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mmFruit: A Contactless and Non-Destructive
Approach for Fine-Grained Fruit Moisture Sensing

Using Millimeter-Wave Technology
Fahim Niaz, Jian Zhang, Muhammad Khalid, Muhammad Younas, and Ashfaq Niaz,

Abstract—Wireless sensing offers a promising approach for
non-destructive and contactless identification of the moisture
content in fruits. Traditional methods assess fruit quality based
on external features such as color, shape, size, and texture.
However, fruits often appear perfect externally while being rotten
inside. Thus, accurately measuring internal conditions is crucial.
This paper introduces mmFruit, a non-destructive and ubiquitous
system that employs mmWave signals for precise and robust mois-
ture level sensing in thin and thick pericarp fruits. We propose
a novel dual incidence moisture estimation model for regular
moisture monitoring to achieve high granularity and eliminate
fruit type and size dependency. Additionally, we leverage unique
reflection responses across different mmWave frequencies to
provide discriminative information about fruit moisture levels.
Our comprehensive theoretical model demonstrates how fruits’
refractive index, attenuation factor, and elasticity can be es-
timated by eliminating fruit type dependency. We developed
an electric field distribution model utilizing two receiving an-
tennas to address the challenge of varying fruit sizes through
a differential approach, aiming to improve overall robustness.
mmFruit integrates a customized Spatial-invariant network (SpI-
Net) to eliminate interference from different frequencies and
locations, ensuring stable moisture monitoring regardless of
target displacement. Extensive experiments were conducted over
a month in varied environments on seven types of fruits with
thin and thick pericarps (apple, pear, peach, mango, orange,
dragon fruit, and watermelon). The results demonstrate that
mmFruit achieves a commendable RMSE of 0.276 in moisture
estimation. It accurately distinguishes fruits with minor moisture
level differences (0% to 7%) with 93.6% accuracy and higher
moisture differences (45% to 65%) with over 95.1% accuracy,
even in scenarios involving diverse displacements and rotations.

Index Terms—Millimeter Wave, Wireless Sensing, Contact-less
Sensing, Moisture Sensing

I. INTRODUCTION

FRuits are rich in carbohydrates, amino acids, proteins,
organic acids, vitamins, and minerals, making them a
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valuable part of the human diet. It is recommended to con-
sume them fresh. However, many fruits are perishable due
to their high metabolism, respiration rate, and limited shelf
life (1). Improving post-harvest management of fresh fruit is
crucial for enhancing food supply (2). Unfortunately, post-
harvest processing often results in the loss of several beneficial
nutrients. External and internal factors such as temperature and
humidity during storage, significantly impact quality and shelf
life, influencing attributes like firmness, weight loss, titratable
acidity, and soluble solid concentration (3), (4). Pathogenic mi-
crobes also significantly influence fruit spoilage and shelf life
reduction. Despite advancements in bactericidal treatments,
many infectious disorders remain challenging to manage due
to bacterial resistance, low cell activity, antimicrobial toxicity
to healthy tissues, and difficulty crossing cell membranes.
Therefore, developing more effective materials with enhanced
photocatalytic and antibacterial properties is essential (5).

Evaluating the quality of fruit involves both external and
internal factors. External characteristics like color, shape, size,
and the absence of surface bruises can be visually inspected
and are commonly used to assess fruit quality in daily life (6).
Vision-based fruit sorting systems also utilize these external
features for classifying fruit freshness (7). However, relying
solely on external factors can be misleading, as fruit may
look normal on the outside but be rotten inside. A critical
internal factor is the measurement of moisture level in fruit,
which helps reduce this bias. Commodity-of-the-shelf (COTS)
analyzers often employ destructive testing methods. Tools such
as penetrometers (8), (9) and vacuum ovens (10) measure
water content by inserting probes and applying heat to dry the
fruit. In contrast, nondestructive techniques analyze moisture
levels by examining the absorption, reflection, and scattering
of near-infrared (NIR) signals emitted to the fruit tissues. Pro-
fessional spectrometers (11) provide relatively accurate mea-
surements (±1.7% for moisture) but are costly (approximately
$100,000) and require controlled laboratory settings (12).
Although portable spectrometers are less expensive (around
$9,000) (13), they do not achieve satisfactory accuracy across
different types of fruits.

RF-based fruit sensing has been explored to circumvent
the need for destructive and expensive methods for measuring
internal fruit properties. RF waves experience varying velocity
loss and propagation attenuation degrees when passing through
fruits with different moisture levels. A machine learning-
based system for classifying fruit moisture levels (14) is
developed using terahertz (THz) waves in the 0.75-1.1 THz
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range. However, this system requires a specialized platform
like Swissto12 MCK, limiting its practicality for everyday use.
A wi-fi-based system for creating fruit ripeness profiles using
a 600MHz bandwidth at 5GHz was developed (15). Still, it
failed to provide detailed measurements of biological features
such as moisture values. The state-of-the-art model, Wi-Fruit
(16), utilizes a COTS Wi-Fi device with dual antennas to
estimate various fruits’ moisture levels and solid-state content.
However, this method relies heavily on visual information,
necessitating images for fruit type, and size to ensure accuracy.

In this paper, we introduce mmFruit, a novel system de-
signed to non-destructively measure fruit moisture levels using
a dual incidence moisture estimation model. It utilizes a
mmWave radar device (77-81 GHz) to transmit Frequency-
Modulated Continuous Wave (FMCW) chirps toward fruits at
normal and oblique angles. By analyzing the reflected signals,
mmFruit accurately measures and monitors fruit moisture
levels using the refractive index to gauge how much the
radar signal bends within the fruit and the fruit’s elasticity
to determine how the fruit’s firmness correlates with moisture
content. It can detect subtle moisture differences between 0%
and 7%, as well as significant variations between 45% and
65%. To eliminate fruit type dependency, we developed a
feature based on attenuation factors independent of fruit type.
We constructed an electric field around the radar’s receiving
antennas to detect fruit size. mmFruit reliably operates in
diverse real-world conditions, including random movements
and rotations, making it invaluable for retailers and consumers
seeking precise moisture level information.

To achieve accurate and resilient moisture level sensing,
mmFruit introduces two unique design innovations:

1) Our dual incidence moisture estimation model enhances
mmFruit’s capability to achieve fine-grained measure-
ments by utilizing both normal and oblique reflection
incidences. This approach leverages distinct reflection
characteristics across various frequencies, overcoming
the limitations of existing methods that rely on visual
information about fruit type, size, and normal incidence
reflection features. mmFruit capitalizes on the varying
moisture permittivity across multiple mmWave frequen-
cies to derive reflection coefficients, refractive indices,
fruit attenuation factors, and fruit elasticity. This allows
for regular moisture monitoring and provides detailed
insights into the fruit’s type, size, and moisture level. By
capturing diverse frequency characteristics from FMCW
mmWave signals, the proposed dual incidence moisture
estimation model enables accurate detection and utiliza-
tion of detailed moisture information reflected across
different mmWave frequencies.

2) Mitigating interference from range bin changes and
rotation using Spatial-invariant networks (SpI-Net). To
ensure reliable moisture level sensing and address inter-
ference caused by different displacements under normal
and oblique incidences, mmFruit integrates a customized
neural network called SpI-Net. SpI-Net extracts location-
independent features uniformly by employing shared
convolutional kernels with residual connections and con-
sistent learnable parameters. This methodology allows

SpI-Net to capture and down-sample reflection responses
across various range bins, effectively extracting invariant
features and enhancing the accuracy of moisture identi-
fication.

In summary, The major contributions of mmFruit are:
• We develop a dual incidence moisture estimation model

that establishes a functional relationship between fruit
moisture levels and the refractive index of received sig-
nals at both normal and oblique incidences. By analyzing
the electric field differences when the spatial position of
the fruit changes, we extract reflection coefficients and
refractive indexes. This approach enables the accurate
identification of moisture levels.

• We introduce mmFruit, a system for regularly monitoring
fruit moisture content using fruit elasticity, defined as
the ratio of stress to strain. mmFruit can detect minor
moisture changes (0%-7%) and major moisture variations
(45%-65%) with an RMSE of 0.276, even among similar
moisture-content fruits like pears and apples.

• To eliminate the effect of fruit type, we utilize each fruit
type’s complex permittivity and fruit attenuation factors,
which vary with frequency. We design a relative fre-
quency response factor, based on the attenuation factors
at multiple frequencies, to counteract the influence of
fruit type. By leveraging relative complex permittivity and
the frequency response factor as features, mmFruit can
accurately identify fruit types without relying on visual
information.

• We developed a customized Spatial-Invariant Network
(SpI-Net) to consistently monitor moisture levels in fruits,
effectively mitigating the effects of location changes
and ensuring robust moisture identification. The mmFruit
prototype, built using mmWave radar, is designed to
interface seamlessly with any smart device. We collected
over 58,000 samples for extensive experiments and case
studies, confirming the prototype’s accuracy and robust-
ness across various scenarios.

II. RELATED WORK

Non-destructive evaluation (NDE) of agricultural products
has become increasingly important over the past few decades.
About 50 years ago, initial studies used microwaves in
agriculture showing that the complex permittivity of fruits
and vegetables varied with their maturity and type through
destructive methods (17), (18). Today, the focus is on using
microwaves for non-destructive monitoring of fruit growth and
maturity. Recent research highlights the use of microwaves to
measure the mass of products like grapes (19) and cranberries
(20), (21) and to determine the best harvest time based on
fruit maturity. Additionally, electronic-based techniques like
electronic noses (22) and tongues (23) are being developed
for flavor assessment.

Recent advancements in RF-based technologies (24), (25),
have become increasingly important for non-destructive fruit
quality assessment, encompassing both external and internal
evaluations. External factors include fruit type, size, shape,
weight, firmness, smell, surface color, and features like mildew
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spots. The Doppler laser vibrometer (LDV) (26) accurately
measures changes in fruit surface texture using reflected laser
beams. Vision-based technology (27) is also widely used for
external evaluations, employing image processing and deep
learning. However, their performance can be affected by
environmental lighting conditions.

Assessing fruit quality based only on external factors can
be misleading. Internal factors are also important, such as
moisture, soluble solids content (SSC), water activity, fat
content, and fiber. Spectroscopy (28) is a traditional method for
analyzing the internal patterns of fruit using electromagnetic
radiation. It emits NIR signals to the surface of the fruit
and examines its internal features based on varying degrees
of absorption, reflection, and scattering. Although spectrom-
eters offer non-destructive internal measurements, they are
often expensive and require controlled environments. Another
method for non-destructive internal assessment is ultrasound-
based sensing. Researchers (29) have used mechanical waves
with programmable bipolar remote ultrasonic pulse generators
to measure fruit color and hardness, achieving about 82%
accuracy.

In contrast, RF-based methods offer non-destructive sensing
of fruit with easier deployment, lower cost, and relatively
high accuracy. Recent advancements in mmWave signal-based
ubiquitous sensing include Securing Pattern Lock (30), Speech
Recognition System (31), vocal sensing system (32), vital
signs monitoring (33), and Alcohol Sensing (34). The short
wavelength of mmWave signals allows for high-resolution
perception. Recent studies have used lightweight and com-
pact mmWave radar hardware for material identification by
common users. Additionally, Wi-Fi-based material sensing has
been explored for baggage detection, liquid level sensing (35),
and currency detection (36), (37). Yet, these methods are not
directly suitable for the nuanced requirements of fruit quality
assessment.

III. MOTIVATION

This section first discusses various everyday scenarios for
measuring fruit moisture levels. We then review existing
commercial off-the-shelf (COTS) devices and research efforts
in this area. We analyze the significant challenges associated
with current methods and introduce mmWave technology
for moisture measurement, which motivates the design of
mmFruit.

A. Potential Scenarios for Moisture Measurements

The moisture level is crucial for assessing fruit quality and
can enhance storage practices in various ways:

• Home storage optimization: Regular moisture moni-
toring with a handheld or home-based mmWave device
can help consumers store fruit under optimal conditions,
preserving freshness and reducing spoilage. By knowing
moisture content, users can better decide how to use
each fruit; for example, high-moisture fruits are ideal for
juicing, while low-moisture ones work well for baking.
This approach extends fruit shelf life and minimizes food
waste.

Fig. 1: Analysis of fruit moisture levels over time: normal vs.
rotten.

• Providing fruit shelf life: Tracking moisture changes
over time helps prevent spoilage. As shown in Fig. 1,
fruits follow a consistent moisture trend as they near
spoilage, typically within 7-15 days. By calculating this
rate, consumers can estimate freshness and know when
to consume fruit before it over-ripens. This practical
solution helps households manage storage efficiently,
reducing waste and enhancing quality.

B. Existing Methods Challenges, and Role of mmWave in Fruit
Moisture Measurement

Existing COTS devices for measuring fruit moisture levels
are summarized in Tab. I. Portable penetrometers (9) estimate
moisture by measuring the voltage difference between two
probes inserted into the fruit tissue. This method is direct but
limited because it only measures one internal feature and is
destructive to the fruit. Also, laboratory vacuum ovens (10)
offer more accurate water content measurements by drying
fruit samples under controlled conditions. While precise, this
method also has limitations as it can only assess a single
feature and requires the fruit to be destroyed. On the other
hand, spectrometers (13) provide a non-destructive way to as-
sess internal fruit quality, measuring both moisture and soluble
solids content (SSC). Despite their effectiveness, spectrometers
are relatively expensive, costing between $9,000 and $100,000,
as shown in Table 1. This high cost makes them impractical
for everyday use.

RF waves passing through fruit experience different levels
of attenuation based on the fruit’s moisture content, allowing
moisture measurement using RF signals. (15) developed fruit
ripeness profiles using RF spectra of 0.75-1.1 THz to investi-
gate fruit moisture. Wi-Fruit (16) introduced a double-quotient
model-based CSI Pre-processing to reduce interference from
sensor-target distance changes, enabling non-destructive and
affordable moisture and SSC measurements with Wi-Fi. How-
ever, these methods did not provide a detailed internal feature
analysis of the fruit and relied on visual images.

We introduce mmFruit, a novel method for precise fruit
moisture estimation using mmWave radar. To the best of our
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TABLE I: Comparison of COTS devices typically used for measuring fruit moisture levels with the proposed mmFruit model.

System Device Normal/Oblique Type
Independent

Size
Independent

Distance
Independent

Non-
Destructive

Penetrometer (9) Jacks JK-100R Normal % % % %

Vacuum Oven (10) Yamato ADP-31 Normal % % % ✓

Spectrometer (13) MoisTech-IR-3000R Normal % % % ✓

TeraHertz (14) Swissto 12 Normal % % % %

Wi-Fruit (16) Wi-Fi 20MHz Normal % % % ✓

mmFruit TI-IWR1443 Normal/Oblique ✓ ✓ ✓ ✓

knowledge, mmFruit is the first system to deliver accurate
fruit moisture measurements at normal and oblique incidence,
independent of fruit type and size. It provides non-destructive,
contactless sensing, allowing moisture measurement without
damaging the fruit, unlike invasive techniques. The high
spatial resolution of mmWave signals captures fine-grained
moisture variations within fruit layers, enhancing accuracy.
Additionally, it is robust in varying environmental conditions,
performing consistently across different storage environments
and being less affected by changes in light, temperature, and
humidity (38). Unlike optical methods, it can penetrate shal-
lowly beneath the surface, reducing sensitivity to variations in
surface texture and skin type, making it suitable for a wide
range of fruit types. These advantages make mmFruit an ideal
choice for reliable, non-invasive moisture measurement.

The following sections detail the theoretical model for
moisture sensing, highlighting the reflection feature extraction
at both normal and oblique incidence.

Fig. 2: mmWave Frequency-Modulated Continuous Wave
(FMCW) chirps.

IV. PRELIMINARIES

In this section, we introduce the fundamental principles
of mmWave radar and the key physical properties used for
moisture estimation.

A. mmWave Radar Fundamentals

mmWave radar systems typically utilize the FMCW tech-
nique to detect objects in their vicinity. As illustrated in Fig.
2, the radar emits continuous mmWave signals over short
intervals called chirps, during which the transmitted signal

frequency increases linearly. The transmitting signal frequency
RT (α) over time α can be expressed as:

RT (α) = fc +Gα (1)

where fc is the starting frequency and G represents the chirp
slope. Signals reflected from an object located at a distance d
will have a frequency given by:

RR(α) = RT

(
α− 2d

C

)
(2)

where C is the speed of light. Mixing the transmitted and
received signals produces an Intermediate Frequency (IF)
signal RIF , which remains constant:

RIF =
2dG

C
(3)

In a radar system with a constant chirp slope G, the IF
signal RIF frequency is directly proportional to the distance
d of the radar target. By applying the Fast Fourier Transform
(FFT) to the IF signals with different frequencies, the FMCW
radar can accurately distinguish and measure targets at varying
distances.

B. Range Estimation

The sensing capability of a mmWave radar system depends
primarily on its transmitting and receiving antennas. The trans-
mitting antennas emit signals into the environment, while the
receiving antennas capture the signals reflected from nearby
objects. By analyzing the frequency difference between the
transmitted and received signals (illustrated in Fig. 2), the
distance to the target can be determined by

R =
Cf

2G
(4)

where C is the speed of light. The range resolution indicates
how well the radar can distinguish between two nearby targets.
The size must be larger than the radar’s range resolution to
differentiate the signals reflected from background objects and
the fruit. In case the bandwidth is 4 GHz, the range resolution
is around 4 cm, given a bandwidth B, the range resolution
Rrs can be expressed as

Rrs =
C

2G
(5)
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Fig. 3: Theoretical measurements of the reflection coefficient.

Fig. 4: Theoretical measurements of the refractive index of
fruit.

V. DUAL INCIDENCE MOISTURE ESTIMATION

This section examines the relationship between fruit mois-
ture levels and radar signals, focusing on how the dielec-
tric properties of fruit tissue change with moisture content.
Moisture-rich fruits exhibit higher dielectric constants due to
water’s high permittivity, affecting both the amplitude and
phase of the reflected signal (16). Key parameters such as
the reflection coefficient, refractive index, attenuation factors,
and fruit elasticity are crucial for accurate moisture detection.

First, we analyze the reflection coefficient, which measures
the radar signal reflected by the fruit surface. As shown in
Fig. 3, higher moisture content typically results in a lower
reflection coefficient due to increased signal absorption, while
lower moisture content leads to a higher reflection coefficient.

In Fig. 4, we discuss the refractive index, which increases
as moisture decreases, as the fruit’s solid components become
more concentrated. We also examine fruit elasticity, which is
directly related to moisture content. As fruit loses moisture, its
turgor pressure decreases, causing the fruit to become softer
and less elastic. Fig. 5 shows that higher moisture levels
generally correlate with increased elasticity, making the fruit
more flexible.

Finally, we introduce dual incidence moisture estimation,
based on radar signal intensity at both normal and oblique

Fig. 5: Fruit elasticity at varying moisture levels.

Fig. 6: Normal incidence scenario where radar waves strike
the fruit perpendicularly for moisture level estimation.

incidences. This method yields a feature related solely to the
electric properties of the fruit, providing a reliable indicator of
moisture content and improving the precision of our model.

A. Signal Pre-processing

The raw mmWave signals the radar antennas receive cannot
be directly used for fruit moisture detection due to bandwidth
limitations, signal noise, and environmental interference. In
indoor environments, RF signals often reflect off walls, ceil-
ings, and moving objects, leading to multipath interference that
complicates the signal. To address this, we use a Butterworth
low-pass filter to remove noise and apply a range FFT to
isolate the signal and extract the target zone. This process
helps eliminate multipath interference and ensures a clearer
signal for accurate moisture detection.

We then focus on the target zone, which corresponds to the
area directly in front of the radar where the fruit is placed.
This target zone contains the highest RSS values and the key
discriminative features for moisture estimation. It is essential
to closely examine this target zone for accurate moisture
information. Fig. 8 presents the data after transformation via
range-FFT. The peaks in the 0.2-meter range indicate the
location of the detected object. This target zone holds critical
features necessary for precise moisture estimation. Building on
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Fig. 7: Oblique incidence scenarios showing fruits positioned
at various angles (0◦ to 180◦, excluding 90◦) relative to the
mmWave radar for moisture level estimation.

Fig. 8: Identification of target zone using FFT transformation.

existing research, we propose extracting moisture-dependent
features from this peak zone. Specifically, we select consec-
utive samples in the 0.2-meter range with the highest signal
strength values as data from the target zone. We then apply
the dual incidence moisture estimation method to process these
data, extracting crucial features such as reflection and location.

B. Fine-Grained Moisture Level Identification

When fruit dries, its refractive index changes significantly.
This change is directly related to the reflection and transmis-
sion coefficients at both normal and oblique incidence. First,
we directed mmWave at normal incidence as shown in Fig.
6 towards the fruit samples and calculated the reflection and
transmission coefficients. As the fruit loses moisture, its refrac-
tive index and reflection coefficient increase. Electromagnetic
waves are characterized by sinusoidal patterns and are denoted
as η = 2π

λ and the angular frequency ω, where ω = ην. An
important property of electromagnetic waves is the equality of
their parallel components when propagating across interfaces:

i) εairγ
⊥
air = εfrγ

⊥
fr and ii) γ∥air = γ

∥
fr (6)

Fig. 9: Refractive index of different fruits as a function of
frequency changes.

Here, ϵair represents the permittivity of air, γ⊥air is the
perpendicular component of the electric field in air, ϵfr denotes
the permittivity of the fruit, and γ⊥fr is the perpendicular
component of the electric field in the fruit. The parallel
components of the electric field are denoted as γ∥air and γ

∥
fr

for air and the fruit, respectively. During normal incidence,
there is no perpendicular component, so we disregard the first
equation and use the second one:

γOI + γOR = γOT (7)

Where γOI and γOR represent the complex amplitudes of
the incident and reflected electric fields. The intensity of
electromagnetic waves mainly depends on the amplitude of
the electric field: I = 1

2ϵνγ
2
0 , where γ is the amplitude of the

electric field. The fraction of incident energy that is reflected
and transmitted can be found using the reflection coefficient r
and transmission coefficient t:

r =
IR
II

=

(
γOR

γOI

)2

=

(
nair − nfr

nfr + nair

)2

(8)

t =
IT
II

=
ϵfrνfr

ϵairνair

(
γOT

γOI

)2

=
4nairnfr

(nfr + nair)2
(9)

The reflection and transmission coefficients can be found
using the refractive indexes of the two media. These equations
allow us to measure the fraction of energy that is transmitted
and reflected for the incident energy. As shown in Fig. 7,
when radar waves strike the fruit surface at oblique angles, the
reflected signals exhibit distinct characteristics due to changes
in the propagation path and interaction with the fruit’s internal
structure. This involves analyzing the amplitude, phase, and
polarization at different oblique angles. When the electromag-
netic wave meets the boundary at an arbitrary angle ϕI , the
reflection and transmission coefficients are given by:

r =
IR
II

=

(
γOR

γOI

)2

=

(
X − Y

X + Y

)2

(10)

t =
IT
II

=
ϵfrνfr

ϵairνair

(
γOT

γOI

)2
cosϕT
cosϕI

= XY

(
2

X + Y

)2

(11)
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where Y = µairnfr
µfrnair

and X ≈ cosϕT

cosϕI
. Fig. 9 shows the

transmission coefficient variation of different fruits, which is
calculated by Eq. (11). Additionally, we proved that as the
fruit loses moisture, its refractive index and reflection coeffi-
cient increase. These changes in reflection and transmission
coefficients can be detected by a radar receiver, providing
information about the freshness of the fruit.

C. Monitoring Moisture Level via Fruit Elasticity

One of the most important properties of solids is their
elasticity, defined as the ratio of stress to strain. When a
fruit dries, its elasticity noticeably changes because the turgor
pressure within the fruit cells, which is maintained by water
content, decreases. This affects the fruit’s overall firmness and
elasticity. As the water content reduces, cells become less
turgid, leading to a reduction in turgor pressure. Consequently,
fruits become more brittle, softer, or prone to wrinkling due
to increased sugar and mineral content. These changes in
elasticity can be used for moisture monitoring and can be
determined through dielectric properties.

Dielectric property of fruit: Fruits have unique permit-
tivity values due to their composition, moisture content, and
structural characteristics. mmWave can detect variations in
the permittivity as the fruit dries, allowing the measurement
of reductions in elasticity. The dielectric property of fruit
involves measuring the permittivity and loss factor. Complex
permittivity indicates how much electric field energy a material
can store, the real part of the mmWave signal represents stored
energy while the imaginary part represents energy loss. The
loss factor is the ratio of the imaginary part to the real part of
the permittivity.

Using Maxwell’s fourth equation in a medium, which in-
volves electric displacement and magnetization, we derive:

∇× h = σγ + bfϵγ (12)

where h is the magnetic induction, b is the magnetic field, ϵ
is the permittivity of the material, γ is the electric field, and
bf is the phasor operator (b2 = −1). Simplifying, we get:

∇× h = bf

(
σ

bf
+ ϵ

)
γ (13)

∇× h = bf(ϵ− σ

bf
)γ (14)

Thus, the complex permittivity ϵ∗ is:

ϵ∗ = ϵ− σ

f
(15)

where ϵ is the real part and σ
f is the imaginary part rep-

resenting energy dissipation as heat due to charge movement
within the material.

The elastic modulus E in terms of permittivity can be
expressed as:

E =
c

a
ϵ− cm

a+ d
(16)

where a, b, c, d, and m are empirical constants determined
through calibration at known moisture values in the lab by
measuring the elastic modulus and permittivity.

Fig. 10: Different fruits exhibit unique attenuation factors.

In mmFruit, the fruit is placed in front of the radar, which
measures its dielectric properties by analyzing the reflected
and transmitted signals. The radar system processes these
signals to calculate the fruit’s complex permittivity. Over time,
changes in these parameters indicate changes in the dielectric
properties. As the fruit dries, the real part of permittivity
decreases, signaling a reduction in elasticity and an increase
in the fruit’s stiffness.

D. Eliminate Fruit Type Dependency

We calculate the attenuation factor to construct a feature
independent of fruit type. By using the characteristic of
complex permittivity as a function of frequency, we create
a relative frequency response factor that does not depend on
the fruit type. Eliminating the dependency on fruit type is
challenging because the transport coefficient varies with the
type of fruit, and it is inconvenient to pre-determine fruit type
information. Fortunately, in the frequency domain, we observe
that a medium’s refractive index and complex permittivity
change minimally with frequency, while the attenuation factor
changes significantly.

To accurately identify fruit types using the mmFruit, we
exploit the relationship between the attenuation factor and the
complex permittivity of the fruit. Each fruit exhibits unique
dielectric properties characterized by its complex permittivity,
which consists of the real part (ϵ′) and the imaginary part (ϵ′′).
By measuring the complex permittivity values using mmWave
radar and calculating the attenuation factor as shown in Fig
10, we can create distinct profiles for different fruit types. The
attenuation factor (α) is influenced by the material’s complex
permittivity and can be calculated using the formula (35):

α = ω

√
µϵ′

2

√
1 +

(
ϵ′′

ϵ′

)2

− 1

1/2

(17)

where ω is the angular frequency, and µ is the permeability
of the material. By creating a comprehensive database of
complex permittivity and attenuation factor profiles for various
fruits, we can match the measured values of an unknown fruit
to the profiles in the database, thus accurately identifying the
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Fig. 11: Electric field distribution for different fruit sizes.

fruit type. This approach ensures precise fruit identification by
leveraging the unique electromagnetic signatures of different
fruits, allowing mmFruit to distinguish them effectively.

E. Eliminate Fruit Size Dependency

Eliminating fruit size is crucial for accurate moisture de-
tection, as size variations can affect signal strength and lead
to incorrect moisture estimations. By removing the size ef-
fect, measurements are solely dependent on moisture content,
ensuring reliable results.

Fruit size affects signal strength: We configured one
transmitting antenna and two receiving antennas to eliminate
the size effect. Using fruits of varying heights, we analyzed
signal strength at 77, 78, and 79 GHz. Our observations
showed that signal strength varies with fruit size, impacting
moisture estimation. To address this, we mapped the electric
field around the receiving antennas and established a functional
relationship between signal strength and size. Moving the
transmitting antenna in the air helped eliminate the size
influence on measurements.

Electric field distribution model: As shown in Fig. 11,
the fruit’s height is Hf and the antenna’s height is H . When
H > Hf , the signals near the antennas are transmitted
through the fruit (γf ) and the air (γa). The incident wave
is a plane electromagnetic wave, so the electric fields γf
and γa at frequency f are given by γa = Γazaγa and
γf = Γfzf exp(BD), where D is the transmission distance in
the fruit, B is the attenuation factor, z is the attenuation in air,
and Γa and Γf are the transmission losses. With ey as the unit
vector in the vertical direction, the electric fields are expressed
as γa = eyγa and γf = eyγf . Let us define Ω =

Γfzf
Γaza

, thus
we have γf = Ωexp(−BD)γa. The signal strength S0

r on the
antenna is derived as:

S0
r =

∫ Hf

0

γfF (y) dy +

∫ H

Hf

γaF (y) dy (18)

Using the previous relationship, this becomes:

S0
r = Ωexp(−BD)γa

∫ Hf

0

F (y) dy +

∫ H

Hf

F (y) dy (19)

Where F (y) represents the distribution of induced current
on the antenna, which is related to the antenna and the signal
wavelength.

Signal differential to eliminate size: Signals were collected
at different fruit sizes. For every ∆H , the signal strength on
the receiving antenna was collected to obtain a sequence A =
[a0, a1, . . . , an−1]:

aj = Sj
r =

∫ Hf

j∆H

γfF (y) dy +

∫ H

Hf

γaF (y) dy

This simplifies to:

aj = Ωexp(−BD)γa

∫ Hf

j∆H

F (y) dy + γa

∫ H

Hf

F (y) dy (20)

The difference between consecutive elements is given by:

aj+1 − aj = Ωexp(−BD)γa

∫ (j+1)∆H

j∆H

F (y) dy

By using the Riemann Sum, we get:

aj+1 − aj = Ωexp(−BD)γaF (j∆H)∆H (21)

Therefore:

∆a = aj+1 − aj

∆axr1 = Ωexp(−BD1)γaF (j∆H)∆H

∆axr2 = Ωexp(−BD2)γaF (j∆H)∆H (22)

The ratio is then:

∆axr1
∆axr2

= exp(−B∆D) (23)

where ∆D = D1 − D2. Eq: (23) is independent of the
size/height of the fruit.

VI. MMFRUIT SYSTEM DESIGN

The workflow of mmFruit as shown in Fig. 12, involves
four steps. First, the mmWave radar transmits signals toward
the target fruit and collects the reflected signals. Next, signal
pre-processing which involves signal refinement, noise cancel-
lation, extracting range estimations, and identifying range bins,
where the fruit is placed. Then, reflection features are extracted
across three different mmWave frequencies based on the dual
incidence moisture estimation model. Finally, these features
from multiple range bins are fed into a spatially invariant
network (SpI-Net) to estimate the moisture level of fruits. The
main steps of mmFruit are:

• Different frequencies features: mmFruit employs an
innovative dual incidence model to capture reflections
across various frequencies during each chirp, enhancing
its ability to discern detailed features of fruit moisture
levels. The process begins by dividing the collected
samples, taken at three different frequencies (77 to 79
GHz), into three channels based on their starting and
ending frequencies. Reflection features from both normal
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Fig. 12: Overview of the mmFruit Model

and oblique incidences are individually extracted and
consolidated into distinct channels and then by extract-
ing reflection coefficient, fruit refractive index, complex
permittivity, and fruit elasticity from each channel, which
effectively monitor and represent fruit moisture level.

• Identifying fruit moisture level at different range
bins using SpI-Net: We developed a customized neural
network called SpI-Net to process features extracted
from different range bins and frequencies. SpI-Net in-
corporates a spatially invariant feature extraction module
that automatically identifies moisture-dependent features
across various locations. These features are subsequently
inputted into a moisture prediction module for content
inference. Through training on diverse datasets collected
from multiple positions and angles, SpI-Net learns to con-
sistently extract moisture-dependent features, enabling
accurate moisture identification across different locations.

A. Different Frequencies Unique Features

To explore the potential of mmWave radar for fine-grained
fruit moisture level sensing, we leveraged the unique interac-
tion of electromagnetic (EM) waves with dielectric materials
across different frequencies. Specifically, we employed three
distinct frequencies (77 to 79 GHz). Inspired by the fact that
dielectric properties (39), such as complex permittivity, reflec-
tion coefficient, and fruit elasticity vary with radio frequency,
we hypothesized that the reflection characteristics of fruits
would also differ across different mmWave frequencies, pro-
viding valuable insights about moisture levels. The relationship
between permittivity (ψ) and electromagnetic frequency (f )
can be described using the Double Debye equation (17), which
is particularly effective at high frequencies.

The Double Debye equation is expressed as:

ψ = ψ′ − jψ′′ = ψ∞ +
ψs − ψ1

1 + j2πfτ1
+

ψ1 − ψ∞

1 + j2πfτ2
(24)

where ψ′ and ψ′′ are the real and imaginary parts of
the permittivity, representing the stored energy and energy
loss within the material, respectively. ψ∞ is the permittivity
at infinite frequency, while ψs is the permittivity at static

(zero) frequency. ψ1 denotes the permittivity at an intermediate
frequency. The parameters τ1 and τ2 are the relaxation time
constants associated with the transitions from static to inter-
mediate, and intermediate to infinite permittivity, respectively.
Additionally, j is the imaginary unit, indicating the phase shift
between the electric field and the polarization of the material.

ψ′ = ψ∞ +
ψs − ψ1

1 + (2πfτ1)2
+

ψ1 − ψ∞

1 + (2πfτ2)2
(25)

ψ′′ =

(
ψs − ψ1

1 + (2πfτ1)2

)
· 2πfτ1 +

(
ψ1 − ψ∞

1 + (2πfτ2)2

)
· 2πfτ2

(26)
According to these equations, the permittivity of the same

moisture content changes with the frequency of the signals
used to measure it. Measurement results from existing litera-
ture confirm that both ψ′ and ψ′′ decrease as the frequency
increases (40), (30). We can obtain multiple reflection features
using mmWave signals at different frequencies by applying
these equations. We then extract these features to verify their
effectiveness in identifying finer-grained moisture content.
This approach enhances the sensitivity and accuracy of mois-
ture detection and demonstrates the effectiveness of multi-
frequency analysis in fruit moisture sensing using mmWave
radar.

B. Frequency Group Features Extraction

mmWave operates within the 77 to 81 GHz frequency range,
providing high-resolution perception. We utilize this broad
range to extract reflection characteristics of fruit, focusing
on accurate moisture measurement across frequencies. The
FMCW mmWave radar’s starting frequency was adjusted to
capture reflection features at various mmWave frequencies,
dividing the samples into three channels (77-79 GHz) (41).
Features were extracted from different range bins using Range-
FFT for each channel, and then combined into a single group
for spatial invariant feature extraction.

For moisture analysis, we used a sliding window of data
samples collected during one chirp from 77-79 GHz. Range-
FFT was applied to extract the refractive index, reflection
coefficient, complex permittivity, and elasticity from the target
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Fig. 13: Measurement of fruit complex permittivity at different
mmWave frequencies across varying moisture levels.

Fig. 14: Evaluation of mmFruit’s accuracy using a state-of-the-
art sensing method, achieving an average accuracy of 62.3%.

zone and generating 4-channel features. This enabled differ-
entiation of fruits with moisture levels ranging from 45% to
63%. As shown in Fig. 13, frequency shifts are crucial for
creating distinct features. Dividing the spectrum into more
channels increases reflection diversity but adds computational
complexity. Ablation studies showed that three channels were
optimal, balancing inter-channel overlap and range resolution,
set at 3.8 cm with a 4 GHz bandwidth per channel.

C. mmFruit using the state-of-the-art sensing method

This section evaluates our moisture estimation method
compared to Wi-Fruit (16). Wi-Fruit struggles to distinguish
moisture levels across different range bins, prompting us to
develop a data-driven approach using a custom CNN-ANN
model to improve moisture detection accuracy by reducing
location-based interference. We collected data from six fruits
with varying moisture levels across distances from 15 cm to
30 cm, gathering 1,500 samples per position for training, and
repeated the process at five additional positions to generate
a test set. In total, we obtained 12,860 training samples and
5,480 testing samples.

Using Wi-Fruit’s method, which estimates moisture through
relative permittivity via RSS and phase features, we trained

Fig. 15: SpI-Net Structure.

our model. Test results, shown in Fig. 14, reveal an average
accuracy of 62.3% in identifying moisture levels. Compared
to Wi-Fruit’s RMSE of 0.319, this reduced accuracy demon-
strates mmWave sensing’s sensitivity to location changes,
likely due to its shorter wavelength. Wi-Fruit employs a
lightweight ANN to learn from data across various positions,
reducing interference from minor displacements. However,
accuracy significantly declines with larger displacements (e.g.,
30 cm) due to the ANN’s limited three-layer structure, which
struggles to handle performance consistency across wider
displacements. To address this, we introduce the Spatially
Invariant Network (SpI-Net), which effectively manages target
displacements and enhances moisture estimation accuracy.

VII. OVERVIEW OF SPI-NET

The structure of SpI-Net is shown in Fig. 15, consisting
of two main modules: the spatial invariant feature extraction
module and the fruit moisture level prediction module. In the
feature extraction module, one-dimensional convolution layers
is used to extract features that remain consistent across differ-
ent ranges of target fruit positions. By downsampling these
features with max pooling, SpI-Net ensures that reflection
characteristics are preserved even when fruits are located in
various locations. This approach efficiently captures moisture-
related features locally and globally (42). These extracted
features are then fed into the moisture level prediction module,
which employs three fully connected layers to predict mois-
ture levels. SpI-Net utilizes residual convolution for feature
extraction to achieve spatial invariance globally, a method
proven effective in image processing (43). In Fig.16, the
Spatial Attention Model (SAM) is illustrated to effectively
capture reflection features with varying fruit moisture levels
across different range bins. This involves multi-head attention
(44), which calculates attention scores and weights among
elements in the input sequence to capture relationships and
dependencies, aided by batch normalization during training.
As a result, SpI-Net employs one-dimensional residual convo-
lutional layers instead of the lightweight ANN model used in
Wi-Fruit.
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Fig. 16: Spatial Attention Module (SAM).

A. SpI-Net Input Data

To collect our data, we gathered samples using different fre-
quencies and processed them with range-FFT (45) to capture
signals from varying distances. These signals were combined
to extract important reflection features. Unlike Wi-Fruit, which
focuses on extracting permittivity features from specific fruit
range bins, SpI-Net takes a broader approach and uses features
from multiple range bins to cover a wider area. For instance,
it considers range bins from 15 cm to 30 cm, accommodating
different radar-target distances encountered in real-world situ-
ations. From both normal and oblique angles, we extract four
key features based on the dual-incidence moisture estimation
model: the signal reflection coefficient, fruit refractive index,
complex permittivity, and fruit elasticity. These features serve
as inputs to the SpI-Net, offering comprehensive reflection and
moisture information about the fruits.

B. SpI-Net Structure

The Spatial Invariant feature extraction module consists of
four primary blocks. As shown in Fig. 15 each block groups
and downsamples features across multiple range bins using
a convolutional layer with a stride of 2. The second, third,
and fourth blocks incorporate residual connections to capture
global invariant features. Each block has two branches: a main
branch and a residual branch. The main branch applies a 1-
dimensional convolution (Conv1d) layer with a 1×1 kernel
to capture local features within a range bin, followed by a
Conv1d layer with a 1×2 kernel to enhance feature detection
across adjacent range bins. The residual branch includes a
Conv1d layer with a 1×3 kernel to align the input and output
feature maps, providing a shortcut connection to prevent
gradient loss during training. Each Conv1d layer integrates
batch normalization and ReLU activation to improve feature
extraction through non-linear transformations.

Within each block, a Spatial Attention Module (SAM) based
on multi-head attention focuses on the most informative fea-
tures across channels. As shown in Fig. 16, SAM begins by se-
lecting representative features from each channel through max-
pooling across bins, then applies non-linear transformations
to generate channel-wise attention weights using multi-head
attention, incorporating normalization, dropout, and activation.
These refined features feed into the moisture level prediction
module, which flattens the 2-dimensional features into a 1-
dimensional vector and uses three fully connected layers to
output moisture level probabilities. The first two layers use
ReLU activation, enhancing robustness in moisture prediction.

VIII. EVALUATION

This section evaluates the performance of mmFruit through
a series of experiments. We discuss the hardware and soft-
ware implementation, describe the experimental setup for fruit
moisture categorization, and analyze mmFruit’s estimation
accuracy.

A. Implementation
• Hardware Requirements: The mmFruit prototype uses

a COTS FMCW mmWave radar, the TI-IWR1443 (46),
connected via USB to a computer. The radar operates
between 77 GHz and 81 GHz. The algorithms are im-
plemented in Jupyter Notebook on a MacBook with an
Intel Core i5 CPU and 16 GB memory, communicating
with the DCA1000EVM through Ethernet. The trained
mmFruit model can be deployed on various mmWave-
supported devices, making it adaptable for daily applica-
tions.

• mmWave Radar Setup: A single transmitting-receiving
antenna measures fruit moisture levels. Each radar frame
contains 128 chirps sweeping from 77 GHz to 79 GHz.
With an ADC sample rate of 256 MHz and a chirp
duration of 30 microseconds, each frame collects data
over 5 ms. The IF samples are stored in a .bin file for
signal processing and inference via the SpI-Net model.

• Model Training: SpI-Net’s feature extraction module
consists of four convolutional blocks with a multi-head
attention mechanism, reducing channels to 32 before
rescaling. Prediction is achieved through three fully con-
nected layers (output sizes of 256, 128, and 64). The
model uses softmax cross-entropy loss with the Adam
optimizer and a batch size of 16, starting with a learning
rate of 0.002, which decreases adaptively. Training halts
after three learning rate reductions or 120 epochs.

B. Experimental Setup
The experiment categorizes fruit types based on moisture

levels, using penetrometers to measure ground truth moisture
for each type. We then use mmWave radar to capture reflec-
tions and estimate moisture content. To validate mmFruit’s
sensing capability, we collected seven fruit types with thin
and thick pericarp from a local market. Stored in a cotton
box to simulate natural degradation over a month, this diverse
collection included fresh, rotted, and low-quality samples.

Our moisture content estimation setup evaluates three sce-
narios:

• Detection across varied moisture levels: Seven fruit types
with moisture levels between 45% and 65% were se-
lected, covering a broad moisture range to ensure detec-
tion reliability.

• Identification of similar moisture content: Fruits with
small moisture variations (0% to 7%) were tested, posing
a challenge due to their similar appearance and moisture
levels.

• Regular monitoring: Fruit moisture levels were tracked
over 30 days to assess sensor accuracy and degradation
detection over time during storage.
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TABLE II: Details of data collection.

Parameter Details
Fruit Moisture 24 fruits of different moisture contents
Training Samples 16,000 for each frequency category
Testing Samples 8,000 for each frequency category
Range Bins 0.2 - 1.0 meters
Range Angles 0-180 degrees

Fig. 17: Experimental setup for mmFruit and ground truth
moisture estimation using commercial off-the-shelf (COTS)
devices.

1) Ground Truth Collection
To accurately determine the moisture values for each fruit,

we used COTS devices as shown in Fig. 17. We employed
the SmartSensor AR991 and Jacks JK-100R penetrometers,
each with an accuracy of 0.1%. Before each measurement, the
refractometer mirror and penetrometer probe were calibrated
using de-ionized water and then air-dried.

2) Data Collection
To evaluate mmFruit’s performance, we used a mmWave

device to collect moisture data from a variety of fruits with
both thin and thick pericarps, as shown in Fig. 17. We captured
mmWave signals at three frequencies (77-79 GHz) from fruits
with different moisture levels, positioning each fruit at various
distances and angles relative to the radar. The setup involved
placing the device on a table and positioning the fruits at
distances ranging from 0.2 to 1.0 meters, with five adjustments
per fruit. For each position, 200 samples were collected per
frequency at a rate of 20 frames per chirp, resulting in a total of
16,000 training samples across all distances and frequencies.
For the test set, we collected 8,000 samples from 10 additional
fruits, positioned at new locations within the training range.

As summarized in Tab. II, our dataset comprises 24,000
samples from 24 fruits, covering moisture levels between 45%
and 65%. This dataset was essential for evaluating mmFruit’s
accuracy across different distances and angles. The experi-
ments were conducted on a wooden table in a temperature-
controlled room, with additional samples taken from various
fruit types and sizes under diverse environmental conditions.

IX. MMFRUIT OVERALL PERFORMANCE

We evaluate mmFruit through multiple experiments de-
signed to monitor fruit moisture, identify fruit types and sizes,
and detect minor and major moisture variations. Specifically,

Fig. 18: Performance evaluation of mmFruit in identifying
minor moisture level differences ranging from 0% to 7%.

Fig. 19: Performance evaluation of mmFruit for identifying
major moisture levels changes within the 44% to 65% range.

we focused on monitoring moisture levels with minor varia-
tions from 0% to 7% and major moisture levels from 45% to
65%. The outcomes of these experiments provided valuable
insights:

• Minor level changes in fruit moisture: Our focus
was on accurately distinguishing minor differences in
moisture levels among fruits. mmFruit demonstrates ex-
cellent performance, achieving an average accuracy of
93.6% in classifying fruits with minor moisture level
variations ranging from 0% to 7%, as illustrated in
Fig. 18. This level of precision is particularly crucial
in applications where even slight changes in moisture
level can significantly influence fruit quality, shelf life,
and overall consumption. By effectively identifying these
subtle differences, our system facilitates precise sorting
and grading of fruits, ensuring consistent quality stan-
dards and enhancing consumer satisfaction. Furthermore,
the insights gained from analyzing these moisture varia-
tions are invaluable for optimizing post-harvest processes,
thereby improving the efficiency and effectiveness of the
entire production chain.

• Major level changes in fruit moisture: In the sec-
ond experiment, mmFruit’s ability to precisely identify
different moisture content levels based on ground truth
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Fig. 20: Performance evaluation of mmFruit in identifying
moisture levels at varying distances.

values was evaluated. As depicted in Fig. 19, the system
demonstrates a remarkable average accuracy of 95.1%
in discerning moisture levels ranging from 44% to 63%.
This robust performance highlights mmFruit’s capability
across a broad spectrum of moisture detection. It con-
tributes significantly to consumer safety by identifying
fruits with higher moisture levels that are prone to mold
and bacterial growth. Moreover, it plays a crucial role in
ensuring the quality of the product before it reaches the
market, thereby enhancing food safety standards.

TABLE III: Performance evaluation of regular fruit moisture
monitoring using RMSE.

Fruit Type RMSE

Apple 0.229

Orange 0.270

Pear 0.263

Peach 0.201

Mango 0.362

Dragon Fruit 0.283

Watermelon 0.330

Overall RMSE 0.276

• Daily fruit moisture monitoring: To regularly monitor
fruit moisture over time, we collected radar signals from
each fruit type continuously for 15 days. The estimation
accuracy for each fruit type, represented by RMSE val-
ues, is shown in Tab. III. The results indicate that the
estimation accuracy for most fruit types remains high
throughout the week, with an overall RMSE of 0.276.
This demonstrates that our method can be applied at any
time and provides accurate results on-site.

• Fruit moisture sensing at various distances: The ro-
bustness of mmFruit Sensing across multiple locations is
demonstrated in Fig. 20, the system demonstrates an av-
erage accuracy of 93.12%. We evaluate the robustness of
mmFruit by testing moisture sensing at varying distances
and angles of rotation. Despite changes in the fruit’s po-

Fig. 21: Performance evaluation of mmFruit for identifying
different fruit types and sizes.

sition, our model consistently provides precise moisture
estimations. This performance highlights the system’s
reliability and robustness across multiple distances and
random rotations, making mmFruit suitable for diverse
mobile applications in real-world scenarios.

• Fruit type identification: We evaluated mmFruit for
identifying different fruit types by using the fruit atten-
uation factor, which is unique to each fruit. As shown
in Fig. 21, the accuracy for each fruit type shows that
our model can effectively identify fruits without needing
visual information. By using the fruit attenuation factor,
mmFruit takes advantage of the electromagnetic proper-
ties of the fruits, resulting in reliable classification.

• Fruit size identification: We evaluated the mmFruit
model for identifying different fruit sizes by dividing the
dataset into three categories: small, medium, and large
fruits. The model was tested using fruits of various sizes,
and we developed a differential model employing two
receiving antennas to enhance size detection accuracy.
Fig. 21 illustrates the accuracy of the model for each size
category, showing that mmFruit can effectively identify
fruit sizes. This capability is particularly valuable for
sorting fruits based on size.

A. Comparison of mmFruit with State-of-the-art methods

We compare mmFruit with two advanced methods for
moisture identification: Wi-Fruit (16) and Moisture Content
Identification Using Terahertz (14). Wi-Fruit employs a dual-
quotient, model-based CSI preprocessing technique to mitigate
interference from target distance, aiming to remove the depen-
dency on fruit structure in moisture estimation across various
types of fruit. In contrast, the Terahertz (THz) method utilizes
THz frequencies to estimate moisture content. We applied
both methods to our dataset, following their methodologies to
extract features such as the relative permittivity of fruits and
other descriptive characteristics. We also implemented their
deep learning models for training and testing to evaluate their
performance. While Wi-Fruit uses a WiFi-based approach for
feature extraction, focusing on distance-independent methods
in both time and frequency domains and leveraging amplitude
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Fig. 22: Comparison of mmFruit with state-of-the-art methods.

and phase measurements within a 20 cm range, we employed a
single mmWave receiving antenna to compute feature vectors
for each sample. We then used SpI-Net to classify the moisture
levels of the fruit.

The proposed SPI-Net outperforms existing methods due
to its use of a targeted set of features based on the physical
properties of fruits, such as refractive index, elasticity, and
attenuation factor, which directly correlate with moisture con-
tent. In contrast, Wi-Fruit and the THz method include all
available features, some of which may introduce irrelevant or
noisy data, reducing accuracy. Additionally, SPI-Net employs
a Spatial Attention Module (SAM) to select the most relevant
features for moisture estimation, focusing the model on key
physical properties. Unlike other methods that do not prioritize
features, the SAM module enhances SPI-Net’s adaptability and
robustness across different fruit types and moisture conditions,
leading to superior accuracy and more reliable moisture de-
tection.

• Fine-grained moisture estimation with varying radar-
target displacement was examined. In Fig. 22, both Wi-
Fruit and the THz-based methods for moisture level
estimation struggled to achieve precise results under
significant changes in target distance and angle. Wi-
Fruit attained average accuracies of 45.6% and 51.0%
on our datasets, while the THz-based method achieved
49.7% and 60.1%. In contrast, mmFruit demonstrated
an accuracy, exceeding 90.8% and 93.2%. To assess the
limitations of these methods, we conducted separate tests
to evaluate their capabilities for fine-grained identification
and the effects of radar-target displacement.

• We assessed coarse-grained moisture estimation from 0%
to 7% compared to levels between 45% and 65%, varying
radar-target distances and angles. We conducted binary
classification distinguishing high moisture (65%) from
lower levels. Results in Fig. 23 reveal that Wi-Fruit and
THz-based methods achieved over 62.8% accuracy in
distinguishing 45% to 60% moisture differences under
varying conditions. However, Fig. 24 shows their ac-
curacy dropped below 52.39% for 0% to 7% moisture
differences, indicating significant impairment by radar-
target changes. In contrast, mmFruit demonstrated robust

Fig. 23: Presents the binary classification average accuracy for
fruits with high and low moisture content when the radar-target
angle and distance vary.

Fig. 24: Illustrates the accuracy of identifying fruits with sim-
ilar moisture content, specifically with a moisture difference
of 0% to 7%.

performance against displacement, maintaining over 93%
accuracy using SpI-Net.

B. Micro-benchmark Experiments

In this section, we assess our innovations’ strengths. Firstly,
we enhance sensitivity and precision in moisture detection
by leveraging multi-frequency features. Secondly, SpI-Net’s
unique architecture uses shared convolutional kernels and
residual connections to robustly identify moisture under vary-
ing radar conditions. Together, these innovations enhance
mmFruit’s reliability and performance in the non-destructive
moisture assessment of fruits.

• Impact of different frequency features: To validate the
advantages of using different frequency reflection features
for precise moisture estimation, we segmented mmWave
signals into varying numbers of frequency channels to
extract SpI-Net features. Specifically, we utilized signals
from 77, 78, and 79 GHz, dividing them into three
frequency channels with 3.93 GHz bandwidth each. As
shown in Fig. 25 illustrates the average accuracy in
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Fig. 25: Illustrates the performance of dividing the mmWave
signal into varying numbers of frequency channels.

Fig. 26: Comparison of SpI-Net with CNN, EfficientNet (47)
and ResNet (48) for identifying fruits with moisture content
ranging from 45% to 65%.

identifying moisture content between 45% and 65%.
Using features from a single frequency yielded 81.6% ac-
curacy. Increasing channels to two improved accuracy to
88.3%, attributed to additional reflection features. Further
increasing to three channels resulted in 93% accuracy,
getting benefit from increased feature overlap, which
reduces differences across channels. To maintain adequate
range resolution, we maintained the sample count per
channel without reduction. Therefore, we recommend
dividing 77 GHz to 79 GHz mmWave signals into three
channels, each with approximately 4 GHz bandwidth.

• SpI-Net comparison with existing neural models To
evaluate our novel SpI-Net, we compared it with three
neural models: ResNet-50 (48), EfficientNet (47), and
a state-of-the-art CNN model. EfficientNet manages dif-
ferent range bin reflections and utilizes fully connected
layers to mitigate displacement interference. ResNet, a
renowned convolutional neural network, was adapted by
replacing its 2D convolutions with 1D convolutions to suit
our data structure. Additionally, the CNN model used in
this comparison employed three convolutional layers with

Fig. 27: Confusion matrix for classifying 12 fruit moisture
levels.

batch normalization and pooling, followed by three fully
connected layers. Fig. 26 displays their performance in
distinguishing nine fruits with moisture content ranging
from 45% to 65%.
We compared all models based on single-frequency fea-
tures, which were extracted using the 77 GHz band, and
multiple-frequency features, which were extracted using
the 77-79 GHz range. In contrast, SpI-Net achieved sig-
nificantly higher accuracies with both single and multiple-
frequency features. When incorporating multi-frequency
features, SpI-Net achieved an average accuracy of 92.3%,
surpassing CNN, EfficientNet, and ResNet. This perfor-
mance is attributed to SpI-Net’s specialized architecture,
which minimizes information loss by reducing excessive
feature pooling and downsampling. Additionally, the in-
clusion of residual connections and SAM modules in each
block enhances the network’s capability to capture and
utilize features crucial for moisture content estimation.

C. Case Study I: Fruit Classification Based on Moisture Level

mmFruit offers a cost-effective way for consumers to select
high-quality fruits based on moisture levels, rather than relying
on potentially misleading visual appearance. Traditionally,
consumers choose fruits based on their look, sometimes pick-
ing visually appealing but tasteless ones. mmFruit categorizes
fruits based on internal quality, measured by moisture.

To validate mmFruit, we labeled fruits with various mois-
ture levels, collecting mmWave samples from each type and
measuring ground truth moisture levels using a penetrometer.
After range-FFT preprocessing, the reflected mmWave signals
were used to train a SpI-Net classifier for moisture estimation
and internal quality identification. As shown in Fig. 27,
the classification results showed that mmFruit achieved 91%
accuracy in classifying internal quality based on moisture
levels. This demonstrates mmFruit’s ability to provide reliable
information for consumers, improving fruit quality assessment
and enabling retailers to optimize pricing and profitability.
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Fig. 28: Apple moisture level degradation over time.

D. Case Study II: Apple Shelf Life and Storage

mmFruit’s non-destructive capabilities enable continuous
monitoring of moisture levels as fruits deteriorate at room
temperature. In this study, we tracked the moisture levels of
twelve apples daily over a month, stored at 23°C, using visible
wrinkles or spoilage as the reference point.

Most apples showed the sharpest moisture decline from the
day of purchase to the reference day, typically within three
days. We averaged the moisture values from the reference
day and the following three days, as shown in Fig. 28.
Key observations included moisture decline as fruit skins
decayed, occasional moisture increases before decreases due
to ripening, and some apples showing minimal moisture
drop despite visible spoilage. These findings suggest varying
storage periods for apples, with some requiring immediate
consumption and others being suitable for longer storage based
on internal features estimated by mmFruit. This demonstrates
mmFruit’s value in predicting internal quality and offering
tailored storage recommendations for consumers and retailers.

X. LIMITATIONS AND FUTURE WORK

The limitation of the mmFruit is the limited penetration
depth of mmWave signals, especially in fruits with dense
or thick outer layers. This constraint affects the accuracy of
internal moisture content measurements, as mmWave signals
may only provide information about the outer regions of larger
or denser fruits, such as avocados or coconuts. To address
this issue, future work should focus on developing enhanced
signal processing techniques or alternative imaging methods
that improve penetration depth. Exploring multi-frequency or
multi-modal sensing approaches could offer a more compre-
hensive assessment of moisture content in fruits with dense
outer layers. Also, mmWave radar generally requires a higher
initial investment than standard Wi-Fi-based systems due to
specialized components and higher frequency operation. This
added cost could impact widespread adoption, particularly for
smaller-scale or budget-constrained agricultural operations.

Another limitation is the tradeoff between normal and
oblique incidence of mmWave signals, which varies by fruit
type and size. For instance, the refractive ratio of fruits like

apples remains relatively constant across incidence angles,
while fruits such as watermelon exhibit significant sensitivity
to the angle of incidence. Future research should aim to
develop adaptive sensing strategies that account for these
variations. Implementing angle-specific calibration techniques
and optimizing incidence angles based on fruit characteristics
will enhance the accuracy of moisture detection and ensure
reliable measurements across different fruit types and sizes.

XI. CONCLUSION

In this study, we introduce mmFruit, a novel system utilizing
a dual-incidence moisture estimation model based on 77GHz
mmWave radar to accurately distinguish varying moisture
contents in fruits. By leveraging unique radar reflections,
refractive indices, fruit complex permittivity with attenuation
factors, and fruit elasticity, it employs SpI-Net, a custom-
designed convolutional neural network, for precise and robust
moisture identification. Experimental validation demonstrates
mmFruit’s capability to monitor and estimate fruit moisture
levels, discerning moisture content differences of 0%-7%
and 45%-65% under diverse conditions, including random
displacement and rotation. Additionally, our case studies track
moisture levels over several days, highlighting mmFruit’s
effectiveness in monitoring and detecting moisture changes.
The case studies further validate the practical applicability in
real-world scenarios, such as storage and shelf-life monitoring.
This research underscores mmFruit’s potential in enhancing
fruit quality assessment and shelf-life management, offering a
reliable tool for agricultural and food industry applications.
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