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Abstract
Next generations of radio surveys are expected to identify tens of millions of new sources and identifying and classifying their morphologies
will require novel andmore efficientmethods. Self-organisingmaps (SOMs), a type of unsupervisedmachine learning, can be used to address
this problem. We map 251 259 multi-Gaussian sources from Rapid ASKAP Continuum Survey (RACS) onto a SOM with discrete neurons.
Similarity metrics, such as Euclidean distances, can be used to identify the best-matching neuron or unit (BMU) for each input image.
We establish a reliability threshold by visually inspecting a subset of input images and their corresponding BMU. We label the individual
neurons based on observed morphologies, and these labels are included in our value-added catalogue of RACS sources. Sources for which
the Euclidean distance to their BMU is �5 (accounting for approximately 79% of sources) have an estimated >90% reliability for their
SOM-derived morphological labels. This reliability falls to less than 70% at Euclidean distances�7. Beyond this threshold it is unlikely that
the morphological label will accurately describe a given source. Our catalogue of complex radio sources from RACS with their SOM-derived
morphological labels from this work will be made publicly available.
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1. Introduction

Astronomical radio emission is dominated by synchrotron emis-
sion resulting from charged particles moving at relativistic veloci-
ties through magnetic fields. Such synchrotron radiation in galax-
ies generally arise due to the supermassive black hole at its
centre or remnants from supernovae. Extragalactic radio contin-
uum surveys therefore generally detect two groups of galaxies:
star-forming galaxies (Condon 1992) and active galactic nucleus
(AGN; Kormendy & Ho 2013). While AGN emit emission across
the entire electromagnetic spectrum (Padovani et al. 2017), a frac-
tion of them (around 15-20%) are considered radio-loud and
produce strong radio emission as a result of synchrotron emis-
sion from the AGN’s relativistic jets (Sadler, Jenkins, & Kotanyi
1989, Kellermann et al. 1989, Urry & Padovani 1995). Early radio
astronomers faced difficulties in detecting radio galaxies at opti-
cal wavelengths since they are very faint at such wavelengths and
this meant that there was little overlap between optical and radio
surveys (Savage & Wall 1976; Windhorst, Kron, & Koo 1984;
Windhorst et al. 1985).

The advent of new technology led to a transformational period
in radio astronomy between 1990 and 2004 where surveys such as
Westerbork Northern Sky Survey (WENSS; Rengelink et al. 1997),
NRAO VLA Sky Survey (NVSS; Condon et al. 1998), Faint Images
of the Radio Sky at Twenty-Centimeters (FIRST; Becker, White,
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& Helfand 1995), and Sydney University Molonglo Sky Survey
(SUMSS; Bock, Large, & Sadler 1999) enabled an increase of the
number of known radio sources to around 2.5 million sources.
This is a hundredfold increase from earlier surveys such as 3C
(Edge et al. 1959) and Parkes Catalogue of Radio Sources (Ekers
1969) among others (see summary in Norris 2017). However, even
with improved sensitivities at radio-wavelengths, radio catalogues
from these surveys are still ∼1% in size relative to those at optical
(Norris 2017).

Next-generation radio continuum surveys are expected to go
further and observe tens of millions of new objects (Norris 2017).
This includes 20% of galaxies which were detected by infrared sur-
veys such as Wide-field Infrared Survey Explorer (WISE; Wright
et al. 2010) and multi-spectral imaging and spectroscopic redshift
surveys such as Sloan Digital Sky Survey (SDSS; York et al. 2000,
Abolfathi et al. 2018). Telescopes such as the Square Kilometre
Array (SKA) and its precursor and pathfinder instruments such as
Australian Square Kilometre Array Pathfinder (ASKAP; Johnston
et al. 2008, Hotan et al. 2021), Low Frequency Array (LOFAR;
van Haarlem et al. 2013), and MurchisonWidefield Array (MWA;
Tingay et al. 2013, Wayth et al. 2018), in addition to the Karl G.
Jansky Very Large Array (JVLA; Perley et al. 2011) are able to con-
duct deep continuum surveys that can detect millions of radio
sources. Moreover, they would be able to carry out these sur-
veys on much shorter timescales than earlier surveys such as the
LOFAR Two-metre Sky Survey (LoTSS; Shimwell et al. 2017), the
EvolutionaryMap of the Universe Pilot Survey (EMU; Norris et al.
2011, Norris et al. 2021), and the Very Large Array Sky Survey
(VLASS; Lacy et al. 2020).
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Figure 1. The preprocessing stages for each of the RACS image cutouts for a randomly chosen image cutout. On the first panel (a) we have the original image with its RA and DEC
coordinates. On the second panel (b) we show the distribution of the pixel values along with the upper bound of the noise estimate and themask applied (given by noise estimate
multiplied by a minimum signal-to-noise value of 2). On the third panel (c) we show the original image with the mask overlaid on top. Once a mask is applied, we log scale the
remained pixels and normalise them from 0 to 1 which gives us the final preprocessed image in the fourth panel (d).

Radio sources with a single component, where component
refers to an output (generally a 2D Gaussian) from a source
finding algorithm, are termed simple sources and they tend to
make up around the majority of radio sources (Norris 2017).
They can be easily resolved and cross-matched with catalogues
in different wavelengths such as optical and infrared using
techniques such as the Likelihood Ratio method (Sutherland &
Saunders 1992). Complex sources, which are expected to make
up a significantly smaller fraction of radio sources, are those
which have multiple radio components and cannot be as easily
identified as simple sources (Williams et al. 2019, Gürkan et al.
2022, Gordon et al. 2023). For example, two unresolved radio
components that are in close proximity to each other might be
radio emission from separate galaxies or they might be the lobes
of a radio source (Gordon et al. 2023).

Given the large number of sources that are expected to be
observed by next-generation surveys, classifying the morphology
of the detected radio sources will be a challenging undertaking
that will require novel methods of cross-identification. In this
paper, we explore the use of self-organising maps (SOM; Kohonen
1990; Kohonen 2001), an unsupervised machine learning algo-
rithm, in order to address the problem of finding complex radio
sources and classifying their morphologies in the large dataset pro-
vided by SKA pathfinders, such as the Rapid ASKAP Continuum
Survey (RACS; McConnell et al. 2020). Galvin et al. (2020) used
SOMs to identify related radio components and the corresponding
infrared host galaxy. The SOM was used on 894 415 images from
FIRST and infrared data from WISE (Wright et al. 2010) centred
at positions described by the FIRST catalogue. Using a SOM, they
were able to identify potentially resolved radio components which
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Figure 2. The original cutout and the preprocessed images of the cutouts done with different values of theminimum signal-to-noise ratio (0, 1, 2, 3, and 4) for themask. The value
was set to 2 since it is enough to mask the majority of the noise without losing much information as we can see in the images.

correspond to a single infrared host. Moreover, their approach was
able to detect radio objects with interesting and rare morphologies
such as ‘X’-shaped galaxies and introduce a statistic that will enable
the search of bent and disturbed radio morphologies. By using
their method, they were able to identify 17 giant radio galaxies
between 700–1 100 kpc.

The layout of the rest of this paper is as follows: in Section 2
we provide a brief description of the RACS data products used in
this paper, and in Section 3 we outline the preprocessing steps for
the cutout images from RACS as well as the SOM training pro-
cess. In Section 4,we analyse the results from the SOM training and
describe the inspection and mapping done to create a catalogue of
complex sources, and we summarise our conclusions in section 5.
This is followed by an Appendix A containing additional figures
exploring the properties of individual neurons in the trained SOM
grid.

2. Data

The survey used in this paper is from the first epoch of RACS,
which is the first all-sky survey conducted with the full ASKAP
telescope (McConnell et al. 2020, Hale et al. 2021). ASKAP is an
array of 36 antennas, each with a 12-meter diameter. Each antenna
is equipped with a phased array feed (PAF) and is capable of
dual polarisation. At 800MHz, each ASKAP pointing has a field
of view of ≈31 deg2 (Hotan et al. 2021). RACS is the deepest
radio survey covering the entire southern sky to date. It is able to
connect low-frequency surveys such as TIFR GMRT Sky Survey
(TGSS; Intema et al. 2017) and Galactic and Extragalactic Allsky
MurchisonWidefield Array survey (GLEAM;Hurley-Walker et al.
2017) to surveys such as NVSS (Condon et al. 1998) at 1.4 GHz and
VLASS at 3 GHz (Lacy et al. 2020).

We specifically use the data products from the first public data
release from RACS, RACS-Low, which is made up of 903 tiles

south of declinations of +41◦ and covered a total survey area of
34 240 deg2. It is centred at 887.5 MHz, with 15-min integrations
and 288 MHz of bandwidth with 1 MHz wide channels, and they
achieved a nominal sensitivity between 0.25 and 0.3 mJy/beam
(McConnell et al. 2020; Hale et al. 2021). The first Stokes I cata-
logue from Hale et al. (2021) is derived from 799 tiles that have
been convolved to a common resolution of 25 arcsec. It cov-
ered most of the sky in the declination region δ = −80◦ to +30◦,
excluding the region | b | < 5◦ in the Galactic plane. The cata-
logue uses Python Blob Detection and Source Finder (PyBDSF;
Mohan & Rafferty 2015) to detect regions of radio emission which
are fitted with 2D Gaussian components. As such, the catalogue
contains both single source components as well as sources with
multiple components which are defined as single sources or islands
of pixels fitted with multiple Gaussians. The catalogue contains 2
123 638 sources, of which 1 872 361 (88.17%) are simple sources
with a single Gaussian component and 251 277 sources (11.83%)
are complex with multiple components. Since the objective of our
work is to identify complex sources, the focus will be on this latter
group of sources with multiple components.

3. Methodology

3.1 Self-Organising Map (SOM)

Given that the next-generation surveys are expected to become
more data intensive and detect vast number of radio sources,
machine learning methods can help us identity and classify these
detected sources in a more efficient and labour-saving manner.
They can be divided into two approaches: supervised and unsu-
pervised machine learning. Supervised machine learning broadly
describe algorithms that learn to represent an unknown and pos-
sibly complex function by training a mapping function between
input data and their assigned training labels. For example, Aniyan
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& Thorat (2017) used convolution neural network (CNN), a type
of supervised machine learning method, to classify radio sources
from FIRST into Fanaroff-Riley (Fanaroff & Riley 1974) and bent-
tailed morphology classes, and had a success rate of approximately
95% depending on the morphology presented, with bent-tailed
radio galaxies being the most identifiable. Lukic et al. (2018) used
CNNs trained on radio sources from Radio Galaxy Zoo (RGZ;
Banfield et al. 2015) Data Release 1 to classify sources into compact
and different classes of extended sources and achieved a 94.8%
accuracy rate.

Conversely, unsupervised machine learning methods are algo-
rithms that do not need labelled data or any prior knowledge
about the dataset. Instead these algorithms focus on identify-
ing any existing structures within a dataset. Examples of unsu-
pervised machine learning methods include k-means cluster-
ing (Ikotun et al. 2022), Gaussian mixture models (Everitt et al.
2011), principal component analysis (Jolliffe & Cadima 2016),
and SOMs (Kohonen 1990; Baron 2019). SOMs (also known as
Kohonen maps) are a type of neural network which output a low-
dimensional, usually two-dimensional, representation of the input
dataset. SOMs use a competitive learning process in order to map
the input dataset onto a grid of discrete neurons. The neurons are
each assigned a unique position, i, onto a regular lattice and ini-
tialised with prototype weights,w, which are usually zeros or small
random values. A single iteration of training involved randomly
selecting an input data sample, d, from the reference training
dataset, D, and comparing it to the current state of each of the
neurons. The neuron with the best similarity score is referred to as
the best-matching unit (BMU). The position of the BMU, j, is then
used to update the weights of the other neurons in the grid.

Euclidean distance is one of the similarity metrics that the SOM
algorithm can use to quantify the similarity between the input
data and the neurons in the SOM grid. This can be done by cal-
culating the straight-line distances between them. However, this
can result in problems with some data types, including astronom-
ical images, which do not maintain invariance between certain
types of transformations such as flipping and rotation. As a result,
Polsterer et al. (2016) developed the software Parallelised rotation
and flipping INvariant Kohonen-maps (PINK)1 which builds upon
the SOM algorithm and introduces a minimisation procedure to
best align a source of random orientation onto the neurons. This
ensures that sources which are similar are grouped despite any dif-
ferences in rotation. A SOM training using PINK starts with the
weights of all the neurons being initialised with randomly gen-
erated numbers or zeros. PINK then rotates and flips all input
images a set number of times (specified by the rotations parameter
which will be discussed in more detail in Section 3.3). The simi-
larity between the input images, including the rotated and flipped
copies, and all the neurons are calculated so that the BMU, i.e. the
neuron with the shortest Euclidean distance to a given input image
and is therefore the best representation of the input, can be iden-
tified (see Section 2 of Polsterer et al. 2016 for more details on the
method used in the PINK framework, and Polsterer, Gieseke, &
Igel 2015 for details on an earlier version of the framework). The
weighting function implemented in PINK is described by Equation
(1) (Polsterer et al. 2016):

w′
i =wi + α(t) ·Gij · (φ(d)−wi) (1)

1Parallelised rotation and flipping INvariant Kohonen maps (PINK):
https://github.com/HITS-AIN/PINK.

Table 1. The hyperparameters used in the four training stages: the
width of the neighbourhood function Gij given by σ , the learning
rate α, the number of rotations and iterations.

Stage σ α Rotations Iterations

1 1.5 0.1 92 5

2 1.0 0.05 180 5

3 0.7 0.05 360 5

4 0.5 0.005 360 10

where:

• wi is the initial weight vector of neuron i.
• w′

i is the updated weight vector of neuron i.
• α is the learning rate and this parameter controls how

much the weights are updated as training progresses.
• Gij is the neighbourhood function which controls the

extent to which the BMU neuron j influences the weight
update of neuron i. PINK currently supports three possible
neighbourhood functions of which the Gaussian distribu-
tion function is the most common and is used for this
training. The width of the Gaussian neighbourhood func-
tion establishes the BMU’s region of influence such that
the weights of the neurons which are closer to the BMU
are updated more than neurons which are further away.

• d is the current input data, and the term (φ(d)−wi) aligns
d onto wi.

PINK uses a modified Euclidean distance metric (Polsterer et al.
2016; Galvin et al. 2019) to measure similarity:

�(A, B)=minimise(φ)
∀φ∈�

√√√√
C∑
c=0

X∑
x=0

Y∑
y=0

(
Ac,x,y − φ(Bc,x,y)

)2 (2)

where A and B are a given neuron and input image and c is their
corresponding channel, x and y are the coordinates of the pix-
els, φ corresponds to an affine image transformation which has
been drawn from a set of image transformations �, i.e. the set
of all rotated and flipped copies of the input, and is optimised
to best align the input image with the features of the neuron by
finding the φ with the shortest Euclidean distance from all the
possible rotations and flips. PINK can also impose either a cir-
cular or quadratic region over which the Euclidean distances are
calculated. A quadratic region can cause variations in these cal-
culations due to the impact of other sources, especially bright
sources, potentially moving into the masked region as the images
are rotated (Vantyghem et al. 2024). We use a circular mask in
order to minimise the effects of sources near the edges of the
images. Once the Euclidean distances have been calculated and
a BMU has been determined, the neuron positions on the SOM
grid are evaluated against the neighbourhood function and their
weights aremodified accordingly so that they can be a better repre-
sentation of the input. The previous steps are then iterated over all
input images in the training dataset anX amount of times, keeping
in consideration that X must be large enough to allow the SOM to
converge. After enough training iterations have taken place such
that stable SOM can be produced, all input images in the dataset
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Figure 3. The trained 10x10 SOM with manual labels of their morphological labels: C (Compact) sources, EC (Extended Compact), CD (Connected Double) sources, SD (Split
Double) sources, T (Triple) sources, U/A (Uncertain/Ambiguous) sources. The labels on the axis indicate the neuron coordinate in the SOM grid such that the top left neuron is (0,
0) with morphological label EC. The SOM can also divided into four quadrants: top left, top right, bottom left, and bottom right (marked in red) for additional analysis.

are mapped to the derived neurons in order to determine the
distances to the neurons and find the best match regions.

The key hyperparameters to consider during the training pro-
cess are: the number of neurons in the SOM grid, width of the
neighbourhood function, learning rate, and the number of rota-
tions and iterations. The number of neurons specifies the size of
the SOM, and should be large enough to represent the dominant

structures in the training data but not so large that it becomes
time-consuming to compute. The width of the neighbourhood
function used cannot be too wide as that would impact all neu-
rons in the grid, however it also cannot be too narrow as that
could potentially lead to individual neurons being decoupled and
only creating smaller clusters that do not accurately capture the
similarities between neighbouring neurons. The learning rate, if
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Figure 4. Density map showing the Best-Matching Unit (BMU) count across the trained SOM.

too small, will result in long computational time, but if it is too
large then the changes in the weight updates would be too abrupt
(Mostert et al. 2021).

3.2 Preprocessing RACS image cutouts

Prior to training a SOM, the data is preprocessed to ensure that the
training set emphasises the morphological structures and features
present and interference from noise is minimised. The first step is
to filter the RACS-Low catalogue to select complex sources with
multiple components which are classed as ‘multi-Gaussian’ (given
by ‘M’ in column ‘S Code’ in the catalogue) by PyBDSF (Mohan
& Rafferty 2015, Hale et al. 2021). This results in 251 277 individ-
ual radio sources. Next, we take 96× 96 pixel cutouts from the
RACS image tiles centred around each coordinate which corre-
sponds to a 4′ field-of-view. The vast majority of radio sources are
expected to have sub-arcmin sizes, with only the largest sources
having angular extents greater than 4′ (Lara et al. 2001; Proctor
2016). A cutout of angular size 4′ will be large enough to capture
most radio sources, including possible extended structures, while
still being small enough to avoid any interference from unrelated
nearby sources in the tile. There may exist more than one coor-
dinate for a given object due to decomposition, hence the same

object can be in more than one cutout. As such, if there are multi-
ple cutouts for a given ‘target’ RA and Dec coordinates, we choose
the cutout that is closest to this target. This is done by calculating
the angular distance between the pixel coordinates of the target
and the reference CRPIX1 and CRPIX2 pixel coordinates of the
cutouts. The most central cutout, i.e. the cutout with the smallest
angular distance to the reference pixel coordinates, is selected.

For our preprocessing, we use the python package PYINK,2
which has a set of useful tools to aid in training and analysing a
SOM using PINK and can be used to create the bespoke binary
file it requires. The image cutouts for each coordinate are pre-
processed with PYINK, and Fig. 1 shows the preprocessing stages
for an arbitrary cutout taken from our sample. The first stage is
estimating the noise in each image cutout. We measure the outly-
ing pixels that deviate from the median by more than three times
the median absolute deviation (MAD) of the pixels. We clip and
remove these flagged outlier pixels and this process is repeated
twice. A Gaussian was fitted to the pixel intensity distribution of
the remaining unflagged pixels. The standard deviation of this fit-
ted distribution gives the estimate of the background noise, which

2PYINK: https://github.com/tjgalvin/pyink (commit 176177b).
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Figure 5. The distribution of the Euclidean distance between input images and their
corresponding BMU neuron.

we can consider to be the upper bound of the noise. A mask is
then created by multiplying the noise estimation and a minimum
signal-to-noise ratio (the dotted and dashed lines in the second
panel (b) in Fig. 1 corresponds to the noise estimation and mask,
respectively). Tests were run with different values of the minimum
signal-to-noise (Fig. 2), and based on these we determine that a
value of 2 is sufficient in masking the majority of the noise in
the cutout whilst still capturing the important structures present.
Once a mask is applied, it filters the pixels to only retain those
that satisfy the mask conditions and pixels outside this mask were
filled in to have values of 0. We then apply a log scaling to the pix-
els and normalise them from 0 to 1 to give the final preprocessed
image. Out of the 251 277 image cutouts that underwent the pre-
processing method 18 cutouts failed. Visual inspections of these
cutouts show that they tend to have diffuse or large scale structure
which cover a larger fraction of the cutouts, and as such PYINK
finds a higher noise level estimation than PyBDSF. This results in
edge cases where the signal-to-noise within the cutout is not rep-
resentative of the local signal-to-noise for large sources. Due to the
higher noise level, the data array is empty once themask (the prod-
uct of the PYINK noise estimation and a minimum signal-to-noise
value of 2) is applied during preprocessing. We use the remaining
251 259 sources to train the SOM.

3.3 Training

Following the preprocessing, we train a 10× 10 SOM using PINK
with four training stages. In order to do so, we have to establish
certain hyperparameters for each stage: the width of the neigh-
bourhood function (σ ), the learning rate (α), and the number of
rotations and iterations. As stated in Section 3.1, the width of the σ

function sets how much of the neighbourhood should be updated
in each iteration, the learning rate controls how much the weights
are updated during each iteration, rotations gives the number of
rotations and flips PINK performs for each input image during the
training, and iterations is the number of times each individual item
in the training dataset is used to update the SOM.

During the training process, we want to first establish the broad
morphologies and subsequently fine-tune the SOM and identify
smaller structures and details present (Galvin et al. 2019; Mostert
et al. 2021). For the first training stage, the neurons are initialised

Table 2. Intervals based on Euclidean distance between randomly chosen
input images and their BMU.

Intervals Euclidean distance Total sources Sample sources

1 0.69≤ ED < 2.74 114 392 338

2 2.74≤ ED < 4.78 83 327 288

3 4.78≤ ED < 6.83 33 501 183

4 6.83≤ ED < 8.87 12 139 110

5 8.87≤ ED < 10.91 4 648 68

6 10.91≤ ED < 12.96 1 845 42

7 12.96≤ ED < 15.00 739 27

8 15.00≤ ED≤ 43.82 668 25

with random noise. We keep the rotations and iterations to a
lower number initially, and this also has the added advantage of
decreasing the computational time. The number of rotations are
subsequently increased at each stage, and in the final training stage
we also increase the number of iterations in order to capture the
finer details. Kohonen (2001) states that a larger neighbourhood
function is able to capture the broad or global structures in the
dataset, and so decreasing the size of the neighbourhood function
as training progresses ensures that the smaller or localised details
are also represented in the SOM. We follow the same principle
for the learning rate which controls the magnitude of the weight
updates during each iteration. Hence, the width of the neighbour-
hood function (σ ) and the learning rate (α) are set to 1.5 and
0.1, respectively, and they are decreased in subsequent training
stages.

The SOM grid is trained on the hyperparameters established in
Table 1 and is shown in Fig. 3. Here the neuron positions are given
by (y, x) and the origin in this coordinate scheme is the left-most
column of the top row, such that the right-most column of the top
row has a coordinate of (0, 9). The training is done on a single GPU
node with a NVIDIA A40 48GB GPU and took approximately 14
days, however we note that CUDA was disabled and this may have
affected the time taken for the training.

4. SOM inspection andmapping

Once the SOM is trained, we map all images onto the final SOM
and plot a density map in order to see the neurons which were
most frequently selected as the BMU (Fig. 4). The neuron (0, 6)
is selected as the BMU for the highest number of input images, 5
047 images which accounts for approximately 2% of the total input
images. Moreover, the neurons in the first row were more likely
to be selected as BMU, showing that even for ‘multi-Gaussian’
sources relatively simple morphologies are dominant. Whereas
the neurons (3, 1) and (4, 2) which we label as Triple sources
(see Section 4.1 for a description of the labels) are selected as
BMU the least number of times, for 548 and 621 input images,
respectively. Generally, we see that the neurons towards the edges,
especially in the bottom half of the grid, were chosen to be the
BMU much less frequently than those near the top half. We also
see that the impact of the circular region over which the Euclidean
distances are calculated are more visible for some neurons than
others and can be seen in the SOM grid, for example neuron (9,
9) at the bottom right. We also note that structures outside this
region are essentially noise and potentially do not carry any real
meaning.
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Figure 6. Upper panel (a): Amanual validation of thematch between original input images in the full validation sample and their corresponding BMU, where the sample is divided
into smaller intervals on the Euclidean distance (Table 2). Lower panels (b–e): Distribution of the ‘Yes’ and ‘No’ matches from the validation scheme above split into the SOM
quadrants: top left quadrant (b), top right quadrant (c), bottom left quadrant (d), and bottom right quadrant (e).

Another important property of a SOM to consider is coherence
which can be a useful tool for morphological studies such as this.
The coherence gives us the total number of times where the neu-
ron which was the next best match for an input image (i.e. had the

second lowest value of Euclidean distance between it and the input
image) was neighbouring (both next to or diagonally) the neuron
chosen as BMU for the same image. A high coherence value indi-
cates that neighbouring neurons are similar to each other and the
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Figure 7. Examples of a ‘Yes’ match for an Input Image, and its corresponding Preprocessed Image and Best-Matching Unit (BMU).

underlying structures of the SOM are well-organised and repre-
sented in the SOM grid. The coherence value in our SOM is 229
678 which means that for 91.4% of the input images, their sec-
ond closest best-matching neuron is adjacent to the best-matching
neuron in the grid. This shows that the different neighbourhoods
in our SOM grid are well-established and so the regions in and of
themselves are also a useful metric of morphology and not just the
precise coordinate. We see this in our trained SOM (Fig. 3) where
similar representative images or morphologies are closer to each
other and can be grouped into similar morphological classes.

We plot the distribution of the Euclidean distance between all
the input images and their corresponding BMU (Fig. 5; distri-
butions of the Euclidean distances for each individual neurons
in the SOM can be found in the Appendix A Figs. A1, A2, A3,
and A4). The distance in this paper ranged from 0.69 to 43.82,
where larger Euclidean distance values indicate there are larger
differences between an image and the neuron. It should be noted
that the Euclidean distance values generally depend on the input
images used to train the SOM as well as the specific training con-
figurations of the system and so is therefore unique to each SOM.
A visual inspection can be done to establish an approximate dis-
tance threshold at which point the input image starts to no longer
resemble its associated BMU.

To perform a quantitative validation of the similarity between
input image cutout and the BMU we create a smaller valida-
tion sample by dividing the range of Euclidean distances into 8

intervals and selecting random sources from each (Table 2). The
first 7 intervals comprised of distances in the range 0.69–15.0 as
99.7% of our dataset have distances in that range, and the 8th inter-
val consisted of those with distances 15.0 to 43.82. Next, we take
the

√
n of the number of sources in each interval to create the

validation sample so a manual validation of the matches can be
performed in a more efficient and less time-consuming manner.
Prior to the validation, we inspect multiple random input images
and their BMU to review the criteria of a match so as to avoid
bias and ensure consistent labelling. A visual inspection is sub-
sequently done on the validation sample by looking at each of
the original input images in the sample and their BMU to see if
they matched or mostly matched (rotating and flipping the input
images to match the BMUs if needed), such that the input image
can be reasonably believed to have contributed to the BMU neu-
ron which is an aggregate of all input images for which it is chosen
as the BMU. These matches were designated as ‘Yes’ with the oth-
ers being assigned as ‘No’ (the upper panel a in Fig. 6). While this
is a subjective match based upon our visual inspection, it provides
a good baseline for reliability in the similarity matches (see Figs. 7
and 8 for examples of how the similarity was judged).

As expected, the number of ‘Yes’ matches between the input
and the BMU decrease with Euclidean distances. In Intervals 1
and 2 (which cover the distance 0.69–4.78 overall and comprise
of 78.7% of our dataset), the number of ‘Yes’ matches are 98.5%
and 91.0%, respectively, and can be considered to be the most
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Figure 8. Examples of a ‘No’ match for an Input Image, and its corresponding Preprocessed Image and Best-Matching Unit (BMU).

Figure 9. The distribution of the Euclidean distance between input images and their corresponding BMU for the ‘Yes’ and ‘No’ matches in the validation sample (a). The dis-
tance distributions for the sources in the validation sample grouped into SOM regions: Top left quadrant (b), top right quadrant (c), bottom left quadrant (d), and bottom right
quadrant (e).

reliable. In Interval 3, the percentage of ‘Yes’ matches (67.2%)
have decreased from the previous intervals, but is still consid-
erably higher than the ‘No’ matches. In Interval 4 and beyond
(Euclidean distance larger than 6.83), the number of ‘Yes’ matches

continue to decrease and are significantly less than their ‘No’
counterparts. As a result, their morphological labels become less
reliable, with Intervals 7 and 8 being the least reliable given that
more than 90% of their input images do not visually match their
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Figure 10. The best-matching, 50th percentile and 90th percentile images for the labels Compact (C), Extended Compact (EC) and Connected Double (CD).
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Figure 11. The best-matching, 50th percentile and 90th percentile images for the labels Split Double (SD), Triple (T) and Uncertain/Ambiguous (U/A).

BMU. This provides us with a potential second subset of unique
and complex galaxies for further study and can enable us to poten-
tially find rare and unexpected objects within the RACS catalogue.
Therefore, for Euclidean distances to the BMU� 5, which account

for approximately 79% of our sources, the reliability of the mor-
phological labels in our catalogue is estimated to be >90%, and
this reliability drops down to less than 70% at Euclidean distances
�7. We also qualitatively group the validation sample into SOM
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Table 3. Summary of the classification of themorphological labels. From left to rightwe give themorphological label, the number of neuronswhichwere assigned
said label, the total number of sources in the RACS catalogue once the labels were transferred, and the split of the sources into each reliability percentage from
the validation process based on Euclidean distances.

Morphological label Neurons Total sources 98.5% 91.0% 67.2% 40.9% 20.6% 11.9% 7.4% 4.0%

Compact 6 26 217 23 964 2 225 28 0 0 0 0 0

Extended compact 25 81 396 59 920 18 964 2 250 238 23 1 0 0

Connected double 48 106 671 29 181 48 612 16 915 6 745 2 866 1 273 529 550

Split double 14 25 379 18 6 644 11 345 4 753 1 724 567 210 118

Triple 2 1 169 2 317 669 165 13 3 0 0

Uncertain/Ambiguous 5 10 427 1 307 6 565 2 294 238 22 1 0 0

sub-regions and plot the distribution of the ‘Yes’ and ‘No’ matches
to see if it varies depending on the region (the lower panels b-
e in Fig. 6). This is done by splitting the full validation sample
according to which SOM quadrant (see Fig. 3 for the four quad-
rants marked in red) the BMU of the validation sources are located
in: top left (235 sources), top right (285 sources), bottom left (264
sources), and bottom right (297 sources). It should be noted that
since the sampling for the validation subset was done randomly we
do not have equal numbers of each quadrant present. However,
the general trend of a higher number of ‘Yes’ matches than ‘No’
at lower Euclidean distances, particularly for the first three inter-
vals, is still present. In addition, for the top left (panel a) and top
right (panel b) quadrants we see that there are fewer sources with
high Euclidean distances that fall within the intervals on the right
hand side unlike the bottom quadrants (panels c and d). This indi-
cates that the sources in the top quadrants skew towards lower
Euclidean distances.

Subsequently, we plot the distribution of the Euclidean dis-
tances between all the input images and their corresponding BMU
in the validation sample for both ‘Yes’ and ‘No’ matches (panel a in
Fig. 9), as well as the split into the SOM quadrants (panels b to e).
For the full validation sample we see that the distribution for ‘Yes’
matches peaks at ∼2, and the skews heavily towards the left-hand
side of the graph at lower Euclidean distances with the majority
of the values falling within distances of ∼5. Whereas, the distribu-
tion for ‘No’ matches span a wider range of Euclidean distances,
and when compared to the ‘Yes’ matches it skews more towards
the higher end of Euclidean distances. This indicates that at higher
Euclidean distances we expect the fraction of input images which
are similar to their BMU to start decreasing. This trend gener-
ally holds in the four SOM quadrants with ‘Yes’ matches skewing
mostly towards lower Euclidean distances, and the ‘No’ matches
leaning more towards higher distances in comparison (panels b-e
in Fig. 9). We can also see that for the top left and top right quad-
rants there are fewer ‘No’ matches on the left-hand side which is in
contrast to the bottom left and bottom right quadrants where the
distributions vary over a wider range of distances. These results
can be attributed to the neurons in the top SOM quadrants gener-
ally being dominated by relatively simple and smaller structures,
whereas the neurons at the bottom quadrants have larger or more
extended sources. These larger and more extended sources are
more likely to have higher levels of background and noise when
compared to the simpler sources even following image prepro-
cessing. In addition, their extended sizes could prevent them from
being fully captured by the current cutout size of 4′. As a result,

they might not be modelled as well as simpler sources during the
SOM training. As such, we would expect the Euclidean distances
between the top quadrant neurons and their input images to be
comparatively lower than for the bottom quadrants (see Figs. A1,
A2, A3, A4 in Appendix A for the distributions of the Euclidean
distances split by individual neurons in each quadrant for the
whole dataset).

4.1 Annotating the SOM

Once a reliability threshold for the similarity between an input
image and its BMU had been established, the next stage is to
manually label or tag each of the 100 neurons based on their
shown morphology. We have decided on 6 tags which broadly
encompasses the morphologies seen in the SOM grid:

• C (Compact) sources without any significant features
other than the central core and are circular or nearly
circular.

• EC (Extended Compact) sources which are compact
sources with either a bright central core and some
extended structures, such as an elongated compact core,
a tail or additional neighbouring components.

• CD (Connected Double) sources which comprise of
two distinguishable lobes of comparable sizes or bright-
ness which are either connected or the angular distance
between them is relatively minimal.

• SD (Split Double) sources which comprise of two distin-
guishable lobes of comparable sizes or brightness with a
clear angular separation where the separation is relatively
large.

• T (Triple) sources which comprise of three distinguishable
lobes of relatively comparable sizes or brightness.

• U/A (Uncertain/Ambiguous) sources which contains
characteristics that might be present in more than one of
the previous labels and it is not clear which label would be
the best fit.

We tag the individual neurons with the aforementioned labels
and transfer these labels to each of the input images from their
BMU (see Figs. 10 and 11 to see examples of the best-matching,
50th percentile and 90th percentile input images for each of the
labels). Once the labels have been transferred, we can combine
them with the reliability percentage from the validation scheme.
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Figure 12. The 12 sources with the largest Euclidean distances between their input images and BMU. For each sourcewe give its source name, RA, Dec, BMU in the SOM grid and its
morphological label after label transfer. The distance for these sources range from 34.36 to 43.82 and they all have a reliability percentage of around 4.0% based on the validation
scheme.
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Table 3 gives a summary of the classification of the morphological
labels along with the number of neurons which have been assigned
these labels, the total number of sources in the RACS catalogue
after label transfer, and the split of these sources into the reliabil-
ity percentages from the validation process: 98.5%, 91.0%, 67.2%,
40.9%, 20.6%, 11.9%, 7.4% and 4.0%. The labels ‘Compact’ and
‘Extended Compact’ can be considered the most reliable since a
greater fraction of their total sources (91.4% and 73.6%, respec-
tively) have a reliability of �98.5%. This is to be expected given
their relatively simple morphologies. We also see that the majority
of neurons assigned these labels are located in the top left and top
right quadrants of the SOM which generally has lower Euclidean
distances both in the validation sample (Fig. 9) and in the overall
SOM (Figs. A1, A2, A3, A4 in Appendix A). Approximately 73%
of ‘Connected Double’ sources fall within the reliability threshold
of 91.0% or higher which demonstrates an overall goodmatch. For
‘Split Double’ and ‘Triple’ sources, the biggest fraction of sources
have around 67.2% reliability match and so these labels can be
considered moderately reliable. It should be noted that the label
‘Triple’ has the fewest number of sources, approximately 0.45%
of the total sources, and the two neurons assigned this label are
also least commonly chosen as BMU (Fig. 4). As such, while the
reliability percentage for this label is relatively moderate, the lim-
ited number of sources does limit the extent to which the label can
be utilised. Majority of the ‘Uncertain/Ambiguous’ sources have
a high reliability match of �91.0% which indicates that the asso-
ciated neurons capture the ambiguous nature of their morpholo-
gies well. We can further assess the reliability of the transferred
morphological label for each source by also considering the mor-
phological labels of its next best-matching neurons to see if they
are consistent. We find that for 75.55% of sources, the labels of its
second best-matching neuronmatches the label from its BMU. For
third and fourth best-matching neurons the percentage of matches
with the BMU label decreases to 71.83% and 68.98%, respectively.
This aligns with our expectations as the similarity between the
source and the neuron will diverge with increasing Euclidean dis-
tance. Therefore, for the majority of sources the transferred mor-
phological labels from the BMU are consistent with the labels of its
next best-matching neurons, especially the second best-matching
neuron.

It is important to note that these labels are not universally
agreed upon labels but are instead subjective and based upon our
visual inspections of the neurons on this specific trained SOM.
As such, they are not transferable to other SOMs even if they are
trained on the same data. However, the labels once transferred to
our value-added catalogue of RACS sources will help us quickly
distinguish the broad morphological features present within the
dataset (Rudnick 2021; Bowles et al. 2023). Moreover, it can help
us quickly identify atypical and rare sources. In Fig. 12 we show the
12 sources with the largest Euclidean distances between their input
images and their BMU. These sources have relatively unusual
and interesting morphologies, and their high BMU Euclidean dis-
tances is due to them not being very well represented by the
neurons. These sources have a reliability percentage of around
4.0% from our validation scheme, which further indicates that
their SOM-derived morphological labels are not very dependable.
A more thorough study of these sources will be done in the next
paper.

Table 4. Description of the columns in the catalogue created in this paper.

Catalogue column Description

source_name Name of the source as given in the RACS
catalogue which follows the IAU convention
JHHMMSS.S±DDMMSS with the prefix
RACS-DR1

source_id ID of the source as given in the RACS catalogue
which is the RACS tile ID along with the Src_ID
generated by PyBDSF

ra Right Ascension coordinate of the source (in
degrees)

dec Declination coordinate of the source (in
degrees)

bmu The position of the Best-Matching Unit (BMU),
i.e. the neuron which best-matched the input
image, in the SOM grid (Fig. 3). The neuron
coordinates are in the form (y, x).

euclidean_distance The Euclidean distance between the source and
BMU in the SOM grid

morphological_label The SOM-derived morphological label (see 4.1
for more information on the labels used)

match_percent The reliability percentage which gives the
percentage of input images which matched
with its BMU based on visual inspection of a
smaller validation sample

4.2 Catalogue of complex sources

For each source in our dataset, we add the position of its BMU in
the SOM grid, the Euclidean distance between it and the BMU,
the transferred morphological label based on the visual inspec-
tion of the individual neurons, and the reliability percentage
based on the Euclidean distance to create our final catalogue of
complex sources. The catalogue contains the following columns:
source_name, source_id, ra, and dec from the RACS cata-
logue, bmu which gives the position of the best-matching neu-
ron in the SOM grid, euclidean_distance which gives the
Euclidean distance between the BMU and the input image, the
morphological_label based on observed morphological fea-
tures present based on the visual inspections, match_percent
which gives the reliability percentage, i.e. the percentage of sample
input images which matched with its BMU based on the Euclidean
distance (see Table 4 for more details on the columns). The first
30 rows of the catalogue are shown in Table 5. The full cata-
logue produced in this paper will be made available in CDS VizieR
(Ochsenbein, Bauer, & Marcout 2000) and other key databases
after publication.

5. Conclusions

Next-generation surveys are expected to identify vast number
of sources, and as a result will require novel methods of cross-
identification. Machine learning methods, especially SOMs, can
be used to address the problem of finding complex radio sources
in the large dataset provided by SKA pathfinders, such as RACS.
In order to do so, we build and train a SOM on sources with
multi-Gaussian components from the RACS-Low catalogue. Once
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Table 5. The first 30 rows from the final catalogue of complex sources created using the SOM.

source_name source_id ra dec bmu euclidean_distance morphological_label match_percent

RACS-DR1 J001232.8+135445 RACS_0000+12A_1102 3.136777 13.912659 (1, 3) 1.613091 extended compact 98.5%

RACS-DR1 J001218.2+120733 RACS_0000+12A_1115 3.076231 12.125925 (9, 6) 5.108846 connected double 67.2%

RACS-DR1 J001217.3+140104 RACS_0000+12A_1122 3.072128 14.017922 (4, 9) 3.465037 extended compact 91.0%

RACS-DR1 J001213.7+134434 RACS_0000+12A_1137 3.057311 13.742932 (2, 1) 4.860659 connected double 67.2%

RACS-DR1 J001159.7+111637 RACS_0000+12A_1141 2.998874 11.277090 (9, 6) 4.630018 connected double 91.0%

RACS-DR1 J001201.7+120116 RACS_0000+12A_1149 3.007460 12.021187 (0, 3) 1.390036 extended compact 98.5%

RACS-DR1 J001155.1+101847 RACS_0000+12A_1155 2.979664 10.313124 (9, 7) 7.687910 connected double 40.9%

RACS-DR1 J001152.5+125156 RACS_0000+12A_1174 2.968830 12.865726 (5, 8) 3.627663 connected double 91.0%

RACS-DR1 J001156.9+135007 RACS_0000+12A_1178 2.987112 13.835327 (7, 1) 4.852356 split double 67.2%

RACS-DR1 J001140.2+134548 RACS_0000+12A_1210 2.917669 13.763403 (7, 3) 3.632242 connected double 91.0%

RACS-DR1 J001135.7+124553 RACS_0000+12A_1217 2.898931 12.764777 (6, 5) 4.224261 connected double 91.0%

RACS-DR1 J001129.2+104835 RACS_0000+12A_1221 2.871919 10.809794 (0, 5) 2.472950 compact 98.5%

RACS-DR1 J001122.6+101542 RACS_0000+12A_1229 2.844409 10.261744 (5, 0) 5.126052 split double 67.2%

RACS-DR1 J001131.1+134736 RACS_0000+12A_1230 2.879728 13.793518 (1, 8) 1.701950 compact 98.5%

RACS-DR1 J001119.8+100738 RACS_0000+12A_1236 2.832730 10.127255 (0, 2) 2.427596 extended compact 98.5%

RACS-DR1 J001115.9+111800 RACS_0000+12A_1246 2.816345 11.300248 (4, 4) 2.145172 connected double 98.5%

RACS-DR1 J001115.4+144607 RACS_0000+12A_1265 2.814549 14.768678 (0, 6) 2.099214 compact 98.5%

RACS-DR1 J001109.8+122838 RACS_0000+12A_1267 2.791108 12.477418 (8, 5) 3.741234 connected double 91.0%

RACS-DR1 J001108.2+123532 RACS_0000+12A_1272 2.784499 12.592249 (0, 6) 1.701353 compact 98.5%

RACS-DR1 J001106.3+125027 RACS_0000+12A_1273 2.776347 12.840854 (6, 7) 2.314408 connected double 98.5%

RACS-DR1 J001030.7+105827 RACS_0000+12A_1336 2.628291 10.974313 (1, 8) 1.747133 compact 98.5%

RACS-DR1 J001034.6+133848 RACS_0000+12A_1338 2.644539 13.646904 (5, 9) 2.476797 connected double 98.5%

RACS-DR1 J001023.8+121937 RACS_0000+12A_1363 2.599256 12.327161 (2, 3) 3.860162 connected double 91.0%

RACS-DR1 J001022.2+134639 RACS_0000+12A_1368 2.592654 13.777504 (4, 7) 3.052129 connected double 91.0%

RACS-DR1 J001018.2+143337 RACS_0000+12A_1375 2.576152 14.560517 (0, 8) 1.829436 compact 98.5%

RACS-DR1 J000952.3+124426 RACS_0000+12A_1411 2.468288 12.740782 (9, 9) 15.941885 connected double 4.0%

RACS-DR1 J000951.3+141738 RACS_0000+12A_1427 2.463940 14.293970 (4, 0) 5.859904 split double 67.2%

RACS-DR1 J000945.2+141442 RACS_0000+12A_1444 2.438447 14.245052 (1, 1) 2.470556 extended compact 98.5%

RACS-DR1 J000927.4+095842 RACS_0000+12A_1456 2.364251 9.978556 (3, 3) 1.716938 connected double 98.5%

RACS-DR1 J000933.5+144146 RACS_0000+12A_1465 2.389622 14.696120 (1, 2) 1.801990 extended compact 98.5%

the SOM is trained, each input image has a neuron which has
been assigned as its best representative or BMU. We label the
neurons based on observable morphological structures and then
transfer these labels back to the sources from their BMU. This
yields a catalogue of complex radio sources, which can be used
for further studies. We visually inspect a smaller subset of input
images and their BMU to determine a reliability threshold for
the similarity metric, which in this case is a modified Euclidean
distance. We find that for Euclidean distances of less than 2.74
there is around a 98.5% chance that a randomly chosen input
image will match its BMU, but this percentage decreases with
Euclidean distance as expected. This, however, gives us the oppor-
tunity to study the most unusual and rare objects present in
the data by filtering the catalogue to identify sources with high
BMU Euclidean distances, and this will be the topic of our next
paper.

The catalogue created consists of 251 259 objects from RACS-
Low and has additional columns added which include: the

best-matched neuron or BMU, the Euclidean distance between
the input image and its BMU, the morphology label based on its
BMU as well as a general confidence level calculated through visual
inspections.
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Appendix A. BMU Euclidean Distances of individual neurons
in SOM grid

In Section 4, we have Fig. 5 which gives the distributions of the
BMU Euclidean distance for the overall dataset. Here, we have
included additional Figs. A1, A2, A3, and A4 which explore the
distribution of the BMU Euclidean distance for individual neu-
rons in the trained SOM grid divided into the four quadrants
in the grid, i.e. the top left, top right, bottom left and bottom
right (see the quadrants as indicated in red in Fig. 3). On the
top quadrants, we mostly have smaller or simpler structures for
which the Euclidean distances skews more towards the lower end.
However, there is a trend for higher Euclidean distances in the bot-
tom quadrants, especially the bottom right quadrant, and this can
be attributed to there being larger or more extended sources in this
SOM regions compared to the top left quadrant of the SOM. For
these sources, we would expect a higher level of background and
noise pixels, and their cutout size might also not be large enough
to capture their full extent. As such, the higher Euclidean distances
could be due to them not being modelled as well during SOM
training.
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Figure A1. The distributions of the BMU Euclidean distance between an individual neuron in the SOM grid and all the input images for which it was chosen as the BMU for all the
neurons in the top left quadrant of the SOM (Fig. 3).
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Figure A2. The distributions of the BMU Euclidean distance between an individual neuron in the SOM grid and all the input images for which it was chosen as the BMU for all the
neurons in the top right quadrant of the SOM (Fig. 3).
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Figure A3. The distributions of the BMU Euclidean distance between an individual neuron in the SOM grid and all the input images for which it was chosen as the BMU for all the
neurons in the bottom left quadrant of the SOM (Fig. 3).
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Figure A4. The distributions of the BMU Euclidean distance between an individual neuron in the SOM grid and all the input images for which it was chosen as the BMU for all the
neurons in the bottom right quadrant of the SOM (Fig. 3).
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