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ABSTRACT
This research introduces a novel dual Fast Grey Wolf Optimizer (FGWO) combined with Radial
Basis Function Neural Networks (RBFNN) for a Fractional-Order PID (FOPID) controller applied to
a helicopter simulator. The proposed FGWO improves the standard Grey Wolf Optimizer (GWO)
by enhancing hunting during the exploitation phase and increases robustness in convergence to
the minimum value. FGWO optimizes the FOPID parameters using a novel objective function. The
RBFNN is integrated to address the nonlinearities and uncertainties, while a dual block mitigates
the coupling effects. The performance of the proposed controller is characterized by two simulation
scenarios. The first scenario involved nine benchmark functions across thirty trials. Results demon-
strated that the FGWO offered superior performance in terms of robustness and proximity to the
global minimum compared to the GWO. The second scenario involved applying the controllers to
thehelicopter. Results evidenced that thedual-FOPID-FGWO (DRF-FG) controller achieveda4.3363%
faster response and 1.8199% higher precision than the GWO-based controller (DRF-G). The DRF-
FG showed robustness in trajectory tracking compared to the controllers based on the Ant Lion
Optimizer (DRF-A) and the Whale Optimization Algorithm (DRF-W). DRF-FG improved the average
regulation performance by 1.702% and trajectory tracking by 0.152% compared with DRF-G.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) have been widely
employed in military and civilian domains (Tutsoy et al.,
2024). Numerous UAV configurations are currently oper-
ational, among these configurations, the traditional Two
Inputs Two Outputs (TITO) Sikorsky helicopter is partic-
ularly useful, owing to its distinct features such as Ver-
tical Take Off and Landing (VTOL) capability, compact
tail design, and relatively modest power consumption
with only two rotors. UAV simulators emulate laboratory
equipment to facilitate the safe assessment of control
algorithms. These systems enable researchers to closely
replicate the dynamics of real UAVs while minimizing the
cost associated with experimentation by reducing the
risks associated with damages to the actual operational
units. Scientific literature reports several examples of heli-
copter simulators such as Gopmandal and Ghosh (2022);
Hoffman et al. (2018); Norsahperi and Danapalasingam
(2020); Zhu and Li (2021).

TITO helicopter is a highly nonlinear and uncertain
aerodynamic Multiple-input multiple-output (MIMO) sys-
tem with cross-coupled dynamics. In addition, it should
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be able to fly safely in a disturbed environment. In order
to stabilize such a system, controllers based on linear and
nonlinear methods have been investigated (Irfan et al.,
2024). A nonlinear controller based on prescribed-time-
constrained feedback approach was reported in Singh
et al. (2023). Variants of integral backstepping control
were proposed in Haruna et al. (2023); Haruna et al.
(2020). A non-singular MIMO adaptive-optimal Terminal
Sliding mode control approach was proposed in Rezoug
et al. (2024). The aforementioned studies present com-
plicated design approaches that pose challenges in their
real-time control particularly on a physical UAV. On the
other hand, Proportional Integral Derivative (PID) and
its variants have also been proposed in recent years
for controlling TITO helicopters. A few exemplary works
include Faisal and Abdulwahhab (2021); Norsahperi and
Danapalasingam (2020); Pathan et al. (2021); Shah et al.
(2023); Shalaby et al. (2023); Żegleń-Włodarczyk (2023).
However, for highly nonlinear systems, theuseof PID con-
trol may not be the best-recommended choice because
of its constrained ability to provide satisfactory perfor-
mance and robustness in a small area around the setpoint
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(Haq et al., 2022). In order to obtain the best performance
with robustness, Fractional Order PID (FOPID) was pro-
posed, in which the parameters must be tuned according
to the system dynamics. The tuning of FOPID controllers
has garnered significant attention from the control com-
munity, particularly regarding reducing the number of
parameters requiredwhen dealingwith complex systems
(Iqbal et al., 2015). FOPID was applied to UAV systems,
as reviewed in Lopez-Sanchez and Moreno-Valenzuela
(2023). In Norsahperi and Danapalasingam (2020); Sha-
laby et al. (2023); Żegleń-Włodarczyk (2023), optimized
FOPID controllers based on metaheuristic algorithms
were successfully applied, where optimization deter-
mined the optimal values of the control parameters.

In addition to FOPID controllers, metaheuristic tech-
niques have also been extensively considered over the
last decade for other controllers (Izci & Ekinci, 2023; Izci
et al., 2023; Karakoyun et al., 2020; Lv et al., 2022; Oliveira
et al., 2020; Sun & Miao, 2023; Zatout et al., 2022; Zhang
et al., 2022). The GreyWolf Optimizer (GWO) is a relatively
new metaheuristic algorithm proposed (Mirjalili et al.,
2014). The GWO emulates the social hierarchy of wolves’
leadership, which is well known for hunting in packs.
GWO is relatively faster and simpler since it uses a min-
imal number of adjustable parameters. Its efficiency has
been demonstrated in diverse fields through numerous
applications (Makhadmeh et al., 2024; Mirjalili et al., 2014;
Rezoug et al., 2022). Compared to other swarm intelli-
gence algorithms, GWO requires fewer tuning parame-
ters, which simplifies the optimization process. This is
different from algorithms like Particle Swarm Optimiza-
tion (PSO), WOA and ALO which rely on individual expe-
riences. It is reported in Makhadmeh et al. (2024) that
owing to its effective exploitation strategy, GWO often
exhibits superior convergence properties, whereas other
algorithms may require more iterations to converge. In
addition, GWOuses a uniquemathematicalmodel to sim-
ulate the encircling and hunting behaviour of wolves,
while other algorithms may utilize different strategies
(e.g. PSO relies on velocity updates based on personal
and group bests). Despite several advantages offered by
GWO, it suffers from premature convergence to the mini-
mumwith apossibility of stagnation in the localminimum
and abrupt transition from exploration to exploitation.
In order to address these issues and improve the per-
formance of classical approaches, variants of the GWO
have been proposed in recent years. These variants can
be subdivided into twomain categories in terms of mode
of improvement (Makhadmeh et al., 2024); (i) structural
modification of GWO and (ii) hybridization of GWO with
other algorithms. The objective of the first approach is to
modify the structureby including terms in theexploration
and/or exploitation phase (Huang et al., 2021; Karakoyun

et al., 2020; Luo, 2019; Yingxun et al., 2020). The second
approach involves combining GWO with Artificial Intel-
ligence (AI) based algorithms to address the inherent
demerits of GWO by Jarray et al. (2022); Lv et al. (2022);
Qu et al. (2020). In comparison to the first approach, the
second method my pose challenges in terms of parame-
ter adjustment and require an optimal balance between
GWO and the AI method used.

Neural Networks (NN) is an active research topic in the
scientific community. This method is useful when deal-
ing with complex systems that are challenging to model
and are therefore difficult to control. The conventional
NN has fundamental problems of slow learning time and
stagnation in local minima (Veerasamy et al., 2022). To
address these problems, the concept of Radial Based
Function Neural Networks (RBFNN) (Zijie et al., 2022) is
proposed as an alternative of the multi-layers NN. The
RBFNN has a single handle layer and thus offers quick
learning. The RBFNN is widely used to control nonlinear
systems owing to its superior speed performance and
can be used individually or in combination with other
control methods. PID- and FOPID-based NN controllers
have been proposed and applied to various systems
(Veerasamyet al., 2022; Zijie et al., 2022). Relevant notable
works on RBFNN include adaptive RBFNN for a robotic
manipulator (Liu et al., 2021), adaptive PI and RBFNN
PID for a permanent magnet synchronous motor (PMSM)
drive (Zeng et al., 2022) and a quadrotor UAV (Guo et al.,
2023). In these research works, it is clearly shown that
the RBFNN offers superior performance compared to the
conventional NN inmany applications. The optimizations
of RBFNN using the GWO algorithm have been inves-
tigated in several contexts including; (i) the parametric
optimization of RBFNN by GWO (ii) the combination of
RBFNN with another controller optimized by GWO and
(iii) the adjustment of RBFNN output using GWO. For the
first context, interested readers are referred to notable
recent works using GWO such as; Wu et al. (2023) esti-
mated parameters in a lithium-ion battery indicating its
state of health, Hussein and Al-Araji (2024) found opti-
mal parameters in ahovercraft indicating its optimal path,
Wang et al. (2022) enhanced image reconstruction accu-
racy to improve the resolution of electrical impedance
tomography imaging and Chen et al. (2022) predicted
the undrained shear strength by examining cone pene-
tration. An example of the second context is reported in
Messaoui et al. (2024), where RBFNN has been used to
adjust the PID-based GWO controller applied to a 3-DOF
helicopter laboratory system. An example of the third
context is presented in Sreedhar et al. (2024), where GWO
has been employed to fine-tune output of RBFNN for the
maximum power point tracking (MPPT) problem. GWO
variants have been successfully used to solve control
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problems, such as tuning the fuzzy logic controller to
enhance the performance of a sun-tracker system (Tri-
pathi et al., 2020). In Zhang andMing (2021), the dynamic
GWO has been proposed to optimize the Type-2 fuzzy
logic control law. In Shauqee et al. (2021), hybridization of
a proportional double derivative with a Linear Quadratic
controller (PD2-LQR)-based improvised GWO controller
was designed to control a quadrotor system. In Choubey
and Ohri (2022), PID gain parameters based on GWO-LQR
weightingmatriceshavebeenproposed.OtherGWOvari-
ants have been applied to different systems, such as a
serial robotic manipulator (Rezoug et al., 2022) and a 3-
Degree Of Freedom (DOF) parallel manipulator (Choubey
& Ohri, 2023). These new approaches provide relatively
better results than classical GWO.

In the light of the aforementioned studies, some
important aspects are not fully considered such as, in
many works, FOPID controller has been applied as a
Single-Input Single-Output (SISO) controller with the
cross-coupling effect ignored. The use ofMIMO-NN offers
several challenges in terms of its structural adjustment.
To the best of the authors knowledge, as of now, the
optimization of FOPIDbyGWO in the context of TITOheli-
copter simulator has not been addressed. A few works
addressed the dual control aspect for this class of sys-
tem and thus it remained an active problem in the control
community.

In this study, we propose a new optimized Dual-
RBFNN-FOPID-FGWO (DRF-FG) controller that combines
the simplicity and robustness of the FOPID and flexi-
bility of the RBFNN thus improving the control perfor-
mance and system stability. The FOPID parameters are
tuned using an optimized procedure based on Fast GWO
(FGWO). In addition, a dual approach is employed tomiti-
gate the cross-coupling effect. The overall principle of this
research can be summarized as follows: (1) control using
a classical FOPID controller, (2) optimize FOPID parame-
ters using FGWO, (3) adjust the FOPID parameters using
RBFNN controller and (4) involve dual control to handle
cross-coupling effect. The proposed DRF-FG addresses
the since the control approach is both adaptive and opti-
mal. The optimization is related to the FOPID parame-
ters designed using FGWO and the adaptation is a con-
sequence of incorporating the RBFNN into each FOPID
action. The RBFNN is well known to handle nonlinearities
and uncertainties in a system. Thus, knowledge of pre-
cise parameters of the system is not required to apply the
proposed approach. The contributions of this study are
summarized as follows:

(i) Proposing a new metaheuristic approach based
on the GWO. This approach, named as FGWO,
improves hunting during the exploitation phase.

The proposed approach was validated using nine
benchmark fitness functions.

(ii) Using FGWO to design FOPID parameters with an
application to the trajectory tracking of a TITO
Quanser Aero helicopter.

(iii) Proposing a newhybrid controller basedon FGWO-
FOPID discussed in (ii) and the integrated RBFNN.
The RBFNN relies on online learning and thus
eliminates the need of a training phase. The dual
algorithm is incorporated into the proposed hybrid
controller to deal with cross-coupling.

(iv) The effectiveness of the DRF-FG scheme is con-
firmed through several simulations using the TITO
Quanser Aero simulator and its performance was
compared with those of Dual-RBFNN-FOPID-GWO
(DRF-G),Dual-RBFNN-FOPID-ALO (DRF-A), andDual-
RBFNN-FOPID-WOA (DRF-W). The results demon-
strated the superior performance of the proposed
controller.

The remainder of the paper is organized as follows:
Section 2 presents the background of GWO, FOPID, and
RBFNN. In Section 3, the optimization of FOPID parame-
ters using GWO and its variants is presented. The appli-
cation of the proposed method and its comparison with
classical and optimized FOPID are presented in Section 4.
The design of Dual-RBFNN-FOPID-FGWO (DRF-FG) is dis-
cussed in Section 5. The simulation results are presented
in Section 6. Finally, Section 7 concludes the paper.

2. The Quanser Aero helicopter description and
modelling

The Quanser Aero system, shown in Figure 1, is a 2-
degree-of-freedom (2DOF) system consisting of a base
on which a vertical arm is mounted. The helicopter is
attached to the top of this vertical axis. The helicopter
itself is attachedat themidpoint of this arm. The rotors are
housed within protective casings with counterweights
fixed at each casing. The system is equipped with incre-
mental angle sensors, one for each axis, allowing for
the measurement of angles and their velocities. The two
rotors can be controlled independently. Amain rotor and
a tail rotor are positioned at either end of the beam
(Choubey & Ohri, 2022). Both rotors are driven by DC
motors (Zhu & Li, 2021) operating within a voltage range
of ±24 V. The helicopter is a rotary-wing aircraft whose
propulsion is provided by rotors that allow manoeuvring
to reach accessible places. The helicopter simulator is a
prototype that allows angular movements in pitch and
yaw axes. The system finds potential in the validation of
control approaches with a relatively high degree of appli-
cability to real helicopters. Given its physical similarity to
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Figure 1. Quanser Aero system.

Table 1. Physical Aero Quanser parameters.

Description Symbol Value Unit

Mass m 1.075 kg
Pitch directional viscous damping Dp −7.59 N/V
Yaw directional viscous damping Dy 15.8 N/V
Pitch inertia Jp 2.15 × 10−2 kgm2

Yaw inertia Jy 2.37 × 10−2 kgm2

Drag/air resistance coefficient kd 1 × 10−5 Nm
Acceleration due to gravity g 9.81 ms−2

Input voltage of pitch angle Vp V
Input voltage of yaw angle Vy V
Distance between centre of mass and
origin of B

lc 0.002 mm

Torque thrust gain from the pitch rotor Kpp – –
Cross-torque thrust gain exerted on the
pitch from the yaw rotor

Kpy – –

Cross-torque thrust gain applied on the
yaw from the pitch rotor

Kyp – –

Torque thrust gain from the yaw rotor Kyy – –

a real helicopter, the Quanser Aero has the same configu-
ration as a helicopter i.e. the main propeller provides the
system with the necessary power and tail propeller sta-
bilizes the system. The system parameters are listed in
Table 1.

The forces acting on the system are expressed in the
fixed frame (Figure 1). The voltage Vp applied to the pitch
motor generates a force Fp perpendicular to the body at
a distance rp from the pitch axis. Similarly, the yawmotor
produces a force Fy due to the voltageVy . This force acts at
a distance ry from the yaw axis and also induces a torque
around the pitch axis. The rotation of the pitch rotor cre-
ates a torque around the motor, influencing the motion
around the yaw axis. Consequently, the rotation of the
pitch rotor causes movement around both the pitch axis
and the yaw axis.

To develop the nonlinear model of the Quanser Aero,
the following assumptions are considered: (i) Both rotors
have identical dimensions andarepositionedat equal dis-
tances from the centre of rotation, (ii) The pitch angle

is parallel to the ground, meaning the pitch is zero (iii)
The pitch angle is positive when the front rotor moves
upward, with a positive voltage applied to the front rotor
(iv) The yawangle is positivewhen the body rotates coun-
terclockwise around the z axis, with a positive voltage
applied to the tail rotor.

The centre of mass of the fixed body is expressed in
Cartesian coordinates as

⎧⎨
⎩
xc = lc cosψ cos θ
yc = lc sinψ cos θ
zc = lc sin θ

(1)

where θ and ψ are pitch angle and yaw angle respec-
tively. In this system, there is only one potential energy
Epot, which arises from the gravitational force and is
expressed as

Epot = mglc sin θ (2)

There are three kinetic energies associated with the
system; the rotational kinetic energies on the pitch (Ekin1)
and yaw axes (Ekin2) and the kinetic energy generated by
the translational movement of the centre of mass (Ekin3).
These energies are written as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ekin1 = 1
2
Jpθ̇2

Ekin2 = 1
2
Jyψ̇2

Ekin3 = 1
2
mlc

2

⎡
⎢⎢⎢⎢⎣
(− sin(ψ) cos(θ)ψ̇

− cos(ψ) sin(θ)θ̇)2

+(sin(ψ) sin(θ)θ̇ − cos(ψ) cos(θ)ψ̇)

+(cos(θ)θ̇)2

⎤
⎥⎥⎥⎥⎦

The total kinetic energy (Ekin) of the system is the sum
of Ekin1 , Ekin2 and Ekin3 then

Ekin = Ekin1 + Ekin2 + Ekin3 (3)

Putting the values of kinematic energies,

Ekin = 1
2
(Jpθ̇

2 + Jyψ̇
2 + mlc

2ψ̇2cos2θ + mlc
2θ̇2) (4)

Lagrange’s equation is used to find the equations of
motion for the pitch and yaw as,

∂

∂t

(
d�

dθ̇

)
− d�

dθ
= Fp

∂

∂t

(
d�

dψ̇

)
− d�

dψ
= Fy

⎫⎪⎪⎬
⎪⎪⎭ (5)
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Figure 2. Frame assignment on Quanser Aero system.

where � is the Lagrangian operator. Fp and Fy are the
forces applied along the pitch axis and the yaw axis
respectively.

Fp = τpitch − Dpθ̇

Fy = τyaw − Dyψ̇

}
(6)

where

τpitch = KppVp + KpyVy
τyaw = KypVp + KyyVy

}
(7)

where τpitch and τyaw are the torques produced by the
pitch and yaw motors respectively. Kyy , Kyp, Kpy and Kpp,
respectively, represent the torque thrust gain from the
yaw rotor, the cross-torque thrust gain affecting the yaw
fromthepitch rotor, the cross-torque thrust gain affecting
the pitch from the yaw rotor and the torque thrust gain
from the pitch rotor. Utilizing the Lagrange formulation
(5) and considering the frames and forces applied to the
system (shown in Figure 2) and given in (1–7), the dynam-
ics of the Quanser Areo system helicopter is expressed as
(Rezoug et al., 2024),⎧⎪⎪⎨
⎪⎪⎩
(Jp + mlc

2)θ̈ = (KppVp + KpyVy − Dpθ̇

−mglc cos(θ)− mlc
2ψ̇2 sin(θ) cos(θ))

(Jy + mlc
2cos2(θ))ψ̈ = (KypVp + KyyVy − Dyψ̇

+2mlc
2θ̇ ψ̇ sin(θ) cos(θ))

(8)

Themodel given in (8) indicates that the Quanser Aero
system helicopter is a nonlinear andmultivariable system
with coupled dynamics.

Given a reasonably small value of lc (see Table 1), we
can consider the terms involving lc

2 to be negligible. The
following remark is given:

Remark 2.1: If we to compare the first term of (8) (i.e.
Jp + mlc

2), we have mlc
2 = 1.075 × (0.002 × 0.01)2 =

4 × 10−12, which is negligible compared to Jp = 2.15 ×
10−2. The same observation can be made in the case of
(Jy + mlc

2cos2(θ)), since 0 < cos2(θ) < 1, thus, mlc
2 is

negligible compared to Jy. For termsmlc
2ψ̇2 sin(θ) cos(θ)

and 2mlc
2θ̇ ψ̇ sin(θ) cos(θ), since |sin(θ) cos(θ)| < 1 and

the velocities of the two motors are limited, lc
2 make

these terms negligible.

Therefore, (8) can be rewritten as{
Jpθ̈ = (KppVp + KpyVy − Dpθ̇ − mglc cos(θ))
Jyψ̈ = (KypVp + KyyVy − Dyψ̇)

(9)

Assuming cos(θ) ≈ θ , the model given in (9) can be
written as a linear MIMO system (10),{

Jpθ̈ = (KppVp + KpyVy − Dpθ̇ − mglcθ)
Jyψ̈ = (KypVp + KyyVy − Dyψ̇)

(10)

Equation (10) represents a linear MIMO system with
cross-coupled dynamics as shown in Figure 3, Similar
model is given in Aero 2 (2024) and a more simplified
version is reported in Dandago et al. (2024). Because the
Quanser Aero is a coupled system, both control inputs are
applied in the pitch and yaw angles, i.e.

θ = θVp + θVy
ψ = ψVy + ψVp

}
(11)

where θVp and ψVy are the output angles resulting from
the principal control inputs, θVy and ψVp are the angles
representing the dynamic coupling and are associated
with yaw loop control and pitch loop control respectively.
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Figure 3. Dynamic model of TITO helicopter.

The transfer function matrix of the Quanser Aero sys-
tem can be written as

[
θ(S)
ψ(S)

]
=

⎡
⎢⎢⎣

Kpp/Jp
S2 + (Dp/Jp)S + mglc/Jp

Kpp/Jy
S2 + (Dy/Jy)S

Kpp/Jp
S2 + (Dp/Jp)S + mglc/Jp

Kpp/Jy
S2 + (Dy/Jy)S

⎤
⎥⎥⎦

×
[
VP(S)
Vy(S)

]
(12)

Remark 2.2: The nonlinear part in (8) can be considered
as the uncertainties of the system, which will be handled
by the controller.

3. Control design

In this section, the FOPID, dual-boundary law and RBFNN
are presented. In addition, the theoretical backgrounds of
GWO, FOPID, and RBFNN theories are summarized.

3.1. PID and FOPID controllers

PID controller uses three terms to manipulate the error
signal (e). The error is the difference between the desired
signal (yd) and the actual signal (y). PID control law,
in time and frequency domains, can be respectively

written as,

u(t) = KPe(t)+ KI

∫ tf

t0
e(t)dt + KD

de(t)

dt

U(S) =
(
KP + KI

1
S

+ KDS

)
E(S)

⎫⎪⎪⎬
⎪⎪⎭ (13)

where Kp is the proportional gain to scale the current
error,KI is the integral gain associatedwith the sumofpre-
vious errors and KD is the derivative gain relevant to the
rate of changes in the error signal.

The FOPID is a generalization of the classical PID and
was proposed by Podlubny with the transfer function
given in (14) (Lopez-Sanchez &Moreno-Valenzuela, 2023)

u(t) = KPe(t)+ KI

∫ tf

t0
e(t)dtλ + KD

dμe(t)

dtμ

U(S) =
(
KP + KI

Sλ
+ KDSμ

)
E(S)

⎫⎪⎪⎬
⎪⎪⎭ (14)

where Kp, KI and KD are real numbers and 0 < λ < 1 and
0 < μ < 1 are positive real numbers. With λ = μ = 1,
the FOPID becomes the classical PID controller. FOPID
scheme is shown in Figure 4.

3.2. Dual-boundary law

Quanser Aero system is a TITO system and thus suffers
fromcross-coupling; the first input affects the secondout-
put (yaw output) and similarly, the second input affects
the first input (pitch output). In the trajectory tracking
mode, cross-coupling can lead to a state-space error. To
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Figure 4. Overall closed-loop system containing FOPID controller.

Figure 5. FOPID-based DBCL for Quanser Aero control.

overcome this problem, the Dual-Boundary Conditional
Law (DBCL) (Haruna et al., 2020) is used because state-
space errors can be eliminated using integral control
action. DBCL provides a relationship between pitch and
yaw errors and the integral control parameters and is
mathematically given by (15)

Li(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, |zi| > ιi > κi

Lri, ιi ≥ |zi| > κi

Lri +
∫

sgn(zi)

(ςLi|zi| + ςri|ẋid|)dt,
|zi| ≤ κi t < tp

Lri +
∫
(ςLi|zi| + ςri|ẋid|)dt, |zi| ≤ κi t ≥ tp

(15)

where i takes values of θ and ψ . zi is the tracking error
of the pitch and yaw angles respectively (i.e. zθ = ep and
zψ = ey), 0 ≤ Lri ≤ Lmi where Lmi represents the mini-
mum integral gain required for tracking. κi and ιi denote
thewidths of the outer and inner boundary layers respec-
tively. ςLi and ςri are positive constants and tp denotes
the time at which the initial peak occurs in the reference
input during the transition phase. The control scheme of
the proposed controller-based dual law is illustrated in
Figure 5.

3.3. RBF neural network

A RBFNN is a neural network used to express a rela-
tionship between n input dimensions and m output
dimensions. This type of neural network uses radial basis
functions to model the nonlinear relationships between
inputs and outputs. In an n-dimensional network, the
input is directly connected to a hidden layer, where each
neuron is defined by an activation function that depends
on the Euclidean distance between the input and a vec-
tor of dimension n (Luo, 2019). Each hidden neuron has
a unique parameter vector. The output from each neu-
ron in the hidden layer is thenmultiplied by a weight and
transmitted to the output layer. These weights are then
updated using the backpropagation or gradient descent
method in each iteration. The network outputs are the
sumof the neurons in the hidden layermultiplied by their
corresponding weights as given in (16). Figure 6 shows
the architecture of a RBFNN.

ŷj =
I∑

i=1

wijhi(X) (16)

wherehi is the activation function,wij theweight parame-
ters and ŷj is the neuron output. X = {x1, x2, x3, . . . xm}T is
then-dimensional input layer vector. TheRBF is expressed
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Figure 6. RBFNN architecture.

by Gaussian function as

hi(X) = exp

[
−X − Cj2

2b2j

]
(17)

where Cj is the centre value of the jth node j = 1, 2, . . .m.
bj = [b1, b2, . . . bm]T and W = [w1,w2, . . .wm]T are the
basis vector and weight vector of the network respec-
tively. From (16), the output layer can be given as ŷj =
w1h1 + w2h2 + w3h3 + . . .wmhm.

In order to adjust the RBFNN, the usual index function
J is given as

J = 1
2
[y − yd]

2 = 1
2
e(t)2 (18)

In (18), y is the output of the controlled system, yd is
its reference. Tominimize J, the parameters of the output
weight, centre vector and basis-width vector are given as
follows (Wang et al., 2018):

Output weight:

ẇij = −ηw ∂J

∂wij

= −ηw ∂J
∂e

∂e

∂y

∂y

∂wij
(19)

Centre vector:

Ċij = −ηC ∂J
∂Cij

= −ηC ∂J
∂e

∂e

∂y

∂y

∂Cij
(20)

Width vector:

ḃj = −ηb ∂J
∂bj

= −ηb ∂J
∂e

∂e

∂y

∂y

∂bj
(21)

where ηw , ηc and ηb are real positive learning rates.

4. Control optimization

In this section, theproposedFGWOalgorithm isdescribed
in detail. In addition, GWO variants are compared in sim-
ulation using benchmark functions to characterize the
control performance.

4.1. Grey wolf optimization (GWO)

Grey wolves are predators that are ranked at the highest
level in the animal food chain. Wolves generally live in
packs under strict hierarchical social rules. The GWO opti-
mization method is relatively new and is inspired by the
hunting behaviour of wolves and their social hierarchy.
TheGWOalgorithmoffers robust convergence compared
with other metaheuristic algorithms (Choubey & Ohri,
2022). In this algorithm, thewolves (agents) are organized
into four subgroups denoted as alpha (α), beta (β), delta
(δ) and omega (ω) (Figure 7). α is the leader of the pack
which typically consists of one or two wolves. Alpha’s
mission is to make important decisions such as selecting
where to sleep, deciding on how long to walk and choos-
ing when to hunt. β is the subordinate of α and its main
task is to help α in accomplishing the missions. δ wolves
occupy the third position and are responsible for assisting
the β wolves. Finally, ω wolves represent the last cate-
gory of the group with no role assigned to them. Wolves’
survival depends on their ability to hunt and find food.
To accomplish this goal, wolves must be organized with
a high degree of efficiency while adapting to their envi-
ronment. A typical mission involves encircling, hunting
and subsequently attacking the prey. The optimization
approach using the GWO algorithm can be summarized
as follows: (i) The problem under consideration must be
formulatedmathematically with parameter initialized. (ii)
Randomly initialize the grey wolf pack in the search area.
(iii) Dominant wolves α, β , and δ take charge of leading
the pack to search, pursue and encircle prey. Once the
prey is surrounded, the search ends and the attack starts.

The life ofwolves is basedonhunting operation,which
is realized in two phases: exploration and exploitation.
The former phase is aimed at researching a prey while
the later phase involves encircling, hunting, andattacking
the prey. The exploration and exploitation behaviours are
mathematically indicated by parameters �A (22) and �C (23)
respectively.

�A = 2r1�a − �a (22)

where �a = 2
(
1 − actual_iteration

max _iteration

)
.

�C = 2r2 (23)

where r1 and r2 are random values in the range [0, 1]. �a is
a linear parameter, which decreases from two to zero.
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Figure 7. Positions and roles within a group of wolves.

Exploration: This phase starts when |A| > 1. The pur-
pose of �C is tomove the algorithmout of the localminima
in the case of stagnation.

Exploitation: This phase starts if |A| < 1.
Encircling: This behaviour can be modelled with the

following relationship

�D = |�C�Xp(t)− �X(t)| (24)

�X(t + 1) = �Xp(t)− �A�D (25)

where the position vector of the grey wolf is denoted by
�X . −→Xp (t) represents the position vector of the prey at the
current iteration t.

Hunting: The hunting behaviour is modelled mathe-
matically by

X(t + 1) = X1(t)+ X2(t)+ X3(t)

3
(26)

where �X denotes the position of the victim. �X1, �X2 and
�X3 denote the locations of the α,β and δ wolves respec-
tively. The α,β and δ wolves guide the pack towards the
ω wolves to pursue and ultimately encircle the prey. To
define encircling behaviour, three coefficients are sug-
gested for both �C and �D:

�Dα = |�C1�Xα(t)− �X(t)|, �Dβ = |�C2�Xβ(t)− �X(t)|
�Dδ = |�C3�Xδ(t)− �X(t)|

�X1(t) = �Xα(t)− �A1 �Dα , �X2(t) = �Xβ(t)− �A2 �Dβ ,
�X3(t) = �Xδ(t)− �A3 �Dδ (27)

The main phases of hunting include encircling and
finally attacking a prey.

Attacking prey: Once the prey is fixed (prey stops
moving), thegreywolves initiate the attack,which ismod-
elled by the �A. If |A| < 1 its value will decrease with the
increase in �a (22).

4.2. Whale optimization algorithm (WOA)

The hunting behaviour of whales is fascinating and sim-
ple at the same time. Typically, the prey consists of small

groups of fish.Whales follow the prey near the sea surface
by generating bubbles. The hunting behaviour of whales
has been modelled in Mirjalili and Lewis (2016) using the
Whale Optimization Algorithm (WOA). While WOA shares
some similarities with the GWO, it distinguishes itself by
employing a spiral approach to replicate the attack phase.
The hunting strategy of whales involves three key steps:
surrounding prey, executing a spiral bubble net feeding
manoeuvre and searching for additional prey. In WOA,
unlike GWO, the global optimum is not predetermined;
rather, the prey represents the best accepted optimal
solution. The positions of the population are adjusted
towards the optimal solution as outlined in (28) and (29).

�D = |�C × −→
X∗ (t)− �X(t)| (28)

�X(t + 1) = −→
X∗ (t)− �A × �D (29)

whereD is the Euclideandistancebetweenawhale and its
prey. t and t + 1 denote the current and subsequent iter-
ations respectively. X refers to the whale’s position vec-
tor and X∗(t) represents the best position at the current
iteration and is continuously adjusted with each itera-
tion. A and C are vectors determined using (22) and (23)
respectively.

The whale’s bubble behaviour is mimicked in (30) and
(31). In this algorithm, both behaviours such as encircling
or spiralling have an equal probability of being utilized;
hence,whales choosebetween themtoupdate their posi-
tions as given in (32).

−→
D′ = |−−→X∗(t)− −−→

X(t)| (30)

X(t + 1) = D′ebl cos(2π l)+ X∗(t) (31)

−−−−−→
X(t + 1) =

{−→
X∗ (t)− �A.�D if p < .5−→
D′ ebl cos(2π l)+ −→

X∗ (t) if p > .5
(32)

where p is a random number [0,1]. l is another random
number whose value lies within the range [−1,1]. D′
denotes the distance of ith whale by the rapport of the
actual prey position, and b is a constant with a real value.
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The exploitationphase involves encirclement and con-
tinuous influx of spiral bubbles. Some randommoves are
also accepted to consider exploration behaviour as given
in (33) and (34).

�D = |�C × −−→
Xrand(t)− �X(t)| (33)

�X(t + 1) = −−→
Xrand(t)− �A.�D (34)

where
−−→
Xrand is a random position vector (random whale)

chosen from the current population.

4.3. Ant lion optimizer (ALO)

The ALO was inspired by the hunting strategies of
antlion insects. DevelopedbyMirjalili, it is another nature-
inspired optimization algorithm that is used specifi-
cally for dealingwith continuous optimization challenges
(Zatout et al., 2022). As real ants employ stochastic move-
ment patterns to naturally forage for food, ALO adopts
a random walk approach to simulate their exploration.
ALOemulates the relationshipbetweenantlions andants,
such that artificial ants explore the search space while
antlions try to capture them. The random walks of the
artificial ants are updated according to (35).

Xti = (Xti − ai)× (di − cti )

(dti − ai)
+ ci (35)

where

cti = f jt + ct (36)

dti = f jt + dt (37)

where Xti is the position of the ant at iteration t. ai and
di respectively represent the minimum and maximum of
the ith variable during random walk. cti and dti respec-
tively denote theminimum andmaximumof the random
walk of the ith variable at iteration t. ct and dt represent
the minimum and maximum values among all variables
respectively. ctj denotes the minimum value among all
variables for the ith ant, dtj is the maximum value among

all variables for the ith ant, f jt is the position of the chosen
jth antlion for iteration t.

4.4. Fast grey wolf optimization (FGWO)

The central idea of GWO is to redefine the α,β and δ by
assigning them the same importance. However, this is in
contradiction with the hierarchical principle of the life of
wolves as seen in (26) thus deteriorating the exploration
phase. In contract, the method proposed in this research
gives more importance to the leader of the group (α),
which has a position X1. At the same time, the third wolf

will have the least importance. The principle of the pro-
posed FGWO is summarized as follows:

Initially, all the wolves carry the same importance. As
the iterations progress, X1 becomes increasingly impor-
tant since this position corresponds to the leader and X3
progressively becomes less important. This behaviour is
mathematically formulated with the prey position esti-
mated using the set of equations given in (38) as

X(n + 1) = κ1(n)X1 + κ2(n)X2 + κ3(n)X3
3

κ1(n) = 1 + ς
( n
N

)p/q
κ2(n) = 1

κ3(n) = 1 − ς
( n
N

)p/q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

where 0 < ς < 1, n is the actual number of iterations,N is
the maximum number of iterations. q and p are integers
with p > q.

Remark 4.1: It is easy to note that the value of κ1
increases with an increase in the number of iterations,
whereas the value of κ3 decreases in each iteration. In
addition, the weights κ = (κ1, κ2, κ3) must satisfy the
condition given in (39) as

κ1 + κ2 + κ3 = 3 (39)

The condition (39) also holds true in the case of GWO.

In their real hunting process, the leading wolves (α, β
and δ) will never be at the same distance from the vic-
tim since α wolf always advances compared to β and
δ wolves. At the same time, β is always advanced com-
pared to δ. In other words, X(n + 1) is close to α, medium
to β and far to δ. Therefore, it is important to estimate
the optimal position of the victim. Figure 8 illustrates
that α wolf enters a circle closer to the victim, sequen-
tially followed by β , δ and finally the ω wolves. It is
clear that this order is followed in the wolf community.
These differences in distances are modelled by the func-
tion κi(n) (i = 1, 2, 3).κ2(n) = 1 is considered a constant,
this indicates that κ1(n) = 1 + ς

( n
N

)p/q will have more
importance closer to the prey due to the nonlinear term
ς
( n
N

)p/q. At the same time, δ loses importance with the

progression of n owing to the term−ς( nN )p/q of the func-
tion κ3(n). These functions in the proposed FGWO offer a
more exact estimation of X(n + 1) compared to the GWO
method. The new method is given by (27) and (38). GWO
and FGWO algorithms are depicted in Figures 9 and 10
respectively.

Remark 4.2: The values of ς , q and p are determined
through trial and error.
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Figure 8. FGWO principle.

Figure 9. GWO algorithm.

5. Dual-RBFNN-FOPID-FGWO (DRF-FG) design

In this section, the designs of FOPID, FGWO-FOPID, and
DRF-FG are detailed. In the first step, FOPID parameters
are optimized using GWO and FGWO algorithms. In the
second step, RBFNN controllers are involved to vary each
parameter of FOPID.

Figure 10. Proposed FGWO algorithm.

5.1. FGWO-FOPID design

The first step pertinent to system control is the opti-
mization of the FOPID controller using GWO and its vari-
ants. The objective function in this study is a combina-
tion of two performance measures: the Integral of Time-
weighted Absolute Error (ITAE) and the Integral Squared
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Figure 11. FOPID controller based on FGWO.

Control (ISC). The ITAE-based objective offers specific
advantages: (i) it aims to minimize time to achieve stabil-
ity and (ii) it reduces the maximum overshoot by multi-
plying time with the absolute error. On the other hand,
ISC aims to prevent excessive control effort that could
potentially impair the system’s actuators. Moreover, ISC
optimizes energy consumption within the system. The
proposed fitness function is named as IATESC. This func-
tion is calculated at each iteration and for each agent
(wolf), subject to the step response. Figure 11 illustrates
the optimization procedure.

The objective function is formulated by combining
Integral Time-weightedAbsolute Error (ITAE) and Integral
Squared Control (ISC) and is abbreviated as IATESC given
in (40).

J(e, u) =
∫ tf

t0
(tTH|e| + uTMu)dt (40)

where the matrix H ∈ R2×2+ is chosen to guarantee preci-
sion, robustness and minimum time to achieve stability.
The matrix M ∈ R2×2+ ensures that the control inputs do

not exceed their maximum values. ThusM can safeguard
system actuators. eϕ = ϕd − ϕ is the pitch error, eψ =
ψd − ψ is the yaw error. t0 and tf represent the initial and
final times respectively.

The control law (14) becomes

u(t) = KP_FGe(t)+ KI_FG

∫ tf

t0
e(t)dtλ + KD_FG

dμe(t)

dtμ

U(S) =
(
KP_FG + KI_FG

Sλ
+ KD_FGSμ

)
E(S)

⎫⎪⎪⎬
⎪⎪⎭
(41)

5.2. DUAL-RBFNN-FOPID-FGWO (DRF-FG) controller

The parameter tuning of the FGWO-FOPID controller is
done using RBFNN. The newly proposed DRF-FG control
can be expressed as follows:

K∗
P−NN = K∗

P−FG +�KP−NN

K∗
I−NN = K∗

I−FG +�KI−NN

K∗
D−NN = K∗

D−FG +�KD−NN

⎫⎬
⎭ (42)
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Table 2. Used fitness benchmark functions.

Function Dim Range fmin

f1(x) =
n∑
i=1

x2i 30 [−100, 100] 0

f2(x) =
n∑
i=1

|xi| +
n∏
i=1

|xi| 30 [−10, 10] 0

f3(x) =
n∑
i=1

(
i∑

j−1
xj

)2

30 [−100, 100] 0

f4(x) = maxi{|xi|,1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) =
n−1∑
i=1

[100(xi+1 − x2i )
2 + (xi − 1)2] 30 [−30, 30] 0

f6(x) =
n∑
i=1
(xi + 0.5)2 30 [−100, 100] 0

f7(x) =
n∑
i=1

ix4i + random[0, 1) 30 [−1.28, 1.28] 0

f8(x) =
n∑
i=1

[x2i − 10 cos(2πxi)+ 10] 30 [−5.12, 5.12] 0

f9(x) = −20 exp

(
−0.2

√
1
n

n∑
i=1
(xi)2

)
− exp

(
1
n

n∑
i=1

10 cos(2πxi)
)

+ 20 + e 30 [−32, 32] 0

Figure 12. Proposed DRF-FG control scheme.

Thus (41) becomes,

u(t) = K∗
P−NNe(t)+ K∗

I−NN

∫ tf

t0
e(t)dtλ + K∗

D−NN
dμe(t)

dtμ

U(S) =
(
K∗
P−NN + K∗

I−NN
1
Sλ

+ K∗
D−NNS

μ

)
E(S)

⎫⎪⎪⎬
⎪⎪⎭

(43)

The tuned DRF-FG parameters are K∗
P−NN,K

∗
I−NN and

K∗
D−NN and the final control law is given by (43). The con-

trol block diagram of the proposed DRF-FG is illustrated
in Figure 12.

From an algorithmic point of view, the proposed DRF-
FG controller for the Quanser Aero system is realized in
a hierarchical manner. Initially, a decentralized classical
FOPID control law has been developed, which is followed
by the design of a FOPID-FGWO. Finally, DRF-FG is real-
ized.

Remark 5.1: It is imperative to indicate that the RBFNN
allows for having an adaptive control law owing to flexi-
bility and ability of quick processing of RBFNN compared
to the conventional NN or deep neural networks.

The proposed controller is simple (due to FOPID part),
optimal (owing to the use of the proposed FGWO) and
adaptive (thanks to RBFNN capabilities). The use of the
proposed controller for large classes of nonlinear sys-
tems is possible because it does not necessarily involve
modelling of the system to be controlled.

6. Simulation results

6.1. FGWO validation

Simulations are conducted to determine the optimal val-
ues of the control parameters and to characterize the
control performance. Simulations are performed in MAT-
LAB/Simulink 2021a environment running on a laptopHP
Pavilion with AMD E1-6010APU processor, AMD Radeon
R2 Graphics card and 1.35 GHZ processor and 8 GB RAM.
The effectiveness of the proposed FGWO is demonstrated
using nine benchmark test functions, which are listed
along with their properties in Table 2.

For a meaningful comparison between GWO and
FGWO, we used the same number of iterations, dimen-
sions (D) and agents. These values are as follows: itera-
tions = 1000, D = 30 and agents = 30. We performed a
set of tests (30 tests) using different values of p and q
which are summarized in Table 3. The value of ς is cho-
sen to be 1 i.e. ς = 1. The variants of GWO are named
GWO_q/p with variations in p and q. In this regard, we
obtain GWO_1, GWO_1/2, GWO_1/3, and GWO_1/4. The
results obtained after 30 independent runs are presented
in Table 4. Numerical and graphical comparisons of these
variants are given in Figure 13 depicting that the pro-
posed variant FGWO depicted superior performance.

From Figure 13(a–d,g–i), we deduce that GWO_1/3
offers the best results since it quickly approaches to the
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Figure 13. Results of comparison of PSO, GWO and its variant. (a) f1, (b) f2, (c) f3, (d) f4, (e) f5, (f ) f6, (g) f7, (h) f8 and (i)f9.
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Table 3. Parameters used for improving GWO.

Experiences q p Variant name

E1 0 1 GWO
E2 1 1 GWO_1
E3 1 2 GWO_1/2
E4 1 3 GWO_1/3
E5 1 4 GWO_1/4

minimum compared to the other variants. GWO_1/3 vari-
ant provides best results in the majority of cases except
ones illustrated in Figure 13(e–f). PSO demonstrates best
performance only in the case of Figure 13(f) with the
fitness function f6. The superior performance of PSO com-
pared to GWO in Figure 13(f) can be attributed to the fact
that, in PSO, exploitation is more effective when search-
ing for the optimum. The better result can be explained
by the nature of the objective function; the optimum of
this function is shifted by 5. In contrast to PSO, GWO is
based on leadership and requires an accurate balance
between exploitation and exploration. The optimal solu-
tion is close to the original optimal solution as reported in
Yang et al. (2024). In Mirjalili et al. (2014), the same result
was obtained. In Figure 13(e) (i.e. f5), the best result is
given by GWO_1/4, though the difference between this
result and the results demonstrated by other variants is
negligible. From a fast convergence point of view, the
proposed approach offers the best robustness in f1, f2, f3,
f4, f7, f8 and f9 cases, even though these functions are not
always the best at the beginning of the optimization. In
addition, a very important conclusion can be drawn that
in all the cases, GWO_1/3 performed better than the clas-
sical GWO for any fitness function. The detailed results
achieved are presented in Table 4.

The numerical performance comparison presented
in Table 4 lists the best, mean, and worst values of
the benchmark fitness functions. In addition, the rank
of each variant is given and the standard deviation is
shown. These results evidence the superior performance
of GWO_1/3 in providing a solution closer to the valid
optimum value for f1,f2, f3,f4, f7, f8 and f9. This remark-
able performance offered by GWO_1/3 can be explained
by the maximum influence associated with the lead-
ership of the group i.e. X1 and simultaneously assign-
ing the minimum weight to X3. From the best, mean
and worst values of f1,f2, f3,f4, f7, f8 and f9, we can see
the gradual improvement in finding the minimums of
these objective functions from GWO to GWO_1/3, i.e.
GWO_1 gives better results than GWO, GWO_1/2 gives
best better results than GWO_1 and so on. However, after
this, GWO_1/4 achieved worse results than GWO_1/3. In
addition, although functions f7, f8 and f9 are character-
ized as local minima, GWO_1/3 also demonstrated the
best results with these fitness functions. This observation

allows us to conclude that the best values of p and q are
p = 1 and q = 3. Thus, (38) can be rewritten as:

X(n + 1) = κ1(n)X1 + κ2(n)X2 + κ3(n)X3
3

κ1(n) = 1 +
( n
N

)1/3
κ2(n) = 1

κ3(n) = 1 −
( n
N

)1/3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(44)

It can be observed that GWO_1/4 demonstrated the
best performance for the fitness functions f5 and f6. These
results confirmed a shortcoming in the GWO algorithm in
terms of its premature convergence to the minimum. It
is also noted that improvement in GWO and GWO_1/4 is
negligible in the case of the fitness function f6 and the
same remark can be made for GWO_1/4 and GWO_1/3
in the case of f5. In all cases, GWO_1/3 offered the best
results comparedwith the classical GWO. Since GWO_1/3
is the best, it is named as FGWO. These results are con-
firmed by conducting simulations using a mean of 30
tests and are illustrated in Figure 13.

6.2. FOPID-FGWO controller for the Quanser Aero
system

This subsection presents the optimization of FOPIDbased
on the FGWO algorithm. The FOPID-FGWO controller is
compared with FOPID-GWO, FOPID-WOA, and FOPID-
ALO controllers. WOA andALO algorithms are introduced
for several reasons:(i) These algorithms are more recent
than GWO (ii) In some scientific works, ALO and/or WOA
are reported to perform better than GWO, thus the objec-
tive to include them here is to evaluate if the proposed
FOPID-FGWOoutperforms than these algorithms (iii)Also,
these algorithms do not bear the same hierarchical char-
acteristics compared to GWO. The objective function
IATESC (40) must be optimized. Ten experiences are car-
ried out with 50 iterations of each test for all the con-
trollers. Figure 14 illustrates the simulated IATESC fitness
profile obtained from the design of the FOPID controller.
The result on the minimal of the IATESC function indi-
cates that compared to FOPID based on GWO, ALO and
WOA, FGWO demonstrates robust convergence since it
converges to theminimumafter 38 iterationswith 10 sep-
arate tests. GWO suffers premature convergence to the
minimum after only 11 iterations. These results confirm
the superiority of FGWO compared to the other FOPID
algorithms based onGWO, ALO andWOA. The fitness cur-
vature of FGWO started from 4.15482 (i.e. the value of
the fitness function at iteration 1), which is more than
that the corresponding value in ALO. The minimum is
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Table 4. Results of the benchmark functions (bold numbers indicate the optimal values closer to the global
minimal).

Function Variants of GWO Best Mean Worst St. dev. Rank

f1(x) GWO 8.0124e− 62 7.5319e− 59 6.1035e− 58 2.8409e+ 03 5
GWO_1 6.1760e− 71 1.7692e− 67 2.6598e− 66 2.8581e+ 03 3
GWO_1/2 3.5084e− 76 1.3051e− 73 1.5145e− 72 1.0591e+ 05 2
GWO_1/3 3.3182e− 78 6.4085e− 75 4.8075e− 74 1.0647e+ 05 1
GWO_1/4 2.3074e− 65 8.9827e− 63 6.6215e− 62 1.0360e+ 05 4

f2(x) GWO 4.2423e− 36 9.5003e− 35 3.0491e− 34 2.2072e+ 08 5
GWO_1 3.5217e− 41 6.9913e− 40 3.8734e− 39 4.3240e+ 07 3
GWO_1/2 7.5532e− 45 4.0721e− 43 5.2700e− 42 2.0625e+ 13 2
GWO_1/3 8.5130e− 46 3.1290e− 44 1.5617e− 43 3.9900e+ 12 1
GWO_1/4 1.0485e− 38 4.8375e− 37 2.0205e− 36 2.3742e+ 12 4

f3(x) GWO 4.9019e− 21 3.9956e− 14 6.1747e− 13 7.0243e+ 03 5
GWO_1 1.2563e− 22 2.1708e− 17 4.0484e− 16 5.9440e+ 03 3
GWO_1/2 2.5343e− 24 2.4174e− 20 2.9473e− 19 2.6382e+ 05 2
GWO_1/3 2.4043e− 25 1.5364e− 20 2.7942e− 19 2.8914e+ 05 1
GWO_1/4 1.3620e− 22 1.0091e− 15 2.5420e− 14 2.7740e+ 05 4

f4(x) GWO 3.1364e− 16 1.9444e− 14 9.1717e− 14 7.0988 5
GWO_1 9.3433e− 18 8.2577e− 16 6.8860e− 15 7.9913 3
GWO_1/2 3.1181e− 19 7.6399e− 17 1.2170e− 17 291.4135 2
GWO_1/3 7.0475e− 20 4.7773e− 18 8.1443e− 17 289.8504 1
GWO_1/4 2.6882e− 16 1.9345e− 14 1.5531e− 13 294.3609 4

f5(x) GWO 25.3788 26.8788 28.7581 8.3017e+ 06 4
GWO_1 25.6383 26.8486 28.7279 8.0655e+ 06 5
GWO_1/2 25.2273 26.8187 28.5193 3.5328e+ 08 3
GWO_1/3 25.2145 26.7294 27.9545 3.4873e+ 08 2
GWO_1/4 25.1755 26.6667 28.5396 3.4239e+ 08 1

f6(x) GWO 1.5113e− 05 0.65583 1.5040 2.8720e+ 03 2
GWO_1 7.6671e− 05 0.6617 1.5113 2.7434e+ 03 4
GWO_1/2 0.2447 0.6239 1.5118 1.0443e+ 05 5
GWO_1/3 2.9440e− 05 0.5678 1.7387 1.0303e+ 05 3
GWO_1/4 1.4766e− 05 0.7449 1.4949 1.0236e+ 05 1

f7(x) GWO 1.6840e− 04 0.0089 0.0022 4.2328 4
GWO_1 1.4976e− 04 7.6915e− 04 0.0026 4.3668 3
GWO_1/2 1.4767e− 04 7.2028e− 04 0.0022 159.3594 2
GWO_1/3 1.3329e− 04 6.8861e− 04 0.0023 159.1853 1
GWO_1/4 2.3297e− 04 9.6009e− 04 0.0022 153.2305 5

f8(x) GWO 0 4.8367 11.1145 42.7259 5
GWO_1 0 0.5642 8.6364 46.1779 3
GWO_1/2 0 0.8826 18.4883 1.5578e+ 03 4
GWO_1/3 0 0.0332 0.9956 1.5573e+ 03 1
GWO_1/4 0 0.6360 10.2670 1.5407e+ 03 4

f9(x) GWO 1.1546e− 14 1.6165e− 14 2.2204e− 14 1.9632 5
GWO_1 7.9936e− 15 1.3323e− 14 1.5099e− 14 2.1442 2
GWO_1/2 7.9936e− 15 9.8884e− 15 1.5099e− 14 66.2385 4
GWO_1/3 7.9936e− 15 9.6515e− 15 1.5099e− 14 66.6093 1
GWO_1/4 7.9936e− 15 1.3915e− 14 2.2204e− 14 67.1078 3

achieved after 38 iterations, thus establishing the robust
convergence of FGWO compared with the other variants.

Table 5 presents IATESC performance after simulat-
ing the experiences. From the table, it can be confirmed
that in all cases, FGWO demonstrated superior perfor-
mance, which is followed by GWO andWOA in sequential
order of performance. The worst results of the IATESC
are achieved by ALO. Quantitatively, FGWO improves
IATESC performance by +2.0403% compared with GWO.
Marginal improvements of +0.0403% and +1.6067% are
demonstrated respectively by GWO andWOA.

The FOPID parameters obtained using the aforemen-
tioned optimization methods are summarized in Table 6.
These parameters are different for each approach. In
order to protect the helicopter actuators in the opti-
mization procedures, saturation was applied on the con-
trol signals. This is to simulate physical limitations on

Table 5. IATESC performances.

Best Average Worth Standard deviation

ALO 3.6372 3.6579 3.6948 0.5152
WOA 3.5788 3.6345 3.6654 0.1582
GWO 3.5643 3.6040 3.5914 0.1205
FGWO 3.5630 3.5989 3.5872 0.0981

actuators to void significant deviations from desired per-
formance thus enhancing the reliability of the results
obtained. Hence, by simulating these constraints during
parameter optimization, one can develop controllers that
are effective under real operating conditions. The opti-
mization procedure of the FOPID based on all the meta-
heuristic methods involves ±24 V saturation for the two
actuators of the system. In the next step, the application
of the designed controller in trajectory tracking mode is
compared.



SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL 17

Table 6. Optimized FOPID parameters.

Pitch FOPID parameters Yaw FOPID parameters

P I D μ λ P I D μ λ

ALO 40.2191 17.6043 59.7016 0.0443 0.4999 59.9589 41.3310 58.8391 0.3568 0.3613
WOA 49.9992 12.0008 59.9990 1e− 10 0.5 59.9990 53.9990 59.9990 0.4491 0.3833
GWO 49.1389 0.5419 59.9994 0.0055 0.5 60 48.2987 60 0.1474 0.2056
FGWO 49.7691 0.3708 60 0.0014 0.5 60 48.2749 60 0.1618 0.1794

Figure 14. IATESC profile.

Figure 15. Simulation results of Dual FOPID RBFNN based on FGWO, GWO, WOA and ALO in regulation mode. (a) Pitch angle, (b) pitch
control, (c) pitch error and (d) dual L1 parameter evolution.

6.3. DRF-FG controller for the Quanser Aero system

In the regulation mode, the Quanser Aero system was
tested to reach the desired angles (θd ,ψd) = (5, 5)
degrees in one step. FOPID control parameters, given
in Table 6, are used for ALO, WOA, GWO and proposed
FGWO. Four control variants (DRF-FG, DRF-G, DRF-W, and
DRF-A) are tested and the results obtained are illustrated
in Figures 15 and 16. Six RBFNN controllers are used, each
ofwhich is composedof a Single-Input and Single-Output
(SISO). The number of neurons in the handle layers (N)
and their weights are summarized in the table given in
Appendix. The weights of the RBFNN are tuned using the
(19). The RBFNN parameters are presented in Table A1
given in Appendix. The choice to use more neurons for
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Figure 16. Simulation results of Dual FOPID RBFNN based on FGWO, GWO, WOA and ALO in regulation mode. (a) Yaw angle, (b) yaw
control, (c) yaw error and (d) dual L2 parameter evolution.

integral and derivative actions is justified by the objec-
tive of dealing with the nonlinearity of the Quanser Aero
system. The structure of the RBFNN is obtained by trial
and error. The proposed controller is obtained in a hier-
archical manner in several key stages. Initially, all the
FOPID parameters are optimized by FGWO. In the second
stage, RBFNN is used to adjust only the six PID parame-
ters. The third stage involves using the dual approach to
improve the precision This approach will be active only
if the system response is closer to the desired trajectory.
Dual mechanism is applied only to the two integrators
corresponding to the pitch and yaw controllers. The four
fractional parameters are adjusted by FGWO. It is perti-
nent to mention here that RBFNNs have an adaptive role
to deal with nonlinearities, uncertainties and dynamical
changes in the system. In addition, dual part is used to
deal with cross-coupling effect.

Figures 15 and 16 show that DRF-FG achieves the
best results. After some oscillations at approximately
2.812 s for the yaw angle and 4.2 s for the pitch angle,
the response is stable with practically zero error for all
the angles i.e. no oscillations in the control signals are
observed afterwards. Since parameters L1 and L2 are

related to steady-state errors, their values are zero dur-
ing the initial transit phase. However, these parameters
start to increase progressively during the steady-state
phase. In addition, because DRF-FG is the best controller,
L1does not reach its superior bound. The performance
of all the controllers under investigation in the regula-
tion mode is presented in Table 7. From the table, we can
remark that, among the eight-performance metrics, the
controller based on FGWO demonstrated the best per-
formance w.r.t. the four parameters that include %OS of
pitch and yaw angles, Ts of pitch and Tr of yaw angles.

Trajectory tracking: This simulation involves the tra-
jectory tracking mode to characterize all the approaches
under investigation. The selected trajectories are givenby
(45). FOPID parameters and RBFNN structures used here
are the same as those employed in the regulation mode.
The angular pitch and yaw and their corresponding con-
trol signals, errors and dual adaptive gains L1 and L2 are
shown in Figures 17 and 18 respectively.

ψd(t) = 10 sin(0.1t)
ϕd(t) = 10 sin(0.1t)

}
(45)
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Table 7. Regulation mode performance of Dual FOPID RBFNN based on ALO, WOA, GWO and FGWO.

Pitch angle Yaw angle

Dual FOPID RBFNN %OS [%] Tr [s] Ts [s] SS errors [degrees] %OS [%] Tr [s] Ts [s] SS errors [degrees]

ALO 2.852% 1.1880 6.196 0.0351 30.348 0.946 – 0.101
WOA 1.7427% 1.2040 4.344 5.3e− 04 33.937 0.932 5.588 0.0296
GWO 0% 1.4620 2.814 0.0570 28.942 0.788 – 0.139
FGWO 0% 1.4600 2.812 0.0591 28.62 0.7720 – 0.134

Figure 17. Simulation results of Dual FOPID RBFNN based on FGWO, GWO, WOA and ALO in trajectory tracking. (a) Pitch angle, (b) pitch
control, (c) pitch error and (d) dual L1 parameter evolution.

To characterize the performance of the controllers to
determine whether the controller demonstrates supe-
rior performance, various error parameters are consid-
ered in this study. These include Integral Time Absolute
Error (ITAE), Integral Squared Error (ISE), Integral Squared
Control (ISC), Mean of Average Error (MAE) and Integral
Absolute Error (IAE). These criteria are given as (with i =
ψ , ϕ),

ITAE =
∫ tf

0
t(|ei(t)|)dt

ISE =
∫ tf

0
e2i (t)dt

ISC =
∫ tf

0
u2i (t)dt

MAE = 1
tf

∫ tf

0
(|ei(t)|)dt

IAE =
∫ tf

0
|ei(t)|dt

Table 8 summarizes the results achieved correspond-
ing to these error parameters. From the table, it can be
inferred that, based on the values of ITAE, ISE, MAE and
IAE, the proposed DRF-FG algorithm demonstrates supe-
rior performance compared to its counterpart based on
DRF-G, DRF-W, andDRF-A algorithms. By forming the sum
of the yaw and pitch angles corresponding to the ISE,
MAE, IAE and ITAE error metrics, it is confirmed that DRF-
FG algorithm overperforms than DRF-G, DRF-W, and DRF-
A algorithms. The performance of GWO-based controllers
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Figure 18. Simulation results of Dual FOPID RBFNN based on FGWO, GWO, WOA and ALO in trajectory tracking mode. (a) Yaw angle, (b)
yaw control, (c) yaw error and (d) dual L2 parameter evolution.

Table 8. Error performance of Dual-RBFNN-FOPID based on ALO, WOA, GWO and FGWO (i = θ or i = ψ ).

Angle Dual-RBFNN-FOPID based on ITAE ISE ISC MAE IAE

(θ )+ (ψ )Regulation ALO 1.2233e+ 04 2.0015e+ 04 4.7388e+ 05 1.4515 7.2591e+ 03
WOA 9.7221e+ 03 2.1159e+ 04 4.8753e+ 05 1.4086 7.0447e+ 03
GWO 8.9531e+ 03 1.7128e+ 04 4.6092e+ 05 1.2150 6.0761e+ 03
FGWO 8.5810e+ 03 1.6911e+ 04 4.6371e+ 05 1.1933 5.9675e+ 03
Rate of Improvementa 4.27% 1.26% −0.6% 1.79% 1.79%

(θ)+ (ψ )Trajectory tracking ALO 1.9328e+ 05 2.9726e+ 04 7.2581e+ 05 1.2282 1.8424e+ 04
WOA 1.9823e+ 05 3.0682e+ 04 7.3364e+ 05 1.2430 1.8646e+ 04
GWO 1.6504e+ 05 2.5056e+ 04 7.3357e+ 05 1.0898 1.6347e+ 04
FGWO 1.6355e+ 05 2.4947e+ 04 7.3981e+ 05 1.0825 1.6238e+ 04
Rate of Improvementa 0.91% 0.44% −1.89% 0.64% 0.66%

aRate of Improvement obtained by DRF-FG compared with the second-best performance for each objective function.

is taken as a reference. In case of regulationmode, FGWO-
based controllers improve ITAE, ISE, MAE and IAE by
4.3363%, 1.2832%, 1.8185%, and 1.8199% respectively. In
trajectory tracking mode, these performance metrics are
improved by 0.9110%, 0.4369%, 0.6744%, and 0.6713%
for ITAE, ISE, MAE, and IAE, respectively. These results
indicate that the proposed DRF-FG controller improves
the control performance in terms of stabilization of the
response. It is interesting to note that the control per-
formance w.r.t. ISC index is observed to be the best in
the case of GWO-based controller in the regulationmode
andALO-based controller in the trajectory trackingmode.
From ISC point of view, the DRF-FG controller requires

more energy to achieve the best performance. The DRF-
FG achieves the second-best performance w.r.t. ISC and
the best performance w.r.t. ITAE, ISE, MAE and IAE and
offers an average improvement rate of 1.702% in regula-
tion mode and 0.152% in the trajectory tracking mode.

6.4. Wind robustness test in trajectory tracking
mode

Theobjectivewas to test theproposed controllers against
external disturbances that imitate thewindeffect. In addi-
tion to the disturbance analysis, a new desired trajectory
given in (46) is considered here. The results are shown in
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Figure 19. Simulation results of Dual FOPID RBFNN based on FGWO, GWO, WOA and ALO in disturbance test. (a) Pitch angle, (b) pitch
control, (c) pitch error and (d) dual L1 parameter evolution.

Figures 19 and 20.

ψdist(t) = 10 sin(0.1t)+ 10 sin(0.05t)
ϕdist(t) = 10 sin(0.1t)+ 10 sin(0.05t)

}
(46)

The disturbance considered in this study is given in
(47), which takes the same dynamic as the pitch and yaw
references. However, the disturbance represents 10% of
the desired yaw amplitude and 2%with the opposite sign
of the desired pitch amplitude.

ψdist(t) = −0.2sin(0.1t)− 0.2 sin(0.05t)
ϕdist(t) = sin(0.1t)+ sin(0.05t)

}
(47)

From the simulation results of the trajectory track-
ing mode with and without disturbance, we can con-
firm that all the controllers demonstrated satisfactory
performance. The optimized FOPID based on the pro-
posed FGWO combined with RBFNN, referred to as DRF-
FG, demonstrated superior results compared to those
achieved based on ALO, WOA and standard GWO algo-
rithms. It is observed that the overshoot is more notice-
able in the case of DRF-FG for the pitch angle compared
to the other controllers. However, in the steady state, the
proposed controller offered the best performance with

zero steady-state error owing to the improvement con-
tributed by RBFNN and dual part. For the yaw angle, DRF-
FG and DRF-G provide practically the same response. It
is also important to confirm that DRF-FG offers superior
performance compared to the classical FOPID in all cases.
From a control point of view, DRF-G, DRF-W and DRF-A
consumed less energy. On the other hand, DRF-FG con-
sumedmore energy for both pitch and yaw angles, which
improved the system responses.

7. Conclusion

This research presented a control-based metaheuristic
optimizationapproach that carries novelty in twoaspects.
First, a new variant of GWO termed as FGWO is proposed.
The combined ITAE and ISC, called IATESC, is used as
a fitness function to verify the effectiveness of the pro-
posed optimization algorithm. A comparative analysis of
FGWO, GWO, WOA and ALO is performed. The algorithm
is applied to a helicopter simulator to validate the pro-
posed FGWO-FOPID. The simulation results show that the
proposed approach is notably better than the classical
GWO. The secondnovelty of thiswork lies in theproposed
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Figure 20. Simulation results of Dual FOPID RBFNN based on FGWO, GWO, WOA and ALO in disturbance test. (a) Yaw angle, (b) yaw
control, (c) yaw error and (d) dual L2 parameter evolution.

Dual-RBFNN-FOPID-FGWO (DRF-FG) controller to handle
the dynamics and coupling of the system. The application
of FGWO-FOPID and RBFNN-FGWO-FOPID using a dual
approach on a Quanser Aero helicopter simulator con-
firmed the superiority of the proposed controller over the
Dual-RBFNN-FOPID based on GWO, WOA and ALO.

In the future, we plan to experimentally validate the
proposed control approach by using a physical TITO heli-
copter system. Moreover, themodification of other terms
of theGWOalgorithm is envisaged. In addition, it couldbe
interesting to consider a multi-objective criterion when
testing the proposed FGWO algorithm.
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Appendix

Table A1. RBFNN parameters.

N∗ W C b

Pitch RBFNN-parameters P 9 (0.005, 0.002,0.005, 0.001, 0.2, 0.58, 0.4, 0.007,
0.008, 0.005)

(0.9, 0.5, 0.8, 0.7, 0.2,
0.5,0.47, 0.5, 0.9, 0.5)

(0.02, 0.06,0.09, 0.04, 0.007, 0.1,
0.5, 0.5, 0.7, 0.8)

I 4 (0.1, 0.2, 0.3, 0.4) (0.1, 0.2, 0.5, 0.4) (0.1, 0.2, 0.1, 0.2)
D 7 (0.000001, 0.000002, 0.000003, 0.0000047,

0.00001, 0.000006, 0.000002)
(0.01, 0.034, 0.02, 0.02, 0.03,
0.06, 0.2)

(0.002, 0.0019, 0.002, 0.005,
0.003, 0.006, 0.002)

Yaw RBFNN parameters P 10 (0.00012, 0.0005, 0.0004, 0.00021, 0.0005, 0.006,
0.0005, 0.004, 0.0078, 0.005)

(0.1, 0.01, 0.15, 0.015, 0.3,
0.6, 0.5, 0.47, 0.98, 0.58)

(0.2, 0.2, 0.3, 0.3, 0.6, 0.14, 0.58,
0.57, 0.9, 0.7)

I 10 (0.00012, 0.0005, 0.0004, 0.00021, 0.0005, 0.006,
0.0005, 0.004, 0.0078, 0.005)

(0.1, 0.01, 0.15, 0.015, 0.3,
0.6, 0.5, 0.47, 0.98, 0.58)

(0.2, 0.2, 0.3, 0.3, 0.6, 0.14, 0.58,
0.57, 0.9, 0.7)

D 7 (0.00005, 0.000021, 0.000003, 0.000008, 0.000002,
0.000005, 0.00003)

(0.01, 0.02, 0.04, 0.02, 0.01,
0.05, 0.2)

(0.0031, 0.0079, 0.0052, 0.0088,
0.0063, 0.005, 0.003)

Note:N∗ number of neurons in handle layer.
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