
Page 1 of 15 

Time-Series Machine Learning for Predictive 
Optimisation of a Highly Efficient Evaporative 
Cooling System 
ZHICHU WANG1, CHENG ZENG2, ZISHANG ZHU3, YUNHAI LI1, XIAOLI MA1, XUDONG ZHAO1 
1 School of Engineering, University of Hull 
2 Energy and Environment Institute, University of Hull 
3 Department of Civil Engineering, Surveying and Construction Management, 
Kingston University London, London, UK 
* Corresponding author: C.Zeng@hull.ac.uk

Abstract 

As data centres become integral to modern infrastructure, their energy consumption, 
particularly in cooling systems, presents a critical challenge for sustainability. This 
paper addresses this issue by applying time-series machine learning models to 
forecast the performance of a highly efficient 100 kW evaporative cooling system 
applied in a real-world data centre. Using a dataset spanning four months, we 
developed and optimised two predictive models based on XGBoost and Random 
Forest, to estimate cooling capacity and Coefficient of Performance (COP). Initial 
results showed suboptimal performance, with the XGBoost model achieving a Mean 
Absolute Error (MAE) of 1.34 for cooling capacity and 6.50 for COP, alongside a 
negative R-squared, indicating poor fit. However, after hyperparameter tuning, the 
Random Forest model significantly improved the predictions, achieving an MAE of 
0.39 and an R-squared of 0.85 for cooling capacity, and an MAE of 2.21 and an R-
squared of 0.54 for COP. These findings underscore the potential of these models to 
optimise cooling efficiency, offering valuable insights for reducing energy 
consumption and operational costs in data centre operations. This research paves 
the way for more sustainable data centre designs and operations across diverse 
climatic conditions. 

Practical Application 

The predictive models developed in this study enable building environment 
professionals to optimise data centre cooling systems. By accurately forecasting 
cooling capacity and Coefficient of Performance (COP) under varying environmental 
conditions, these models allow for proactive adjustments to cooling strategies, 
ensuring efficient operation and minimising energy waste. This research provides a 
practical tool for enhancing the sustainability of data centres, directly supporting 
industry efforts to meet stringent energy efficiency targets and reduce the carbon 
footprint of critical infrastructure. 
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1.0 Introduction  

1.1 The Challenge of Energy-Efficient Cooling Systems in Data Centres 
Data centres have become integral infrastructures for worldwide organisations, 
serving as dedicated spaces to host computing applications and store vast amount of 
data.1 Over the past decade, data centres have further evolved into critical 
components, facilitating a myriad of daily activities, such as remote data services, 
cloud computing, and social media interactions. The compact design of data centres 
allows for efficient management of large-scale data processing and storage, making 
them pivotal for a substantial user base. However, the rapid increase in data centre 
usage has raised significant concerns about their power consumption, highlighting 
the pressing need for improved energy efficiency and environmental sustainability. 
In 2022, data centres accounted for approximately 1% of global electricity 
consumption, with this figure reaching as high as 2.5% in the United Kingdom.2 While 
the IT systems contribute substantially to a data centre's total power consumption, 
cooling systems, depending on the specific cooling techniques utilised, can account 
for up to 40% of the total energy demand.3 A highly efficient evaporative cooling 
system, demonstrate a Coefficient of Performance (COP) of up to 52.5, which 
significantly surpasses the typical COP range of 2 to 4 in conventional vapor 
compression cooling systems.4 Integrating such advanced evaporative cooling 
systems within data centres offers considerable potential for energy savings and 
carbon emissions reduction. 
Different data centres may exhibit unique design characteristics, albeit adhering to 
common principles centred around regulating temperature and humidity levels to 
ensure optimal server functionality, striking a delicate balance between safety and 
performance. Consequently, the necessity of preliminary modelling during the design 
phase is universally recognised, underscoring the importance of predicting and 
optimising environmental conditions tailored to the specific requirements of each data 
centre.5 However, physical modelling without device-specific calibration often fails to 
accurately capture the dynamic nature of data centre cooling systems.6 In contrast, 
machine learning techniques have shown greater efficacy by directly interacting with 
systems or by learning from extensive datasets collected from operational systems to 
optimise and forecast system performance.7,8,9 Integrating machine learning with 
data centre cooling systems, especially using efficient evaporative cooling 
technologies, thus emerges as a promising research direction to achieve energy-
efficient solutions.  

1.2 Black-box Model 
As one of the fundamental concepts in machine learning, black-box model has been 
widely applied to engineering,10 data science,11 and financial sector,112 focusing on 
the characterisation of systems through their inputs and outputs without delving into 
the intricacies of internal mechanisms.13 A schematic diagram of the working theory 
is shown in Figure 1. The primary advantage of black-box models lies in their ability 
to handle complex systems whose underlying mechanics are either too intricate for 
explicit modelling or irrelevant to the target objectives.14 In this study, the authors 
applied this concept to build predictive models for the performance of data centre 
cooling system by only introducing air condition datasets excluding physical system 
measurement, e.g., the size of the heat-and-mass exchanger, to enhance the 
practicality of the models.  
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Figure 1 – Black-box model 

2.0 Time Series Machine Learning Techniques 

2.1 Introduction to Time-Series Forecasting 
Time-series data represents a sequence of observations or measurements collected 
over time, providing critical insights into temporal dynamics. In the context of data 
centre operations, time-series data often encompasses historical records of 
environmental variables, such as temperature, humidity, and energy consumption, 
each with an associated timestamp, for instance, in dd/mm/yyyy format. Unlike cross-
sectional data, which provides a snapshot of variables at a single point in time, time-
series data reveals patterns across different temporal dimensions, making it highly 
relevant for forecasting tasks. 
Time-series data exhibits two primary features, trend and seasonality, which are 
fundamental to effective predictive modelling. Trend reflects the long-term movement 
or trajectory of the data, which may indicate an overall growth or decline in a 
variable's behaviour over an extended period. This characteristic helps identify the 
direction of the system's evolution, thereby aiding strategic planning and optimisation 
efforts. On the other hand, seasonality refers to recurring patterns or cyclical 
behaviours observed at regular intervals, often driven by exogenous influences, such 
as climatic conditions or specific operational schedules.  

2.2 Time Series Machine Learning Applications in HVAC systems 
Time series machine learning techniques have been employed in many studies to 
optimise HVAC systems, achieving improvements in energy efficiency and prediction 
accuracy. For instance, a Long Short-Term Memory (LSTM) model has been applied 
to predict cooling loads, effectively capturing temporal dependencies in building 
HVAC systems.15 Similarly, a hybrid model combining Convolutional Neural Networks 
(CNN) and LSTM have demonstrated superior accuracy and efficiency in predicting 
building HVAC system performance compared to traditional methods.16 Moreover, 
Nonlinear Autoregressive Exogenous (NARX) models have been used to optimise 
and forecast building cooling loads, demonstrating enhanced forecasting accuracy 
through optimised parameter selection.17  
Other than neural networks, there are other machine learning models have also 
proven effective for HVAC system performance forecasting and optimisation. For 
example, autoregressive integrated moving average (ARIMA) has been used to 
predict chillers performance in commercial buildings and investigate the most 
effective variables in improving predictability.18 Support vector regression (SVR), has 
also shown high predictive accuracy in optimising and forecasting heating and 
cooling load in residential buildings.19 These applications highlight the versatility of 
time series machine learning models in predicting and optimising performance of 
HVAC systems. 

2.3 Machine Learning Model Selection for the Cooling System 
Besides the abovementioned Machine Learning (ML) applications, in terms of 
algorithms, there are two tree-based ML algorithms suitable for this time series 
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problem, Extreme Gradient Boosting (XGBoost) and Random Forest. The two 
algorithms were selected for this research because of their capability in handling 
complex data, managing non-linearity, and their robustness against overfitting.  
XGBoost is a boosting algorithm that sequentially builds decision trees, where each 
tree corrects the errors through iterative corrections of the ensemble built thus far. A 
schematic diagram of XGBoost structure is shown in Figure 2. The main innovations 
of XGBoost over traditional gradient boosting include the addition of L1 and L2 
regularisation terms to control model complexity and mitigate overfitting, 
parallelisation for enhanced computational efficiency, and an advanced algorithm to 
handle sparse data effectively.20 XGBoost is particularly suited for time series 
prediction tasks due to its ability to model feature interactions and temporal 
dependencies effectively. Moreover, its inherent flexibility in feature engineering, 
including the integration of lagged features, makes it ideal for applications requiring 
the capture of seasonality and trends.  
 

[insert Figure 2.] 
 

Figure 2 – XGBoost structure 
Recent studies have highlighted the successful application of XGBoost in building 
HVAC systems. An XGBoost-based predictive control strategy for HVAC systems 
was developed to provide day-ahead demand response, showing significant 
improvements in smart power grids efficiency.21 A dynamic threshold enhanced 
XGBoost model was utilised for early detection of faults in HVAC systems, improving 
fault detection accuracy significant.22 A hybrid particle swarm optimisation (PSO)-
XGBoost model was applied for estimating the heating load of buildings, which 
proved to be highly effective for smart city planning.23 Similarly, a data-driven 
predictive models based on XGBoost for residential building energy consumption 
was developed, achieving accurate predictions by introducing segregated heating 
and cooling days.24 
Random Forest, in contrast, is a bagging method that constructs multiple decision 
trees using randomized feature subsets independently, each trained on a different 
subset of the training data and aggregates their predictions through averaging (for 
regression) or voting (for classification). A schematic diagram of Random Forest 
structure is shown in Figure 3. The introduction of randomness through feature 
selection at each split enhances diversity among individual trees, thereby reducing 
overfitting risk.25 Random Forest is well-suited for time series forecasting of cooling 
systems due to its ability to manage high-dimensional data and its robustness 
against noise, making it effective for capturing complex patterns in operational data 
of cooling units.  
 

[insert Figure 3.] 
 

Figure 3 – Random Forest structure 
Recent research further emphasises the versatility of Random Forest in building 
HVAC domain. A Random Forest-based method for cooling load disaggregation was 
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utilised in smart buildings, demonstrating its potential for precise energy monitoring.26 
A hybrid model combining Random Forest and Support Vector Machine was 
developed for HVAC fault detection, which improved system’s response time and 
accuracy.27 A quantile Random Forest was applied to predict uncertainty in chiller 
power consumption, showcasing its effectiveness in commercial building scenarios.28 
Another hybrid Random Forest and Bayesian Inference model was investigated for 
simultaneous detection of sensor fault diagnosis and bias correction in data centre 
cooling systems, contributing to enhanced system reliability.29 
The applications of both XGBoost and Random Forest in building environment 
studies demonstrate their effectiveness for the proposed research context. However, 
to the best of the authors' knowledge, these methods have not yet been applied to 
the highly efficient evaporative cooling systems. This research gap highlights the 
need for predictive models specifically tailored to these systems, with the potential to 
enhance forecasting accuracy and unlock further applications that optimise cooling 
efficiency and sustainability in data centres. 
This study exploited a four-month dataset of operational data from a real-world 100 
kW highly efficient evaporative cooling system in a data centre. Employing two 
machine learning algorithms, Random Forest and XGBoost, we endeavoured to 
construct a performance forecasting model to achieve precise hourly performance 
predictions for the cooling system across diverse climate conditions, elucidating the 
distinct impact levels of various input features.  

3.0 Model Building 

3.1 Data Collection 
The dataset acquired from the operational data centre cooling system comprises 
parameters including dry-bulb temperature and relative humidity of supply air, return 
air, and ambient air. Additionally, it includes data on cooling capacity, Coefficient of 
Performance (COP), cumulative power consumption, cumulative running time, and 
corresponding timestamps. Detailed features (inputs) and targets (outputs) were 
listed in Table 1.  

Features 
(Inputs) 

RA Temp Dry-bulb Temperature of Return Air 
SA Temp Dry-bulb Temperature of Supply Air 
OA Temp Dry-bulb Temperature of Ambient Air 
RA RH Relative Humidity of Return Air 
SA RH Relative Humidity of Supply Air 
OA RH Relative Humidity of Ambient Air 

Targets 
(Outputs) 

Cooling Capacity Cooling Capacity 
COP Coefficient of Performance 

Table 1 – Inputs and outputs of the forecasting model 

Data was collected via pre-integrated wireless sensors and uploaded to the control 
system for analysis, detailed information of the sensors is listed in Table 2. To ensure 
data quality, sensors were calibrated prior to installation, with recalibrations 
conducted quarterly.
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Sensors Quantity Location Purposes Accuracy 
ALTA Wireless 
Humidity & 
Temperature 
Sensor - Coin 
Cell Powered 

4 Inside data centre Monitoring and recording 
temperature and relative 
humidity of hot and cold aisles 

+/- 2% humidity accuracy (between 0% 
– 100% RH) 

+/- 0.5°C temperature accuracy 
(between 0°C–100°C)" 

ALTA Wireless 
Humidity & 
Temperature 
Sensor - AA 
Battery Powered 

12 Supply air duct, 
Return air duct, 
Exhaust air duct 

Monitoring and recording 
temperature and relative 
humidity of supply, return, and 
exhaust air 

+/- 2% humidity accuracy (between 0% 
– 100% RH) 

+/- 0.5°C temperature accuracy 
(between 0°C–100°C)" 

ALTA Industrial 
(IP65) Wireless 
Humidity & 
Temperature 

2 Outside data 
centre 

Monitoring and recording 
temperature and relative 
humidity of ambient air 

+/- 2% humidity accuracy (between 0% 
– 100% RH) 

+/- 0.5°C temperature accuracy 
(between 0°C–100°C)" 

ALTA Wireless 
Air Velocity / 
Speed Sensor 

12 Supply air duct, 
Return air duct, 
Exhaust air duct 

Monitoring and recording air 
velocity of supply, return, and 
exhaust air 

+/- 0.5 m/s 

Table 2 – Details of integrated sensors 
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3.2 XGBoost Forecasting Model 
To assess the effectiveness of the trained XGBoost model, performance metrics 
such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared 
were applied. MSE measures the average of the squared differences between 
predicted and actual values, giving higher weight to larger errors. MAE represents 
the average of the absolute differences between predicted and actual values, 
providing a straightforward measure of prediction accuracy in the same units as the 
data. R-squared is a statistical metric that indicates the proportion of variance, with 
values closer to 1 indicating a better fit. These metrics, under the default settings, are 
outlined in Table 3, while Figure 4 presents the comparison between predicted and 
actual values. 
Targets MSE MAE R-squared 
Cooling Capacity 3.197 1.339 -5.340 
COP 79.742 6.502 -4.868 

Table 3 – Performance metrics of XGBoost model’s target variables in default 
setting 
 

[insert Figure 4.] 
 

Figure 4 – Prediction and actual values of XGBoost model’s Cooling Capacity 
and COP of default setting 

From both metrics, prediction and actual plot, the performance of this prediction is 
not satisfactory, a negative R-squared indicates that the prediction is no better than a 
straight line. To address this issue, a Hyperparameter Tuning Method was proposed. 
Hyperparameter tuning is an essential step in the development of machine learning 
models, as it aims to identify the optimal combination of hyperparameters that 
maximise the model's predictive performance.30 Hyperparameters are key settings 
that govern the model's learning process, such as the learning rate, maximum depth 
of decision trees, and the number of estimators, minimum samples split and leaf in 
the context of the two algorithms applied in this paper. Common hyperparameter 
tuning methods include grid search, random search, and Bayesian optimisation. Grid 
search systematically explores predefined hyperparameter values, while random 
search randomly samples combinations, often leading to efficient results in less time. 
Bayesian optimisation, on the other hand, uses probabilistic models to guide the 
search towards promising regions in the hyperparameter space, improving efficiency 
and accuracy.  
Numerous studies have successfully implemented hyperparameter tuning for 
enhancing machine learning models in HVAC and cooling systems. For instance, grid 
search hyperparameter optimisation was applied to an interpretable neural network, 
demonstrating a significant improvement in predictive accuracy of building HVAC 
system.31 Similarly, a random search enhanced multi-layer perceptron network was 
employed for estimating dynamic preconditioning time in residential buildings, 
resulting in considerable energy saving and system payback period reduction.32 
Bayesian optimisation hyperparameter tuning was integrated of a data-driven model 
predictive controls for near-optimal control performance, achieving notable energy 



 
Page 8 of 15 

 

efficiency gains in HVAC operations compared with the original building automation 
control.33 
Grid search systematically explores all possible combinations of hyperparameters 
within specified ranges, providing a more comprehensive coverage of the search 
space compared other methods. As the results with default hyperparameters are 
demonstrating considerable potential for exhaustive improvement, grid search is 
selected for optimal tuning efficacy.  
After performing hyperparameter tuning with grid search, the performance metrics 
and prediction with actual values are presented in Table 4 and Figure 5.  
Targets MSE MAE R-squared 
Cooling Capacity 0.728 0.654 0.543 
COP 33.780 3.771 0.485 

Table 4 – Performance metrics of XGBoost model’s target variables after 
hyperparameter tuning 
 

[insert Figure 5.] 
 
Figure 5 – Prediction and actual values of XGBoost model’s Cooling Capacity 
and COP after hyperparameter tuning 
Substantial enhancements can be observed in both metrics, the prediction, and 
actual plot. Nevertheless, various strategies can be explored for further refinement, 
including 1) Incorporating temporal features: investigating the integration of temporal 
aspects such as day of the week, time of day, or seasonal indicators to capture 
nuanced patterns not discernible with the existing features, and 2) Feature selection: 
reassessing the significance of features and contemplating the exclusion or 
combination of features with low importance. This approach has the potential to 
streamline the model and potentially elevate its performance. 
To gain a deeper comprehension of the interplay between features and target 
variables, Figure 6 and Figure 7 depict the feature importance and correlation matrix 
of the XGBoost forecasting model.  
 

[insert Figure 6.] 
 

Figure 6 – Feature importance of XGBoost model’s Cooling Capacity and COP 
 

[insert Figure 7.] 
 
Figure 7 – Correlation matrix of XGBoost model’s Cooling Capacity and COP 
The feature importance diagrams reveal that cooling capacity is predominantly 
influenced by return air relative humidity (RA RH), whereas the most influential 
feature for COP is outdoor air relative humidity (OA RH). The correlation matrix 
indicates that all input features exhibit relatively weak correlations with the targets. 
However, RHs generally show stronger correlations compared to temperatures 
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The dominance of RH over temperature can be attributed to the cooling mechanism 
in evaporative cooling systems, which relies on water evaporation. During this 
process, heat is absorbed as water transitions from liquid to vapour. The efficiency of 
this phase transition is primarily dictated by the air's RH: lower RH enables greater 
evaporation and better cooling potential, while higher RH reduces the system's 
cooling effectiveness. In contrast, temperature primarily reflects the heat load in the 
system by influencing air density and flow rate. However, its impact is less direct 
because the system's effectiveness hinges on air's ability to absorb moisture, which 
is a factor governed by RH. 
In terms of feature importance, a key innovation of this highly efficient evaporative 
cooling system is the introduction of a small portion of outdoor air to utilise the natural 
cooling source. The majority of the air, however, is return air recirculated from the 
data centre, making RA RH the primary determinant of cooling capacity. For COP, 
the deciding factor is the balance between cooling output and energy input. OA RH 
determines the system's natural cooling potential, which indicates its capacity to 
achieve free cooling through evaporation. Lower OA RH enhances this potential, 
allowing the system to deliver the same cooling output with reduced energy input, 
thereby improving COP. 
The correlation matrix shows generally weak correlations between input features and 
targets, indicating the presence of non-linear relationships. This supports the use of 
XGBoost, a model well-suited to capturing complex, non-linear patterns in the 
dataset. For further fine-tuning or training of more sophisticated deep learning 
models for similar evaporative cooling systems, future work should focus on: 

1. Exploring non-linear relationships between weakly correlated features and 
targets. 

2. Integrating or eliminating excessively correlated features to improve model 
interpretability, performance, and efficiency. 

3.3 Random Forest Forecasting Model 
Same features and target variables were selected as the XGBoost forecasting model 
in Table 1, the performance metrics of default setting are presented in Table 5.  
Targets MSE MAE R-squared 
Cooling Capacity 0.567 0.388 0.849 
COP 132.271 2.806 0.491 

Table 5 – Performance metrics of Random Forest model’s target variables of 
default settings 
While after hyperparameter tuning using grid search, the refined performance metrics 
of default setting are presented in Table 6. 
Targets MSE MAE R-squared 
Cooling Capacity 0.569 0.388 0.848 
COP 31.98 2.215 0.541 

Table 6 – Performance metrics of Random Forest model’s target variables after 
hyperparameter tuning 
In the context of the Random Forest model, fine-tuning hyperparameters consistently 
enhances forecasting accuracy for Cooling Capacity and COP. The results also 
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demonstrates that the enhancement in forecasting precision is more significant for 
COP than for Cooling Capacity.  

4.0 Application Scenario Analysis 
The existing training and testing dataset collected during the cold and humid winter in 
the UK exhibit distinct seasonal and regional patterns. With data acquired from the 
Met Office,34 two box charts illustrating annual trends of temperature and relative 
humidity in the UK are shown in Figure 8 and Figure 9. As shown in the figures, the 
climatic conditions from September through December are closely aligned with 
climate conditions from January to May. During these months, temperatures and 
relative humidity levels tend to be moderate, conditions under which evaporative 
coolers operate effectively. This seasonal overlap suggests that the dataset collected 
from September to December can accurately represent conditions in January to May. 
By using this dataset to train our forecasting model, we established a representative 
foundation for predicting performance across both periods, allowing the model to 
provide reliable forecasts from September to May. Research on forecasting methods 
for time series data highlights that models capturing seasonal patterns can effectively 
predict future values during comparable seasonal periods as well.35  
Due to the late August installation of the evaporative cooling units, data is 
unavailable for the summer months (June to August), during which the data centre 
was cooled with vapour compression systems. This limits the model’s current 
applicability to the moderate seasons. Future work will focus on gathering summer 
data to enable comprehensive, year-round performance forecasting.  

 
[insert Figure 8.] 

 
Figure 8 – Annual temperature trend in the UK 

 
[insert Figure 9.] 

 

Figure 9 – Annual relative humidity trend in the UK 
With an ample set of input features, the previously developed machine-learning 
models now possess the capability to forecast operational (cooling capacity) and 
performance (COP) parameters (targets) for regions sharing similar climate 
conditions with the 100 kW evaporative data centre cooling system, which confirms 
the feasibility of the models’ application.  
Under optimal conditions, with an extensive annual dataset spanning at least a year 
and encompassing diverse seasonal trends, including moderate spring and autumn, 
hot and dry summer, and cold and humid winter, these machine learning models 
could achieve enhanced accuracy in capturing the dynamic operational conditions of 
various data centres equipped with different types of cooling systems, extending 
beyond evaporative cooling. Moreover, in such scenarios, the input features could be 
confined to outdoor weather conditions only, specifically ambient temperature and 
humidity. This streamlined approach empowers the model to forecast hourly 
operational and performance parameters solely based on historical and forecasted 
weather conditions provided by meteorological agencies, such as the UK Met Office. 
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The goal is to assist in determining the cost investment and payback period from the 
designing stage of any data centres with various cooling systems and locations. 

5.0 Conclusion 
This study investigated the application of time-series machine learning models to 
enhance the energy efficiency of data centres by accurately forecasting the 
performance of a highly efficient 100 kW evaporative cooling system. Using a dataset 
collected over four months, the study developed and optimised two predictive 
models, XGBoost and Random Forest, evaluating their performance using key 
metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-
squared. Through a comprehensive process of model training, evaluation, and 
hyperparameter tuning, the study aimed to optimise the accuracy of these predictions 
and contribute to more sustainable data centre operations. 
The initial models with default settings showed suboptimal performance, with the 
XGBoost model yielding an MAE of 1.339 for cooling capacity and 6.502 for COP, 
along with a negative R-squared, indicating poor predictive accuracy. After 
hyperparameter tuning, the Random Forest model significantly improved, achieving 
an MAE of 0.388 and an R-squared of 0.849 for cooling capacity, and an MAE of 
2.215 and an R-squared of 0.541 for COP, demonstrating its superior ability to 
accurately forecast cooling performance.  
This optimisation presents opportunities for additional energy-saving measures. 
Further endeavours could focus on in-depth data exploration, advanced feature 
engineering, meticulous cross-validation, and a more resilient model selection 
process. Pursuing these strategies has the potential to achieve even more precise 
forecasting outcomes. Currently, in the given circumstances, the Random Forest 
model outperforms XGBoost in managing this time-series dataset, exhibiting lower 
MSE, MAE, and higher R-squared for Cooling Capacity. It is noteworthy, however, 
that both models encounter challenges in forecasting COP.  
The current models capture seasonal trends effectively, allowing for accurate 
predictions across all evaporative cooling months (September to May). Further efforts 
will involve expanding the dataset to encompass a broader temporal and spatial 
scope, including summer months (June to August), to enable comprehensive, year-
round performance forecasting. To further extend the applicability of the developed 
forecasting models, future work will aim to explore non-linear relationships of weakly 
correlated features, integrate input features with excessive correlations, and refine 
the models to support the design of data centres and associated cooling systems 
through precise hourly predictions. 
Additionally, preliminary findings indicate that Water Usage Efficiency (WUE) is a 
critical factor in evaporative cooling systems. Future research will involve 
experimental data collection on WUE to enable the model to accurately forecast 
water consumption.  
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