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Abstract—A major challenge faced when developing smart,
sustainable urban environments is the reduction of air pollutants
that adversely impact citizens’ health. The UK has implemented
strategies such as clean air zones (CAZs) coupled with the use
of sensor technologies to monitor the changes in these pollutant
concentrations while simultaneously reducing them over time.
Consequently, this poses important concerns: how much consid-
eration has been given to the positioning of these sensors, and
are the citizens the focal point of this decision-making process?
In this paper, we seek to address these concerns by introducing
a framework which responsibly positions air pollution sensors
based on three conjoined tenets: 1) sensors should equitably
cover areas of varying deprivations faced by citizens, 2) sensors
should cover areas that have dense concentrations of specified
parameters of interest which directly impact its citizens’ health,
behavioural practices and other factors, and 3) sensor coverage
should be maximised across the expanse of the city. After laying
the foundation of our algorithm, we then demonstrate that
sensors can be positioned in a responsible manner that upholds
the aforementioned objectives using geospatial data for the city
of Hull, one of the most deprived areas of England.

Keywords—sensor, smart city, air quality, urban observatory,
fairness, geospatial, clean air zone, monitoring

I. INTRODUCTION

Increasingly, local administrations of modern urban cities
deploy advanced technologies to enhance the quality of life.
Among these technologies, air quality sensors are the most
popular tools for real-time monitoring and management of
atmospheric pollutants. By providing granular insights into
air quality parameters such as particulate matter (PM2.5,
PM10) and nitrogen dioxide (NO2), these sensors empower
policymakers and urban planners to set up urban observatories
[1] to devise targeted interventions (e.g., Clean Air Zones
[2]) aimed at curbing pollution levels and safeguarding public
health.

However, the determination of “ideal” air quality sensor
locations is a non-trivial task for local government officials
given the multitude of parameters that need to be considered.
These parameters may include but are not limited to population
density, the English Indices of Multiple Deprivations (IMD),
and the age-standardised rates of pollution-related health con-
ditions such as cardiovascular and respiratory diseases.

This paper delves into designing an algorithmic framework
which considers the geographic spread of multiple parameters
of interest through which a suitable set of locations for air
quality sensor placements is recommended. Our approach
achieves fairness by recommending extensive sensor coverage
across the varied levels of deprivation. The key aim is to
determine the locations such that we “optimise” on both target
parameters of interest (e.g., assured coverage in hot spots of
poor respiratory health) and fairness in sensor distribution. We
construct our responsible framework for air quality monitoring
by considering both the “target” and “fairness” parameters.

The current literature in air quality sensor placement puts
emphasis on achieving good coverage on either the geographic
spread of pollutants (e.g., PM2.5) or on the geographic spread
of citizens (e.g., optimising on parameters such as population
density and key demographics, etc). In the former, sensors are
positioned in areas where specific pollutants are more densely
concentrated [3], [4], [5], [6]. The algorithmic techniques used
consisted of physics-based approaches using proper orthogonal
decomposition (POD) [3], clustering based models in conjunc-
tion with integer linear programming models [5], and nonlinear
programming techniques using the BONUS algorithm [6]
when covering air pollutant dense regions. These methods,
however, do not emphasise the underlying socioeconomic
conditions being faced by the residents of an area of interest.
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Citizen-based coverage relates to placing sensors in areas
where citizens are set as the focal decision point [7], [8], [9].
The use of greedy and genetic algorithms for single and multi-
objective optimisation was used for determining citizen based
coverage approaches [7]. As well as physics based multireso-
lution dynamic mode decomposition to position sensors in a
way that maximised the coverage of air pollutants while also
optimising on socioeconomic factors such as racial minority
populations and relative income status by penalising placement
in areas that represent the racial majority and wealthy regions
[8]. Our work seeks to equitably position sensors across
all areas of deprivation without explicitly penalising specific
socioeconomic parameters.

While the literature in the area of sensor placement is rich,
to the best of our knowledge, previous works so far have
developed solutions that only consider a few parameters at
a time. Our work is complementary to the existing works in
the sense that we propose a generic algorithmic framework
that can consider a more expansive combination of “target”
and “fairness” geospatial parameters to recommend sensor
locations. This paper makes the following contributions:

• We define the novel problem of fairness-based sensor
location determination for air quality monitoring which
aims to optimise on both target and fairness parameters.

• We propose a novel algorithm which recommends sensor
locations while optimising on both target and fairness
parameters.

• We evaluated our proposed algorithm using real datasets
from Hull, UK. More specifically, Lower Layer Super-
Output Area (LSOA) data, English IMD, population
density, the emergency hospital admissions for all cardio-
vascular diseases and the emergency hospital admissions
for all respiratory diseases. For brevity, the last two
are referred to as all cardiovascular diseases and all
respiratory diseases throughout the paper.

• Our results on Hull datasets indicate that our proposed
algorithm achieves good scores while optimising target
parameters (population density, all respiratory and all car-
diovascular diseases) and the fairness parameter (IMD).
A formal definition of used metrics is detailed later in
Section II.

The rest of the paper is organized as follows. In Section II,
we present the basic concepts and formally define our problem,
then discuss our proposed algorithm in Section IV and present
the results of our algorithm on a real-world dataset for the city
of Hull in Section V. We then explore some limitations to our
approach in Section VI and finally provide our conclusion in
Section VII.

II. BASIC CONCEPTS

Geospatial Framework: a set, Φ, of LSOA elements rep-
resenting geographical areas of interest. LSOAs have been
specifically derived for statistical analysis from the UK Cen-
suses by the Office for National Statistics. The boundary

files are available in the form of a shapefile which can be
loaded into a Geographical Information System (GIS) mapping
software (e.g. QGIS).

Geospatial Field Function (F ): a function, F , over the
geospatial framework that maps Φ to a set of categorical values
given by F : Φ → {High,Medium,Low}.

The function is applied across several geospatial layers
corresponding to population density, the emergency admission
rates for all respiratory diseases (J00-J99) and all cardio-
vascular diseases (I00-I99) as defined by the International
Classification of Diseases [10], and IMD. Field function values
are generally defined over a set of real numbers, but a
discretisation procedure was applied in this work to generate
the categorical values. The procedure involves tercile divisions,
e.g. division of a dataset via the 33rd and 66th percentile of the
values or the first and second terciles (T1 and T2), respectively.
Thus, all LSOAs with values less than T1 are marked as Low,
those greater than T2 as High, and those in between T1 and
T2 (inclusive) as Medium.

Target Field Function: a field function that would be used
to drive the algorithm in terms of covering high-intensity (on
certain parameters of interest) areas. For example, one would
want to cover areas that have high-intensity of respiratory
diseases. In this paper, we will be using the following Geospa-
tial layers as the target field functions: (i) population density,
(ii) all respiratory diseases, and (iii) all cardiovascular diseases.

Fairness Field Function (FF ): A field function that would
be used to drive the fairness goal of the algorithm. In this
paper, we will be using IMD as our fairness geospatial layer.

Intensity Score Metric (ISM): Given a candidate solution
set S ⊂ Φ with k elements and a collection of target field
functions (λ), the intensity score metric of S is calculated as
follows:

(1)

where |FH |, |FM |, and |FL| represent the number of LSOAs
in S with field function F values of High, Medium and Low,
respectively, and the weights ωH , ωM , and ωL are real-valued
scalars which satisfy the condition ωH > ωM > ωL to
prioritise the selection of elements in Φ that have field function
values of High. ISM values range from 0 and 1, inclusive,
with 1 representing the most favourable outcome. Higher ISM
values indicate that most selected LSOAs in S have values that
are mostly High and/or Medium.

Fairness Score Metric (FSM): Given a candidate solution
set S ⊂ Φ and a fairness field function FF , the fairness score
metric of S is calculated as follows:



(2)

such that

p(H) =
|FFH |

|FFH |+ |FFM |+ |FFL|
(2a)

p(M) =
|FFM |

|FFH |+ |FFM |+ |FFL|
(2b)

p(L) =
|FFL|

|FFH |+ |FFM |+ |FFL|
(2c)

where |FFH |, |FFM |, and |FFL| represent the number of
LSOAs in S with FF values of High (H), Medium (M ) and
Low (L), respectively. FSM values closer to 0.5 indicate that a
balanced spread of placements across the IMD field function
was achieved. We expect the division of values to follow H =
33%, M = 33% and L = 33% of FSM values.

III. PROBLEM DEFINITION

Given the complexity of the problem of air pollutant
monitoring [8], it is critical to implement a solution that
addresses these complexities. Our approach seeks to provide
a framework that selects sensor locations through a sequential
process that allows each parameter to determine a potential
location best suited for a sensor. The model aims to produce
a set of locations that 1) maximises the ISM value of solution
set S, 2) maximises the FSM value of S and 3) maximises the
distance between the LSOAs selected in S. To achieve this, our
model accepts five primary input variables. It uses a single
fairness field function and a series of target field functions.
It then takes the number of LSOAs where sensors should be
placed (k) and the minimum number of LSOAs that form a
cluster represented by τ . Finally, it uses the minimum distance
allowed between sensors, represented by dth.

A. Illustrating the problem

Fig. 1 illustrates our problem using a synthetic dataset
comprising four input field functions, namely three target field
functions (e.g., population density, all respiratory diseases, and
all cardiovascular diseases) and a fairness field function (e.g.,
IMD). The field functions are identically shaped grids where
each grid space is considered as an LSOA. In this example, we
have set the number of sensors k = 4. For ease of navigation,
the grid columns are labeled with letters ranging from A to D
while the rows are labeled with numeric values ranging from
1 to 5. The LSOAs in each of the input field functions have
been labeled as either H, M, or L represented by the colours
red, yellow, and blue, respectively (see Fig. 1E). The result
of the algorithm is shown in Fig. 1F in which we represent
our candidate solution as a field function that maintains the
same grid structure and displays the selected LSOAs where
sensors can be positioned. This grid is known as the results
field function.

Fig. 1. Values for each grid location represented on the different field
functions provided as input to the algorithm. A – C represent the target field
functions population density, all respiratory diseases and all cardiovascular
diseases. D represents the fairness field function IMD. E defines the colour
scheme and F shows the results obtained after processing the algorithm with
k = 4 sensors selected as input. For the purpose of clustering, we set the
minimum number of contiguous locations, τ = 2. The numbered black dots
ordinally represents the selection made in each iteration of the algorithm.

Fig. 5A shows the number of selected location for each
field function. These values were used to compute the metrics
used in the analysis of the algorithm which produced an ISM
value of 0.814 and an FSM score of 0.452. The ISM value
indicates that most of the selected LSOAs are in areas of
high and medium classes while the FSM value underscores the
balanced spread of placements across the IMD field function.
This indicates that diversity was achieved in the placement of
the sensors across the fairness field function.

IV. PROPOSED APPROACH

In this section we will provide a detailed description of
the operation of the algorithm utilising the dataset introduced
in III. Problem Definition section A. An execution trace is
provided for each stage that the algorithm performs and results
achieved on the dataset.

A. Algorithm Description

1) Removing outlier LSOAs in Field Functions through
clustering: As a method of removing outliers from the dataset,
we cluster the LSOAs within a field function that share the
same tercile category using a contiguity-based approach. The
clusters that have less than the minimum number of LSOAs (τ )
are considered outliers. In our implementation, τ = 2 which
implies that a cluster of only one LSOA is an outlier and is
excluded from further consideration by the field function.

We now detail our clustering approach. Consider all the
LSOAs of a particular tercile category (say ‘H’). Now, we
model each LSOA as a node in the graph. We add an edge
between two nodes if the corresponding LSOAs are immediate
neighbours in the underlying Geospatial framework. Fig. 2
illustrates this process for a tercile category ‘H’. Following
this, we compute the connected components in this graph.
Each connected component in the graph forms a cluster. We



then record the number of LSOAs within each cluster. Note
that each LSOA will only belong to one cluster using the
approach.

Fig. 2. Performing contiguity based clustering of high (H) locations on
the fairness field function (e.g., IMD). White, unlabelled grid locations are
classified as outliers.

Let ZH , ZM , and ZL be the list of the clusters obtained
(post outlier removal) for the terciles ‘H’, ‘M’, and ‘L’, re-
spectively, in descending order of their size. We then construct
a master list Zµ containing ZH , ZM , and ZL, strictly in that
order. Thus, if we were to process the clusters in Zµ, we would
first exhaust those in ZH , before moving to ZM , and then ZL.

2) Main Implementation: On each iteration of the algo-
rithm, a different target field function is used in the process
of selecting sensor locations. To select the first location, the
algorithm will choose an LSOA at random from the largest,
high-valued tercile cluster in the first target field function. This
location is then added to S since there are no other locations
that have been selected up to this point. After selecting the
next target field function in the ordered set, the algorithm
then proceeds to determine the distance between each location
in S and that of each potential location found in the largest
high-valued tercile cluster in the target field function. Potential
locations that meet the minimum distance between themselves
and the locations found in S are stored and used in the
next stage of the algorithm. If, on the other hand, there are
no qualifying points in the largest high-valued cluster, the
algorithm will select the 2nd largest high-valued cluster and
continue to iterate through the tercile clusters from the largest
high-value to the smallest low-value cluster until a potential
location is found that satisfies this requirement.

The next stage checks the tercile value of each of the
potential locations in the fairness field function and computes
the degree of impurity found between each of these locations
and those found in S. The potential location that produces the
highest level of impurity is then selected as the next location
and is added to S.

V. EXPERIMENTAL ANALYSIS

A. Datasets

The data used for this analysis was collated from the
Hull City Council (HCC) as well as the Office for National
Statistics’ Open Geography Portal and includes, the LSOA
divisions for the city of Hull, population density, hospital
admissions for all respiratory diseases and all cardiovascular
diseases.

Algorithm 1 Sensor Placement(FF, λ, k, τ, dth)
1: Remove outliers for each of the target field functions using

the continuity-based clustering of the terciles (using τ )
2: Create Zµ for each of the target field functions
3: Solution set S = ∅
4: order of layers ⇐ ordering amongst field functions in

λ
// (E.g., population density > cardiovascular diseases >
respiratory diseases

5: current layer H = next layer in order of layers
6: nLSOA ⇐ arbitrary LSOA from the first cluster in Zµ

list of field function H
7: Add nLSOA to the solution set S
8: for i = 2 to k do
9: current layer H = next layer in order of layers

10: solution selected = FALSE
11: while solution selected == FALSE do
12: Ω ⇐ Next higher ranked cluster from ZµH

of layer
H ∪M ∪ L

13: Ω′ ⇐ Discard LSOAs from Ω which are below dis-
tance threshold (dth) of previously selected LSOAs
in S.

14: if Ω′ is not NULL then
15: X = α

∑
xi∈S dist (x, xi) + β · Entropy (S ∪ xi)

//The distance values dist() are normalised
16: nLSOA ⇐ LSOA with the largest value in X
17: Add nLSOA to S
18: solution found = TRUE
19: end if
20: end while
21: end for
22: return S

1) LSOA data: Obtained from the Office for National
Statistics’ Open Geography Portal, this dataset consists
of the 168 LSOA geographical boundaries for Hull [11].

2) English IMD: Produced by the UK Government in 2019
based on the LSOA geographical boundaries from the
2011 Census and measure relative levels of deprivation
across England. The scores have been estimated and
adjusted for the 2021 LSOA boundaries by the HCC
for this analysis, and the national ranks (out of 33,755)
were calculated [12].

3) Population Density: Computed by the HCC, it contains
the population estimates for each LSOA from the 2021
Census expressed as the number of residents per square
kilometre [11].

4) Emergency Hospital Admissions For All Cardiovascu-
lar Diseases and All Respiratory Diseases: From the
NHS Digital’s Data Access Environment, the number
of emergency hospital admissions over the ten-year
period 2013/14 to 2022/23 where the primary diagnosis
was cardiovascular disease (ICD I00-I99) or respiratory
disease (ICD J00-J99) was used [10]. ONS’s mid-year
resident population estimates at LSOA level were used



Fig. 3. Tercile representations for the Indices of Multiple Deprivations (A), Population Density (B), All Respiratory Diseases (C), and All Cardiovascular
Diseases (D) geospatial field functions.

for 2013 and 2020 (prior to ONS back-revising their
estimates for the 2021 Census as these were not available
at the time of this analysis) with an adjustment based
on the 2021 Census and mid-year 2022 population
figures to estimate the population for 2021 and 2022.
The directly age standardised emergency admission rate
was calculated standardised to the European Standard
Population 2013. The rate is expressed as the number
of emergency admissions for cardiovascular disease and
for respiratory disease per 100,000 residents over the
ten-year period 2013/14 to 2022/23. It was necessary
to use ten years of data as the number of admissions
at LSOA level would have been too small to make the
calculation of the directly standardised rate statistically
valid otherwise.

In Fig. 3 we depict the terciles present in each of our
input field functions. Segment A shows the IMD field function
with dark red representing areas that are most deprived. Areas
represented by cream are less deprived in nature. Population
density is represented in Segment B with dark green reflecting
the most densely populated areas and light green representing
less populated areas. Segments C and D depict all respira-
tory and cardiovascular diseases respectively with the darkest
colours representing areas with the highest rates of emergency
hospital admission for the conditions, and the lightest colours
showing the areas with the lowest emergency admission rates.

For the final set of inputs, we set the number of locations

that will receive a sensor, k = 40, and the minimum number
of locations that define a cluster, τ = 2. Finally, the minimum
distance where sensors can be placed together, dth = 2 km.
Fig. 4 illustrates the LSOAs that are selected for sensor
placement across the city of Hull. The sensors are spread
across the city and account for the hotspots found on each
of the optimisation layers.

Fig. 4. Result of placing k = 40 sensors across the city of Hull.

For evaluation purposes, let ωH = 3, ωM = 2, and ωL =
1. We then compute the ISM and FSM values based on the
aggregated data computed illustrated in 5. Of the 40 sensors
that were placed by the algorithm, 23 were positioned in the
most densely populated areas whereas 9 were placed in areas
with the least residents. There were a total of 20 sensors placed
in areas with high admission rates for respiratory diseases and



8 in areas where admission rates were relatively low. Similarly,
the model allocated sensors for 19 areas with high admission
rates for all cardiovascular diseases and 10 sensors in areas
with low admission rates. Finally, 19 locations were selected
for sensor placement in most deprived areas, 13 in areas with
intermediate levels of deprivation, and 8 in areas of lower
levels of deprivation.

Fig. 5. Number of locations selected in each field function in (A) the synthetic
dataset where k = 4 and (B) the city of Hull where k = 40.

Given the results shown in Fig. 5B, the calculated ISM
and FSM values were 0.764 and 0.452, respectively. The ISM
value indicates that the majority of sensors were placed in
areas where the value of the field function had its densest
concentrations. Finally, the FSM value of 0.452 suggests that
there was a good balance of the locations selected on the
fairness field function. 47.5% of locations selected in areas
that are most deprived, 32.5% selected in the medium tercile
tier of deprivation, and 20% placed in more deprived areas.

VI. DISCUSSION

The algorithm is prone to selecting locations based firstly
on their proximity and then uses the qualifying locations to
compute the entropy of the candidate solution with the quali-
fying locations. If, for example, IMD and that particular field
function were found to be strongly correlated, the resulting
computation may not exhibit the anticipated level of diversity.
Another limiting factor in our work centres around the use
of terciles as the method of discretising the field function
values. Using three classes may inadvertently eliminate some
of the distinct spatial variation found across an area of interest.
Future iterations of this work will explore the use of more
refined divisions such as quintiles or deciles which may lead
to sensor placements that more closely align with the aims of
the algorithm as detailed in our objective function.

Unlike the target field functions which are capable of
utilising 1 or more field functions, the fairness field function
is limited to only using a single field function to determine
fairness. If more field functions were required to be used to
optimise fairness, the algorithm would need to be redesigned
to accommodate this change.

VII. CONCLUSION

Through the analysis of the target and fairness field func-
tions we demonstrated that sensors can be placed in a manner
that maximises the diversity of the selection based on the
various degrees of deprivation faced in a smart city. This was
accomplished while simultaneously maximising the selection
of locations that are in densely concentrated areas of the
selected target field functions. We were also able to spread the
sensors across the area being analysed in a way that maximises
their coverage across that area. We proposed metrics (ISM
and FSM) that can be used to evaluate the quality of the
results that have been achieved by the algorithm and also add a
layer of explainability to the locations that have been selected.
This approach to placing air quality sensors may positively
impact the public’s perception since the methods proposed
keep fairness as a core tenet of its operation.
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