of Gref from the hyperglycaemia.

• Tset: Time needed by the BG level to stabilize within ±5% of Gref.

• Trec: Time needed by the BG level to stabilize after a transient disturbance.

• OS: The magnitude of overshoot observed in BG level after a transient disturbance.

• Ums: Mean-squared magnitude of the IIR input, u(t).

Fig 10. (a) BG levels of Patient 1 under meal disturbance, (b) IIR (control input) for Patient 1 under meal disturbance.

https://doi.org/10.1371/journal.pone.0314479.g010

Fig 12. (a) BG levels of Patient 3 under meal disturbance, (b) IIR (control input) for Patient 3 under meal disturbance.

https://doi.org/10.1371/journal.pone.0314479.g012

Fig 11. (a) BG levels of Patient 2 under meal disturbance, (b) IIR (control input) for Patient 2 under meal disturbance.

https://doi.org/10.1371/journal.pone.0314479.g011
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• Up,start: Peak magnitude of IIR input during the initial hyperglycemic state.

• Up,dist: Peak magnitude of IIR input during meal disturbance.

The Erms is calculated as shown below.

Erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼0

j _εðnÞj2
s

ð40Þ

Fig 13. (a) BG levels of Patient 1 under stress, (b) IIR (control input) for Patient 1 under stress.

https://doi.org/10.1371/journal.pone.0314479.g013

Fig 15. (a) BG levels of Patient 3 under stress, (b) IIR (control input) for Patient 3 under stress.

https://doi.org/10.1371/journal.pone.0314479.g015

Fig 14. (a) BG levels of Patient 2 under stress, (b) IIR (control input) for Patient 2 under stress.

https://doi.org/10.1371/journal.pone.0314479.g014
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where, N is the total number of samples and n is the number of measurements. The value of N
is 500 for simulation A and 1000 for simulation B in this article. The Esa is calculated, as shown

below.

Esa ¼
XN

n¼0

j _εðnÞj ð41Þ

The UMS is calculated, as shown below.

Ums ¼
1

N

XN

n¼0

juðnÞj2 ð42Þ

A quantitative analysis of the robustness and performance of the prescribed BG control

strategies is conducted using the afore-described CPMs. Table 4 summarizes the simulation

outcomes of all test cases for Patient 1. Table 5 presents the simulation outcomes of all test

cases for Patient 2. Table 6 summarizes the simulation outcomes for Patient 3. The outcomes

confirm the enhanced response speed and disturbance compensation ability of the LQ-ASMC

law over the LQIR and LQ-SMC laws.

In Simulation A, every controller displays a distinct transient reaction to bring every

patient’s BG levels to the setpoint BG concentration level. The LQIR exhibits a comparatively

longer settling time to converge to Gss and a mediocre reference tracking accuracy. The

LQ-SMC shows a significant improvement in reference-tracking behavior over the LQIR due

to its faster response time and more accurate regulation. The LQ-ASMC law exhibits an

improved setpoint-tracking accuracy and the fastest transient response. It efficiently sup-

presses the steady-state fluctuations and promptly stabilizes the BG concentration levels at the

intended setpoint, all the while subsidizing the IIR expenditure.

In Simulation B, each control law applies appropriate resources to normalize the BG con-

centration levels after the simulated meal disturbance has induced a state of hyperglycaemia in

Table 4. Simulation results of Patient 1.

Simulation CPM Control Law

Metric Unit LQIR LQ-SMC LQ-ASMC

A Erms mg/dL 33.98 31.13 25.64

Esa mg/dL 1367.43 1255.52 759.88

Tfall min. 162 130 110

Tset min. 225 177 145

Ums (mU/min)2 4.72 6.08 3.44

Up,start mU/min 4.33 5.47 4.22

B Erms mg/dL 41.79 34.20 26.18

Esa mg/dL 2451.77 1680.33 1247.56

Trec min. 190 168 161.5

Ums (mU/min)2 6.31 9.59 4.54

Up,dist mU/min 3.33 3.62 2.32

C Erms mg/dL 34.72 27.51 23.46

Esa mg/dL 2053.75 1291.08 945.98

OS mg/dL 58.73 45.32 35.02

Trec min. 185 145 112

Ums (mU/min)2 5.16 4.88 3.83

Up,dist mU/min 4.62 4.05 3.02

https://doi.org/10.1371/journal.pone.0314479.t004
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the virtual patient. The LQIR lacks the resilience to withstand sensor noise and meal distur-

bances. The time domain profile under LQIR manifests a slower transient recovery time and

comparatively more chattering is displayed in the response. Moreover, the LQIR injects insulin

for a longer time period, which is not practical from a therapeutic standpoint for the patients.

The LQ-SMC exhibits a significantly improved disturbance rejection capacity and a rela-

tively faster error convergence rate. However, it also results in a substantial requirement for

Table 5. Simulation results of Patient 2.

Simulation CPM Control Law

Metric Unit LQIR LQ-SMC LQ-ASMC

A Erms mg/dL 38.22 34.11 27.25

Esa mg/dL 1832.57 1456.16 829.95

Tfall min. 199 161 115

Tset min. 241 208 157

Ums (mU/min)2 4.53 7.35 3.82

Up,start mU/min 4.39 6.01 4.38

B Erms mg/dL 38.25 35.84 25.41

Esa mg/dL 2191.52 1801.85 1231.17

Trec min. 178 174 163

Ums (mU/min)2 4.98 8.76 2.52

Up,dist mU/min 2.51 3.76 1.85

C Erms mg/dL 36.08 27.66 22.21

Esa mg/dL 2232.03 1407.29 878.91

OS mg/dL 58.31 44.45 33.86

Trec min. 196 152 103

Ums (mU/min)2 6.73 5.21 4.74

Up,dist mU/min 4.91 3.96 3.41

https://doi.org/10.1371/journal.pone.0314479.t005

Table 6. Simulation results of Patient 3.

Simulation CPM Control Law

Metric Unit LQIR LQ-SMC LQ-ASMC

A Erms mg/dL 34.02 26.09 24.88

Esa mg/dL 1526.31 1277.92 813.45

Tfall min. 182 115 85

Tset min. 226 148 101

Ums (mU/min)2 3.31 6.13 4.05

Up,start mU/min 4.40 5.52 4.95

B Erms mg/dL 36.38 28.67 21.05

Esa mg/dL 2130.87 1609.17 1468.93

Trec min. 138 134 131

Ums (mU/min)2 4.75 8.07 3.47

Up,dist mU/min 3.18 3.61 2.24

C Erms mg/dL 31.72 26.37 23.22

Esa mg/dL 1785.28 1278.5 916.91

OS mg/dL 59.55 50.54 34.24

Trec min. 178 149 107

Ums (mU/min)2 4.98 4.59 3.99

Up,dist mU/min 4.71 3.95 3.48

https://doi.org/10.1371/journal.pone.0314479.t006
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insulin infusion. With a notable increase in resilience against meal disturbances and measure-

ment noise, the LQ-ASMC law exhibits the most time-optimal behavior. It displays minimum-

time transient recovery, minimal setpoint-tracking error, and comparatively faster response

speed. Finally, it reduces the unnecessary ripples in state responses by generating a relatively

cheaper and smoother control input (IIR) profile.

In Simulation C, the patient experiences hyperglycemia due to the stress conditions simu-

lated by appropriately varying the model parameters. The LQIR exhibits fragile control behav-

ior against the stress-induced perturbations, exhibiting a large overshoot and slowest transient

recovery period. The LQ-SMC manifests a comparatively faster error convergence rate

together with a markedly enhanced capacity to reject disturbances. However, it achieves this

behavior at the expense of a sustainable amount of insulin infusion. The LQ-ASMC law dem-

onstrates the fastest transient reaction and robust setpoint tracking. It quickly stabilizes the BG

levels at the desired setpoint and effectively attenuates the stress-induced overshoot in the

response, all while offsetting the IIR consumption.

The LQ-ASMC yields a mean improvement of 20.5%, 40.4%, 30.1%, 15.2%, 30.6%, 26.1%,

and 2.5%, in the Erms, Esa, Tfall, Trec, Tset, Ums, and Up, in comparison to the LQIR. The

enhanced flexibility of the proposed LQ-ASMC, resulting from the augmentation of the LQIR

with the self-adaptive SMC law, is credited with significantly improving the transient reaction

speed and the control input efficiency. Finally, the LQ-ASMC yields a mean improvement of

13.6% and 18.8% in the root-mean-square value of the steady state fluctuations (chattering

content), in comparison to the LQIR and LQ-SMC, respectively.

The proposed modifications systematically enhance the controller’s self-reasoning to

quickly adapt and, thus, execute better setpoint-tracking and disturbance compensation capac-

ity. Moreover, the LQ-ASMC configuration accomplishes the prescribed BG regulation objec-

tives without sacrificing the control input (IIR) economy, which is indeed a noteworthy

achievement. While the offline adjustment of a multitude of parameters associated with the

LQ-ASMC is a cumbersome process, the procedure’s improved time optimality outweighs this

drawback.

5.4. Statistical analysis of simulation results

In this section, the data acquired via the simulations is statistically analyzed to justify the afore-

mentioned claims of performance improvement. The BG regulation data of each patient for

each distinct control scheme under simulations A, B, and C is examined via the following two

data analysis techniques:

a. Confidence Interval (CI)

b. Hypothesis Testing

a. Confidence Interval (CI). The CIs are used to analyze the BG regulation data to attain

an intuitive understanding of the variability and reliability of the results. It helps quantify the

degree of uncertainty in the estimated BG levels. A 95% CI, as used in this study, indicates that

there is a 95% chance that the true average BG level falls within the determined range. The sta-

tistical analysis of the BG regulation data of each patient for each distinct control scheme

under simulations A, B, and C, is presented in Table 7. The statistical analysis validates the

enhanced performance improvement contributed by LQ-ASMC in normalizing the virtual

patient’s BG levels under every testing scenario.

b. Hypothesis testing. The hypothesis testing is done to analyze the effectiveness of the

proposed LQ-ASMC procedure in regulating the BG levels, as compared to LQIR and

PLOS ONE Modern control of biomedical systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0314479 November 27, 2024 24 / 36

https://doi.org/10.1371/journal.pone.0314479


LQ-SMC schemes. It involves testing an assumption (the hypothesis) about the BG levels of

patients under the influence of the proposed control law. In this study, two cases of hypothesis

testing are carried out to compare the performance of LQ-ASMC against LQIR as well as the

performance of LQ-ASMC against LQ-SMC.

Case 1: Null hypothesis (H0). The LQ-ASMC procedure does not significantly affect BG reg-

ulation compared to the LQIR.

Alternative hypothesis (H1). The LQ-ASMC procedure significantly improves BG regulation

compared to the LQIR. The hypothesis examination for Case 1 is done via t-test using the sam-

ple data sets of LQIR and LQ-ASMC. The value of significance-level is set to 0.05 for this test.

The t-test results are quantified in Table 8. In every patient’s case, the value of the t-stat is

larger than the corresponding t-critical value. Hence, hypothesis H0 is rejected, and it is con-

cluded that LQ-ASMC is comprehensively better than LQIR. Additionally, it is to be noted

that the p-value is lesser than the significance level (0.05) in every case, which supports the

decision to reject H0 and support H1.

Table 7. Statistical data analysis.

Test Statistical Tool (mg/dL) Patient 1 Patient 2 Patient 3

LQIR LQ-SMC LQ-ASMC LQIR LQ-SMC LQ-ASMC LQIR LQ-SMC LQ-ASMC

A Mean 98.71 94.70 90.36 101.97 97.31 91.61 98.19 90.53 86.68

Median 84.69 81.82 80.64 86.81 82.78 80.96 84.29 81.83 80.64

Standard Dev. 28.38 27.44 23.46 31.28 29.40 24.65 28.73 23.89 18.73

CI (95%) 1.11 1.08 0.92 1.22 1.16 0.97 1.13 0.94 0.73

Upper CI (95%) 99.82 95.78 91.28 103.19 98.47 92.58 99.32 91.47 87.41

Lower CI (95%) 97.60 93.63 89.44 100.75 96.15 90.64 97.06 89.58 85.94

B Mean 110.29 100.77 95.37 106.27 102.95 93.49 105.49 97.11 91.49

Median 100.21 88.77 85.07 96.02 91.34 83.51 92.74 85.79 83.05

Standard Dev. 28.80 27.18 21.19 27.81 27.53 21.54 29.33 25.47 18.82

CI (95%) 1.13 1.06 0.83 1.09 1.08 0.84 1.15 0.99 0.74

Upper CI (95%) 111.42 101.83 96.20 107.36 104.03 94.34 106.64 98.10 92.23

Lower CI (95%) 109.16 99.70 94.54 105.18 101.87 92.65 104.34 96.11 90.76

C Mean 104.63 95.38 91.06 106.77 96.85 90.35 101.43 95.25 90.75

Median 94.77 85.70 82.31 98.03 87.19 82.26 91.76 85.81 82.41

Standard Dev. 24.46 22.80 20.70 24.19 21.94 19.65 23.38 21.52 20.59

CI (95%) 1.36 1.27 1.15 1.34 1.22 1.09 1.30 1.19 1.14

Upper CI (95%) 105.99 98.65 92.21 108.11 98.06 91.44 102.73 96.44 91.89

Lower CI (95%) 103.27 94.12 89.91 105.42 95.63 89.26 100.14 94.06 89.61

https://doi.org/10.1371/journal.pone.0314479.t007

Table 8. Results of t-test conducted on sample data of LQ-ASMC against LQIR.

Simulation Statistical Tool (mg/dL) Patient 1 Patient 2 Patient 3

A t-stat 11.32 12.99 16.79

t-critical 1.96 1.96 1.96

p-value 2.3×10−29 6.0×10−38 2.5×10−61

B t-stat 20.87 18.17 20.08

t-critical 1.96 1.96 1.96

p-value 1.7×10−92 2.3×10−71 8.9×10−86

C t-stat 14.98 18.64 12.12

t-critical 1.96 1.96 1.96

p-value 1.5×10−48 1.5×10−72 6.8×10−33

https://doi.org/10.1371/journal.pone.0314479.t008

PLOS ONE Modern control of biomedical systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0314479 November 27, 2024 25 / 36

https://doi.org/10.1371/journal.pone.0314479.t007
https://doi.org/10.1371/journal.pone.0314479.t008
https://doi.org/10.1371/journal.pone.0314479


Case 2: Null hypothesis (H0). The LQ-ASMC procedure does not significantly affect BG reg-

ulation compared to the LQ-SMC procedure.

Alternative hypothesis (H1). The LQ-ASMC procedure significantly improves BG regulation

compared to the LQ-SMC procedure.

The hypothesis testing is done via t-test using the data sets of LQ-SMC and LQ-ASMC. The

value of significance-level is set to 0.05. The consequent t-test results are quantified in Table 9.

In every patient’s case, the value of the t-stat is larger than the corresponding t-critical value.

Hence, hypothesis H0 is rejected, and it is concluded that LQ-ASMC is significantly better

than LQ-SMC under stress. The p-value < significance level in every case, supporting the deci-

sion to reject H0 in favor of H1.

5.5. Comparison with modern controllers

To verify the efficacy of the recommended LQ-ASMC controller in handling the BG regulation

problems, its performance is also benchmarked against the modern controllers proposed in

[15, 24]. These modern control techniques include the complex-order PID (CO-PID) control-

ler [15], fractional-order SMC (FOSMC) [24], adaptive fractional-order SMC (AFOSMC)

[24], higher-order SMC (HOSMC) [24], and super-twisting sliding-mode-controller (STSMC)

[24]. The simulations A and B in [15, 24] were conducted using the afore-said controllers on

the identical trio of patient models, as indicated in Table 2. The performance comparison of

the simulation outcomes of each controller is quantified in terms of Esa in Table 10.

Table 9. Results of t-test conducted on sample data of LQ-ASMC against LQIR.

Simulation Statistical Tool (mg/dL) Patient 1 Patient 2 Patient 3

A t-stat 6.01 7.39 6.31

t-critical 1.96 1.96 1.96

p-value 2.0×10−9 1.7×10−13 3.0×10−10

B t-stat 7.83 13.53 8.86

t-critical 1.96 1.96 1.96

p-value 5.9×10−15 5.6×10−41 1.1×10−18

C t-stat 4.96 7.80 5.34

t-critical 1.96 1.96 1.96

p-value 7.4×10−7 9.4×10−15 1.0×10−7

https://doi.org/10.1371/journal.pone.0314479.t009

Table 10. Comparison with modern control techniques.

Simulation Metric Unit Controllers Patient 1 Patient 2 Patient 3

A Esa mg/dL STSMC [17] 1956 2110 1880

HOSMC [17] 1456 1357 1609

FOSMC [17] 1135 916 1542

AFOSMC [17] 877 759 1015

CO-PID [10] 789 811 855

LQ-ASMC (proposed) 760 829 813

B Esa mg/dL STSMC [17] 2720 2986 3560

HOSMC [17] 2014 1895 2398

FOSMC [17] 1766 1660 2228

AFOSMC [17] 1417 1206 1655

CO-PID [10] 1253 1277 1592

LQ-ASMC (proposed) 1248 1231 1469

https://doi.org/10.1371/journal.pone.0314479.t010
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The findings in [15] show that the CO-PID controller is designated as the best choice for

BG regulation applications. In Simulation A, the LQ-ASMC improves the Esa measure of

Patients 1, 2, and 3 by 3.6%, -2.2%, and 4.9%, respectively, in comparison to the CO-PID con-

troller. In Simulation B, the LQ-ASMC improves the Esa measure of Patients 1, 2, and 3 by

0.4%, 3.6%, and 8.3%, respectively, in comparison to the CO-PID controller.

5.6. Sensitivity and robustness analysis of LQ-ASMC

This section discusses additional test cases to analyze the sensitivity of LQ-ASMC under the

parameter variations as well as its robustness under sensor noise models.

a. Sensitivity analysis of LQ-ASMC under variations of all parameters. To quantify the

robustness of the system regulated by LQ-ASMC to parameter variations and to ascertain the

effectiveness of the tuning process in Section 4.1, a detailed sensitivity analysis is performed by

introducing a 10.0% increment as well as a 10.0% decrement in the tuned parameter set (Q,R,

G,m,β and γ) that is presented in Section 4.2. For each modified parameter set, simulations are

conducted to normalize the virtual patient’s BG concentration levels at 80 mg/dL from an ini-

tial value of 200 mg/dL for 500 min. The resulting performance metrics are recorded and the

consequent results are statistically analyzed to quantify the impact of each parameter on the

system’s time-domain performance. Figs 16–18 show the BG level and IIR (control input) pro-

files with LQ-ASMC under different parameter sets for Patients 1, 2, and 3, respectively. The

analysis of the simulation outcomes is quantified in Table 11.

The parameter settings with a 10.0% increment yield a faster response speed but also inject

chattering in the response. The amount of insulin consumed is also relatively higher than the

other parameter settings. The parameter settings with a 10.0% decrement yield a relatively

slower response speed. The amount of insulin consumed is relatively lesser than the other

parameter settings.

The results suggest that the nominal set of parameters (as prescribed in Section 4.2) mani-

fests the best performance and insulin consumption rate. It yields a time-optimal response and

accurate reference tracking ability. The nominal set of parameters also avoids causing hypogly-

cemia in the patients while preserving the IIR efficiency.

b. Sensitivity analysis of LQ-ASMC under variations of β. An additional sensitivity anal-

ysis is carried out by introducing a 10.0% increment and a 10.0% decrement in the tuned value

of β only. This simulation is done to measure the resilience of the LQ-ASMC to changes in the

β. For each modified parameter setting, simulations are conducted to normalize the BG levels

of Patient 1 (See Table 2) at 80 mg/dL from an initial value of 200 mg/dL for 500 min. The BG

Fig 16. (a) BG levels of Patient 1 under different parameter settings, (b) IIR (control input) for Patient 1 under different

parameter settings.

https://doi.org/10.1371/journal.pone.0314479.g016
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level profiles are recorded and the results are examined to quantify the impact of changes in β
on the system’s time-domain performance. Fig 19 shows the BG profiles with LQ-ASMC

under different settings of β for Patient 1. The simulation results are summarized in Table 12.

The parameter setting with a 10.0% increment (β = 4.93) delivers a relatively aggressive control

effort, causing a faster BG convergence rate with a constant offset below the BG setpoint. The

parameter settings with a 10.0% decrement (β = 4.03) yield an over-damped response. The

results suggest that the nominal value of β yields a reasonable convergence while damping the

steady state fluctuations.

c. Robustness analysis of LQ-ASMC under sensor drift and bias. This customized simu-

lation is performed to test the impact of sensor drift and bias in the proposed BG regulation

control system. The sensor’s constant bias refers to a persistent offset in sensor measurements,

causing a systematic error in glucose readings. It typically models the calibration errors or mis-

alignment of a sensor. The sensor’s drift is a gradual deviation in sensor readings over time.

This phenomenon typically misleads the controller about the actual BG levels. The sensor bias

is simulated by adding a fixed offset of 5 mg/dL in the BG measurements. The long-term deg-

radation in the sensor’s accuracy (drift) is simulated by adding a low-frequency sinusoidal sig-

nal, having an amplitude of 2 mg/dL and a frequency of 0.2 rad/s, in the BG measurements.

The noise signal, presented in (43), is injected into the BG measurements G(t) to conduct this

simulation.

GnðtÞ ¼ 5þ 2sinð0:2tÞ ð43Þ

Fig 18. (a) BG levels of Patient 3 under different parameter settings, (b) IIR (control input) for Patient 3 under different

parameter settings.

https://doi.org/10.1371/journal.pone.0314479.g018

Fig 17. (a) BG levels of Patient 2 under different parameter settings, (b) IIR (control input) for Patient 2 under different

parameter settings.

https://doi.org/10.1371/journal.pone.0314479.g017
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The BG profiles of patients 1, 2, and 3 for LQ-ASMC and LQ-SMC controllers, under the

influence of the noise signal Gn(t), are shown in Fig 20. The consequent simulation results are

quantified in Table 13.

5.7. Computational requirements

The proposed control algorithm requires dedicated computational resources for the offline cal-

culation of the LQIR gain vector as well as the online computation of the proposed SMC signal

at each time step. The latter includes computational resources needed for the online modifica-

tion of the SMC gain via the hyperbolic function as well. The computation time for each of

these control laws is calculated using the built-in ‘tic’ and ‘toc’ commands of MATLAB.

In this study, the LQR gain K is calculated offline and stored in memory. This reduces the

real-time computations to matrix-vector multiplication, ulq(t) = −Kx(t), which has a computa-

tional complexity of O(n2), where n is the number of state variables. The LQIR gain

Table 11. Sensitivity analysis of LQ-ASMC under different parameter settings.

Metric Unit Parameter changes (%) Patient 1 Patient 2 Patient 3

Erms mg/dL +10.0 23.37 24.42 20.88

0 25.64 27.25 24.88

−10.0 29.54 32.92 26.67

Esa mg/dL +10.0 815.55 854.28 721.03

0 759.88 829.95 813.45

−10.0 1098.96 1237.35 1231.15

Tfall min. +10.0 88 92 78

0 110 115 85

−10.0 122 118 105

Tset min. +10.0 133 141 95

0 145 157 101

−10.0 152 165 114

Ums (mU/min)2 +10.0 3.40 3.55 3.98

0 3.44 3.82 4.05

−10.0 12.10 12.18 11.84

Up,start mU/min +10.0 3.96 3.50 4.76

0 4.22 4.38 4.95

−10.0 5.02 4.98 5.21

https://doi.org/10.1371/journal.pone.0314479.t011

Fig 19. BG levels of Patient 1 under different settings of β.

https://doi.org/10.1371/journal.pone.0314479.g019

PLOS ONE Modern control of biomedical systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0314479 November 27, 2024 29 / 36

https://doi.org/10.1371/journal.pone.0314479.t011
https://doi.org/10.1371/journal.pone.0314479.g019
https://doi.org/10.1371/journal.pone.0314479


computation took ~122 μs and used 1.5 MB. However, this computation is done offline and does

not contribute to real-time processing. While implementing the self-adaptive SMC component of

the proposed control law, the overall complexity of matrix-vector multiplications and numerical

integration involved in computing the sliding surface s(t) is also O(n2). The computation of the

adaptive gain function renders a complexity O(1) and a computation time of 55.6 μs. The com-

plexity of tanh(.) limiter function is O(1) and its computation took 48.6 μs. The average computa-

tion time per step taken to calculate the signal generated by the proposed LQIR-ASMC scheme

was 45.2 μs with minimal memory overhead. The complexity of this scalar operation is O(1).

The memory usage analysis indicates that the proposed control algorithm’s memory foot-

print is within acceptable limits for real-time applications. The aforementioned profiling

results also validate the efficient computation times and low memory overhead for both the

LQR computation and the proposed SMC control law. This makes the algorithm suitable for

practical implementation in resource-constrained environments.

The real-time implementation of the proposed control scheme can be potentially optimized

via the following techniques:

1. To simplify the system while maintaining its fundamental dynamics, model order reduction

through balanced truncation can be implemented.

2. The system’s order can be reduced by using fewer state variables and targeting only the

essential ones. This will in turn reduce the overall complexity of the system.

3. An even symmetric nonlinear scaling function with a relatively lower computational com-

plexity can used. However, this arrangement may require a trade-off with other perfor-

mance metrics.

6. Possible challenges and future directions

This section comprehensively discusses the possible challenges in the practical implementation

of the proposed control scheme along with potential future research directions.

6.1. Possible challenges in practical implementation

Although the practical realization of the LQ-ASMC law was not attempted in this research due

to a lack of hardware resources and human subjects. However, implementing the said control

procedures on a real system can present a few challenges.

• Real-world sensors are prone to noise. Noisy state measurements can cause erroneous con-

trol actions, affecting the overall system performance. Filtering techniques are necessary to

handle sensor noise.

• Integrating the controller with existing hardware and software systems can lead to commu-

nication delays and unprecedented compatibility problems. Thorough testing and incremen-

tal integration approaches can help mitigate these issues.

Table 12. Sensitivity analysis of LQ-ASMC under different settings of β.

Change in β (%) CPMs of Patient 1 under LQ-ASMC

Erms (mg/dL) Esa (mg/dL) Tset (min.) Trec (min.) Ums (mU/min)2 Up,dist (mU/min)

+10.0 24.87 1234.74 132 147 8.73 3.41

0 26.18 1247.56 145 161.5 4.54 2.32

−10.0 32.65 1589.33 156 167.5 2.92 2.87

https://doi.org/10.1371/journal.pone.0314479.t012
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• The computational tasks associated with the execution of the control procedure are bound

to consume significant power. Thermal management is crucial to ensure safe and reliable

functionality of the system under all operating conditions.

• Patients exhibit significant variability in insulin sensitivity, glucose metabolism, and

response to insulin due to their lifestyle factors (such as stress, exercise, and diet). Hence,

Fig 20. BG levels of (a) Patient 1 under sensor drift and bias, (b) Patient 2 under sensor drift and bias, (c) Patient 3

under sensor drift and bias.

https://doi.org/10.1371/journal.pone.0314479.g020
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identifying personalized physiological models for each patient based on their specific charac-

teristics is a challenging problem. The said variability also makes it quite difficult to develop

a one-design-fits-all control strategy.

6.2. Future research directions

There is plenty of room for future enhancements in the proposed control scheme.

• In the future, the proposed hybrid control law can be further robustified by introducing

power-rate SMC reaching laws in it.

• The switching gain can be adaptively modulated by using adaptive immune feedback.

• Machine learning techniques can be investigated to predict patient’s glucose trends and

detect anomalies (or deviations) from expected glucose patterns to adjust the control strategy

accordingly.

• Reinforcement learning can be explored to improve the adaptive tuning and performance of

the control system.

• In recognition of the value of clinical trials, thorough and ethical experimental validations

can be conducted in future phases of this study. In this regard, pilot studies with a small

group of patients should be carried out to test the feasibility and initial performance of the

controller in a clinical environment.

• The proposed control law proposed can be extended and applied to more comprehensive

glucose-insulin dynamic models to investigate the controller’s efficacy and ensure its broader

applicability.

• Future research could also attempt to extend this framework to include auxiliary adaptive or

predictive elements to supplement the real-time flexibility of the controller design. The explo-

ration of online parameter adaptation of weighting matrices in LQIR is a promising direction

in this regard. This arrangement would obviate the necessity of extensive manual tuning.

• Replacing LQIR with the elements of MPC in the proposed framework could also offer better

adaptability to external disturbances.

Table 13. Robustness analysis controllers under sensor drift and bias.

Patient CPM Control Law

Metric Unit LQ-SMC LQ-ASMC

Patient 1 Erms mg/dL 34.67 27.26

Esa mg/dL 1513.13 1155.26

Tfall min. 148 110

Tset min. 185 147

Patient 2 Erms mg/dL 37.71 28.83

Esa mg/dL 1691.94 1256.50

Tfall min. 155 116

Tset min. 201 159

Patient 3 Erms mg/dL 28.52 21.28

Esa mg/dL 1179.56 849.06

Tfall min. 117 88

Tset min. 146 111

https://doi.org/10.1371/journal.pone.0314479.t013
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• The controller’s usability in practical scenarios can be further enhanced by including adap-

tive estimating methods like observers or Kalman filters for the sake of addressing the sensor

delays and biased noise.

• Finally, the functionality and convenience of the proposed glucose regulation system can be

enhanced by integrating it with wearable technology. For this purpose, the use of non-inva-

sive glucose monitoring technologies, combined with the proposed control algorithm,

mechanical insulin delivery, and an interactive user interface in a seamless manner, can be

developed to improve patients’ comfort and help them manage their BG levels proactively.

7. Conclusion

This article contributes to formulating a robust-optimal regulation technique that employs an

LQIR-driven self-adaptive SMC procedure to normalize the BG concentration levels under the

influence of meal disruptions and measurement noise. The proposed control procedure bene-

ficially combines the inherent optimal yield of the LQIR with the innate robustness of the

SMC. This collaboration is achieved by designing the SMC reaching law using a new sliding

surface that depends on the nominal control input of the LQIR. Furthermore, the control law

is retrofitted with a simple adaptive framework that dynamically adjusts the switching gain.

The self-adjusting gain increases the controller’s adaptability to flexibility modulate the control

signal as the BG concentration levels change in the patient’s body. These augmentations signif-

icantly improve the controller’s robust tracking against bounded exogenous disturbance while

effectively curbing the large IIR demands and upholding the system’s closed-loop stability as

the operating conditions change. The LQ-ASMC’s performance assessment is done by con-

ducting customized numerical simulations on the BMM (virtual patient) that examine the sys-

tem’s BG regulation capacity in the presence of transient meal disturbances, initial

hyperglycemic conditions, and measurement noise.

The in-silico analysis of the simulation outcomes validates the enhanced setpoint-tracking

ability, time optimality, disturbance compensation capacity, and control input efficiency of the

proposed LQ-ASMC law. Despite its robustness and optimal control capabilities, the proposed

approach has a few limitations. Firstly, the said control strategy heavily relies on an accurate

model of the glucose-insulin system, which can vary significantly between individuals. Sec-

ondly, implementing this control law in real-time on hardware systems could face challenges

related to computational demands and the need for fast, accurate, and noise-free sensor feed-

back. However, most of these challenges can be addressed by extending the proposed control

scheme as per the research directions proposed earlier in this article.
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