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Abstract— On average, we spend around 90% of the time in 
indoor environments. Indoor Air Quality (IAQ) has been 
receiving increased attention from the environmental bodies, 
local authorities and citizens as it is becoming clearer that 
poor IAQ has public health implications. Therefore, 
monitoring of indoor environment becomes crucial to 
enhance IAQ and involving citizens in managing their indoor 
environments by raising awareness – a goal of a number of 
Citizen Science (CS) projects. In this work, we present a use 
case of IAQ monitoring in a European project with a focus on 
Smart Cities with citizen engagement and involvement. It is 
well known that the cost of Air Quality (AQ) monitoring 
stations, which are often stationary, and generally produce 
reliable, and high-quality data is a non-starter for CS projects 
as cost prohibits the scaling of deployment and citizen 
involvement. On the other hand, it is widely assumed that low-
cost devices for AQ, although available in abundance, are 
often produce low-quality data, putting the credibility of 
basing any analysis on low-cost sensors. There is an 
increasing number of research efforts that look at how to 
ascertain data quality of such sensors so they could still be 
used reliably, often to provide indicative readings, and for 
analytics. In this work, we present data science-based 
techniques that we have utilised for selecting low-cost sensors 
based on their data quality indicators, and an integrated 
visualisation system that utilises structure data for IAQ to 
support multi-city trials in a CS project. The sensors are 
selected after analysing their consistency over a period by 
applying different approaches such as statistical analysis and 
graphical plots. 

Keywords— air pollution, indoor air quality, IoT, low-cost 
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I. INTRODUCTION

Good air quality is a major concern globally mainly in 
urban areas where vehicle traffic and industries are bringing air 
pollution which directly affects human health [1]. Air pollution 
is mainly categorised into two segments: ambient (outdoor) and 

indoor air pollution. IAQ is receiving increasing attention in the 
last few years from the environment authorities, political 
institutes, and the scientific community. The use of coal, wood, 
stove or other energy sources for cooking and heating inside 
their houses is a common practice [2]. The combustion from 
such sources generates heat, light along with carbon dioxide 
(CO2) and particulate matters (PM2.5 & PM10). In addition, some 
of the impurities in the fuel generate by-products such as 
Nitrogen dioxide (NO2), Sulphur oxides (SOx), Carbon 
monoxide (CO) and unburned hydrocarbons. Besides these, 
anthropogenic sources (building materials, paints) or biomass 
fuel burning into houses also generate pollutants such as Volatile 
Organic Compounds (VOCs), and radon which also contributes 
to indoor air pollution [3].  

Often it is perceived that indoor air quality fares better 
in comparison to the ambient air quality, but a number of studies 
[4, 5] show that indoor air pollution is two to five times worse 
than outdoor pollution which raises a concern on human health 
in indoor environments. Additionally, air pollution is a major 
driver in health inequality - it disproportionately affects 
children, poorer households, older people and people with pre-
existing conditions [6]. Whilst focus remains on outdoor 
pollution, people typically spend over 90% of their daily time 
indoors where levels of pollution often surpass outdoor 
environments [2, 7]. The increased importance of measuring 
IAQ has lead to gradual growth in approaches for IAQ 
monitoring using the Internet of Things (IoT) devices. These 
devices measure various gases and particulate matters in indoor 
environments and are connected with internet to transmit 
measurements for analytics which helps in monitoring and 
analysis of the indoor environment and hence building a dense 
IAQ monitoring network  [8]. Involvement of citizens in taking 
part in such sensor design and monitoring is crucial – and a key 
component of CS projects [9-11]. 

Engagement of citizens in monitoring any system time 
and again comes with the question “What does the measurement 
mean to the citizens? However, this question gives the 
opportunity to engage citizens to clarify the importance of the 
IAQ monitoring, motivate and engage them in monitoring the 
process [12]. To generate the awareness at citizen’s level, apart 



from volunteer participation and data gathering, inclusion, 
collaboration and reciprocation is required [13]. In other words, 
a communication bridge is required between concerned 
authorities and citizens to engage citizens in air quality 
monitoring and hence raise awareness. This reflects the need for 
developing IAQ monitoring platforms that increase the citizens’ 
understanding and awareness of indoor air pollution and act this 
as a communication bridge. 

However, monitoring indoor air pollution at the 
household level in CS projects is challenging as such monitoring 
tools are not accessible to citizens at territory level as the high-
quality certified equipment is extremely costly. Instead, they 
have been deployed as static monitoring stations across cities 
worldwide to monitor outdoor air pollutions. These costly and 
more reliable devices often cost many times higher than the cost 
of low-cost devices – making it infeasible to scale the 
measurement at the indoor level [14]. The low-cost devices 
allow creating affordable IAQ monitoring platform at citizens’ 
level to make them able to related IAQ and their activities. 
Besides, it has been also argued that IAQ data from different 
areas can help local stakeholders to manage air quality and 
associated risk in those areas [13]. It is widely accepted that 
there is a trade-off between using high cost and generally high-
fidelity devices, against low cost and often low fidelity devices 
when scaling up air quality monitoring. Hence, data quality is a 
major challenge while collecting and interpreting data using 
low-cost devices and they are often utilised in limited settings to 
deliver relative and aggregated knowledge on IAQ [14]. In this 
paper, we present a use case of dealing with IAQ monitoring in 
the context of a European project in urban settings – and set out 
our experience of developing: a) low-cost sensor kits for 
measuring different gases and particulate matters that are 
relevant in IAQ context b) use of data science to ascertain data 
quality to be able to choose between different sensor options to 
design the final kit c) an AI data platform utilising knowledge 
graphs that offers structured data that facilitates interactive 
visualisation of the IAQ data. As per our research, our work is 
first to offer such use cases to help other projects and efforts in 
this increasingly important area of research.  

In the rest of the paper, related work is presented in the 
Section-II. The system architecture of Indoor Air Quality 
Monitoring, Kit design and experimental work is presented in 
the Section-III. Discussion and conclusion with the future works 
are presented in the Section-IV. 

II. RELATED WORK 
Air pollution is getting more attention in recent years 

as its direct impact on health is becoming clearer [6]. According 
to the report published by WHO in 2012, 11.6% of all global 
deaths were caused by air pollution [15]. Some of the common 
health issues such as cardiovascular disease, respiratory 
conditions and in some cases cancer are also associated with air 
pollution [16]. Centre for Cities’ annual study released this week 
has estimated that 4.3% deaths (2017) in Bradford - a city in 
North of England and the focus of this work, can be attributed 
to long-term exposure to PM2.5 [17]. IAQ – the focus of recent 
work in AQ research field, is still a relatively little understood 

in terms of the interface between indoor and outdoor air quality, 
and how ambient air quality impacts the quality of air in 
households [18]. One of the key challenges from a technology 
perspective in IAQ domain is to design IAQ monitoring systems 
using real-time monitoring of gases and particulate matters 
specific to IAQ and common with Outdoor Air Quality (OAQ). 
Citizen’s involvement in IAQ monitoring using CS 
methodologies is paramount due to the nature of work required 
to make such monitoring effective – as it has to be done in situ 
in households [19]. The conventional high-cost air monitoring 
systems are not practically suitable to monitor indoor 
environment because of their size, cost, installation complexity, 
complicated functioning and skill set is required to handle such 
systems [7]. 

Instead, in recent years, the Internet of Things (IoT) 
technology and Single Board Computers (CBC) are commonly 
used to monitor air quality using various low-cost sensors 
including recently for IAQ monitoring [8]. Krystallia et al. [20] 
examine the IAQ of three schools for two seasons and found that 
ambient air through ventilation of rooms and seasons have 
significant effects on indoor air pollutants and student's health. 
A similar study conducted by Corinne et al.[21] for two seasons 
(summer and winter) at 37 office buildings in 8 European 
countries shows that the concentrations of some pollutants like 
aldehydes and O3 are higher in summer while NO2 and benzene 
are higher in winter. The study conducted by Wenjuan et al. [22] 
for green building certifications for 30 countries worldwide 
shows that ventilation, emission source control of pollutants and 
indoor air measurements are the key components to certify and 
manage indoor air quality. A recent real-time case study 
conducted by Chakraborty et al. [23] on residential stove usage 
inside 20 houses in Sheffield (UK) shows that PM2.5 and PM10 
concentration values are much higher when citizen burn wood 
in their houses as compared to the non-stove user. Also, it 
compares the outdoor air quality with indoor at the same time 
and results show that these pollutants are mainly originated from 
indoor substances. Semmens et al. [24] monitor PM2.5 and 
Particle Number Concentrations in 96 households in the United 
States where wood stoves are the primary source for heating. 
The results showed that the mean PM2.5 level exceeds WHO air 
quality guidelines. 

Though air pollution directly affects citizens’ health, 
there has been less awareness among citizens because of 
complexity in monitoring and interpreting the pollution data 
within their home environments [25].  Mahajan et al. [13] stated 
that the inclusion of citizens can benefit from generating 
community-led air quality monitoring awareness. Their study 
also presented that enhance citizens’ knowledge of air pollution 
can reduce individual exposure level to pollution and hence 
tackle the pollution problem at the community level. Hubbell et 
al. [26] have presented the conceptual framework to guide the 
citizens and other stakeholders on the use of low-cost sensor 
devices system. The framework has presented focusing how the 
implementation of low-cost sensors, communication of data and 
response can establish a relationship between citizens and air 
quality monitoring stakeholders to understand the poor air 
quality risk and improve air quality.  Towards citizens’ 



engagement in indoor air quality, Tiele et al. [27] have presented 
a low-cost sensor based indoor real-time monitoring system 
where researchers and interested citizens have been participated 
towards improving the indoor environment by experimenting 
with the different close environment. 

The IoT-based monitoring system uses wireless sensor 
network architecture for communication and sends data to the 
remote server or any other monitoring platform such as the 
mobile app, web interface once they determine the data [28]. 
Building such a system, Salman et al. [29] presented a real-time 
indoor air quality monitoring system with wireless sensor 
network to visualize the measured pollutants data from the 
indoor environment. In a similar kind of work, Fang et al. [30] 
developed a home-based IoT monitoring platform which can 
detect indoor pollution along with forecasting the pollution level 
and suggestions to improve the air quality. These related works 
in the area of IAQ highlighted that there is a need for an 
integrated system, with accessible low-cost sensors. However, it 
is challenging to utilize low-cost sensors as often they lack 
credibility in terms of sensing data quality. At the same time, CS 
projects that really can give impetus to one of the most important 
subjects of this generation, can only work if the cost of devices 
is low to allow the economics of scale. Strategic selection of 
low-cost sensors that are reliable and can provide indicative 
results is a relatively new area of research and there is very 
limited work in this area so far. We present one such approach 
with the use of data science techniques to allow selecting sensors 
from multiple options in the market for IAQ monitoring and 
present our experience and findings in a real-world use case. 
This real-world use case is applied in a large European project 
on Smart Cities and Open Data Reuse (SCORE), where a multi-
site trial of IAQ monitoring is planned. We also present a system 
architecture and implementation of a system that is unique in 
terms of use of structure data in the form of Knowledge Graphs 
from the outset, providing the potential for better search and 
visualization. In doing so, we present first usable Ontology – a 
knowledge structure required to build Knowledge Graphs – 
which has the potential to be reused in other AQ monitoring 
projects.  

  
III. INDOOR AIR QUALITY MONITORING: SYSTEM 

ARCHITECTURE 
The implementation of the proposed IAQ monitoring system is 
developed with the system architecture as shown in Figure 1.  

 
 Figure 1: Indoor Air Quality Monitoring: System Architecture 

This system architecture mainly has three components: i. IAQ  
Sensors, ii. Knowledge Graph and iii. Data Visualisation 
Platform.   
 

IAQ Sensors 
An indoor environment is any enclosed premises such 

as house, office, school or university where citizens spend a 
significant amount of time. The indoor environment may 
contain different appliances, domestic products which may act 
as a source for air pollutants, mainly PM and different gases. 
Several indoor pollutants such as PM, CO2, NOx, O3, SO2, 
radon, volatile and semi-volatile organic compounds (VOCs) 
and microorganism have recognised. Among these, some of the 
pollutants, PM, CO2, NOx, O3, SO2 are also common to both 
indoor and outdoor environment [3, 7, 31]. Some of the 
pollutants such as CO2, PM are heavily depending on indoor 
activities like cooking, heating whereas pollutants for example 
VOCs, CO has appeared mainly from outdoor sources. There 
appears that the types of indoor pollutants and their sources are 
different from outdoor [3]. 

To measure these pollutants, in our work we have 
considered following candidate sensors. This selection is based 
on other studies and experiments [23, 32-34].  
• BME680: This sensor can measure temperature, humidity, 

barometric pressure and VOC gas.  
• CJMCU-811: This sensor can be used for detecting eCO2, 

VOC gases. It is a digital gas sensor integrated CCS801 
sensor and 8-bit Analog-to-digital converter (ADC). 

• Envrio+:  This pHAT is a collection of multiple sensors 
such as BME280 which can measure temperature, humidity 
and pressure, MICS6814 analog gas sensor is responsible 
to measure CO, NO2 and Ammonia (NH3) and LTR-559 
light and proximity sensor. Also, it has built-in ADS1015 
analog-to digital convertor and 0.96“ colour LCD (160 × 
80) for display. 

• SDS011: This sensor is used to measure PM2.5 and PM10 air 
pollutants. This sensor is an infrared-based laser sensor and 
has a fan to provide self-airflow  

• MQ-2: This gas sensor is mainly used to detect CO, 
Methane, Butane, LPG, smoke. 

• PMS5003: It is used to measured PM1, PM2.5 and PM10. 
• OPC-R1: This sensor is used to detect PM1, PM2.5 and PM10 

with the help of laser scattering technology. 
• SGP-30: This gas sensor is mainly used to monitor  eCO2 

and TVOC. 
Low-cost sensor selection that is reliable is a major 

challenge in building any AQ monitoring system. In order to 
finalise our IAQ monitoring kit, and to select among the 
competing sensors in particular for measuring PM variants, three 
sensors (SDS011, PMS5003 and OPC-R1) have been deployed 
in a controlled lab environment (no human or any other mobility 
within the environment) for 48 hours with reading interval every 
15 minutes. From the plot, it can be observed that these sensors 
have different patterns of readings for PM2.5and PM10. Since 
there has been no external interference to the measuring 
environment, it is expected that the pollutant reading should not 
vary in the wider range. From the observation, among three 
sensors, SDS011 sensor has a lower variance. In other words, 
SDS011 has shown higher linearity pattern in comparison to the 



other two sensors in the controlled lab environment as it can be 
observed in Figure 2 for PM2.5 and Figure 3 for PM10. 
 

 
 

Figure 2: Comparison plot of PM sensors (SDS011: Blue, OPC-R1: Orange and 
PMS5003: Green) in a controlled lab environment (no human or any other 
mobility within the environment) for PM2.5  over a period of 48 hours where the 
linearity of the plot is analysed as one of the sensor selection criteria. 
 
After analysing the graphical plot, we also applied statistical 
measures to validate the consistency of sensors to bring further 
confidence in the selection of the sensor. For the statistical 
analysis, first of all, we observed the density distribution of these 
three sensors readings as listed in Table I for PM2.5 and Table II 
for PM10 
 

 
 

Figure 3: Comparison plot of PM sensors (SDS011: Blue, OPC-R1: Orange and 
PMS5003: Green) in a controlled lab environment (no human or any other 
mobility within the environment) for PM10 over a period of 48 hours where the 
linearity of the plot is analysed as one of the sensors selections criteria. 

TABLE I.  STATISTICAL OBSERVATION OF PM2.5 FROM THREE SENSORS 

 
Name of the PM sensors 

 SDS011 OPC-R1 PMS5003 
Number of 
Observations 

96 96 96 

Mean 1.358 2.871 0.725 

Standard Deviation 0.394 1.108 1.003 

Minimum Value 0.6 1.25 0.0 

Maximum Value 2.5 5.21 4.0 

90% distribution value 1.9 4.41 2.0 

TABLE II.  STATISTICAL OBSERVATION OF PM10  FROM THREE SENSORS 

 
Name of the sensor 

 SDS011 OPC-R1 PMS5003 
Number of 
Observations 

96 96 96 

Mean 2.709 5.809 1.083 

Standard Deviation 1.33 2.802 1.77 

Minimum Value 0.6 1.64 0.00 

Maximum Value 6.8 19.1 10.0 

90% distribution value 4.4 8.853 3.00 

  
From Table I & II, it can be observed that SDS011 has 

the lowest Standard Deviation (SD) for both PM2.5 and PM10 
readings. This lower SD value implies that the readings are more 
uniformly distributed. In the controlled environment, readings 
are expected to have the least possible. The SD value also 
reflected that SDS011 has better performance than the other two 
sensors in our experiment. We also inspected 90% distributed 
values to analyze the maximum value deviation from it. The 
observation shows that SDS011 sensor has the minimum 
deviation, for both PM2.5 and PM10, of the maximum value from 
the 90% distribution. We also analyse the drift as it is being used 
to identify the general trends in the data distribution [35]. For 
the drift calculation, two SDS011sensors and two PMS5003 
sensors are deployed in the same environment for 48 hours. The 
recorded data from one SDS011 sensor is compared to another 
SDS011 to analyze the drift between two data sets. Same 
approach  is also applied to PMS5003. In general, data from the 
same environment recorded by two same sensors should have 
the minimum drift. In this case, we applied the Kolmogorov-
Smirnov (KS) algorithm [36] to calculate the drift value for both 
setup sensor data. From the statistical analysis, as listed in Table 
III, it is observed that SDS011 sensors are more consistent for 
both PM2.5 and PM10, with each other on measuring in the same 
environment as compare to the PMS5003. From these analyses, 
SDS011 shows the best performance among the three PM 
sensors. These approaches guide to select the best viable sensor 
among different low-cost sensor options. 

TABLE III.  KS-STATISTICAL COMPARISON FOR DRIFT ANALYSIS 

 
Name of the sensor 

 SDS011 PMS5003 

PM2.5 (KS-Statistics) 0.2163 0.2339 

PM10 (KS-Statistics) 0.1929 0.2397 

 
After the section of sensors, the kit has been assembled 

as shown in Figure 4 that contains BME680, CJMCU-811, 
Enviro+, MQ-2 and SDS011 sensors. The final IAQ kit is a 
combination of these multiple sensors and Raspberry Pi 3B+ to 
control the whole sensor kit. The Raspberry Pi have features like 
Bluetooth, 4 USB ports, Micro SD port for storage and access, 
wireless LAN, and 28 GPIO pins for external communication. 
All the sensors are connected with raspberry pi with the help of 
GPIO pin expander, which is mounted on it, however, the PM 
sensor is connected through the USB port with UART output. 



The connected sensors sense and detect species from the indoor 
environment and generate analogue/digital signals and hence 
pass to raspberry pi for further process. A built-in Wi-Fi adapter 
helps raspberry pi to establish access to the internet and start 
detecting sensors’ data and send to our web server. 

 

 
Figure 4: Final Sensor kit with IAQ sensors using Pi 3B+ 

Knowledge Graph 
 Data from the sensor kits are received and parsed using 

RESTful Application Program Interface (API) before storing 
into the data store. In our web service, the RESTful API, using 
HTTP request, has been created using Python and the Flask web 
framework to communicate between different nodes of the 
system. Data is streamed from the sensor kits and is stored in a 
Triple store [37] in the form of a Knowledge Graph(KG) [38]. 
We have developed an ontology for Air Pollution that is required 
to give structure to the KG. Figure 6 shows the graphical 
representation of the pollution ontology. 

The knowledge graph provides the framework for data 
integration, unification and data linking. This ontology is 
released as open-source and made available for other AQ 
monitoring projects here1. 

 
Figure 6: Graphical Representation of the Pollution Ontology – highlighting 

Indoor Air pollution branch structure. 

Data Visualisation Platform 
The data visualization platform provides the interface which 

allows citizens or end-users to observe the measured data in an 
 

1 http://212.48.88.88/score/ontologies/ 

interactive manner such as the selection of locations, filtering 
different data, plotting and alert generation without any 
programming skills. For the data visualization, a web 
application using PHP, HTML and JavaScript has been created. 
In the web application, user can see the approximate sensor 
locations (instead of absolute locations to preserve privacy) and 
can choose any pollutant or all of the pollutants to visualise the 
measured level as per the specified period such as 1day, 1 week 
or 1 month. This platform provides an interactive visualisation 
such as selecting multiple pollutants together or altering them in 
visualisation, downloading the selected data, comparing them 
with threshold values and hence the colour coding on the 
visualisation. Figure 7.a, 7.b and 7.c reflect the web application 
visualisation platform of the different web pages such as a Home 
page with selection fields (Figure 7.a), sample plot for PM2.5 for 
1-Day (Figure 7.b) and the informative page (Figure 7.b). 

 

 
Figure 7.a: Visualising Sensor kits and data for indoor air pollution monitoring 
at one the city sites in the SCORE project. Citizens can search based on 
postcode and it will show IAQ devices in the searched geographic location. 

 

 
 

Figure 7.b: Visualising 1-Day time series plot of PM2.5 with varying reading 
with upper range 20 μg/m3, which below the WHO upper limit. 

 
Figure 7.c: Visualisation system used by a Citizen shows them a summary of 
the pollutants in their homes and gives information on what the summary means 
and steps they can take to improve IAQ. 



IV. DISCUSSION & CONCLUSION 
IAQ monitoring is one of the growing concerns in 

recent years because of its impact on human’s day-to-day life 
along with direct implication on health. However, interactive, 
and informative IAQ monitoring that can engage citizens is still 
not a commonplace largely due to the cost-prohibitive 
monitoring devices and also the low confidence in data quality 
of the low-cost devices. This hampers CS science efforts that 
can really scale indoor air quality monitoring effort and bring 
much-needed impetus to this all-important area. In this work, an 
IAQ monitoring system is presented where the strategies on the 
selection of low-cost sensors are based on statistical methods 
and present use of Knowledge Graph with associated knowledge 
structure. Our system produces an interactive visualisation to 
inform citizens about IAQ in their neighbourhood and in their 
houses including analytics on average exposure levels and 
associated guidance on improving IAQ.  This system will go into 
multi-city trials involving a spread of demography and 
geography in Europe.  

The importance of this work lies in the identification of 
the importance of monitoring IAQ and citizen’s awareness in the 
whole process. This can lead to identifying the areas of further 
research such as indoor air pollution and health, developing 
different strategies to improve the air quality, raising indoor air 
pollution engagement at citizen’s level. 
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