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To the editor, 

A vast array of in vivo experimental models are utilised within the wound healing field. There 

remains little agreement as to the optimal in vivo experimental approach to mimic human 

chronic wounds (Wilhelm et al., 2017). Moreover, animal models of impaired healing have 

performed particularly poorly at translating drug based therapies to the clinic over many 

years, leading many to question their effectiveness (Gordillo et al., 2013). We have 

previously shown that the wound type (i.e. incision or excision) and subsequent analysis 

method will determine the sensitivity, and hence the likelihood of a statistically significant 

difference being correctly identified using a specific healing model (Ansell et al., 2014). 

When considered alongside our demonstration that rodent hair cycle can significantly alter 

the speed of repair (Ansell et al., 2011), careful experimental design of in vivo wound models 

becomes critical for maximising the probability of achieving statistical significance. Indeed 

the paucity of new drug based therapies emerging for the treatment of chronic wounds may 

be, at least in part, due to sub-optimal preclinical models.  



 

Diabetes mellitus (DM) is a major cause of human chronic wounds (Eming et al., 2014). 

Several rodent models of DM are available (Ansell et al., 2012, Boyko et al., 2017, Davidson, 

1998), however, the Streptozotocin (STZ)-induced DM model is almost exclusively used to 

model type 1 DM (Goodson and Hung, 1977). Like other wound models there is an inherent 

lack of consistency between published STZ-DM studies with variation in animal gender, 

wound size and wound type, but also in the length of time between DM-induction and 

subsequent injury (Table 1). We predict this latter variable to be crucial given that numerous 

effects of hyperglycaemia can take many weeks to manifest, such as advanced glycation end-

product accumulation (Chen et al., 2009), or structural features of neuropathy  (Biessels et al., 

2014). To our knowledge, a rigorous assessment of the degree of healing impairment in the 

STZ model linked to time post induction has not been published.  

 

To begin to fill this knowledge gap, we first examined wound healing following STZ-induced 

DM in male Wistar rats. We compared healing in rats at 3- (n=6 rats) or 6-weeks (n=4 rats) 

post-DM induction to non-diabetic (n=6 rats) sham control rats (6mm punch biopsy wound 

harvested at 5 days post-wounding; see supplemental methods for full details), to assess the 

influence of time post-induction on healing outcome.   

 

We collected wound photographs at day 5 (Figure 1A), which when assessed revealed a 

significant delay in healing (larger wound surface area) versus control only in 6-week post-

DM induction animals (Figure 1B). To confirm this observation we profiled standardised 

histological wound parameters from tissue sections from the centre of each wound (Figure 

1C). We found no statistically significant difference in histological wound width (Figure 1D) 

or the area of wound granulation tissue (Figure 1E). Taken together, these data suggest that 



planimetry is a more reliable measure of overall healing delay in the STZ-DM model. 

Histological analysis, however, has merits with the parameter of re-epithelialisation 

demonstrating a statistically significant delay reduction (i.e. delayed wound closure) 

following 6 weeks of DM (Figure 1F). Again, there was only a trend towards delayed re-

epithelialisation in rats 3 weeks post-DM induction. Thus, re-epithelialisation appears to 

provide a sensitive histological readout for the onset of impaired healing with DM.  

 

The inability to statistically demonstrate any aspect of delayed healing at 3 weeks post-STZ-

DM induction suggests that this (or any earlier) time point is insufficient, despite being used 

frequently in the literature (Table 1). We do however note a trend towards reduced re-

epithelialisation at 3 weeks, which might become statistically detectable with increased 

sample sizes (Table S1). Many studies do not confirm whether significantly delayed repair 

exists with their chosen impaired healing model and sample size (Table 1). Furthermore, 

almost one third of studies do not indicate the DM induction timeframe used. 

 

That only some wound parameters are demonstrably altered at 6 weeks post-STZ-DM 

induction suggests that the rate at which individual repair processes become impaired 

following loss of blood glucose control differs. To further explore this point we assessed 

changes in inflammation, collagen deposition and angiogenesis, with time-post STZ-DM 

induction. We find a strong increase in the number of wound macrophages in the 6 week 

STZ-DM group (Figure 1G), with no detectable difference in collagen deposition or 

angiogenesis (Figure 1H, 1I). While these data suggest that impairment of angiogenesis and 

collagen deposition take longer than 6 weeks post-STZ-DM, we cannot exclude our single 

analysis timepoint (day 5) providing a poor readout for these later phases of repair.  



Pain withdrawal time in DM rats only declines 4-6 weeks post STZ administration (Kambiz 

et al., 2015), so few wounding studies will examine neuropathic healing. It would be 

interesting to assess chronic diabetes effects on healing, though this would necessitate use of 

insulin pellets, which will impact on the rate of healing (Goodson and Hung, 1977), and 

would preclude direct comparison to our earlier timepoints.    

 

Our assessment of the literature revealed a strong preference for using male animals (Table 

1), though the rationale for this remains unclear. To assess gender-specific effects on the 

STZ-DM model we conducted a second experiment comparing 6 weeks post-STZ-DM (n=9) 

versus non-diabetic (n=8) groups of female rats. Our macroscopic assessment reveals a 

significant delay after 6 weeks of diabetes, although the magnitude of difference was smaller 

than in males (Figure S1A). We could find no delay to repair by any histological measure in 

female rats (Figure S1B-D). Re-epithelialisation data were surprising given the pronounced 

delay observed in males (Compare Figure S1D to Figure 1F). Our data indicate that DM 

impaired healing is less pronounced in female rats. The underlying cause of this gender 

dichotomy remains unclear, though it may be related to the effects of sex steroid hormones 

(Ashcroft et al., 1997, Gilliver et al., 2009).  

 

Collectively, these data indicate that numerous published studies have been performed using 

diabetic animals that display hyperglycaemia, but have not yet established a delayed healing 

phenotype, rendering the published observations invalid. While some may argue that in 

longer term post-wound studies rats will develop an impaired healing phenotype over the 

experimental window, early work showed that the initial wound response is critical for 

overall healing outcome (Seifter et al., 1981). Our study employed a small wound to correlate 

healing efficiency with a point in time, though this will not be the optimal approach for all 



research questions. Our data highlight the importance of clear experimental design based on 

carefully validated wound models, in order to ensure that any treatment (e.g. drug) effect can 

be demonstrated, while reducing the overall requirements for animal use. Finally, our 

literature searches over the course of this study highlight an urgent need to improve the detail 

in reported experimental methodology, to include the age/weight, sex, strain and in the case 

of the STZ model the time post-STZ-DM induction, to allow the work to be properly 

compared to existing literature. 
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Supplemental methods 

 

Animal studies 

Wistar rats weighing 250-300g were purchased from Harlan Labs. Animals were housed in 

trios and provided with food and water ad libitum. All studies were approved by The 

University of Manchester and conducted in accordance with UK Home Office regulations.  

Diabetes was induced using a single 40mg/kg i.p. dose of Streptozotocin (Sigma; Paisley, 

UK), with a sham injection group acting as a non-diabetic control. In the first study 6 weeks 

and 3 weeks of diabetes was compared to controls (6 male animals per group), although 2 

animals from the 6 week DM group were excluded; one as DM induction was unsuccessful, 

while the other animal presented with in anagen phase of hair growth cycle. Injections for the 

3 week DM group were staggered such that all experimental animals were wounded on the 
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same day. In the second study using females 9 DM (with 6 weeks of induction) and 8 non-

diabetic animals were compared. 

Blood glucose tests were conducted 3 days following STZ administration. All animals were 

then weighed and monitored daily. Confirmation of a diabetic state during wound healing 

was through blood glucose readings (Table S2). Rats were anaesthetised via isofluorane 

inhalation and the dorsal skin shaved and swabbed with ethanol. Animals were wounded with 

two 6mm diameter (i.e. a surface area of 28.27mm2) full thickness excisions, approximately 

6cm apart and separated by the dorsal midline. Wounds were left to heal via secondary 

intention.  

 

Histology & Immunohistochemistry 

Animals were sacrificed on day 5 following wounding by a rising concentration of CO2. 

Wounds were photographed with a digital camera to measure the wound surface area (i.e. 

planimetry), and the wound tissue was excised. Wounds were bisected and formalin fixed for 

24hrs before being processed for paraffin embedding as previously described (Ansell et al., 

2014). 5um tissue sections were dewaxed and rehydrated through an ethanol gradient before 

being stained using a Masson’s trichrome stain kit (Atom Scientific) as per manufacturer’s 

instructions. Immunohistochemistry was performed on 5um sections using the Vector 

polymer method, with antigen retrieval using citrate buffer pH6 and blocking with 10% goat 

serum for 30 minutes. The primary antibodies used were Cd68 (Biorad AbD Serotec; 

MCA341R) at a concentration of 1mg/ml, Vwf (Dako; A0082) at 3.1mg/ml, with appropriate 

goat raised secondary antibody (Vector) and visualised with DAB reagent.  

 

 

Image analysis 



Stained slides were imaged using an Aperio Scansope CS (Leica), and measurements of 

width, granulation tissue area and % re-epithelialisation were determined as indicated in 

Figure 1B. Measurements of collagen deposition and DAB intensity were determined using 

the entire granulation tissue as an area of reference.   

 

Statistics 

Measurements for the left and right hand wound were averaged, to give a mean value for 

each animal as a biological replicate, which served as our sample (n number). The experiment 

using males was analysed with a one way ANOVA, with posthoc Dunnetts tests between the 

control and other groups. The female experiment was analysed using a students t test. A P 

value of <0.05 was deemed significant. 

 

Sample size power calculations were made using the actual mean and SD values of our non-

diabetic control group for each healing measurement, and hypothetical means under different 

healing impairment scenarios. Alpha error was set at 5% and beta error was 20%.   

 

Literature searches 

Literature searches were made using PubMed (www.ncbi.nlm.nih.gov/pubmed). A total of 42 

papers published in 2016 were detected under the search of “streptozotocin skin wound 

healing rat”. Of these, 28 studies had used an excisional skin wound model and were included 

for comparison. Of the 14 papers rejected, 5 papers had used wound models other than 

excision (burn, 2; skin flap, 1; incision, 1; laser, 1),  3 studies did not conduct wounding, 2 

studies reported wounds to other tissues (cornea, 1; bone, 1). One study had coupled low dose 

http://www.ncbi.nlm.nih.gov/pubmed


STZ with a high fat diet to mimic type 2 diabetes. The remaining 3 studies were excluded as 

had no English language version available,   

 

Figure Legends 

Figure 1. Profiling development of impaired wound healing following STZ induced 

diabetes. Wounds in male animals following 3 or 6 weeks of diabetes, were compared to a 

non-diabetic (ND) control. Representative macroscopic images of wounds at day 5 (A), were 

used to assess the wound surface area (B). Histology was taken through the centre of the 

wounds (C), to quantify the percentage of re-epithelialisation (D), wound width (E) and area 

of granulation tissue (F). Immunohistochemistry was used to assess for inflammation (Cd68; 

G), collagen deposition (Massons trichrome; H) and angiogenesis (Vwf; I). Bars expressed as 

mean +/- SEM, n=4 animals (6 week group) and 6 animals (ND and 3 week groups). * 

P<0.05, ** P<0.01, *** P<0.001. 

 

Supplemental Figure 1. Females provide a less robust impaired wound healing model 

following STZ induced diabetes. Representative macroscopic images of wounds at day 5 

(A), were assessed for wound closure (B). Histology of the percentage of re-epithelialisation 

(C), wound width (D), or the area of granulation tissue (E) was not significantly different. 

Bars expressed as mean +/- SEM, n=8 animals (ND group) and 9 animals (6 week group). ** 

P<0.01. 


