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Since the late 1970s, remote sensing techniques have been proven to be suitable for

characterizing and monitoring plants and crops. In particular, synthetic aperture radar

(SAR) missions contribute considerably to this prediction effort. However, the main issue

when using SAR image series together with field observations is the scarcity of data due to

the difficulty of acquiring field measurements. This research aimed to contribute to solving

this problem with an alternative statistical model that can overcome the lack of a long,

robust series of field-based ground truth observations. The main novelty of this research is

the evaluation of the potential of a panel data approach to radar remote sensing imagery

for predicting crop biophysical variables. For this purpose, RADARSAT-2 imagery was ac-

quired over the study area in central Spain. Simultaneously, a field campaign was deployed

to estimate crop parameters in the same area and to validate the results of the modelling.

The analysis of the influence of the crop type on the incidence angle and the polarimetric

parameters showed a strong influence of the co-polar channels (HH, VV), the entropy (H)

and the coherence between the co-polar channels (gHHVV), with the differences being

higher at 25�. The panel data analysis method demonstrated that good predictions, with R2

greater than 0.78, were achieved for all biophysical variables analysed in this study.

Overall, this novel statistical approach with remote sensing data showed great applicability

for the prediction of crop variables, even with a short series of observations.

© 2021 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The support that remote sensing techniques provide to envi-

ronmental and agricultural monitoring is undeniable. In the

projected climate-change scenarios, the remote, long-term

observations available from satellites seem crucial for the

correct diagnosis of a varied set of problems. Focusing on crop

monitoring and yield prediction, the temporal variation in C-

band synthetic aperture radar (SAR) measurements from

remote observations has proven to provide biophysical in-

formation about growth condition indicators (biomass,

height, etc.) and the underlying soil moisture (Mattia et al.,

2003). The ultimate objective of those studies is either to es-

timate or to monitor the biophysical parameters of crops

(biomass, height, phenological stage, yield, etc.). This infor-

mation is particularly useful for farmers, who are interested in

timely information about crop conditions (e.g., particular

phenological stages for irrigation and fertilisation purposes

and disease detection), water requirements (e.g., for irrigation

only when and where necessary) and final crop productivity

(Lopez-Sanchez & Ballester-Berman, 2009).

Among the available SAR on-board satellites, the

RADARSAT-2 mission by the Canadian Space Agency (CSA)

offers the advantage ofmultiple polarimetricmodes and three

beam incidence angles (Morena, James, & Beck, 2004), which

are key to monitoring changes in vegetation structure (Jiao

et al., 2014). Therefore, many experiments with RADARSAT-

2 over different crops, such as wheat (Xu et al., 2014), maize

(Xie et al., 2017), rice (Choudhury & Chakraborty, 2006; Wu,

Wang, Zhang, Zhang, & Tang, 2011) or multiple crops

(Wiseman, McNairn, Homayouni, & Shang, 2014), have

collected RADARSAT (1 and 2) SAR data at different fre-

quencies, polarisations and incidence angles to link these

polarimetric parameters to agronomic field parameters

(Lopez-Sanchez & Ballester-Berman, 2009). Many methods

have been applied to monitor crops, from the simplest, such

as linear regression with field measurements (Canisius et al.,

2018; Liu, Shang, Vachon, & McNairn, 2012; McNairn, Ellis,

Van Der Sanden, Hirose, & Brown, 2002; Moran et al., 2012;

Wiseman et al., 2014) and trend or temporal analysis

(Choudhury & Chakraborty, 2006; Jiao et al., 2014; Yang et al.,

2015), to the more sophisticated physical models (Gherboudj,

Magagi, Berg, & Toth, 2011; Jiao et al., 2011; Yonezawa et al.,

2012). In order to estimate vegetation parameters for various

crops with full, compact and dual-pol SAR data, researchers

have shown it is possible using semi-empirical and physically

based model estimations (Beriaux, Lucau-Danila, Auquiere, &

Defourny, 2013; B�eriaux, Waldner, Collienne, Bogaert, &

Defourny, 2015; Chauhan, Srivastava, & Patel, 2018; Mandal,

Hosseini et al., 2019; Mandal, Kumar, McNairn,

Bhattacharya, & Rao, 2019). However, statistical modelling

still remains barely explored, probably due to the difficulty of

gathering enough measurements to build a robust model, as

recognised in many examples of radar applications (Valcarce-

Di~neiro, Lopez-Sanchez, S�anchez, Arias-P�erez, & Martı́nez-

Fern�andez, 2018). In addition, from a statistical viewpoint, the

remote sensing community may lack in-depth knowledge of

the statistical tools, leading to an incorrect integration of the

radar parameters or a misinterpretation of the results.
In a previous study (Valcarce-Di~neiro et al., 2018), the

sensitivity of the radar parameters fromRADARSAT-2 (i.e., the

backscattering coefficient or any other variable derived from

the radar measurements) for monitoring biophysical param-

eters that describe crop phenology was appraised bymeans of

simple statistical correlations. As stated in Cable, Kovacs, Jiao,

and Shang (2014), it is important that analysts understand

howpolarimetric SAR interacts with targets before attempting

more complex analyses. Overall, it was highlighted that the

biomass, leaf area and height of rainfed crops may be sur-

veyed using different radar parameters provided by

RADARSAT-2. This insight suggests the need for a deeper

statistical analysis to further explore these relationships.

Different statistical techniques have been used to study

the relationships between field and satellite data. First, a

factor analysis was carried out to reduce the dimensionality

of the study variables. Then, a factorial experiment analysed

the possible interactions between the crop type and the

incidence angle in the variables measured by direct obser-

vation in the field. Finally, the panel data methodology for

time series was applied to study the possible relationships

between field and satellite data, allowing the modelling of

unobservable heterogeneity. Panel data techniques for short

time series are usually applied in economics ((Arellano, 2003;

Baltagi, 2008; Engel & Reinecke, 2012; Gourieroux & Monfort,

1993; Hsiao, 2007; M�aty�as & Sevestre, 2013) and others) but

have not previously been used in remote sensing applica-

tions. Typically, remote sensing observations should be

validated through in situ observations (the so-called “ground

truth”) that are both time consuming and spatially scarce.

Therefore, data availability and high-dimensionality re-

lationships derived from cross-sectional units over time pe-

riods may be criticised because of the limitations of the

datasets for comparison. In an attempt to overcome this

problem, we suggest the use of panel data or longitudinal

data that can provide robust comparisons even when applied

to short datasets with more complicated clustering or hier-

archical structures.

An econometric panel data model includes a sample of

economic agents or agents of interest (individuals, companies,

banks, cities, countries, etc.) for a given period of time, that is,

it combines both types of data (dimension temporal and

structural). Themain objective of applying and studying panel

data is to capture unobservable heterogeneity, either between

economic agents or study agents as well as over time, since

this heterogeneity cannot be detected either with time series

studies or with those of cross section. The use of panel data in

the agriculture area can be found inmany contributions in the

literature. Hu and McAleer (2005) estimated production effi-

ciency in the agricultural sector in China with a panel dataset

comprising 30 provinces for the 7-year period, 1991e1997.

Mundlak, Butzer, and Larson (2008) presented an empirical

analysis of a panel of countries to estimate agricultural pro-

duction function using a measure of capital in agriculture

absent in most studies. Kouser and Qaim (2011) studied the

health impacts of farmers resulting from Bt-related changes

in the use of chemical pesticides by means of panel data from

India to estimate non-toxic effects. Finally, Adah, Kayode, and

Victor (2017) used the panel data analysis to examine cereal

productivity in West Africa.

https://doi.org/10.1016/j.biosystemseng.2021.02.014
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The main objective of this paper is to obtain a good char-

acterisation of agronomic parameters using SAR images

through a panel-based method never applied before in this

field. We hypothesise that the use of panel data techniques

can improve the ability of radar remote sensing to accurately

predict crop biophysical variables using limited ground-truth

data.

The paper has been organised as follows: Section 2 in-

troduces the study area and field measurements. Section 3

presents the satellite datasets and polarimetric parameters

derived. Section 4 shows the estimation and forecast meth-

odologies. The results are shown in Section 5, followed by the

discussion in Section 6. Section 7 describes the main conclu-

sions of this work and further future research.
2. Area and field measurements

A field campaign in which the relationships between active

radar measurements (RADARSAT-2) and agricultural charac-

teristics were explored was developed as part of the activities

of a project devoted to the application of active satellite sen-

sors to agriculture (S�anchez et al., 2015; Valcarce-Di~neiro et al.,

2018). The study area (Fig. 1) was a subarea included in the soil

moisture stations network of the University of Salamanca, a

network intended to monitor soil moisture and to validate

remote sensing products (Colliander et al., 2017; Gonz�alez-

Zamora, S�anchez, Pablos, & Martı́nez-Fern�andez, 2019;

S�anchez, Martı́nez-Fern�andez, Scaini, & Perez-Gutierrez,

2012). REMEDHUS is located in the central sector of the

Duero basin in Spain (41.1�e41.5�N; 5.1� to 5.7�W) and is made

up of 23 soil moisture stations and four weather stations

providing continuous data since 1999. A more detailed

description of the sensors and the set up may be found in

S�anchez, Martı́nez-Fern�andez, Scaini, and Perez-Gutierrez

(2012).
Fig. 1 e Location and selected plots on a land use map, including

cereals.
Seven plots of different size were selected (Fig. 1) in this

agricultural area, namely, F11 (barley), H9 (natural pasture),

J12, K10 and L7 (wheat), M9 (barley) and N9 (rye). These crops

(although H9 is not actually considered a crop; the plot is used

for cattle livestock) represent the most common land use in

the Castilla y Le�on region, i.e., rainfed cereals. This region is

characterised by a continental Mediterranean climate, with

scarce rainfall in the central, semiarid area where REMEDHUS

is located (less than 400mm on average). Themain traditional

crops are adapted to the climatic conditions. The growing

cycle of the rainfed cereals and the pasture spans from

seeding in October to harvesting at the end of June; due to the

low temperatures during winter, the crops do not begin their

development phase until the end of February. Therefore, nine

field measurements were acquired every two weeks from

February to July 2015. Out of the seven plots, five (F11, H9, J12,

L7 and N9) were used for training the model and two (K10 and

M9) for validating the results of it.

The selected crop parameters attempted to define the crop

growth status over time. Direct ground measurements, such

as plant height, sample collection and photographs, were

randomly acquired in each plot directly in a frame of one m2

over the crop. In the laboratory, the leaf area index (LAI), the

fraction of vegetation cover (FVC), the fresh and dry weights,

the vegetation water content (VWC) and the percentage of

water content (PWC) were measured. The green LAI was

estimated scanning and scaling the green samples, FVC was

retrieved through a supervised classification of zenithal pho-

tographs, and VWC was estimated as the difference (or the

relative difference for PWC) between wet and dry weights of

the sample. Soil moisture (SM) was collected at each REMED-

HUS station installed at a depth of 5 cm in each plot, at the

same date and time of the rest of measurements. The stations

are equipped with Hydra Probes Soil Sensors (StevensVR

Water Monitoring System Inc., Portland, OR, USA). These pa-

rameters are commonly monitored in the literature aimed at
a photograph of the most common crop in the area, rainfed

https://doi.org/10.1016/j.biosystemseng.2021.02.014
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cropmonitoring (Jackson et al., 2004) andmay be indicators of

crop development, yield, water status and evapotranspiration

(Lopez-Sanchez & Ballester-Berman, 2009). For a more

detailed description of their retrieval, please see S�anchez et al.

(2012) and Valcarce-Di~neiro et al. (2018), among others.
3. Imagery: RADARSAT-2 data and pre-
processing

The RADARSAT-2 data were acquired over the study area be-

tween February and July 2015 and are provided in RADARSAT-

2 FineQuad-Pol SingleeLook Complex (SLC) format. Three sets

of 7, 7 and 6 RADARSAT-2 images were acquired in three

different beam modes: FQ16W, FQ11W and FQ6W, respec-

tively (Fig. 2). These data are delivered with nominal slant

range and azimuth resolutions of 5.2 m and 7.6 m. To

harmonise the dates of the field measurements with the im-

agery acquisitions, a spline interpolation of the ground mea-

surements dates was performed, as shown in Valcarce-

Di~neiro et al. (2018).

To preprocess RADARSAT-2 data, the Sentinel-1 Toolbox of

the Sentinel Application Platform (SNAP) and PolSARpro, both

of which were provided by the European Space Agency (ESA),

were used. Figure 3 summarises the data-treatment workflow,

from which ten polarimetric parameters were derived (Table

1). A more detailed description of the procedure and the pa-

rameters may be found in Valcarce-Di~neiro et al. (2018). The

symbols used hereafter to denote these observables are

shown in Table 1.
4. Methodology applied to the forecast and
estimation model

The goal of the present study is to find potential relationships

between satellite and fieldmeasurements in order to establish

a dependence model between both datasets for forecasting

purposes. From this model, field parameters of interest in

agriculture that are difficult and expensive to monitor by

direct observation could be estimated from image observa-

tions with a structural equation that expresses the depen-

dence between them.

4.1. Factor analysis: data reduction

We use a factor analysis to reduce the dimensionality of

the database from the ten radar parameters described in
Fig. 2 e Acquisition dates and beam m
Table 1. These variables were taken from RADARSAT-2

between February 2015 and July 2015 through weekly

observations.

This study aims to construct k factors (where k is a number

to be determined between 1 and the number of original vari-

ables) using the correlation matrix method, which shows that

there are significant correlations among all study variables, as

presented in Table 2. The new factors will be expressed as

linear combinations of the original variables, representing the

common shared information between them. The new k-

dimensional space will allow the detection of linear relation-

ships between the original variables and, in some cases, will

detect irrelevant or redundant variables. To improve the

interpretability of the results, we rotated the axis of the space

to make the location of the axes fit the actual data points

better.

Bartlett's test (Bartlett, 1937) of sphericity, presented in

Table 3, is used to determine whether the correlation matrix

of the variables in study is an identity matrix, which would

indicate that the variables are unrelated and therefore un-

suitable for structure detection. Ratios between backscat-

tering coefficients (HH/VV, HV/VV) were excluded from this

test, as were combinations of existing variables in the data-

base. A high value of this statistic equals lower statistical

significance and indicates that it is unlikely that the corre-

lation matrix is an identity matrix. Thus, the data are

adequate for a factor analysis, as there is evidence of possible

linear relationships among the variables being studied. The

Kaiser-Meyer-Olkin (KMO) test is a statistic that indicates the

proportion of variance for the variables in the study that

might be caused by underlying factors. Values close to one

indicate that the component analysis is adequate.

As such, we conclude that the principal components

analysis has an adequate sample (Kaiser, 1974) and that the

identity proximity of the correlation matrix approximation

hypothesis is rejected. Table 4 presents the initial and final

communalities (the proportion of each variable's variance that

can be explained by the factors) and shows that the majority

of the information is explained by the proposed factors, as the

associated coefficients for all variables are close to one.

Table 5 presents the total variance explained by each fac-

tor. We observe that constructing four factors preserves 98%

of the information in terms of the cumulative variance pro-

vided by the first 4 components.

Therefore, this analysis constructs four factors with the

following parameters: HH, HV, VV, HH/VV, HV/VV, gHHVV, PPD,

H, a1 and gP1P2. To improve the scores of the contributions of

the original variables in the factors, we selected an Equmax
odes for the RADARSAT-2 dataset.

https://doi.org/10.1016/j.biosystemseng.2021.02.014
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Table 1 e Polarimetric parameters derived from
RADARSAT-2.

Polarimetric parameters Symbol

Backscattering coefficient at

HH, HV and VV channels

s0
HH, s

0
HV, s

0
VV, or simply HH,

HV and VV

Ratio of backscattering

coefficients at HH, HV and VV

channels

HH/VV, HV/VV

Normalised correlation

(coherence) between the

copolar channels (HH andVV)

gHHVV

Polarisation phase difference

between the copolar

channels (HH and VV)

PPD

Entropy and dominant alpha

angle (from the eigen

decomposition of the

coherency matrix)

H, a1

Normalised correlation

(coherence) between the 1st

two channels in the Pauli

basis (HH þ VV and HH-VV)

gP1P2

Table 3 e Bartlett's sphericity test and KMO.

Statistic Value

Sample adaptation measure of Kaiser-Meyer-Olkin. 0.391

Bartlett's sphericity test Approximate Chi-squared 1996.740

Degrees of freedom 28

Significance 0.000

Table 4 e Initial and final communalities.

Variables Initial Extraction

HH (dB) 1.000 0.994

VV (dB) 1.000 0.992

HV (dB) 1.000 0.990

gHHVV (unitless) 1.000 0.961

PPD (degrees) 1.000 0.998

H (unitless) 1.000 0.990

a1 (degrees) 1.000 0.960

gP1P2 (unitless) 1.000 0.970

HH/VV (dB) 1.000 0.970

HV/VV (dB) 1.000 0.981

Fig. 3 e RADARSAT-2 processing workflow.
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rotation. In Eq. (4.1), we present the constructed factors with

the parameters associated with each variable according to the

values presented in Table 6.

F1 ¼�0.06HHþ 0.029VVþ 0.354HV - 0.11HH/VVþ 0.28HV/VV -

0.22gHHVV - 0.167PPD þ 0.369H þ 0.043a1 - 0.228gP1P2
Table 2 e Correlation matrix of variables.

HH VV HV HH/VV

Correlation HH 1 0.708a 0.566a 0.190b

VV 0.708a 1 0.267a �0.558a

HV 0.566a 0.267a 1 0.293a

HH/VV 0.190b �0.558a 0.293a 1

HV/VV �0.056 -.0543a 0.664a 0.689a

gHHVV 0.079 0.570a �0.567a �0.700a

PPD 0.132 0.035 0.254a 0.107

H �0.148 �0.454a 0.676a 0.457a

a1 0.054 �0.582a 0.461a 0.873a

gP1P2 0.268a �0.437a 0.227a 0.923a

a Significant correlation for level 0.01 (bilateral).
b Significant correlation for level 0.05 (bilateral).
F2 ¼ 0.18HH - 0.127VV - 0.144HV þ 0.388HH/VV - 0.027HV/VV -

0.009gHHVV - 0.067PPD - 0.189H þ 0.208a1 þ 0.446gP1P2 (4.1)

F3 ¼ 0.489HH þ 0.38VV þ 0.3054HV þ 0.046HH/VV - 0.029HV/

VV þ 0.061gHHVV - 0.059PPD - 0.073H - 0.015 a1 þ 0.072gP1P2

F4 ¼ �0.01HH þ 0.021VV - 0.074HV - 0.089HH/VV - 0.081HV/

VV - 0.016gHHVV þ 1.006PPD þ 0.038H þ 0.032a1 þ 0.063gP1P2
HV/VV gHHVV PPD H a1 gP1P2

�0.056 0.079 0.132 �0.148 0.054 0.268a

�0.543a 0.570a 0.035 �0.454a �0.582a �0.437a

0.664a �0.567a 0.254a 0.676a 0.461a 0.227a

0.689a �0.700a 0.107 0.457a 0.873a 0.923a

1 �0.936a 0.194b 0.941a 0.854a 0.537a

�0.936a 1 �0.256a �0.911a �0.927a �0.578a

0.194b �0.256a 1 0.284a 0.253a 0.210b

0.941a �0.911a 0.284a 1 0.723a 0.304a

0.854a �0.927a 0.253a 0.723a 1 0.817a

0.537a �0.578a 0.210b 0.304a 0.817a 1

https://doi.org/10.1016/j.biosystemseng.2021.02.014
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Table 5 e Total variance explained by each factor.

Component Initial eigenvalues Squared saturation aggregation of the
extraction

Squared saturation aggregation of the
rotation

Total % Variance % Cumulative Total % Variance % Cumulative Total % Variance % Cumulative

1 5.483 54.827 54.827 5.483 54.827 54.827 3.410 34.100 34.100

2 2.103 21.028 75.854 2.103 21.028 75.854 3.141 31.409 65.509

3 1.331 13.312 89.166 1.331 13.312 89.166 2.099 20.991 86.500

4 0.890 8.902 98.068 0.890 8.902 98.068 1.157 11.567 98.068

5 0.111 1.107 99.175

6 0.058 0.582 99.757

7 0.022 0.225 99.982

8 0.002 0.018 100

9 3.6E-14 3.6E-13 100

10 2.8E-14 2.8E-13 100

Table 6 e Factor parameters. Extraction method: Principal component analysis.

Variables Component 1 Component 2 Component 3 Component 4

HH (dB) �0.029 0.233 0.967 0.055

VV (dB) �0.238 �0.477 0.841 0.022

HV (dB) 0.787 0.078 0.588 0.142

gHHVV (unitless) 0.297 0.938 �0.032 0.034

PPD (degrees) 0.871 0.438 �0.140 0.106

H (unitless) �0.804 �0.493 0.192 �0.185

a1 (degrees) 0.084 0.047 0.070 0.992

gP1P2 (unitless) 0.940 0.172 �0.179 0.211

HH/VV (dB) 0.579 0.760 �0.119 0.184

HV/VV (dB) 0.117 0.964 0.052 0.156
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4.2. Factorial experiment: effects of factors

To study the possible interactions between the type of crop

and the incidence angle in the variables measured by direct

observation in the field, a factorial experiment with one factor

was considered in this research. This methodology allows us

to confirm or reject the hypothesis that the average value, in

all the levels determined by the given factor, is the same for

the selected variable under study. Eq. (4.2) presents the

mathematical model assumed for the studied variable (Y) as

an explanatory response from the given factor:

Y¼mþ ai þ εi (4.2)

where m represents the global average value for the model, ai
represents the average value of the factor at level i, with

i¼ 1,…,a and a is the number of different levels considered for

the factor variable, and εi is the error, assuming that εi � Nð0;
s2Þ, i.e., εi is independently and identically distributedwith the

normal distribution.

The average value, m, is a score for all the given observa-

tions. When no differences are found from a given factor, we

assume that all the observations will have the same value,

which corresponds to the average value with a small random

fluctuation. To study the effects of a given factor, it is better to

consider a case in which all the considered groups composed

of the different levels of the factor are homogeneous in

variance.

The Levene test contrasts the null hypothesis of variances

homogeneity against the alternative that at least one of them

is significantly different from the others. If interactions were
found between a factor and a selected variable in the study,

the Duncan and Scheffe test were used to determine the

different homogeneous groups. Both tests are multiple com-

parison procedures. Duncan's method uses a studentised

range statistic to compare sets of means. Duncan's MRT is

especially protective against false negative (Type II) error at

the expense of having a greater risk of making false positive

(Type I) errors, whereas Scheff�e's method adjust significance

levels in a linear regression analysis to account for multiple

comparisons. The thresholds considered in Duncan's test are

lower than in Scheff�e's test and, therefore, it is easier to find

differences between the compared means.

The result of the test is a set of subsets of means, where in

each subset means have been found not to be significantly

different from one another.

4.3. Panel data: model estimation and forecast

A useful method for studying the possible relationships be-

tween field and satellite measures over a short period of time

is the panel data approach. This econometric model allows

the combination of structural and time dimensions in an

estimationmodel for forecast purposes. Themain objective of

panel data is to capture unobservable heterogeneity, either

between the agents under study or in time, due to the

impossibility of applying time series analysis or cross-

sectional techniques. Eqs. (4.3) and (4.4) present the general

mathematical model used for the studied variable as a dy-

namic explanatory response in time when the lagged depen-

dent variable violates strict exogeneity, that is, when

https://doi.org/10.1016/j.biosystemseng.2021.02.014
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endogeneity may occur and we consider a random effects

model:

Yit ¼gYi;t�1 þ bXit þ uit (4.3)

uit ¼ qi þ vit (4.4)

where g is the parameter associated with the lag of the

dependent variable, b is the parameter associated to the

explicative variables (X), qi are time-invariant effects that are

fixed over time, t represents the time period (t ¼ 1, 0.9) and vit

is a time-varying random component. Endogeneity is said to

exist when there is a correlation between the parameter or

variable and the error term. Endogeneity can arise as a result

of measurement error, autoregression with autocorrelation of

errors, simultaneity and omitted variables. In general terms, a

causal link between the independent and the dependent

variables of a model leads to endogeneity.

In case ut is believed to be not correlated with any of the

independent variables, we consider a fixed-effects model as

given by Eq. (4.5).

Yit ¼ qit þ bXit þ ut (4.5)

The selection of the model was derived from the Hausman

test, and when possible, we considered a unique general

model for the crops evaluated in the present study. The

Hausman test can be used to differentiate between fixed ef-

fects model (null hypothesis) and random model in the panel

analysis (alternative) testingwhether the unique errors (ut) are

correlated with the regressors.

4.4. Validation

Wheat (K10) and barley (M9) were used to validate themodel fit

accuracy, and compute general measures such as the root-

mean-square error (RMSE) and the mean absolute error (MAE)

for validation. When the estimation model follows a random

model, the predicted values are calculated by substituting the

values of the explanatory variablesmultiplied by the estimated

parameters. For example, the SM for wheat (K10) would be

estimated throughH andHV parameters as detailed in Eq. (4.6):

SM K10, t ¼ b0 þ b1*HH þ b2*VV þ b3*HV þ b4*gHHVV þ qi þ
gt þ εit (4.6)

When the estimation model follows a field fixed effect, the

predicted values are calculated by substituting the values of

the explanatory variables multiplied by the estimated pa-

rameters adding the average field fixed effect, for instance, the

FVC for wheat (K10) would be estimated as expressed in Eq.

(4.7):

FVCK10 ;t ¼ b1* F1 þ b2* F3 þ xcrops þ εt (4.7)

Finally, if the estimation model follows a timed and field

fixed effect, the predicted values are calculated by substituting

the values of the explanatory variables multiplied by the

estimated parameters adding the average field fixed effect and

the corresponding time effect, for instance, the height for

wheat (K10) would be estimated as expressed in Eqs. (4.8) and

(4.9):
HeightK10 ;2 ¼ b1* gP1P2ðK10; 2Þ þ xcrops þ gK10;1 þ εK10; 2 (4.8)

HeightK10; 3 ¼ b1* gP1P2ðK10; 3Þ þ xcrops þ gK10;2 þ εK10; 3 (4.9)

Parameters and estimation models were estimated by

means of SAS Enterprise Guide 9.4.
5. Results

5.1. Factorial experiment

The possible effects of the crop type and of the field measures

were analysed in this study (see Fig. 4). Due to the large

number of results of possible combinations of effects in the

variables observed, only those results in which the associated

Anova table reached significant effects were presented. The

associated Anova table showed no significant differences in

LAI (p-value 0.562), biomass (p-value 0.332) or PWC (p-value

0.819) among the different crops. No significant differences in

height were found (p-value 0.234) among the crops, although

rye presented higher values than barley. Furthermore, the

Levene test rejected the null hypothesis of variance homoge-

neity (p-value 0.005), and the height valuewas larger for rye. In

the case of FVC (p-value 0.04), the Scheffe test rejected the

existence of differences among the crops, although the Dun-

can test found larger average values for pasture. Significant

differences were found for soil moisture (p-value z0), with a

higher average for pasture and a lower average for barley (F11)

and wheat (K10) crops (see Table A.1 for the soil moisture

statistics by crop).

When considering the possible effects of the incidence

angle, the crop type and the polarimetric parameters, the re-

sults show the following (Tables A.2 and A.3):

1. No significant differences were found between the

incidence angle and HV (p-valueangle 0.656), HH/VV (p-

valueangle 0.390), HV/VV (p-value ¼ 0.057), PPD (p-

value ¼ 0.692), a1 (p-value ¼ 0.077) or gP1P2 (p-

value ¼ 0.833).

2. Significant differences were found in the HV (p-

valuecrop z0) and HH/VV (p-valuecrop ¼ 0.003) for the

different crops, and HV and HH/VV were larger for

wheat (L7) than for barley (F11). Significant differences

were found in the HV/VV (p-valuecrop z0) for the

different crops, and HV/VV was larger for natural

pasture (H9) than for barley (F11). Significant differ-

ences were found in the PPD (p-valuecrop z0) values for

the different crops, and PPD was larger for natural

pasture (H9) than for wheat (K10). Significant differ-

ences were found in incidence angles (p-valuecrop-
¼ 0.017) for the different crops, though the Scheffe test

rejected the existence of differences between crops.

The Duncan test found larger average values of the

incidence angle for the natural pasture (H9). Significant

differences were found in gP1P2 (p-valuecrop z0) for the

different crops, and gP1P2 was larger for wheat (J12)

than for barley (F11).
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Fig. 4 e Field measurements used in the panel data for the sampled crops. (a) height; (b) biomass; (c) fraction of vegetation

cover (FVC); (d) percentage of water content (PWC); (e) leaf area index (LAI); (f) daily precipitation (P) and soil moisture (SM) for

the 7 agricultural plots. DoY (Day of Year).
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3. Significant differences were found in HH (p-valueangle-
¼ 0.001; p-valuecrop z0), which was higher at the 25�

incidence angle than at the 36� incidence angle and was

larger for wheat (L7) than for pasture (H9). For VV, sig-

nificant differences were found (p-valueangle ¼ 0.001; p-

valuecrop z0); VV was higher at the 25� incidence angle

than at the 36� incidence angle andwas larger for wheat

(L7) than for wheat (J12). For gHHVV, significant differ-

ences were found (p-valueangle ¼ 0.001; p-valuecrop z0);

gHHVV was larger at the 25� incidence angle than at the

36� incidence angle and was larger for barley (F11) than

for the natural pasture (H9). For the entropy (H), signif-

icant differences were found (p-valueangle ¼ 0.003; p-

valuecrop z0); H was larger at the 36� incidence angle

than at the 25� incidence angle and was larger for nat-

ural pasture (H9) than for barley (F11).

When considering the possible effect of the incidence

angle, the type of crop and the polarimetric parameters

grouped by factors, the results show the following (Tables A.4

and A.5):

1. No significant differences were found between the

incidence angle, the second factor (p-value ¼ 0.761) and

the fourth factor (p-value ¼ 0.738) previously

constructed.

2. Significant differences were found for the second factor

(p-valuecrop z0) and the type of crop was larger for
wheat (J12) than for natural pasture (H9). Significant

differences were found for the fourth factor (p-

valuecrop ¼ 0.003), and the type of crop was larger for

natural pasture (H9) than for wheat (K10).

3. Significant differences were found for the first factor

constructed (p-valueangle ¼ 0.025; p-valuecrop z0), being

larger for 36� incidence angle with respect to 25� inci-

dence angle and larger for natural pasture (H9) with

respect to barley (F11). The results are coherent, as the

first factor is mainly due to the contribution of HV, HV/

VV, gHHVV and H. For the third factor constructed, sig-

nificant differences were found (p-valueangle z0; p-

valuecrop z0) being larger for the 25� incidence angle

with respect to the 36� incidence angle and larger for

wheat (L7) with respect to natural pasture (H9). The re-

sults are coherent, as the third factor is mainly due to

the contribution of HH and VV backscattering

coefficients.

5.2. Panel data

Several forecast and estimation models were developed using

panel data to estimate field measurements using the satellite

measurements and the four constructed factors. For each crop

parameter, the estimation model for the original panel data is

presented. Figure 5 shows the model results as a function of

satellite parameters, and Fig. 6 shows the model results as a

function of the factors derived from satellite parameters. A

https://doi.org/10.1016/j.biosystemseng.2021.02.014
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Fig. 5 e Estimation models for the original panel data for biophysical variables as a function of satellite parameters. (a)

height; (b) biomass; (c) fraction of vegetation cover (FVC); (d) percentage of water content (PWC); (e) leaf area index (LAI); (f)

daily precipitation (P) and soil moisture (SM) for the 7 agricultural plots. DoY (Day of Year).
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general model was considered when possible, although in

some cases significant differences between the crops in the

field measurements lead to specific models. Later, the final

model equations without nonsignificant parameters are

described.

5.2.1. Height
Rye (N9) showed different behaviour from the other crops in

the panel data, as also shown in Fig. 4. Therefore, this crop

was left out of the general estimation model. To avoid

collinearity, the following variables were eliminated from the

analysis: HH, VV, HV, HH/VV, HV/VV, PPD, gHHVV and a1. The

Hausman test assumed the null hypothesis (p-value ¼ 0.128).

Therefore, a model with two fixed effects was used. Eq. (5.1)

represents the estimation model for the height of all crops

except rye. The estimated parameters qi and gt for the

individual-specific, time-invariant effects are given in Table

A.6. The associated R2 value for themodel in Eq. (5.1) was 0.95.

Heightit ¼ 33.77*gP1P2(it) þ qi þ gt þ εit (5.1)

The residuals of the model proposed in Eq. (5.1) followed a

normal distribution (p-value ¼ 0.837), validating the adequacy

of the proposed structural modelling equation. When

considering the four constructed factors, the Hausman test
assumed the null hypothesis (p-value ¼ 0.999); therefore, a

model with fixed effects was used. Eq. (5.2) represents the

estimationmodel for height. The estimated parameters qi and

gt for the individual-specific, time-invariant effects are given

in Table A.7. The associated R2 value for the model in Eq. (5.2)

was 0.95.

Heightit ¼ 4.05*F2 þ qi þ gt þ εit (5.2)

The residuals of the model proposed in Eq. (5.2) followed a

normal distribution (p-value ¼ 0.96), validating the adequacy

of the proposed structural modelling equation.

5.2.2. FVC
No significant differences were found in FVC among the crops

(see Fig. 4); therefore, a general estimationmodel was created.

To avoid collinearity, the following variables were eliminated

from the analysis: HH/VV, HV/VV, gHHVV and a1. The Hausman

test supported the null hypothesis (p-value¼ 0.829); therefore,

a model with fixed effects was generated. Eq. (5.3) represents

the estimationmodel for FVC considering barley (F11), natural

pasture (H9), wheat (J12 and L7), and rye (N9) crops. The esti-

mated parameters qi and gt for the individual-specific, time-

invariant effects are given in Table A.6. The associated R2

value for the model in Eq. (5.3) was 0.82.
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Fig. 6 e Estimation models for the original panel data for biophysical variables as a function of factors derived from a lineal

combination of satellite parameters. (a) height; (b) biomass; (c) fraction of vegetation cover (FVC); (d) percentage of water

content (PWC); (e) leaf area index (LAI). DoY (Day of Year).
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FVCit ¼ �6.74*HV þ 177.02*H þ qi þ gt þ εit (5.3)

The residuals of the model proposed in Eq. (5.3) followed a

normal distribution (p-value ¼ 0.95), validating the adequacy

of the proposed structural modelling equation. When

considering the four constructed factors, the Hausman test

supported the null hypothesis (p-value ¼ 0.46); therefore, a

model with fixed effects was used. Eq. (5.4) represents the

estimationmodel for FVC. The estimated parameters qi for the

individual-specific effects are given in Table A.7. The associ-

ated R2 value for the model in Eq. (5.4) was 0.429.

FVCit ¼ 7.28*F1 - 14.9*F3 þ qi þ εit (5.4)

The residuals of the model proposed in Eq. (5.4) followed a

normal distribution (p-value 0.637), validating the adequacy of

the proposed structural modelling equation.

5.2.3. LAI
No significant differences in LAI were found among crops

(see Fig. 4); therefore, a general estimation model was used.

The Hausman test assumed the null hypothesis (p-

value ¼ 0.94); therefore, a model with fixed effects was used.
Eq. (5.5) represents the estimation model for LAI considering

barley (F11), natural pasture (H9), wheat (J12 and L7), and rye

(N9) crops. The estimated parameters qi and gt for the

individual-specific, time-invariant effects are given in Table

A.6. The associated R2 value for the model in Eq. (5.5) was

0.78.

LAIit ¼ �0.06*a1 þ qi þ gt þ εit (5.5)

The residuals of the model proposed in Eq. (5.5) followed a

normal distribution (p-value ¼ 0.214), validating the adequacy

of the proposed structural modelling equation. When

considering the four constructed factors, the Hausman test

rejected the null hypothesis (p-value <0.0001); therefore, a

model with random effects was created. Eq. (5.6) represents

the estimation model for LAI. The associated R2 value for the

model presented in Eq. (5.6) was 0.29, which was derived from

a low-quality data suitability for this model.

LAIit ¼ 0.47*F1 þ 0.37*F2 - 0.31*F3 þ εit (5.6)

The residuals of the model proposed in Eq. (5.6) followed a

normal distribution (p-value ¼ 0.757), validating the adequacy

of the proposed structural modelling equation.
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5.2.4. Biomass
No significant differences in biomass were found among the

crops (see Fig. 4); therefore, a general estimation model was

used. The Hausman test assumed the null hypothesis (p-

value ¼ 0.879); therefore, a model with fixed effects was

created. Eq. (5.7) shows the estimation model for biomass

considering barley (F11), natural pasture (H9), wheat (J12 and

L7), and rye (N9) crops. The estimated parameters qi and gt for

the individual-specific, time-invariant effects are given in

Table A.6. The associated R2 value for the model in Eq. (5.7) is

0.87.

Biomassit ¼ �65.35*HV þ qi þ gt þ εit (5.7)

The residuals of the model proposed in Eq. (5.7) followed a

normal distribution (p-value ¼ 0.691), validating the adequacy

of the proposed structural modelling equation. When

considering the four constructed factors, the Hausman test

assumed the null hypothesis (p-value ¼ 0.96); therefore, a

model with fixed effects was used. Eq. (5.8) shows the esti-

mationmodel for biomass. The estimated parameters qi and gt

for the individual-specific, time-invariant effects are given in

Table A.7. The associated R2 value for the model presented in

Eq. (5.8) was 0.88.

Biomassit ¼ 103.34*F4 þqi þ gt þ εit (5.8)

The residuals of the model proposed in Eq. (5.8) followed a

normal distribution (p-value ¼ 0.657), validating the adequacy

of the proposed structural modelling equation.

5.2.5. PWC
No significant differences were found between crops for PWC

(see Fig. 4); therefore, a general estimation model was

considered. The Hausman test supported the null hypothesis

(p-value ¼ 0.88); therefore, a model with fixed effects was

used. Eq. (5.9) shows the estimation model for PWC consid-

ering barley (F11), natural pasture (H9), wheat (J12 and L7), and

rye (N9) crops. The estimated parameters qi and gt for the

individual-specific, time-invariant effects are given in Table

A.6. The associated R2 value for themodel in Eq. (5.9) was 0.95.

PWCit ¼ �2.82*VV - 0.62*a1 - 37.93*gP1P2 þ qi þ gt þ εit (5.9)

The residuals of the model proposed in Eq. (5.9) followed a

normal distribution (p-value ¼ 0.985), validating the adequacy

of the proposed structural modelling equation. When

considering the four constructed factors, the Hausman test

supported the null hypothesis (p-value ¼ 0.99); therefore, a

model with fixed effects was used. Eq. (5.10) represents the

estimationmodel for PWC. The estimated parameters qi and gt

for the individual-specific, time-invariant effects are given in

Table A.7. The associated R2 value for the model in Eq. (5.10)

was 0.94.

PWCit ¼ �4.52*F2 - 5.28*F3 þ qi þ gt þ εit (5.10)

The residuals of themodel proposed in Eq. (5.10) followed a

normal distribution (p-value ¼ 0.918), validating the adequacy

of the proposed structural modelling equation.
5.2.6. SM
Barley (F11) and pasture (H9) showed different behaviour from

the other crops in the panel data, as also shown in Fig. 4.

Therefore, these crops were left out of the general estimation

model. The Hausman test rejected the null hypothesis (p-

value ¼ 0.999); therefore, a model with fixed effects was used.

Eq. (5.11) shows the estimation model for SM considering

wheat (J12 and L7) and rye (N9) crops. The estimated param-

eters qi and gt for the individual-specific, time-invariant ef-

fects are given in Table A.6. The associated R2 value for the

model in Eq. (5.11) is 0.96.

SMit ¼ 0.046*HH þ 0.01*VV - 0.035HV -

0.34*gHHVV þ qi þ gt þ εit (5.11)

The residuals of themodel proposed in Eq. (5.11) followed a

normal distribution (p-value ¼ 0.935), validating the adequacy

of the proposed structural modelling equation. When

considering the four constructed factors, the Hausman test

rejected the null hypothesis (p-value ¼ 0.898); therefore, a

model with fixed effects was used. Eq. (5.12) shows the esti-

mation model for SM. The estimated parameters qi and gt for

the individual-specific, time-invariant effects are given in

Table A.7. The associated R2 value for the model in Eq. (5.12)

was 0.96.

SMit ¼ 0.019*F1 þ 0.018*F2 þ qi þ gt þ εit (5.12)

The residuals of themodel proposed in Eq. (5.12) followed a

normal distribution (p-value ¼ 0.874), validating the adequacy

of the proposed structural modelling equation.

5.3. Validation

We used Eqs. (5.1) and (5.12) to predict direct ground mea-

surements for each crop. Table A.8 shows the RMSE and MAE

between the predicted and the observed values, whereas Figs.

7 and 8 present the measured and predicted curves.

Comparing both procedures, i.e., models considering the

constructed factors and models using direct satellite mea-

sures, the results were balanced in terms of errors, since the

first performed better for wheat (K10) in case of height,

biomass and PWC, whereas the latter performs better for

barley (M9) for height, FVC and LAI. Note that the model fails

when the constructed factors are considered as explanatory

variables for SM since they do not contribute significantly.

Table A.6 presents the estimated parameter associated to the

contribution in the model for each variable and for two fixed

models the time period (denoted by TSi with i2{1,…,8}) and

the average crop type contribution in the panel sample.

Therefore, there were no remarkable differences in both

methodologies, but the single use of direct measurements has

the advantage, apart from its greater simplicity, that it

allowed the SM calculation.

Figures 7 and 8 presents the prediction models for the

original panel data for field parameters as a function of sat-

ellite parameters and as a function of factors derived from a

lineal combination of satellite parameters. Graphically the

prediction seemed similarly good for both strategies, as well

as for both crops, excepting for FVC and LAI. It seems
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Fig. 7 e Prediction models for the original panel data for field parameters as a function of satellite parameters. (a) height; (b)

biomass; (c) fraction of vegetation cover (FVC); (d) percentage of water content (PWC); (e) leaf area index (LAI); (f) daily

precipitation (P) and soil moisture (SM) for the 7 agricultural plots. DoY (Day of Year).
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reasonable, since those parameters are physically related,

and none of them was able to be estimated. The reason for

this bad behaviourmay be explained after Fig. 4, where it was

observed that both were the most changing parameters

among the different crops. Since the prediction is based in

the average of the selected crops in the panel data, some

measures may be very sensitive to the type of plant as can be

seen in table A.6 for LAI with an average contribution of 0.12

for Barley (F11) whereas wheat (J12) contributes with an

average of 1.16, owing their different behaviour, the average

did not satisfy neither the wheat prediction (K10) nor the

barley one (M9).

On the contrary, SM and PWCwere the best predicted, both

for wheat and barley. Interestingly, those parameters, related

with the water content in soil and plants, respectively, were

the worst correlated with the satellite observations in the

previous work of Valcarce-Di~neiro et al. (2018) using the same

dataset, but a simple regression fit. It seems that the inclusion

of the temporal dimension in the model improved the esti-

mation of the variables while capturing the dynamic changes

that occur in the variables under study. Furthermore, it can be

seen for instance for height (Fig. 7), that the curve of themodel

continues growing and it is unable to capture the end of the

growing cycle at the harvesting time. Full cycle datasets are

needed to improve this models or their predictions will derive

in infinite plants growth.
There is not a clear pattern of under- or overestimation

among the parameters. Height was underestimated using

both techniques for both types of crops, but the average gap

between real and predicted values was below 28%. The

greatest gaps between the predicted and real values were

found for FVC, being more accused for the model considering

satellite factors for barley (M9). LAI was overestimated when

considering satellite measures for both crop types whereas it

was underestimated when considering factor satellite mea-

sures. Furthermore, the models considering factor satellite

measures even predicted negative values for LAI for both

crops types. Biomass, PWC and SM were overestimated when

considering satellite and factor satellite measures for both

crop types (only satellite for the SM). The smallest average gap

between real and predicted values was found for PWC with

values below the 16.5%.
6. Discussion

Prior to performing the panel data analysis, a factorial

experimentwith one factorwas considered in order to provide

a better understanding of the interactions between crop types,

incidence angles and biophysical variables.

The crop type only affected the biophysical variables in

three cases (Fig. 4): the height of the rye, the FVC for pasture
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Fig. 8 e Prediction models for the original panel data for field parameters as a function of factors derived from a lineal

combination of satellite parameters. (a) height; (b) biomass; (c) fraction of vegetation cover (FVC); (d) percentage of water

content (PWC); (e) leaf area index (LAI). DoY (Day of Year).
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showed significant differences and SM was found to be

smaller for barley (F11) and higher for pasture (H9) compared

to the remaining crops.

Regarding the influence of the crop type and the field

measurements, several differences between crop types and

plots were found. Particularly, the most changing variables

among crops were LAI and FVC. Besides, pasture (FVC, LAI and

SM) and rye (height and LAI) showed more differences than

the rest of crops. These differences resulted in a worse pre-

diction of LAI and FVC than the rest of variables. Therefore,

the crop type seems to influence several polarimetric pa-

rameters (HV, HH/VV, HV/VV, PPD, a1, and gP1P2). The struc-

ture of a crop canopy significantly impacts the intensity and

type of scattering. Polarimetric parameters that respond to

multiple or volume scattering within the crop canopy are

most suitable for crop identification. Many researchers have

found that the backscattering coefficient (HV) is the most

important polarisation parameter for identifying the majority

of crops (Lee, Grunes, & Pottier, 2001; McNairn, Champagne,

Shang, Holmstrom, & Reichert, 2009; McNairn, Shang, Jiao, &

Champagne, 2009). Valcarce-Di~neiro, Arias-P�erez, Lopez-

Sanchez, and S�anchez (2019) also found this relationship be-

tween crop types and polarimetric parameters. They found

that the dominant alpha angle (a1), the cross-polar backscat-

tering coefficient (HV) and the backscattering ratios (HH/VV
and HV/VV) were the most important parameters for dis-

tinguishing crops.

Regarding the influence of crop type on the incidence angle

and the parameters, the strongest influence occurred for the

copolar channels (HH and VV), gHHVV, and H, with the differ-

ences between the incidence angle and the parameters being

higher at the steepest angle (25�). The values of HH and VV

were very different between wheat (L7) and wheat (J12) at 25�.
A similar effect was found in (Valcarce-Di~neiro et al., 2018).

Higher values of both copolar channels were observed for

wheat (L7) at 25� than for wheat (J12).

Factor analysis has been demonstrated to be a useful tool

for reducing the dimensionality in the number of instru-

mental variables in the proposed estimation models.

Furthermore, linear relationships between satellite measures

have been detected, allowing the construction of reference

factors for fieldmeasures. Alternatives to factor analysis, such

as weighted variable aggregations or network analysis have

the disadvantages of not considering the specific variation in

the variables involved or requiring the selection of a threshold

applied to “dichotomise” the correlation matrix between var-

iables, which is a controversial issue that could have signifi-

cant effects on the structure of the resultant network.

A panel data analysis method was used to assess the po-

tential relationships between SAR observations and field
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measurements and therefore to establish a dependence

model between both datasets for forecasting the biophysical

variables. This approach is very new as compared with the

usual methods used by the remote sensing community, e.g.,

regressions and physical/empirical modelling. To retrieve

vegetation parameters using any type of polynomial fit be-

tween satellite/field data (Jackson et al., 2004; Kycko,

Romanowska, & Zagajewski, 2019; Zhang, Hong, Qin, & Liu,

2013), the datasets need to be large and robust, which is rare

owing the scarcity and cost of the field measurements. In the

second case (physical or empirical approach), the modelling

usually requires ancillary data describing the soil-

atmosphere-plant continuum, equally difficult to gather

(Bastiaanssen et al., 2005; Pu et al., 2020). Other approaches

(Bell�on, B�egu�e, Lo Seen, De Almeida, & Sim~oes, 2017; Jiang,

Liang, Wang, & Xiao, 2010) are based in time series analysis

to model variables such as LAI and NDVI. Recent studies such

as presented in Holloway and Mengersen (2018) review useful

statistical machine learning methods. All these methods

required either a large amount of data in large historical data

or expensive explanatory variables difficult to measure. On

the contrary, the proposed method only requires the mea-

surements and observations of a single growing cycle.

All crop types and parameterswere included in themodels,

with the exception of the height of rye (N9) and the SM of

barley (F11) and pasture (H9) due to its different behaviour.

The validatingmetric indicates good performance in all cases,

with a determination coefficient, R2, ranging from 0.78 to 0.96.

When considering the four constructed factors, R2 was greater

than 0.88, except in the case of LAI (R2 ¼ 0.29) and FVC

(R2 ¼ 0.429).

The models for the physical parameters related to water

content (i.e., SM and PWC) and height were found to have

higher values of R2 (0.96, 0.95 and 0.95 respectively). More

specifically, the estimation of SM using HH, VV, HV and gHHVV

was found to be the best among the estimations of all of the

biophysical variables. In contrast, LAI resulted in the lowest

R2, followed by FVC. It seems therefore that the model is more

sensitive to the water parameters than to the volumetric pa-

rameters. Not surprisingly, these two parameters, SM and

PWC were the most successfully retrieved in the validation

experiment.

Among all of the biophysical variables estimated, soil

moisture was the most benefited for the panel model,

providing an estimation model with four polarimetric pa-

rameters: backscattering coefficients and the normalised

correlation between the co-polar channels HH and VV (gHHVV).

Radar backscattering coefficients have shown to be correlated

with soil moisture since the dielectric constant of soil is

related to the amount of water held in soil (De Roo, Du, Ulaby,

& Dobson, 2001; Srivastava, Patel, Sharma, & Navalgund,

2009).

Regarding the height, it is widely recognised that radar

signals tend to increase quickly with increasing crop height

until a certain threshold, after which the signal increases only

slightly (Baghdadi, Boyer, Todoroff, El Hajj, & B�egu�e, 2009;

Moran et al., 2012). In this study, the coherence between the

first and second channels in the Pauli basis (gP1P2) was found
to be the best satellite parameter to predict this biophysical

variable. The use of this parameter could be possible due to

the first Pauli channel is related to the scattering from soil

surface and the second channel is associated to the double-

bounce between soil and stems, being sensible to the

growing cycle of the crops. Liu et al. (2012) found that

RADARSAT-2 Pauli basis decomposition was a good indicator

of crop growth development.

The backscattering coefficient (HV) drove the estimation of

biomass. Backscattering coefficients have been effective for

monitoring crop conditions where changes in vegetation

structure and growth were detectable (Moran et al., 2012;

Valcarce-Di~neiro et al., 2018) because HH is sensitive to hori-

zontally oriented structures, VV to vertical structures and HV

to random scatters, which are often related to volume scat-

tering. It is generally accepted that C-band polarimetric data

are useful for crop biomass monitoring (Canisius et al., 2018;

Wiseman et al., 2014). However, recent studies have shown

the potential of using the L-band to estimate biomass.

Hosseini and McNairn (2017) exploited both the C-band

(RADARSAT-2) and the L-band (UAVSAR) to derive the

biomass and soil moisture of wheat fields using the WCM

(water cloud model) (Attema & Ulaby, 1978). Reisi-Gahrouei,

Homayouni, McNairn, Hosseini, and Safari (2019) used time

series of SAR polarimetric parameters from an unmanned

aerial vehicle synthetic aperture radar (UAVSAR) airborne L-

band to estimate crop biomass using a multiple regression

model (MRM) and an artificial neural network model (ANNM).

Fraction of vegetation cover (FVC) was another biophysical

variable under study. Along with leaf area index (LAI) and

biomass, it is an important parameter for many agronomic,

ecological and meteorological applications. In this study, the

performance of FVC in the panel was relatively good, with a

correlation coefficient (R2) of 0.82. The polarimetric parameters

used to estimate FVC were HV and H. Valcarce-Di~neiro et al.

(2018) also found a good correlation between the cross-polar

channel HV and the FVC using simple correlations. The rela-

tionship between the entropy and the FVC could be explained

by assuming that at the beginning of the growing season, the

radar response is characterised by a low entropy value. At this

moment of the cycle, there is more bare soil than vegetation

canopy (a1 is below 15�). By the middle of the plant growth

season, the value of entropy ismoderate due to the presence of

both soil and vegetation cover. Then, at the end of the growing

season, the value of entropy decreases again due to the with-

ering of plants. This behaviour as a function of time would be

similar to the typical FVC behaviour (Fig. 4). Finally, LAI was

estimated using only one polarimetric parameter (a1). The

dominant alpha angle has been reported to be a good indicator

of the sensitivity of this parameter with LAI (Jiao et al., 2011;

Valcarce-Di~neiro et al., 2018). TheWCM is themost widely used

method for estimating crop LAI from SAR data. B�eriaux et al.

(2015) used the semi-empirical water cloud model to estimate

LAI from C-band SAR data and developed a Bayesian fusion

method that improved LAI retrieval. Hosseini, McNairn,

Merzouki, and Pacheco (2015) used the multipolarisation

RADARSAT-2 (C-band) and a UAVSAR (L-band) to investigate

the applicability of the C- and L-bands to LAI estimation.
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One of the weaknesses of the present methodology for field

parameter estimation and forecasting is the chance of obtain-

ing negative valueswith no physicalmeaning. Even though this

effect is not very pronounced, it occurred mainly for the field

parameter that varied the most with time (LAI, Fig. 4) and for

the smaller values observed (F11, Fig. 4). To improve the

method in the future, truncated distributions could be used in

order to avoid negative values in the estimations.
7. Conclusions

In this study, the ability of panel data and factorial techniques

combined with in situ measurements and polarimetric pa-

rameters derived from radar imagery to predict crop bio-

physical variables was assessed. These statistical techniques

are ideal for small datasets, such as the ninemeasurements in

the field campaign, and, as far as we know, they have not been

explored previously in this context. Although different crop

types are mixed in the panel data, the resulting estimation

and prediction models show a good performance when

applied to validation data. These results could even be better

for a single crop type in the panel data model to be retrieved

and validated.

When the influence of the crop type was analysed thor-

ough the factorial experiment, it was concluded that crop type

had no effect on several biophysical variables. However, the

polarimetric parameters were affected by the crop type due to

the different canopy structures of the different crops, char-

acterised by changes in the intensity and type of scattering of

the radar signal. When the incidence angle was considered,

large differences were found between the parameters at

different incidence angles.

The panel strategy was able to model and predict many of

the parameters measured in the field and to overcome the

scarcity of data. The panel data analysis with no factors

showed that the physical parameters related to water content

(i.e., SM and PWC) were better predicted (R2 ¼ 0.96 and

R2 ¼ 0.95 respectively) than those related to the structure of

the crop. However, when the panel used factors to predict the

biophysical variables, biomass was found to be the best pre-

dicted (R2 ¼ 0.94).

The results of this study demonstrate that the application

of panel and factorial approaches to new databases, such as

those provided by satellite images, is more effective than

other methods, such as regressions, that are typically used in

remote sensing, and can accurately predict crop biophysical

variables. Owing to the increasing number of upcoming sat-

ellite SAR sensors with new capabilities in frequencies, image

modes and revisit times, the panel technique may be

considered a robust and convenient alternative to traditional

statistical modelling.
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