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Abstract 

Modern head-mounted display virtual reality (HMD-VR) is used to present immersive 

virtual environments which reduce external distractions during research. Working 

memory load (WML) is commonly measured using electroencephalography (EEG), 

which non-invasively records voltage potential difference responses at the scalp. 

Having combined HMD-VR and EEG is potentially advantageous for 

neurophysiological studies of WML as it would allow for the objective measurement 

of WML in fully controllable and immersive virtual environments. This thesis aimed to 

investigate the combined use of HMD-VR and EEG in the study of working memory. 

 

A systematic review of WML comparisons between HMD-VR and alternative displays 

using neurophysiological measures found that the use of HMD-VR has a variable 

effect on WML relative to screen-based and non-virtual reality presentations. The 

effect on WML was dependent on HMD-VR configuration and task, but WML 

predominantly did not differ or was lower in HMD-VR. High-specification HMD-VR 

and EEG were successfully combined to acquire event related potentials in response 

to visually and auditorily presented questions in a working memory arithmetic 

addition task. A follow-up of the arithmetic study compared EEG data preprocessing 

steps (highpass filtering, lowpass/notch filtering, eye-based artifact removal) to 

minimise HMD-VR-related artifacts. A spatial navigation study comparing WML 

between high-specification HMD-VR and desktop-based virtual reality presentations 

during a learning and recall maze task found that the ratio between theta and alpha 

frequency band activity did not differ between displays. The main limitation identified 

is that cybersickness symptoms increased during HMD-VR conditions in the 

arithmetical and spatial navigation tasks.  

 

Taking the results together, it is found that high-specification HMD-VR was 

successfully combined with EEG to acquire event related potential and frequency 

responses. High-specification HMD-VR did not increase WML relative to screen-

based virtual reality, indicating its potential utility in research and real-world 

applications.  
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Chapter 1) The Utilisation of Head-Mounted Display 

Virtual Reality and Electroencephalography in Working 

Memory 

 

1.1) Head-Mounted Display Virtual Reality as a Tool for 

Psychological Research  

The term ‘virtual reality’ (VR) in psychological and neuroscience research broadly 

refers to any method of presenting a computer-generated virtual environment (VE) to 

participants [1,2]. Using VR methodologies in psychological studies was first 

proposed in the 1960s, and has evolved following the widespread adoption of 

computer technology in research during the 1970s [3–5]. Computer-based research 

offered several advantages over traditional verbal or pen-and-paper studies, 

primarily allowing for millisecond-accurate stimuli presentation and response 

measurement. Computers can also enhance experimental procedures in ways 

difficult for traditional methodologies, for example actively randomising elements of 

the experiment and providing automatic feedback to participants [4]. VR 

methodologies retain and expand upon the benefits of computerised presentation by 

allowing the use of fully controlled VEs, which can present participants with 

scenarios ranging from every-day occurrences to impossible events [1,6]. Today, 

using computer screens and VR technologies to present stimuli are main 

methodologies used in psychological research, and are standard in many 

neurophysiological recording configurations such as electroencephalography (EEG) 

[5,7,8]. 

 

Head-mounted display virtual reality (HMD-VR) refers to wearable goggle-like 

devices which facilitate naturalistic sensorimotor perception (‘high immersion’) by 

‘placing users into’ stereoscopic VEs [9–11]. HMD-VR, also referred to as ‘immersive 

VR’ [12], builds upon the advantages of using VR in research by presenting VEs 

which can be ‘realistically’ explored and interacted with, for example turning one’s 

head to visually explore the VE, or replicating physical real-world actions to complete 

a task [13]. HMD-VR devices can also exclude external stimuli during use, 
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minimising confounding distractions [6] and producing high feelings of ‘presence’ 

[14–16], defined as the subjective feeling of ‘being transported’ or ’being there’ 

[6,9,10,17].  

 

Experimental design within HMD-VR facilitates paradigms with high ecological 

validity [18], as research can be conducted in environments simulating real-world 

experiences, tasks and actions [19,20]. For example, research has been conducted 

within simulated classrooms during learning and social paradigms [21,22]. Moreover, 

paradigms or scenarios that are difficult or impossible to physically create due to the 

complexity, risk or costs involved can be conducted in HMD-VR. HMD-VR 

experiments emulating airport security checkpoints [23], crossing roads with 

oncoming traffic whilst distracted [24], and traversing balance beams suspended at 

high altitude [25] have been conducted. Individual factors and elements of the HMD-

VR VE which are difficult to manipulate in real life can also be controlled, such as 

wind speed and direction in a marksmanship task [26], allowing consistency between 

experimental trials. Whilst similar paradigms can be conducted in other forms of VR, 

HMD-VR offers a more cost-effective and space-effective solution than other VR 

methodologies [27].  

 

HMD-VR has been used in research since the 1990s [18,28] but was prevented from 

widespread adoption by the high costs associated with the devices [29]. However, 

the 2013 release of the first ‘modern’ HMD-VR device, the Oculus Rift DK1, has led 

to a range of affordable HMD-VR devices becoming accessible. The increased 

availability and technological advances has greatly expanded interest in the use of 

the HMD-VR in psychological and neuroscience research [5,20,29]. Modern HMD-

VR devices are typically paired with internal or external sensors to offer 3-degrees of 

freedom (DOF) head-based rotational tracking, or full 6-DOF positional tracking in 

3D space, allowing intuitive visual exploration and movement within a VE. Modern 

(i.e. post-2013) systems such as the Oculus Rift CV1 (Figure 1.1) also include 

accelerometer-enabled and motion-tracked handheld controllers and sensors to 

allow physical movements and object interactions to be represented within the VE. 

Object interactions utilising motion controllers also provide tactile feedback when 
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pressing a button or squeezing the controller to interact with or ‘hold’ a virtual object. 

The sensory feedback can be additionally enhanced by utilising vibrations within the 

controller to simulate touching or using an object [30]. However, lower-immersion 

configurations without motion controllers, such as those using a button on the side of 

the HMD-VR device [16], will be limited in the sensory feedback provided. 

Independent of input method, object interaction can be accompanied by visual 

feedback of the item moving or action being completed, either by the physical 

movements being represented by an avatar in the VE, or a preset animation being 

played. Many modern HMD-VR devices are also compatible with a range of 

peripheral input methods, for example steering wheels [31] and flight sticks [32], 

allowing for intuitive interaction with various VEs or virtual scenarios in research. 

 

 

Figure 1.1: Image of the Oculus Rift CV1 DB-HMD-VR display device [33]. 
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1.1.1) Types of Head-Mounted Display Virtual Reality 

HMD-VR devices can be divided into several subcategories based on immersion, as 

determined by the perceptual facilitations and limitations imposed by a VR device. 

Aspects such as higher resolution screens, larger field-of-view (FOV), 6-DOF, 

intuitive interaction methods, and quality of the presented VE will increase 

immersiveness. Desktop-based HMD-VR (DB-HMD-VR) are displays that rely on 

secondary devices such as desktop computers to process the VE, and offer the 

highest levels of immersion. As minimal processing occurs within the HMD, DB-

HMD-VR can support VEs requiring higher technical specifications when coupled 

with high-specification computers, providing more immersive experiences [6]. 

However, DB-HMD-VR is typically limited by movement-restricting tethering to the 

host device [34].  

 

DB-HMD-VR can be further divided between consumer-grade DB-HMD-VR, and 

advanced ‘high-specification’ (HS-HMD-VR) models such as the HTC Vive Pro 

(Figure 1.2). HS-HMD-VR devices have improved technical specifications, such as 

higher resolution displays with larger FOV, allowing for VEs to be presented in higher 

clarity compared to standard DB-HMD-VR models.  

 

 

Figure 1.2: Image of the HTC Vive Pro HS-HMD-VR display device [35]. 
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Unlike DB-HMD-VR, standalone HMD-VR devices such as the Oculus Quest (Figure 

1.3) are capable of presenting VEs without additional hardware. The processing of 

the VE is by performed in-device, facilitating easier field-deployment and lower 

overall costs [36]. However, due to the limited processing power of standalone HMD-

VR devices, the VEs presented are of lower overall immersion.  

 

 

Figure 1.3: Image of the Oculus Quest standalone HMD-VR device [37]. 
 

 

Smartphone HMD-VR are head-mounted adapters for smartphones running VR-

emulating applications, such as the Google Cardboard (Figure 1.4). Smartphone 

HMD-VR is a cost-effective solution as many modern smartphones have some VR 

capability [16], but offers the reduced immersion due to low specifications, limited 

positional tracking, and restrictive input methods.  
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Figure 1.4: Image of the Google Cardboard smartphone HMD-VR device [38]. 
 

 

1.1.2) Other Virtual Reality Configurations  

Traditionally, ‘VR’ within psychological research referred to Screen-Based Virtual 

Reality (SB-VR) systems, typically using desktop-based VR (DB-VR) configurations. 

When using DB-VR, the VE is presented on a standard computer screen and 

interacted with using a keyboard and mouse, but can use input methods tailored to 

the task presented. However, DB-VR is considered ‘low immersion’ [39] as it does 

not intuitively facilitate sensorimotor perception, instead resembling looking through 

a window into the VE.  

 

Cave Automatic Virtual Environment (CAVE) systems [40,41] are ‘semi-immersive’ 

VR systems [39] which utilise projected imagery onto surrounding walls which, when 

viewed through 3D glasses, produces a stereoscopic VE. The participant stands 

centred within the CAVE system, and the VE appears to extend out into the distance 

or come towards the participant, effectively placing participants within the VE whilst 

retaining their own body. However, CAVE systems are limited by interactions with the 

VE, and cannot easily facilitate naturalistic physical object interaction compared to 
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HMD-VR VEs. For example, raising your hand to ‘grab’ an object can block the 

display or introduce visual disparity between the physical and virtual elements [42]. 

Specialist peripheral input methods or equipment configurations can facilitate 

accurate interactions for specific tasks, but can be overly complex and space-

consuming [43].  

 

1.2) Electroencephalography and Head-Mounted Display Virtual 

Reality 

HMD-VR devices on the consumer market are generally designed to be ‘one-size-

fits-all’, and use adjustable or elasticated straps to facilitate a range of head sizes. 

Many modern HMD-VR devices are also compatible with a range of replacement 

straps, which can expose different parts of the scalp depending on the model used. 

In research application, adjustable HMDs allows head-mounted neurophysiological 

recording equipment such as EEG to be used underneath the VR devices. It can be 

difficult to accommodate EEG in HMD-VR [20], and researchers sometimes modify 

HMD-VR devices to better facilitate EEG headcaps [44]. 

 

EEG is a non-invasive neurophysiological measure of electrical activity produced by 

the brain, captured though a series of electrodes placed on the scalp surface [45]. 

First used to record human brain activity in 1924 by Hans Berger and popularised 

worldwide by Adrian and Matthews in 1934, EEG is the predominant neurological 

method used today, and is commonly used in conjunction with behavioural and other 

physiological measures in cognitive research [45–48]. When presented with a 

stimulus, the neuronal response in associated brain regions results in a change in 

voltage that can be measured by EEG. The electrophysiological signal detectable by 

EEG results from the summed excitatory and inhibitory post synaptic potentials of 

the neurons underneath the recording site, which result in a positive and negative 

voltage change respectively [49].  

 

The recordable electrical signal at the scalp surface generated by neuronal activity in 

the brain is very small (<100μV), as it must travel through meninges, skull, and scalp 
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before reaching the recording electrodes [45]. To acquire high-quality neurological 

data, modern EEG systems are comprised of a series of components that facilitate 

both the recording of the data and the execution of the experimental procedure.  

 

The main component of the EEG system is the metallic recording electrodes 

sensitive to electrical signals placed against the scalp. EEG is commonly performed 

with a conductive gel or paste, which bridges the gap between the scalp and the 

electrode to reduce the impedance [50]. Electrodes are placed on standardised 

locations across the scalp, either individually or by using a pre-spaced headcap, 

using the international 10-20 system (Figure 1.5) based on percentage distances 

between electrodes from the scalp centre [45,51]. EEG also uses ground and 

reference electrodes to increase the signal-to-noise ratio. The ground electrode is a 

necessary part of the amplifier and recording systems, and is used to reduce noise 

from internal and external system sources. Reference electrodes are placed on or 

near the head where brain activity is not expected, such as on the mastoid bones or 

earlobes, to detect ambient electrical signals [45]. Subtracting the data captured by 

the reference electrodes from the EEG waveforms reduces external sources without 

compromising the EEG signal.  
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Figure 1.5: Layout of a 19-channel EEG electrode configuration using the 
international 10-20 system with 2 reference electrodes (A1 and A2) [52]. The 
capital letters in the electrode designations refer to their location on the scalp: ‘FP’ 
refers to electrodes over the frontal pole (prefrontal), ‘'F’ electrodes are over frontal 
lobe, ‘C’ electrodes are over the central region, ‘T’ electrodes are over the 
temporal lobe, ‘P’ electrodes are over the parietal lobe, ‘O’ electrodes are over the 
occipital lobe. Odd numbered electrodes are over the left hemisphere, even 
numbers are over the right hemisphere, and the ‘z’ electrodes are over the midline. 

 

 

The EEG electrodes/headcap connect to the acquisition device, which contains an 

input for the electrodes (the ‘headbox’), an amplifier, an analog-to-digital converter, 

and a connection to the recording device (Figure 1.6). Signals recorded from the 

electrodes are enhanced by the amplifier, which increases the gain of each recorded 

signal by a factor of 1000-10000 [48,53]. Amplification also contributes to the online 

filtering of unwanted signals [45,48], as differential amplifiers remove common 

activity between the reference electrode and the recording electrode. The amplified 

signal undergoes analog-to-digital conversion [54], allowing recorded signals to be 

analysed in compatible digital formats. The converted EEG signal is outputted to the 

recording device, which can either be a specialised device or a computer running 

specialised software. The acquisition or recording device may also support a trigger 

system, which can mark important events in the data such as the onset of stimlui or 

button press responses. 
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Figure 1.6: A standard EEG configuration, including all major components used in a 
standard EEG experiment. 
 

Presentation devices are sometimes included in the EEG configuration, for example 

a VR device and supporting computer hardware. Dedicated presentation devices 

allow researchers to present stimuli with millisecond accuracy using specialised 

research software, such as PsychoPy [55]. The computers controlling the 

presentation device may additionally record behavioural data, and send triggers to 

the acquisition or recording device. 

 

1.3) Combined Head-Mounted Display Virtual Reality and 

Electroencephalography in Research  

Whilst the physical designs of the HMD-VR may not inherently exclude combined 

usage with EEG, it can be difficult to physically accommodate using both devices 

together [20]. EEG is sensitive to many sources of electrical interference, for 

example 50/60Hz line noise from the mains power, computer displays, and lighting 

[45]. It is therefore possible that HMD-VR, which can include electrically powered 
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screens in very close proximity to the recording electrodes, could introduce electrical 

noise to the EEG recording. To address this concern, initial research has been 

conducted examining the effect of different types of modern HMD-VR devices on 

EEG signal quality. Cattan et al. [36] demonstrated there was minimal-to-no effect on 

the quality of EEG signals below 36Hz when using smartphone HMD-VR. Moreover, 

Hertweck et al. [56] used time-frequency analysis to find that the DB-HMD-VR 

Oculus Rift and HS-HMD-VR Vive Pro introduced 50Hz line noise to the EEG 

recording, and an additional 90Hz noise when using the DB-HMD-VR. Line noise is 

also common in non-HMD-VR EEG data and can be easily removed during data 

preprocessing using digital filtering [57], minimising the unwanted signal.  

 

There are several analysis methods that can be used in EEG experiments, which 

probe different aspects of the recorded signal and suit different paradigms used in 

research [45,58]. For example, event-related potentials (ERPs) examine changes in 

the time-locked amplitude and latency of voltage peaks within the ERP waveform 

[59]. A set amount of time surrounding each stimuli presentation, typically ~1s, is 

averaged over the collected trials (‘epochs’). The post-stimulus changes in amplitude 

are compared against the average amplitude of the pre-presentation baseline, where 

the brain should be at rest. The averaging process also increases the signal-to-noise 

ratio by reducing random noise to leave the targeted response. Comparisons can 

then be conducted between conditions or regions of the brain to examine neural 

responses to stimuli. 

 

ERP methods have seen use in combined HMD-VR and EEG experiments across a 

range of HMD-VR subcategories. ERP studies have been conducted using non-

modern pre-2013 HMD-VR [60–63] and smartphone HMD-VR [64]. Modern DB-

HMD-VR devices such as the HTC Vive have been used in experiments acquiring 

ERP responses, for example during naturalistic reaching [65], and attention and 

memory-based tasks [66]. Moreover, a singular example of the HS-HMD-VR Vive 

Pro being utilised in ERP analysis could be found [67]. 
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Whereas ERPs are locked to repeated events within a paradigm, time/frequency 

studies can involve longer durations as the changes at the power or amplitude of 

certain frequency bands of activity over time are compared. Typically, set frequency 

bands, for example theta (4-7Hz) and alpha (8-13Hz), are extracted and either 

averaged to find the power of a frequency band [68], compared against a baseline to 

examine relative changes in power [69], or visually inspected to find peaks of power 

in certain bands over time [70]. It can then be inferred what cognitive processes are 

represented by the changes in activity based on comparison between conditions and 

behavioural findings.  

 

As with ERP studies, time-frequency measures have been used in research with 

several categories of HMD-VR. Time-frequency measures have been used to 

compare attention and memory in tasks presented with smartphone HMD-VR 

[16,36]. DB-HMD-VR headsets such as the HTC Vive have been used in EEG time-

frequencies studies, including studying changes in frequency power over time during 

a physical spatial rotation task [71]. Time frequency analysis has also been used in a 

DB-HMD-VR experiment examining negative symptoms of motion sickness that can 

arise during VR usage called cybersickness [72]. There are also several examples of 

the HS-HMD-VR Vive Pro being used in time-frequency EEG experiments [56,73].  

 

The examples of successfully combined HMD-VR and EEG are promising for the 

application of HMD-VR in research, demonstrating that the methods are not 

inherently incompatible. However, to date, several gaps in knowledge pertaining to 

combined HMD-VR and EEG methodologies can be identified. Certain subcategories 

of HMD-VR, particular HS-HMD-VR, are currently under-represented in the literature 

for ERP studies. Hyun & Lee’s [67] example of HS-HMD-VR being used in an ERP 

study does not delve into the viability and feasibility of using such devices in wider 

research applications, nor are there examples of HS-HMD-VR being used in other 

tasks. Moreover, there is little-to-no guidance on how to preprocess EEG data 

captured in an HMD-VR experiment. Despite several EEG artifacts being identified 

during HMD-VR experiments [36], no dedicated examination of how to remove the 
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artifacts from data acquired during the combined use of HMD-VR and EEG has been 

conducted.  

 

1.4) Working Memory and Cognitive Load Theory in Head-Mounted 

Display Virtual Reality 

1.4.1) The Multicomponent Model of Working Memory 

It has previously been found that increasing the immersiveness of a VR 

configuration, for example using a higher resolution DB-VR screen, can benefit 

response time and accuracy compared to low-immersion configurations [74,75]. 

However, the specific advantages of using HMD-VR over other types of VR in 

psychological and neuroscience research goes past a simple increase to technical 

specifications, as it produces a fundamentally different experience. Instead, the 

benefits of HMD-VR in research and application can be understood through the 

theories of working memory and cognitive load. 

 

Baddeley and Hitch’s multicomponent model of working memory is the leading 

theory of how information is actively held and processed online within the brain [76–

79]. The multicomponent model builds upon and overcomes the limitations of 

Atkinson and Shiffrin’s multi-store memory model [80], particularly expanding upon 

the short-term memory store located between sensory input and long-term memory 

(Figure 1.7a). Unlike the multi-store model, which assumes processing is 

independent of sensory modality, the multicomponent model attempts to explain how 

different types of sensory information is processed within working memory, and how 

this flow of information is controlled and combined.  
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Figure 1.7: A simplified version of the multi-store model of memory demonstrating 
how each store interconnects. Information from each sensory modality is processed 
within the short term store, which can also encode information to and retrieve 
information from the long term store. The returning arrow on the short term store 
represents rehearsal. 

 

The multicomponent model describes four interconnected, but functionally distinct, 

subcomponents connected to sensory inputs and long term memory (figure 1.8b). 

The first two components explain how information in different modalities is processed 

from sensory input: the visuo-spatial sketchpad processes visual and spatial 

information; whilst the phonological loop processes auditory information and speech. 

These components route the processed information to the episodic buffer, which 

integrates the sensory inputs with information retrieved from long-term memory into 

a unified representation. The fourth subcomponent is the central executive, which 

acts as the overarching supervisory component controlling the working memory 

processes. Central executive functions include directing attention, managing the flow 

of information between the subcomponents and long-term memory, ordering the 

manipulation of information held in working memory, and making decisions based on 

the outcome of the information processing [81].  

 

 

Figure 1.8: A simplified version of the multicomponent model of working memory 
displaying how each subcomponent interacts. The central executive system can also 
direct the recall of memory and schema from the long term memory. Figure is 
adapted from Baddeley [78]. 
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The ability to distinguish between the processing of visual and auditory information, 

and describe how these may affect experienced working memory load (WML), is 

important for understanding the benefits and limitations of HMD-VR usage in 

research and application. As HMD-VR is not necessarily only a visual experience, 

with many VEs including auditory elements such as speech and music, it is important 

to be able to understand how these different sensory inputs may interact, or 

differently impact WML. The phonological loop and visuospatial sketchpad of the 

multicomponent model facilitates this understanding more than both the multi-store 

model, and other contemporary models of working memory. For example, Cowan’s 

embedded-processes model [82–86] suggests that the contents of ‘working memory’ 

is the ‘focus of attention’ within an activated portion of long term memory (figure 1.9). 

The individual is only consciously aware of the current focus of attention, in which 

information (including those from sensory inputs) can be integrated and manipulated, 

whilst the remaining activated portion of long-term memory remains unconscious but 

available for processing. However, despite the functional similarities with the multi-

component model [86,87], the embedded-processes model does not distinguish 

between the sensory inputs to the same degree [88], rendering it less useful in the 

current context. 

 

 

Figure 1.9: A simplified version of the embedded-processes model of working 
memory. Sensory input a represents attended to stimuli in the environment. Sensory 
input b represents habituated, unchanging stimuli in the environment. Sensory input 
c represents novel stimuli in the environment. The focus of attention within long term 
memory is controlled by the central executive. Figure is adapted from Cowan [89]. 
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Working memory is limited by the amount of information that can be held online, 

processed and manipulated concurrently. Working memory capacity is limited to 

between 4-9 items or combined ‘chunks’ of information at a given time, dependant on 

the type of information held and individual differences between people [90,91]. It is 

therefore possible to overload working memory through excessive information or 

external factors, which can reduce performance in tasks relying on the same working 

memory systems [92]. Moreover, distractions and disruptions can reduce working 

memory performance external to the task, particularly when cognitive resources are 

not available to suppress the distraction [93]. It is through the reduction of external 

distractions, along with the control of the sensory experiences and information 

presented to an participant or user, that HMD-VR offers the best chance of 

benefitting experienced WML. 

 

1.4.2) Cognitive Load Theory  

The multicomponent model of working memory explains how different sources of 

information can be combined to increase experienced working memory load; 

however this is not a complete description of how these factors interact. Instead, 

Sweller’s 1988 Cognitive Load Theory (CLT) [94] builds upon Baddeley and Hitch’s 

concept of working memory to describe the dynamics of how different types of stimuli 

and information can interact to effect experienced WML. CLT was originally 

formulated to improve educational instruction through understanding the limitations 

of the working memory system, but has since developed and is now used to describe 

how different levels and types of experienced cognitive load can effect working 

memory processes [81,95–100]. CLT suggests that total experienced WML is a 

composite of the three subtypes of load: intrinsic load; extraneous load; and 

germane load.  

 

Intrinsic load is the inherent amount of cognitive processing required to process 

information or complete a task, resulting from the number of items and operations 

that must be considered simultaneously (‘element interactivity’) [97,101,102]. For 
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example, in arithmetic 2+2 is relatively easier than 256+248, as the latter has more 

digits and required operations (such as carries between digits) that must be 

completed to reach the answer. Germane load refers to the amount of processing 

required in cognitive systems dedicated to the formation of schemas to commit to 

long-term memory, and is dependent on individual differences [81,97]. 

 

Extraneous load refers to task-irrelevant difficulty introduced by distractions or 

substandard instructional design. For example, simultaneously presenting the same 

information both visually and auditorily increases the amount of required processing 

without introducing new information [103,104]. Alternatively, attention-grabbing 

elements which distract from a task increases load as these must be actively 

supressed [105]. When working memory resources are commandeered by 

extraneous load, it reduces the amount available for necessary processing, 

hampering learning or task performance [104].  

 

It is through the reduction of extraneous load that the benefits of HMD-VR in 

research and application relative to other display methods can be understood. DB-

VR screens are often surrounded by distracting noises, sights and devices [106], 

which can be reduced by isolating individuals within an immersive VE using HMD-

VR. In comparison to CAVE presentation, whilst both methods can allow participants 

to interact with VEs in naturalistic ways, HMD-VR minimises or prevents distracting 

visual disparities between real and virtual elements that can occur in projection-

based VR [42]. 

 

1.4.3) Measures of Working Memory Load  

As it is difficult to separately measure intrinsic, extraneous and germane loads, WML 

is typically measured as a composite of each type of cognitive load [107]. There are 

a range of behavioural, qualitative, physiological and neurological measures utilised 

in CLT research [108] which are often used together to produce more accurate 

readings of experienced load [109]. Common measures in psychological research 

include objective behavioural measures such as task completion time, response 
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accuracy and learning outcomes, with increased WML typically reducing 

performance on these scales [110,111]. A popular subjective measure is the self-

report NASA Task Load Index (NASA-TLX) for measuring experienced cognitive 

workload over subscales of mental demands, physical demands, temporal demands, 

evaluation of own performance, effort, and frustration [112,113].  

 

Cognitive load has also been measured and compared using objective physiological 

measures, including eye movement [111], eyeblinks [114], pupil dilation [115] and 

galvanic skin responses [114,116]. Objective neurophysiological recording measures, 

such as EEG and functional near-infrared spectroscopy (fNIRS), directly measure 

physiological responses of working memory processes occurring within the brain. 

For example, increased blood oxygen level dependant (BOLD) signal responses can 

indicate increased levels of WML, as measured using methods such as functional 

magnetic resonance imaging (fMRI) [117] or fNIRS [118,119]. Moreover, when using 

fMRI to measure BOLD signal responses, researchers can localise activation 

associated with working memory processes, which is typically reported in the 

frontoparietal regions [120]. 

 

Working memory research also utilises a range of EEG measures [108,121]. Within 

time-frequency analyses, changes in frontal theta and parietal alpha rhythms are 

commonly examined, with alpha-band desynchronisation (~8-12Hz) and theta-band 

synchronisation (~4-7Hz) typically representing higher levels of WML [121–127]. 

Changes in the synchronisation of frequency bands can be examined individually 

through event-related desynchronisation/synchronisation [128], or using a power 

ratio between the frequencies [129]. Beta activity is also targeted in CLT studies, with 

increased cognitive load being represented by beta band desynchronisation 

[122,127] in the frontal [128] and temporal regions [130]. However, it has been found 

that both higher and lower beta band activity can sometimes positively correlate with 

experienced cognitive load [122]. 
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ERP studies using working memory tasks will either directly manipulate WML 

through the presented stimuli, or will measure the same stimuli when levels of WML 

are affected by another task [25,131]. A common target in working memory research 

is the ‘P300’ positive peak that occurs between 200-400ms post stimulus onset, the 

amplitude of which is associated with changes in working memory related processes 

[132]. The P300 has been associated with a range of cognitive processes including 

the allocation of cognitive resources to presented stimuli [133]. In the context of 

working memory, it is commonly found that the P300 will reduce in peak and mean 

amplitude when under higher levels of task-induced load [124,134]. Similar 

modulation under increased WML has been found with other ERP components, for 

example the N170 response commonly associated with facial processing has been 

demonstrated to reduce in amplitude when WML is increased [135,136].  

 

1.4.4) Head-Mounted Display Virtual Reality in Studies of Working Memory 

Working memory is linked to a wide range of cognitive functions [137], many of 

which are the subject of experiments conducted using HMD-VR. For example, HMD-

VR has been used to present studies of education and learning [138–140], attention 

[141], memory span [142], vehicle operation [31,32], procedural knowledge [143], 

management [144,145], and spatial navigation [146]. HMD-VR is also being utilised 

in education and training contexts (see Jensen and Konradsen [147] for a review), 

for example to increase engagement whilst reducing distractions [148].  

 

There have also been several comparisons between the level of WML evoked 

between HMD-VR and alternative presentation methods. However, a consensus on if 

HMD-VR increases or decreases experienced WML relative to other displays, and 

what factors impact this, has not yet been reached. Many of these comparisons find 

the use of HMD-VR benefits working memory processes, reporting the more 

immersive display reduces measures of WML. For example, measures of learning 

outcomes and skill transfer in a block-based learning task presented using non-

modern DB-HMD-VR was increased compared to the DB-VR and real-life conditions 

[149]. Roldán et al. [145] compared performance in a management task between 

modern HMD-VR and DB-VR, and found performance increased when within the 



42 
 

HMD-VR condition. Moreover, it has been found that both learning tasks presented 

using smartphone HMD-VR [150] and non-modern DB-HMD-VR [151] improve 

learning outcomes relative to ‘real-world’ lecture-based presentations using 

PowerPoint. Several potential explanations have been proposed as to why HMD-VR 

increased working memory processes, including the higher immersion allowing for 

easier information processing [6], or the increased attention from excitement and 

engagement of using HMD-VR devices [151].  

 

There are also several comparisons between HMD-VR and alternative display 

methods that find the more immersive displays increase experienced WML. 

Makransky et al. [16] found that, when presenting the same VE between HMD-VR 

and DB-VR, using HMD-VR increased neurophysiological measures of WML and 

task performance. Parong & Mayer [105] found that, without additional intervention to 

reinforce learning, the use of a modern HMD-VR decreased post-test learning 

outcomes compared to ‘real life’ lecture-based slideshow presentations. Frederiksen 

et al. [152] found that HMD-VR induced higher levels of load compared to a DB-VR 

simulator for laparoscopic surgery training. Each of these papers suggest that the 

increased WML resulted from distractions introduced by HMD-VR usage, which 

increased extraneous load. Both Makransky et al. [16] and Parong & Mayer [105] 

suggest that the use of HMD-VR itself is the source of distraction, through the 

increased perceptual realism or distracting levels of excitement respectively, thus 

increasing extraneous load. Frederiksen et al. [152] expanded upon this, suggesting 

that immersive VEs contain higher levels of element interactivity as participants 

expect to be able to interact with all the contents of a VE regardless of task 

relevance.  

 

As HMD-VR is an emerging technology in psychological and neurophysiological 

research, the exact relationship between the display method and working memory 

processes is currently unknown. To date, there has been no systematic review 

comparing the amount of WML evoked by HMD-VR usage generally or within certain 

subcategories of HMD-VR relative to other presentation methods. Moreover, many 

high-immersion HMD-VR configurations have seen little use in working memory 
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paradigms, for example HS-HMD-VR models like the Vive Pro. It is important these 

gaps in knowledge are addressed to better understand the use of HMD-VR in 

psychological research, as using a presentation method which heightens WML could 

introduce unwanted confounding factors to experiments. 

 

1.4.5) Virtual Reality and Cybersickness 

A potential problem when utilising any form of VR in research is cybersickness [153]. 

Cybersickness, also called virtual reality induced symptoms and effects [154,155], 

VR sickness [156], or simulator sickness [157], is characterised by feelings of 

nausea, dizziness, disorientation, and headaches during VR usage. It is believed 

that cybersickness results from the ‘sensory mismatch’ between the visual system 

receiving input indicating movement, whilst the vestibular system indicates the body 

is remaining stationary [157–159]. Levels of cybersickness are typically measured 

using the simulator sickness questionnaire (SSQ), which probes total cybersickness 

and contains subscales of nausea, oculomotor discomfort, and disorientation [160].  

 

Whilst the presence of cybersickness is detrimental to any study, research has 

suggested that cybersickness is most prevalent in VR research when using HMD 

devices [161]. The exact increase in cybersickness symptoms within HMD-VR 

experiments is inconsistent between studies (see Jensen & Konradsen [147] for a 

review). Some studies report <4% of participants experiencing symptoms [162], 

whereas others report as many as ~73% [155] or ~91% [163] of participants 

experiencing small-to-large increases in symptoms. 

 

It is important to take steps minimise the negative effects of cybersickness in HMD-

VR research to minimise negative symptoms experienced by participants during an 

experiment. Basic steps that can be taken include ensuring the HMD is properly 

calibrated for each participant. Stanney et al. [164] found that incorrectly calibrated 

interpupillary distance (IPD) of the lenses in the HMD system can result in increased 

cybersickness symptoms. A calibration procedure can be implemented into 
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experiments by including a clarity check at the start of experiments, for example 

having participants read a short passage presented in the VE. 

 

Cybersickness is particularly detrimental to working memory-based studies, as it 

increases levels of extraneous load [165]. Both Roettl & Terlutter [141] and 

Oberhauser et al. [32] suggested that the increased WML observed in HMD-VR over 

DB-VR partially resulted from cybersickness. It is therefore important to integrate 

measures of cybersickness, such as the SSQ, into studies utilising HMD-VR for two 

reasons. Firstly, to track symptoms that participants may experience and to identify 

improvements that can be made in future studies to minimise symptoms. Secondly, if 

increases in cybersickness can introduce a confounding variable into any working 

memory task performed, it will be important to identify the level of sickness when 

interpreting the results.  

 

1.5) Aims of this Thesis 

The overall aim of this methodological thesis is to investigate the combined use of 

HMD-VR and EEG in the study of working memory processes. The specific aims of 

this thesis are explored over four studies: 

1) To undertake a systematic review of the published literature to determine the 

utility of combined HMD-VR and neurophysiological methods in the study of 

working memory tasks compared to non-HMD-VR presentation methods. 

 

2) To acquire event related potential components (P300, N170, slow wave) to a 

visual and auditory working memory arithmetic task using combined high-

specification HMD-VR and EEG.  

 

3) To compare the data analysis preprocessing decisions for artifact removal on 

ERP responses when using combined high-specification HMD-VR with EEG. 

 



45 
 

4) To compare high-specification HMD-VR with DB-VR using behavioural measures 

of working memory load, EEG measures of working memory load, and measures 

of cybersickness in a spatial navigation maze learning and recall task.  
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Chapter 2)  A Systematic Review of the Utility of 

Combined Head Mounted Display Virtual Reality and 

Neurophysiological Recording Methods in the Study of 

Cognitive Workload Tasks Compared to Non-Head 

Mounted Display Virtual Reality Presentation Methods 

 

2.1) Introduction  

Modern HMD-VR presents the opportunity to conduct working memory research in 

ecologically valid VEs, allowing researchers to control the presentation of visual and 

auditory stimuli or scenarios whilst excluding external distractions [6,11,13,20]. 

However, there are several factors regarding the use of HMD-VR in the study of 

working memory, both alone and in combination with neurophysiological measures, 

which are currently underexplored or contested within the literature. These factors 

must be examined to fully understand the utility, including the potential advantages 

and disadvantages, of using HMD-VR as a research methodology. 

 

2.1.1) Inconsistent Working Memory Load During Head-Mounted Display 

Virtual Reality Use 

A major limitation of the current literature is that the complex relationship between 

HMD-VR and experienced WML is not understood. Currently, there is no consensus 

on if using HMD-VR reduces or increases the amount of experienced WML 

compared to other display methods. In comparison studies with less immersive 

display technologies, it has been found that using HMD-VR can increase working 

memory performance and reduce experienced WML compared to alternative 

displays methods [6,145,150,151]. Conversely, other studies report that the use of 

higher-immersion VR or HMD-VR can instead increase measures of WML relative to 

other forms of VR presentation [16,32,152,166].  
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Evidence from experiments comparing WML between HMD-VR and a lower-

immersion display using similar paradigms have found opposing results of which 

evoked a lower WML. Both Ray & Deb [150] and Parong & Mayer [105] utilise 

learning outcome tasks to compare HMD-VR with a traditional classroom, but find 

contrasting results on which presentation method resulted in a lower WML. The 

conflicting findings leave it uncertain if certain paradigms or cognitive processes 

benefit from HMD-VR usage. As many of the psychological paradigms and real-world 

applications are based in working memory or adjacent principles [138], it is important 

to identify broadly if HMD-VR is detrimental to experienced load. If HMD-VR 

inherently increases WML relative to other display methods, it will limit the use of the 

technology in research and application.  

 

2.1.2) Potential Problems When Combining Head-Mounted Display Virtual 

Reality and Neurophysiological Recording in Working Memory Research 

2.1.2.1) The Introduction of Noise to the Recorded Neurophysiological Signals  

As discussed in section 1.4.4, there are several neurophysiological measures that 

can be used alongside HMD-VR to provide an objective measure of experienced 

working memory load. Certain head-mounted neurophysiological recording methods, 

such as EEG [63] and fNIRS [119], can be placed underneath many consumer-grade 

HMDs with little-to-no modification, making them a practical choice for research. 

However, there are concerns regarding the utility of combined HMD-VR and 

neurophysiological recording techniques due to the introduction of noise to the 

neurophysiological signals, particularly EEG [167]. For example, Hertweck et al. [56] 

demonstrates how modern DB-HMD-VR can introduce line noise to an EEG signal 

due to the proximity of the devices, and reports that electrical noise recorded in EEG 

can differ between HMD-VR configurations. This electrical noise is problematic when 

analysing the data, reducing the quality of the recorded data and potentially 

rendering it unusable.  

 

2.1.2.2) Discomfort and Cybersickness  

An additional concern for combining HMD-VR and neurophysiological recording 

methods arises from the potential for discomfort, particularly that resulting from the 
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weight and pressure placed on the head when wearing the devices. Discomfort has 

been linked to experienced cybersickness [168], which can distract from the task and 

thus increase extraneous load [165]. In severe cases, it can prevent participants 

from completing the experiment, or otherwise negatively impact participant behaviour 

or recorded neurophysiological signal.  

 

Despite cybersickness being an important factor in HMD-VR research that may 

impact the interpretation of the results, papers often do not examine or report 

experienced cybersickness. The EEG studies referenced in Chapter 1 which 

compared between HMD-VR and DB-VR in [16,105] found results indicating that 

HMD-VR had decreased working memory task performance, indicating an increased 

WML. However, neither paper reported anecdotal discomfort or measures of 

cybersickness nor suggested either contributed to the findings, potentially 

overlooking an explanation for their findings. Moreover, as cybersickness results 

from several factors relating to immersion, such as FOV and smooth navigation 

[159], the increased technical specifications and ergonomic improvements of modern 

HMD-VR may counteract the potential discomfort of combining methods. 

 

2.1.3) Aims of this Systematic Review 

The advent of modern HMD-VR presents exciting opportunities for working memory 

research, however there is still many questions surrounding its use as a research 

methodology in comparison to established display methods. There are conflicting 

findings regarding the use of HMD-VR on experienced WML relative to other display 

methods, with it currently being uncertain what, if any, impact HMD-VR has on 

working memory processes. Moreover, the level of immersion provided by HMD-VR 

differs between HMD-VR configurations, which in turn may differently effect 

experienced WML. It is also important to understand how HMD-VR has been used 

with neurophysiological measures of WML, to identify how the methodologies have 

been combined and what compatibility issues have been encountered. As 

neurophysiological recording methodologies are an important tool in psychology, the 

possibility of HMD-VR interfering with the capturing of data could preclude the 

combined use in research. Taken together, understanding these aspects of HMD-VR 
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in research will elucidate the potential utility of the display in wider working memory 

research and application. 

 

This systematic review aims to explore the utility of HMD-VR as a tool in working 

memory research as both a method of presenting experimental stimuli, and 

specifically when combined with neurophysiological recording techniques. Papers 

comparing HMD-VR presentation of working memory tasks to other presentation 

methods, including other forms of VR and real-life equivalents, as measured by 

neurophysiological recording techniques, will be systematically identified and 

reviewed. The first objective is to identify whether using HMD-VR affects working 

memory processes differently compared to other presentation methods, particularly 

investigating if it increases experienced WML. The investigation will include 

identifying what HMD configurations have been used in research, and which specific 

factors of an HMD-VR configuration or experience have been reported or speculated 

to effect experienced load. The second objective is to identify what categories of 

HMD-VR have been successfully combined with neurophysiological recording 

methodologies, and identify any compatibility issues between devices which have 

been identified. To the researcher’s knowledge, this review is believed to be the first 

of its kind, and will offer suggestions to guide future research. 

 

2.2) Methods 

2.2.1) Selection of Search Terms and Databases 

2.2.1.1) Summon Review 

The first ‘Summon’ search was conducted using the University of Hull’s (UoH) 

Summon system, which probes databases across all research fields. The search 

targeted papers which compare HMD-VR with another display method in a working 

memory or cognitive load task using a neurophysiological measure of WML. Papers 

which were not included in the Summon databases but were available elsewhere 

online in external databases were included where possible. The final search terms 

and parameters used were the product of eight revisions. 
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Three key papers comparing HMD-VR presentation to an alternative display method 

whilst measuring a form of WML, Makransky et al. [16]; Oberhauser et al. [32]; and 

Webster [151], formed the basis of the search terms used. Whilst these papers do 

not necessarily use neurophysiological recording methods, they otherwise contained 

suitable comparisons and included key terms for “Virtual Reality” and “Cognitive 

Load”. The final search was required to return the three key papers, as it would 

indicate that appropriate paradigms were captured. Neurophysiological recording 

terminology was not used here to prevent unintentionally excluding any 

methodologies.  

 

The first iteration, (head-mounted display) AND (cognitive load), outlined the 

fundamental terms of the search, dividing the search between the method and the 

measure. These terms are then expanded upon with each iteration, for example 

revision 2 used (head-mounted display) AND ((cognitive load) OR (workload)), to 

expand for alternative ways of referring to working memory tasks. 

 

The third revision compared using virtual reality in the search terms against filtering 

results by the ‘subject terms’ function of the search engine. Revision 3.1 introduced 

AND (virtual reality) to the end of the search to exclude non-VR papers or papers 

focusing on AR, whilst revision 3.2 added the field of ‘Virtual Reality’ to the subject 

filter in the summon system. However, 3.2 was found to exclude Oberhauser et al. 

[32] and Webster [151], thus 3.1 was selected to reduce the chance of suitable 

papers being erroneously excluded.  

 

Revision 4 added OR (head mounted display) OR (HMD) to the VR statement. This 

expanded the number of returned papers from 329 to 1176, however excluded 

Oberhauser et al. [32] and Webster [151] despite OR statements being used. 

Revision 5 introduced quotation marks around each term to exclude irrelevant 

papers, but did not reintroduce the two excluded key papers.  
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Revision 6 was a series of 4 attempts to refine the search terms to ensure the key 

papers were captured. This included attempts at expanding both the VR terminology 

with “Simulator” (6.1) and “Immersive” (6.2), and the methodology terminology with 

“Learning Outcomes” (6.3) both individually and in combination. When “Immersive” 

and “Learning Outcomes” were used in combination (6.4), each key paper was 

included. Including “Simulator” provided no benefit and was not used in the final 

version. 

 

Revision 7 provided the final search terms used in the Summon Searches. 

“Immersive” was changed to “Immersive Virtual Reality” upon reviewing the number 

of false-positive papers, reducing the number of papers from 1910 to 872. An 

attempt to reduce the number of reviews by including AND ("Measurement") to the 

search terms was tested, however this excluded two key papers and was ultimately 

unused. 

 

The final search terms used in the Summon search are broken into three inclusive-

OR sections, connected by AND statements: Firstly, common HMD naming 

conventions were included using (("head-mounted display") OR ("head mounted 

display") OR ("HMD") OR ("Immersive virtual reality")); secondly, (("cognitive load") 

OR ("workload") OR ("Learning Outcomes")) were used to capture measures of 

cognitive load and working memory; thirdly, (“virtual reality”) was included to better 

exclude non-VR papers. The final revision used in the summon search, revision 8, 

updated the inclusion criteria to only include papers that had full text available online 

in English. The first search conducted was in May 2019 capturing 808 papers; and a 

follow-up search was conducted during the COVID-19 pandemic in April 2020 using 

the same parameters and search terms, capturing an additional 176 papers, totalling 

984 results. 

 

2.2.1.2) EBSCOhost Review 

Upon review of the papers collected during the Summon search, it became apparent 

that many working memory tasks which did not explicitly refer to cognitive load or 
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workload were excluded from the search results. Thus, a refocused search was 

performed from relevant databases (Psychinfo, PsychArticles, Education Research 

Complete, and MEDLINE) using the EBSCOhost search engine. Modified search 

terms (revision 9) changing the “Cognitive Load” statement to (("Cognitive") OR 

("Workload") OR ("task") OR ("paradigm") OR ("memory") OR ("attention")) was 

used to better include working memory tasks. Neurophysiological recording terms 

identified during the Summon Searches were included to limit irrelevant returns, 

using (("behavioural") OR ("neuroimaging") OR ("imaging") OR ("EEG") OR ("ERP") 

OR ("fNIRS") OR ("fMRI")). Whilst the first search only captured EEG and fNIRS 

papers, “fMRI” and “behavioural” were included at the search engine’s 

recommendation. The inclusion criteria of the three initial papers were dropped as 

not all utilised neurophysiological recording methods. The search was performed in 

August 2020, with 196 papers being identified. 

 

The EBSCOhost search was verified through comparison to a matched Summon 

search. When using the updated search terms and restricting results to psychology, 

education and medicine databases within the Summon system, it was found certain 

relevant papers captured in the EBSCOhost search, such as Cho et al. [169], were 

not returned in a search despite being present in Summon’s archives. Therefore, the 

EBSCOhost search was deemed appropriate for inclusion, and was combined with 

the two Summon searches to provide a comprehensive review of the available 

research, forming a total combined list of 1180 papers. The complete revision notes 

of both sets of search terms can be seen in Table 2.1. 
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Table 2.1: Breakdown of the evolution of the search terms used in this review. New additions 
compared to the previous accepted version are highlighted in green. Any variation that was not 
used is shaded in light grey. 

Revision Search Terms  Search 

Engine 

Search Engine 

Criteria 

Number of 

Results  

Excluded 

Key Papers 

Date 

1: Basic 

search 

(head-mounted 

display) AND 

(cognitive load) 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

1256 None May 

2019 

2: Adding 

workload 

(head-mounted 

display) AND 

((cognitive load) 

OR (workload)) 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

1781 None May 

2019 

3.1: 

Specifying 

VR 

(head-mounted 

display) AND 

((cognitive load) 

OR (workload)) 

AND (virtual 

reality) 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

898 None May 

2019 

3.2: 

Specifying 

VR 

(Rejected) 

(head-mounted 

display) AND 

((cognitive load) 

OR (workload)) 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

 

3) Subject Terms: 

Virtual Reality 

329 Oberhauser 

et al. [32] 

 

Webster 

[151] 

May 

2019 

4: 

Expanding 

HMD 

((head-mounted 

display) OR 

(head mounted 

display) OR 

(HMD)) AND 

((cognitive load) 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

1176 Oberhauser 

et al. [32] 

 

Webster 

[151] 

May 

2019 
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OR (workload)) 

AND (virtual 

reality) 

5: 

Tightening 

the search 

(("head-

mounted 

display") OR 

("head mounted 

display") OR 

("HMD")) AND 

(("cognitive 

load") OR 

("workload")) 

AND ("virtual 

reality") 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

518 Oberhauser 

et al. [32] 

 

Webster 

[151] 

May 

2019 

6.1: 

Including 

the key 

papers: 

Simulator 

(Rejected) 

(("head-

mounted 

display") OR 

("head mounted 

display") OR 

("HMD") OR 

("Simulator")) 

AND (("cognitive 

load") OR 

("workload")) 

AND ("virtual 

reality") 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

1647 Webster 

[151] 

May 

2019 

6.2: 

Including 

the key 

papers: 

Learning 

(("head-

mounted 

display") OR 

("head mounted 

display") OR 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

646 Oberhauser 

et al. [32] 

 

Webster 

[151] 

May 

2019 
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Outcomes 

(Rejected) 

("HMD")) AND 

(("cognitive 

load") OR 

("workload") OR 

("Learning 

Outcomes")) 

AND ("virtual 

reality") 

6.3: 

Including 

the key 

papers: 

Immersive 

(Rejected) 

(("head-

mounted 

display") OR 

("head mounted 

display") OR 

("HMD") OR 

("Immersive")) 

AND (("cognitive 

load") OR 

("workload")) 

AND ("virtual 

reality") 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

1291 Webster 

[151] 

May 

2019 

6.4: 

Including 

the key 

papers: 

Immersive 

and 

Learning 

Outcomes 

(("head-

mounted 

display") OR 

("head mounted 

display") OR 

("HMD") OR 

("Immersive")) 

AND (("cognitive 

load") OR 

("workload") OR 

("Learning 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

1910 None May 

2019 
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Outcomes")) 

AND ("virtual 

reality") 

7.1: 

Tightening 

the search 

again: 

Immersive 

VR 

(("head-

mounted 

display") OR 

("head mounted 

display") OR 

("HMD") OR 

("Immersive 

virtual reality")) 

AND (("cognitive 

load") OR 

("workload") OR 

("Learning 

Outcomes")) 

AND ("virtual 

reality") 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

872 None May 

2019 

7.2: 

Tightening 

the search 

again: 

Immersive 

VR and 

Measurem

ent 

(Rejected) 

(("head-

mounted 

display") OR 

("head mounted 

display") OR 

("HMD") OR 

("Immersive 

virtual reality")) 

AND (("cognitive 

load") OR 

("workload") OR 

("Learning 

Outcomes")) 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

431 Oberhauser 

et al. [32] 

 

Webster 

[151] 

May 

2019 
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AND 

("Measurement

") AND ("virtual 

reality") 

8: Full text 

available 

online 

(("head-

mounted 

display") OR 

("head mounted 

display") OR 

("HMD") OR 

("Immersive 

virtual reality")) 

AND (("cognitive 

load") OR 

("workload") OR 

("Learning 

Outcomes")) 

AND ("virtual 

reality") 

Summon 

(UoH) 

1) Outside Library 

Results Included 

 

2) Peer Reviewed 

 

3) Full Text Online 

799 None May 

2019 

9: 

EBSCOho

st Search 

(("head-

mounted 

display") OR 

("headset") OR 

("headsets") OR 

("head mounted 

display") OR 

("immersive 

virtual reality") 

OR ("HMD")) 

AND ("virtual 

reality") AND 

EBSCOho

st (APA 

PsychArticl

es, APA 

PsycInfo, 

MEDLINE, 

Education 

Research 

Complete) 

None 196 N/A Aug 

2020 
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(("Cognitive") 

OR 

("Workload") 

OR ("task") OR 

("paradigm") OR 

("memory") OR 

("attention")) 

AND 

(("behavioural ") 

OR 

("neuroimaging 

") OR ("imaging 

") OR ("eeg ") 

OR ("erp ") OR 

("fnirs ") OR 

("fMRI")) 

 

2.2.2) Inclusion Criteria  

The papers captured were accepted or rejected based on three criteria. Firstly, the 

paper must compare HMD-VR to an alternative presentation method by evoking 

working memory in a comparable way. For example, acceptable learning outcome 

paradigms must present the same information between display conditions. The 

alternative display can either be another form of VR such as SB-VR or CAVE, a form 

of augmented reality, or a ‘real life’ alternative such as a lecture setting or physical 

task. In instances where there are several comparisons, such as presenting a task 

completed in a real-life environment to the same task in both an HMD-VR simulation 

of the same laboratory, or a different environment entirely (e.g. Peterson et al. [25]), 

only the most balanced comparison will be considered. Secondly, there must be a 

neurophysiological measure of WML, process associated with working memory, or 

process associated with cognitive load. By extension, behavioural results considered 

must directly or indirectly measure working memory or cognitive load using common 

methodologies such as task performance, learning outcomes, or subjective scales. 
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Thirdly, non-experiment papers such as reviews or book chapters not including an 

experiment, non-English papers, duplicate results, or papers that are otherwise 

inaccessible are excluded.  

 

2.2.3) The Review Process 

Each paper returned by the search terms above was scrutinised based on the 

inclusion criteria to identify suitability for this review over a three-stage process. The 

review process and subsequent analysis is based on contemporary systematic 

reviews which examined comparisons of working memory with a focus on learning or 

virtual reality technologies [170–172]. 

 

2.2.3.1) Step 1: Initial Abstract Scan 

The purpose of the first step of the review process was to identify which research 

papers used a form of HMD-VR in a working memory or cognitive load task, and 

remove any that do not. Each accessible paper was downloaded in a PDF format, 

and the title and abstract were examined to identify the task and methodology used. 

The body of the text was searched for key words indicating HMD usage (‘HMD’, 

‘Immersive’, etc.), and the methods section was reviewed for the apparatus and task 

utilised. Papers that obviously did not use HMD-VR, had no indication of a 

comparison of working memory, or otherwise did not meet the third set of inclusion 

criteria were excluded. Papers that explicitly used these methods, or were 

ambiguous on the methodology, were permitted to the next step to avoid 

unnecessarily rejecting potentially suitable studies.  

 

2.2.3.2) Step 2: Full Read and Data Extraction 

Each paper that progressed to the second stage underwent a full read and was 

subjected to the full inclusion criteria to ensure suitability for this review. In addition to 

the criteria used in Step 1, any paper that did not perform comparisons between 

HMD-VR and an alternative display method, did not use a working memory or 

cognitive load task, or did not include an appropriate neurophysiological measure of 

working memory or cognitive load was rejected. Accepted papers had relevant key 
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factors extracted: the headset and input methods used; the modality the HMD was 

compared against; sample sizes; the task; conditions; measurements; findings; 

conclusions and relevant contextual notes.  

 

2.2.3.3) Step 3: Snowballing and List Combination 

For each paper accepted during Step 2, two additional ‘snowballing’ searches were 

performed to identify papers with relevant titles for this review from outside the 

search databases. Backwards snowballing was conducted by examining the 

reference list of accepted papers, whilst forwards snowballing was performed using 

the ‘cited by’ function of Google Scholar. Forwards snowballing was also performed 

on relevant papers that were rejected in Step 2 for not including a comparison 

between display methods, but did include neurophysiological measures of cognitive 

load. Titles were considered relevant if they included a variation of ‘virtual reality’ and 

a working memory associated cognitive process. Additional papers identified by the 

snowballing processes underwent the process as outlined in Step 2, and accepted 

papers were included in the final list. Additionally, any inter-search duplicates 

between the Summon and EBSCOhost searches were identified and removed.  

 

2.3) Results and Discussion  

The present review systematically collected and examined neurophysiological 

studies comparing task-induced WML between HMD-VR and alternative display 

methods. The aim of this systematic review was to explore the utility and suitability of 

combined HMD-VR and neurophysiological recording methods in working memory 

research, as divided between two objectives. The first objective was to identify if 

using HMD-VR introduces higher levels of WML over comparison presentation 

methods, as measured using neurophysiological recording methods. The second 

objective was to identify what categories of HMD-VR have been combined with 

neurophysiological recording methods, and what the shortcomings of combining the 

technologies may be in the context of the neurophysiological recording, experienced 

WML, and participant comfort.  
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2.3.1) Included Papers 

The combined Summon searches identified 984 papers and the EBSCOhost search 

identified 196 papers, producing an initial list of 1180 papers. In the first review step, 

151 Summon papers and 38 EBSCOhost papers progressed, totalling 189. Of the 

991 rejected papers: 608 research papers did not use HMD-VR or contain an 

appropriate comparison; 285 were reviews or otherwise not original research 

publications; 65 papers were duplicates within the search (23 in the Summon 

searches and 42 in the EBSCOhost search); 40 papers only had the abstract 

available; and 5 were not available in English. 

 

The second step accepted 7 Summon papers and 9 EBSCOhost papers, totalling 

16. Of the rejected 173 papers, 166 papers were excluded for not containing an 

appropriate comparison of display methods, a working memory task, or a 

neurophysiological recording method. A total of 6 non-experiment papers and 1 

duplicate of a previously rejected paper with a different citation were also removed.  

 

An additional 15 titles were identified through snowballing. Only 1 paper was 

accepted for inclusion, as the remaining 14 papers did not employ an appropriate 

display method comparison, cognitive task or neurophysiological recording method. 

All accepted papers were compiled into the combined list of 17 and reviewed for any 

duplicate entries. Two pairs of duplicates were identified between searches and one 

copy of each was removed. The complete review process can be seen in Figure 2.1. 

In total, 15 papers were included in this review, with the full list detailed in Table 2.2. 
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Figure 2.1: A flow diagram of the complete review process of this systematic review, 
including the number of accepted papers and reason for rejected papers for both 
searches. 
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Table 2.2: Information about each paper accepted by this systematic review, 
including which HMD-VR device was used, what the comparison display is, what 
type of working memory task was used, what type of neurophysiological measure 
was used, and what results were reported.  

Title and 

Authors 

Headset Used Comparison 

Display 

Task and 

Conditions 

Neurophysiological 

Measure and 

Results 

Behaviour 

Measures and 

Results 

Use of auditory 

event-related 

potentials to 

measure 

immersion 

during a 

computer 

game 

 

Burns & 

Fairclough 

[173] 

 

Non-Modern 

DB-HMD-VR: 

Silicon Micro 

Display 

ST1080-10V1 

head-mounted 

display (2012) 

SB-VR 

(Television) 

Primary: 

Video game 

to 

manipulate 

WML 

through 

difficulty  

 

Secondary: 

Oddball task 

(vigilance) 

EEG: ERP Mean 

Amplitude 

 

P1, LN, Slow Wave 

Deflection  

N/A 

Not significantly 

different 

N/A 

Neurofeedback 

Training with 

Virtual Reality 

for Inattention 

and 

Impulsiveness 

 

Cho et al. [169] 

Non-Modern 

DB-HMD-VR: 

Daeyang E&C 

(unidentified, 

likely the Cy-

Visor DH-

4400VP, 

2000/2001) 

SB-VR 

(Computer 

Monitor) 

Continuous 

performance 

task 

EEG: Power Spectra 

 

Cz Mean Beta Ratio 

 

 

Before and after 

intervention/ 

training 

sessions  

  

Performance 

  

Response time 

  

"Perceptual 

sensitivity" 

(Time to 

completion) 

  

Omission and 

commission 

errors 

HMD-VR induced a 

higher Beta-Wave 

Ratio 

Higher task 

performance in 

HMD-VR 
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Assess BA10 

activity in 

slide-based 

and immersive 

virtual reality 

prospective 

memory task 

using 

functional 

near-infrared 

spectroscopy 

(fNIRS) 

 

Dong et al. 

[174] 

Development-

Grade Modern 

DB-HMD-VR: 

Oculus Rift 

DK2 (2014) 

SB-VR 

(Computer 

Monitor/ 

Slides) 

Prospective 

memory task  

fNIRS: BOLD 

Response 

 

Left BA10 

N/A  

HMD-VR had Higher 

activation in 

prospective memory 

areas 

N/A 

Manipulating 

bodily 

presence 

affects cross-

modal spatial 

attention: A 

virtual-reality-

based ERP 

study 

 

Harjunen et al. 

[167] 

Development-

Grade Modern 

DB-HMD-VR: 

Oculus Rift 

DK2 (2014) 

SB-VR 

(Computer 

Monitor) 

Attention: 

Comparing 

an unaltered 

view with an 

HMD-VR 

view (with 

hands 

visible) 

EEG: ERP Peak 

Amplitudes 

 

Midline P200, N200, 

P3 

Oddball task 

(Primary) 

Stronger P200 in the 

HMD-VR condition, 

all other comparisons 

no difference 

N/A 

Embodiment is 

related to 

better 

performance 

on a brain–

computer 

interface in 

immersive 

virtual reality: 

A pilot study 

 

Juliano et al. 

[175] 

Consumer-

Grade Modern 

DB-HMD-VR: 

Oculus Rift 

CV1 (2016) 

SB-VR 

(Computer 

Monitor) 

BCI training 

task: 

imagined 

motor activity  

EEG: Power Spectral 

Density 

 

Central Alpha, Beta 

and 8-24Hz 

Neurofeedback 

performance 

 

Completion time 

 

Successful trials  

Not significantly 

different 

Not significantly 

different 
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Rapid P300 

brain-computer 

interface 

communicatio

n with a head-

mounted 

display 

 

Käthner et al. 

[176] 

Development-

Grade Modern 

DB-HMD-VR: 

Oculus Rift 

DK1 (2013) 

SB-VR 

(Computer 

Monitor) 

  

BCI: P300 

speller task 

 

Comparison 

between 

whole screen 

VR and SB-

VR 

EEG: ERP Mean 

Amplitude 

 

VPP, LPP, N170, 

P300 

BCI Accuracy  

 

Not significantly 

different 

Not significantly 

different 

Enhanced 

attention using 

head-mounted 

virtual reality 

 

Li et al. [177] 

Consumer-

Grade Modern 

DB-HMD-VR: 

HTC Vive 

(2016) 

  

SB-VR 

(Computer 

Monitor) 

Selective 

attention 

task 

 

 

EEG: Power Spectra  

 

Beta/Theta Ratio 

(BTR) 

 

ERSP: FZ Theta 

 

ERP Peak Latency  

 

P3a and P3b 

Response Time 

 

Response 

Accuracy  

HMD-VR had higher 

markers of attention  

 

Higher BTR 

 

Higher Theta 

 

Shorter ERP latency 

Higher task 

performance in 

HMD-VR 

Adding 

immersive 

virtual reality 

to a science 

lab simulation 

causes more 

presence but 

less learning 

 

Makransky et 

al. [16] 

Smartphone-

HMD-VR: 

Samsung 

GearVR with 

Samsung S6 

(2015) 

SB-VR 

(Computer 

Monitor) 

Learning 

task 

EEG: Power Spectra  

 

Frontal-Central and 

Central-Parietal  

 

1-40Hz 

Learning 

Outcomes 

  

  

Higher Cognitive 

Load in HMD-VR 

based on a workload 

classifier 

Lower learning 

outcomes in 

HMD-VR  
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Effects of 

virtual reality 

high heights 

exposure 

during beam-

walking on 

physiological 

stress and 

cognitive 

loading 

 

Peterson, et al. 

[25] 

Development-

Grade Modern 

DB-HMD-VR: 

Oculus Rift 

DK2 (2014) 

Real Life 

Task 

Visuomotor 

task 

Comparing 

non-

perturbed 

HMD-VR to 

unaltered 

(real life) 

presentation 

 

Secondary 

task: tone 

vigilance 

task 

EEG: ERP Peak 

Latency within 500-

600ms  

 

Focused on the 

Anterior Cingulate 

Cluster 

Balance and 

number of 

crosses along 

the beam 

  

Response time 

to an auditory 

cue 

Reduced amplitude 

and longer latency in 

the HMD-VR 

condition 

Lower task 

performance in 

HMD-VR 

Transient 

visual 

perturbations 

boost short-

term balance 

learning in 

virtual reality 

by modulating 

electrocortical 

activity 

 

Peterson, et al. 

[178] 

Developer-

Grade Modern 

DB-HMD-VR: 

Oculus Rift 

DK2 (2014) 

Real Life 

Task 

Visuomotor 

Task: 

Comparing 

Non-

perturbed 

HMD-VR to 

Unaltered 

(real life) 

presentation  

EEG: Power Spectra 

(Event Related 

Spectral 

Perturbation)  

 

Frontal Alpha, Beta, 

Gamma and Theta 

Task 

performance  

 

How many times 

participants 

stepped off the 

beam 

 

Pre-test and 

post-test 

performance  

Found cortical 

processing increased 

in alpha in HMD-VR 

condition 

 

No change in theta, 

beta or gamma 

Lower Task 

Performance in 

HMD-VR 

EEG 

Acquisition 

During the VR 

Administration 

of Resting 

State, 

Attention, and 

Image 

Consumer-

Grade Modern 

DB-HMD-VR: 

HTC Vive 

(2016) 

SB-VR 

(Computer 

Monitor) 

Vigilance 

task  

EEG: ERP Amplitude 

 

All Channels LPP 

 

Power Spectral 

Analysis  

 

All Channels Alpha  

Task 

performance 

 

Response Time 

 

Response 

accuracy  

  



67 
 

Recognition 

Tasks: A 

Feasibility 

Study 

 

Rupp et al. [66] 

Not significantly 

different 

Not significantly 

different 

Embodied VR 

environment 

facilitates 

motor imagery 

brain–

computer 

interface 

training 

 

Škola & 

Liarokapis 

[179] 

Consumer-

Grade Modern 

DB-HMD-VR: 

Oculus Rift 

CV1 (2016) 

SB-VR 

(Computer 

Monitor) 

BCI: 

imagined 

motor activity  

EEG: Power 

Spectra-Based 

Classifier 

 

Frontal-Central Mu 

and Beta 

 

Event Related 

Desynchronisation: 

8-30Hz  

N/A  

 

HM-VR offered 

significantly higher 

BCI classifier 

success  

 

No difference in ERD 

N/A 

The effect of a 

virtual reality 

learning 

environment 

on learners’ 

spatial ability 

 

Sun et al. [180] 

Smartphone 

HMD-VR: Mi6 

phone with 

Google 

Cardboard 

(2017) 

Real Life 

Lecture 

Primary: 

learning task 

 

Secondary: 

oddball task  

EEG: ERP Peak 

Amplitude 

 

N1 and P1  

Learning 

outcomes 

(Pre/Post-Test) 

Overall: N1 and P2 

was higher in the real 

life lecture condition, 

suggesting a higher 

load 

 

High-Spatial Ability 

Participants: Not 

Significantly Different 

 

Low-Spatial Ability 

Participants: Lower 

Cognitive Load in 

HMD-VR  

Overall: No 

difference 

 

High-spatial 

ability: Lower 

learning 

outcomes in 

HMD-VR 

 

Low-spatial 

ability: Higher 

learning 

outcomes in 

HMD-VR 
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2.3.1.1) Quality Assessment and Risk of Bias in the Included Papers  

Five potential sources of bias were evaluated for each included paper. The first was 

category size bias from the sample and group sizes of included participants, which 

found that only 3 papers had 20 or more participants per group. Of the remaining 

papers, 3 papers and 1 study in a paper containing 2 studies [181] used between 15 

(better)  

 

Studying the 

Effect of 

Display Type 

and Viewing 

Perspective on 

User 

Experience in 

Virtual Reality 

Exergames 

 

Xu et al. [181] 

 

Consumer-

Grade Modern 

DB-HMD-VR: 

Oculus Rift 

CV1 (2016) 

SB-VR 

(Television)  

Visuomotor 

gesture task  

EEG: Power Spectra 

“Engagement Index” 

(Including Alpha, 

beta and theta) 

 

AF8/AF9 and 

TP9/TP10 

Task 

Performance 

 

Gesture 

accuracy  

 

Exertion  

  

NASA TLX  

Not significantly 

different 

Not significantly 

different 

Examining 

creativity 

through a 

virtual reality 

support 

system 

 

Yang et al. 

[182] 

Consumer-

Grade Modern 

DB-HMD-VR: 

HTC Vive 

(2016) 

 

Real Life - 

Task 

Creativity 

task 

EEG: Power Spectra 

 

Prefrontal/ Frontal 

‘Meditation/ 

Relaxation’ 

algorithm, Attention 

algorithm 

 

Creativity, as 

related by a 

series of experts 

and scales  

Attention: Not 

Significantly Different 

 

Meditation/ 

Relaxation: 

Brainwave (EEG 

device) algorithm 

indicated that HMD-

VR had significantly 

higher focus (Better)  

HMD-VR 

Creations were 

rated as "more 

creative"  
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to 19 participants per group, whilst the remaining had below 15 participants per 

group. It is therefore suggested that there is a high risk of category size bias which 

may limit the power of the results found, as the standard included number of 

participants is 20 in EEG studies (see Larson and Carbine [183]). Moreover, the 

recommended power calculation for number of participants required in an fNIRS 

study [184] is not conducted in Dong et al. [174].  

 

The inclusion criteria of the accepted papers indicate the existence of selection bias 

in 3 papers where only males participants were recruited [169,174,181]. Whilst 

participants aged above 30 were sometimes reported [16,66,176], the average age 

of participants when reported was also under 30 in all included papers, likely due to 

the primary source of recruitment being from university students. There is a low 

chance of attrition bias however, as most papers did not report any participants 

exiting the study due to cybersickness. Those that did report early exits only had 2 in 

total per study [25,178]. 

 

Regarding the potential procedural bias, only one paper included did not randomise 

or counterbalance trials when multiple conditions were collected per participant 

[174], where the PowerPoint-slide condition was presented before the HMD-VR 

condition in all cases. Moreover, Peterson et al. [25] randomised the order of the 

HMD-VR condition, but always separated them with a non-VR condition. Overall, 

there is a low chance of order effects or similar biases present in this review. All 

papers also fully reported the results and detailed the neuroimaging findings in their 

discussions. Whilst several papers did not delve into deep discussions of the 

neuroimaging findings, these papers either did not place the primary focus on the 

neuroimaging results, or found limited significant results.  

 

Considered together, there is a mixed indications of bias within the included papers 

of this review. Whilst most sources of bias are low, the low sample sizes and 

presence of selection bias in several papers warrants caution when attempting to 

generalise the results found. 
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2.3.2) Comparisons of Working Memory Load Between Head-Mounted Display 

Virtual Reality and Other Presentation Methods 

To address this review’s first objective, the outcomes of papers comparing 

neurophysiological recording measures of experienced WML or WML performance 

between tasks presented using HMD-VR and an alternative display method were 

examined. For each accepted paper, the working memory task, type of HMD-VR 

device, alternative display method, measures of experienced WML or WML 

performance used, and the overall findings reported were extracted. The extracted 

features are then considered together to understand how using HMD-VR influenced 

experienced load both against non-HMD-VR collectively, and against specific display 

methods. The interpretation of the findings is based on the authors’ conclusions of 

the results, and discussion of the associated cognitive functions of the reported 

neurophysiological response.  

 

2.3.2.1) Neurophysiological Results Between Head-Mounted Display Virtual 

Reality and Non-Head Mounted Display Presentations  

To understand how HMD-VR compares to other display methods generally, the 

overall neurophysiological results for the comparison of cognitive load between 

display conditions is considered. Of the 15 accepted papers, 14 utilised EEG and 1 

used prefrontal fNIRS to measure experienced WML. Of the 15 papers, 7 papers (6 

EEG and 1 fNIRS) found that overall HMD-VR conditions had significantly lower 

measures of experienced WML. Lower experienced WML in HMD-VR was found 

over a range of cognitive load tasks, including: a higher mean beta ratio during a 

continuous performance task [169]; an increased BOLD response in the prospective 

memory areas during a prospective memory task [174]; an increased P200 visually 

evoked potential during an attention task [167]; increased beta/theta ratio, theta 

ERSP response and a faster P3a/P3b ERP peak latency during selective attention 

task [177]; increased classifier success during a imagined motor activity brain 

computer interface (BCI) task [179]; increased N1 and P1 peak amplitude during a 

learning task [180]; and increased attention as determined by an algorithm during a 

task exploring creativity in artistic creation [182].  
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Five EEG papers reported no significant differences between conditions. The papers 

that found no differences in experienced WML included P1 and LN mean amplitude 

ERP during a secondary oddball task [173]; power spectral density during an 

imagined motor activity BCI task [175]; vertex positive potential (VPP), late positive 

potential (LPP), N170 and P300 mean ERP amplitude during a P300 speller task 

[176]; LPP ERP amplitude and alpha power spectral analysis during a vigilance task 

[66]; and using a power spectra engagement index during a visuomotor gesture task 

[181]. 

 

A total of 12 papers found HMD-VR induced comparable or decreased levels of WML 

relative to other presentation methods, indicating that HMD-VR generally does not 

increase experienced WML relative to other display methods commonly used in 

research. However, three EEG papers reported that participants in the HMD-VR 

condition experienced significantly higher WML compared to the comparison display. 

One paper reporting increased WML in HMD-VR used a learning task which found 

experienced WML was higher in the HMD-VR condition based on a 1-40Hz classifier 

during a learning task [16]. The remaining two papers contained visuomotor balance-

beam walking tasks with working memory recordings, one reporting decreased N600 

ERP peak amplitude to a tone presented in a secondary task, and the second 

reporting decreased frontal alpha during walking [25,178].  

 

A tentative conclusion that can be drawn from the above results is that HMD-VR 

does not inherently increase experienced WML. The majority of the results examined 

find that HMD-VR either decreased or had no effect on experienced WML, 

suggesting that it may be an appropriate tool for working memory research as it does 

necessarily not introduce extraneous load during usage. However, the existence of 

papers reporting WML increased during HMD-VR usage indicate that a deeper 

examination is required to understand the dynamics of HMD-VR usage and 

experienced WML, and by extension the utility of the combined technologies in 

research. 
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2.3.2.1.1) Multiple Neurophysiological Measures of Working Memory Load in 

Singular Studies 

Many of the papers identified in this review utilised multiple neurophysiological 

measures of experienced WML across EEG analysis techniques, target components 

and frequencies, or comparison locations. When these separate analyses are taken 

independently of each other, they can provide differing findings. For example, Yang 

et al. [182] found that whilst the neurophysiological measures of 

meditation/relaxation indicated HMD-VR increased focus and thus lowered 

experienced WML, measures of attention also representing experienced WML did 

not differ between displays. Nevertheless, the results do not directly suggest HMD-

VR both increases and decreases load simultaneously, and there is no evidence to 

suggest HMD-VR negatively impacted experienced load, thus the overall trend is 

that WML decreased in the HMD-VR condition. Similarly, Škola & Liarokapis [179] 

found that the success rate of a BCI classifier increased following training in the 

HMD-VR condition, demonstrating the neurological benefit of HMD-VR in their 

learning task. However, ERD responses in the beta and mu frequency ranges did not 

significantly differ between the HMD-VR and SB-VR conditions. The lack of 

significant ERD findings does not detract from the significant results of the classifier, 

and ultimately HMD-VR was demonstrated to improve working memory functions. 

 

There are also instances where different groups of participants within a study were 

contrasted. Sun et al. [180] compared low-spatial ability and high-spatial ability 

learners during a mental rotation task, defined by their ability to maintain and 

manipulate shapes online in working memory. Whilst the overall results suggest that 

HMD-VR did decrease the amount of WML experienced, only the low-spatial ability 

group benefitted from the additional visual aid, whereas the high-spatial ability group 

found no difference between displays. It is argued here that HMD-VR aiding one 

group but not impairing the cognitive processing of another is sufficient in indicating 

that HMD-VR can be used in working memory research, whilst also highlighting the 

impact that individual differences can have on the WML during HMD-VR usage. 

Researchers using HMD-VR should therefore be aware of these factors when 

designing experiments and selecting population samples for participation. 



73 
 

Harjunen et al. [167] also found HMD-VR significantly lowered experienced WML 

compared to SB-VR, however this was only found when comparing visually evoked 

P200s and was absent in the majority of components examined. The number of no 

reported differences between the components and comparisons, which included 

different times of recording (e.g. early and late training), allows an argument that this 

paper finds no real difference between conditions.  

 

The least charitable interpretation of Yang et al. [182], Sun et al. [180], Škola & 

Liarokapis [179], and Harjunen et al. [167] would be that there is not enough 

evidence to suggest HMD-VR reduced experienced WML over the comparison 

display, and thus these papers do not demonstrate any difference. However, this 

interpretation of the papers does not change the outcome of this review, as none of 

the outcomes of these papers suggest that HMD-VR increases experienced WML 

compared to the comparison display. Moreover, the same criticism of insufficient 

evidence suggesting an increase or decrease in experienced WML can be levelled 

towards papers reporting increased experienced WML in the HMD-VR condition. 

Both Peterson et al. [25] and Peterson et al. [178] included a range of additional 

comparisons that found no difference between conditions. Similar to Škola & 

Liarokapis [179], the power spectral analysis conducted by Peterson et al. [178] only 

found differences in alpha-wave activity, but reported no differences in the theta, beta 

or gamma ranges between the HMD-VR without perturbations and unaltered real-life 

conditions. Furthermore, the ERP analysis conducted in Peterson et al. [178] only 

found significant differences in the anterior cingulate cluster, but not in any of the 

remaining 7 clusters including over the frontal, parietal or occipital areas recorded, 

similar to Harjunen et al. [167].  

 

When the strict interpretations are applied to the identified papers, only a singular 

paper finds a definitive neurophysiological marker of increased experienced WML 

when using HMD-VR. With 14 of the 15 papers finding HMD-VR either decreased or 

had no effect on experienced WML, it is suggested that HMD-VR does not negatively 

impact working memory processes in most working memory tasks and paradigms. 

The purpose of this section is not to call the preliminary conclusion drawn into 
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question, but to demonstrate how a stricter interpretation of the results does not 

change the relationship between HMD-VR and experienced WML. The change in 

perspective of these papers does not change the outcome reached by the initial 

analysis, and the majority of evidence does not suggest HMD-VR inherently 

increased experienced WML compared to alternative displays.  

 

2.3.2.2) Working Memory Load Tasks in Head-Mounted Display Virtual Reality 

Compared to Screen-Based Virtual Reality 

Building upon general HMD-VR to non-HMD-VR comparisons, it is important to 

identify which display methods HMD-VR have been contrasted against and which 

working memory tasks have been used. Of the 15 papers captured in this review, 11 

papers compared HMD-VR to forms of SB-VR. Of the 11 papers comparing HMD-VR 

to a form of SB-VR, 5 papers concluded the HMD-VR condition evoked a lower 

WML, 5 reported no significant differences between display methods, and 1 reported 

HMD-VR increased experienced WML. Of the 5 papers that reported the HMD-VR 

condition evoked a lower experienced WML, the tasks used included continuous 

performance [169], prospective memory [174], attention [167], selective attention 

[177] and a BCI task looking at imagined motor activity [179]. The papers that 

reported no difference utilised a secondary oddball task during a video game [173], 

two BCI tasks (imagined motor activity [175] and a P300 speller task [176]), a 

vigilance task [66], and a visuomotor gesture task [181]. The paper that found HMD-

VR to be detrimental to experienced load was a learning outcomes task [16].  

 

The vast majority of papers find HMD-VR does not increase experienced WML 

compared to SB-VR, and either had no effect or found decreased experienced WML 

relative to SB-VR, supporting the conclusion that HMD-VR is a viable presentation 

method for working memory research. Moreover, experienced WML was found not to 

increase in HMD-VR across a range of working memory tasks, demonstrating the 

breadth of working memory processes and paradigms which have been successfully 

studied using combined HMD-VR and neurophysiological methodologies. The 

findings also suggest that evidence from studies using either display method can be 

considered and compared together, as there is not an inherent increase in 
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extraneous load introduced through HMD-VR. Therefore, the demonstration that 

HMD-VR is not detrimental to WML processes paves the way for its expanded usage 

in wider working memory research and application. 

 

2.3.2.3) Working Memory Load Tasks in Head-Mounted Display Virtual Reality 

Compared to Real Life Presentation 

Of the 15 papers captured in this review, 4 compared HMD-VR to non-VR over 2 

working memory and 2 visuomotor tasks employing working memory measures. The 

first working memory task, conducted by Sun et al. [180], comprised of a learning 

outcome comparison between HMD-VR and a PowerPoint lecture-style presentation. 

Neural response to a simultaneous unattended oddball tone was used to measure 

experienced WML. It was found that overall experienced WML decreased in the 

HMD-VR condition based on the EEG results, with the low-spatial ability subgroup in 

particular benefitting from HMD-VR presentation. The high-spatial ability subgroup 

did not benefit from HMD-VR however, with no differences in experienced WML 

detected by the neurophysiological methods. Moreover, the high-spatial ability 

behavioural results suggested that experienced WML was increased in HMD-VR 

relative to SB-VR. When the results are considered together, they are weighted 

towards HMD-VR lowering experienced WML relative to real-life learning, but the 

results do introduce the additional consideration of individual differences between 

participants when designing a working memory study in HMD-VR.  

 

Yang et al. [182] compared measures of creativity along with experienced WML 

using a design task. Participants were provided with standard drawing equipment in 

the real-life condition, or a 3D virtual mannequin that could be freely decorated in the 

HMD-VR condition. It was found that HMD-VR improved feelings of relaxation (i.e. 

lower load), but found no differences between conditions for measures of attention. 

The behavioural measures were also increased in the HMD-VR condition, with the 

work being rated as more ‘creative’ by experts, suggesting overall HMD-VR usage 

induced a lower experienced WML.  
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The remaining two papers both employed visuomotor tasks where participants 

walked across balance beams in a real life laboratory setting compared to a VE 

recreation of the laboratory in HMD-VR [25], or a live-feed of the laboratory through 

an HMD-mounted webcam [178]. Measures of experienced WML, including 

responses to a secondary tone, were included during the walking task. It was found 

that HMD-VR was detrimental to ERP peak amplitude and time-frequency measures 

of experienced WML, and reduced behavioural performance relative to the real-life 

condition. 

 

2.3.2.4) Comparison of Behavioural and Neurophysiological Results 

Whilst this review focuses on neurophysiological methodologies, contrasting the 

neurophysiological results with behavioural data may highlight differences between 

displays not apparent using neurophysiological measures alone. Papers that 

recorded behavioural results typically used multiple measures, including objective 

measures of WML through learning outcomes [16,180] and task performance 

[25,169,175–178,181], or subjective measures such as the NASA-TLX [181] and 

‘creativity’ as judged by experts [182]. 

 

Of the 15 papers collected, 11 papers reported behavioural results. Of these 11 

papers, 4 reported behavioural results suggesting significantly decreased 

experienced WML in HMD-VR conditions, 3 reported significant increase in 

experienced WML, and 5 reported no significant difference. Of the 11 papers 

reporting behavioural results, 10 of the papers reported behavioural results that 

corroborated the neurophysiological findings, and did not find behavioural results 

that partially deviated from the conclusion drawn by the paper.  

 

Incongruencies between behavioural and neurophysiological findings was reported 

by Sun et al. [180], who found a difference between the findings of the low-spatial 

ability and high-spatial ability subgroups. The behavioural and neurophysiological 

results of the low-spatial ability learners improved in the HMD-VR condition 

indicating a lower amount of WML processing, but the high-spatial ability learners 
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had significantly lower learning outcomes suggesting a higher WML processing but 

no difference between neurophysiological results in the HMD-VR condition. Taken 

together, the neurophysiological recordings suggest that experienced WML 

decreased in HMD-VR, but there is no general change in behavioural findings. 

Overall, the discrepancy between subgroups does not change the conclusion 

reached, but does highlight the importance of considering the effect of individual 

differences between participants when interpreting the results. 

 

2.3.2.5) Head-Mounted Display Virtual Reality Does Not Directly Increase 

Working Memory Load 

The results to this point have suggested that HMD-VR does not inherently increase 

experienced WML in the majority of working memory tasks and processes. However, 

3 papers find that WML was higher when using HMD-VR presentation methods, 

indicating that there are either instances where HMD-VR increased experienced 

WML relative to another display, or a secondary or confounding factor independent 

of the presentation itself increased experienced WML. It is therefore important to 

examine the instances where using HMD-VR is found to increase experienced WML 

or inhibit learning, either to identify tasks HMD-VR is not suitable for, or technical 

considerations that could benefit future HMD-VR paradigms.  

 

Makransky et al’s [16] comparison of declarative learning outcomes between 

matched environments contrasts the other comparisons between HMD-VR and SB-

VR, finding HMD-VR evoked significantly higher levels of experienced WML across 

both neurological measures and reduced learning outcomes. A potential explanation 

for this is the use of low-immersion smartphone-HMD-VR, which may have made 

any text difficulty to read due to a low screen resolution [32]. However, Sun et al. 

[180] also used a similar smartphone-HMD-VR condition in a learning task and found 

HMD-VR outperformed a real-life equivalent learning task. Makransky et al. [16] 

speculate that a potential explanation for the increased experienced WML in the 

HMD-VR condition is the input method used in this experiment, which consisted of a 

headset-directed cursor and a tactile button on the side of the headset simulating a 

mouse click. The head-mounted button is both novel and unintuitive, which when 
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compared against the more commonly used keyboard and mouse configurations in 

SB-VR, likely required additional working memory resources to operate. Specifically, 

the input methods used in the HMD-VR condition do not represent the real world 

actions, adding an additional step between the intention and action that requires 

additional cognitive resources to resolve. The working memory requirement is 

exacerbated as the participant was also actively learning how to use the novel input, 

introducing extraneous load. The paper does however serve as an important 

reminder to not consider ‘HMD-VR’ as a singular entity, but to consider how each 

component in the HMD-VR configuration contributes to total WML experienced. 

 

Of the comparisons to real-life presentation, 2 of the 4 found HMD-VR increased 

measures of WML. The relatively even split between comparisons of WML measures 

during HMD-VR to real-life presentation suggests that the type of task should be the 

main consideration during HMD-VR experimental design. Cognitive tasks, such as 

those conducted by Sun et al. [180] and Yang et al. [182], benefitted from the use of 

HMD-VR, whilst visuomotor tasks had increased WML and reduced performance 

[25,178]. The findings do not directly contest the visuomotor task comparing HMD-

VR to SB-VR [181], which reported no differences between display conditions. 

However, it is suggested by Peterson et al. [178] that the results may in part stem 

from the technical limitations of the DK2 and supporting hardware used. Despite 

being classified as a modern DB-HMD-VR device, the DK2 is on the lower end of 

technical specifications. In particular, the relatively low 100 degrees FOV and low 

30Hz refresh rate of the webcam utilised, which is only a third of the 90Hz 

recommended by Oculus VR LLC [185] and thus risks increasing cybersickness, is 

identified as a potential reason for the reduced performance. Wide peripheral vision 

and smooth visual flow (i.e. no noticeable delay between frames) is important for 

maintaining display stability and reducing cybersickness [186,187]. The difference 

between immersion can be seen when contrasted against Xu et al. [181], who 

successfully utilised the higher-specification Oculus Rift CV1 DB-HMD-VR in a 

visuomotor task without the same negative results. 
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2.3.2.6) Is Head-Mounted Display Virtual Reality Suitable for Research 

Compared to Non-Head-Mounted Display Presentation Methods? 

Taken together, the results indicate that HMD-VR does not inherently introduce a 

higher level of experienced WML compared to alternative presentation methods, 

instead typically producing equivalent or lower levels of WML across a range of 

working memory tasks. When higher levels of experienced WML in the HMD-VR 

condition are found, potential explanations for the finding are offered which are 

tangential to the use of HMD-VR, and not the direct result of the use of HMD-VR 

headset itself. It is clear from this review that HMD-VR has application in future 

working memory research.  

 

Initial indications of what tasks benefit the most from HMD-VR presentation can be 

gleaned for broader cognitive processes. It is found that papers reporting attention-

based tasks, such as continuous performance [169], selective attention tasks [177] 

and vigilance during a secondary task [173], typically outperform in HMD-VR 

conditions, presumably where the reduction in external distractions can benefit the 

most. Similarly, HMD-VR was demonstrated to aid prospective memory, which also 

requires high levels of attention [174]. BCI tasks did not differ between conditions 

unless multivariate pattern analysis was used to identify the finer differences 

between displays [175,176,179]. When isolated to comparisons with SB-VR, HMD-

VR did not increase WML when comparing a visuomotor gesture-based task [181], 

demonstrating how display method and/or subcategory of tasks can affect outcomes.  

 

The papers captured by this review also highlight how the advantages of HMD-VR 

can be applied in research and application. One such example is utilising virtual 

elements to compensate for real world limitations. For example, HMD-VR facilitated 

the easier editing of a mannequin by providing unlimited supplies in Yang et al. [182]. 

Moreover, HMD-VR was able to present information in a way to enhance working 

memory processing of low-spatial ability users, providing additional visual 

information that supported cognitive processing of information [180]. HMD-VR 

presented VEs also have similar cognitive responses to reality: Peterson et al. [25] 

found fear responses to walking across beams connecting two high-rise buildings in 
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the ‘high-VR’ condition, demonstrating how VR can emulate the real world whilst 

evoking realistic responses to the presented scenario. Providing consideration is 

given to the differences between real-life and HMD-VR presentations, HMD-VR is 

still deemed to be suitable in these research contexts. 

 

This review cautions against concluding that, all being balanced, HMD-VR facilitates 

‘better’ cognitive processing, nor to discount HMD-VR for a given task, as currently 

there are too many factors to make such specific judgements. However, considering 

the range of positive results, explanations for negative findings, and suggestions that 

HMD-VR does not differ from comparison display methods, this review finds a 

promising outlook for HMD-VR as a tool in psychological studies. 

 

2.3.3) Combining Head-Mounted Display Virtual Reality and 

Neurophysiological Recording Methods 

The second objective of this review was to examine potential compatibility issues 

between HMD-VR and neurophysiological methods. Of the 15 gathered papers, 14 

papers used EEG in combination with modern HMD-VR, pre-2013 non-modern 

HMD-VR, and smartphone-HMD-VR. The remaining paper used fNIRS in 

combination with modern HMD-VR. Each paper demonstrated successful 

combination of the HMD-VR and neurophysiological recording equipment.  

 

The successful combination of HMD-VR and EEG across headsets is very important 

for research. Whereas HMD-VR was not anticipated to directly interfere with the 

BOLD signal captured by fNIRS, different HMD-VR devices have been previously 

demonstrated to introduce noise to EEG recordings due to the proximity of electrical 

components to the recording electrodes [56]. Despite this, Harjunen et al. [167] 

found that HMD-VR conditions had fewer EEG epochs removed due to noise then 

the SB-VR control. Moreover, Li et al. [177] and Harjunen et al. [167] successfully 

reported midline electrode results, despite the increased risk of line noise due to the 

positioning of the cabling of the HMD-VR devices used in their experiments. Papers 

used lowpass filters of 50Hz and below [16,66,173] or notch filters relative to the 
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local mains power [169] to successfully remove electrical noise. This builds upon the 

findings of Cattan et al. [36], who demonstrated that signals emitted from 

smartphone-HMD-VR did not interfere with EEG signals when combined, and 

Hertweck et al. [56], who found the noise introduced by certain DB-HMD-VR devices 

did not interfere with the recorded EEG signal of interest. However, as there are 

many models of DB-HMD-VR and combinations of smartphones and smartphone-

HMD-VR adapters not represented in the present study, care and consideration must 

still be provided when selecting which equipment to use. 

 

A potential source of noise is the pressure on the scalp when using combined HMD-

VR and neurophysiological recording devices, leading to feelings of discomfort in the 

participant. Perceived discomfort has been linked to experienced cybersickness 

[168], which in turn can confound results or prematurely end experiments. When 

coupled with the fact that the use of HMD-VR has previously been found to evoke 

cybersickness in participants [161,188], additional discomfort from additional head-

mounted equipment may worsen the symptoms. Whilst this review does not compare 

combined HMD-VR and neurophysiological recording methods to HMD-VR alone for 

cybersickness rates, two papers reported comparative scales of cybersickness 

between HMD-VR and the alternative presentation method. Juliano et al. [175] 

reported no significant difference, but Xu et al. [181] found HMD-VR induced higher 

levels of nausea. Moreover, Harjunen et al. [167] reported that 1 of 12 participants 

reported feeling nauseous in the HMD-VR condition, though no scale is provided. It 

is unclear if the low number of studies reporting cybersickness suggests that 

concerns are minimal, or if it represents an oversight that must be addressed in 

future studies. However, cybersickness did not prevent results being reported. Thus, 

whilst this review cannot draw conclusions about HMD-VR and cybersickness, it 

does not appear combined HMD-VR and neurophysiological methods increase 

cybersickness to the extent it prohibits combined usage.  

 

It is also found that physical movement, in particular walking, during visuomotor 

tasks did not prevent successful EEG acquisition during HMD-VR usage 

[25,178,181]. As HMD-VR is a presentation method that facilitates naturalistic 
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movement, the ability to replicate real-world actions and navigation is vital for taking 

full advantage of the display.  

 

This review finds minimal indication that HMD-VR and head-mounted 

neurophysiological recording methods are not compatible within the configurations 

examined. There are many successful examples of various categories of HMD-VR 

being combined with neurophysiological recording methodologies without preventing 

the successful capture of data. Moreover, HMD-VR induced cybersickness in 

participants did not prevent the successful completion of the experimental task nor 

result in the exclusion of data due to noise. The ubiquitous use of head-mounted 

neurophysiological recording methods is expected, as whilst other 

neurophysiological recording methods such as fMRI may technically work and have 

been combined [11,189], they are unexpected to become prevalent as they restrict 

movement and prevent fully utilising HMD-VR. However, this does not imply there 

are no compatibility issues between HMD-VR and head-mounted neurophysiological 

recording devices, as failed combinations would likely not be reported in research 

articles, and thus would be unlikely to be captured in this review. Therefore, whilst 

compatibility issues may still arise, this review finds that successful configurations of 

HMD-VR and neurophysiological recording methodologies which facilitate research 

are possible, presenting a positive outlook for the future of HMD-VR research.  

 

2.3.4) Shortcomings of the Current Literature, and Recommendations Going 

Forward 

Despite the positive indications of the utility of HMD-VR in research, several 

shortcomings of the current literature became apparent throughout this review. 

Based on the captured papers, these problems will be examined, and 

recommendations given with the aim of improving the standard of future HMD-VR 

research.  
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2.3.4.1) Technical Differences Between Head-Mounted Displays and Additional 

Considerations  

This review concludes HMD-VR is an appropriate tool for psychological research, 

based on findings across a range of modern DB-HMD-VR, non-modern DB-HMD-VR 

and smartphone-HMD-VR configurations. Some devices have comparable 

specifications despite being different models, such as the Oculus Rift CV1 and HTC 

Vive used by Juliano et al. [175] and Li et al. [177] respectively, but offer higher 

immersion than non-modern HMD-VR (used by Burns & Fairclough [173]) and 

smartphone-HMD-VR (used by Makransky et al. [16]). It is therefore possible that the 

differences in immersion contributed to the increased load reported in the 3 papers. 

 

Each paper reporting HMD-VR usage increased experienced WML used either a 

smartphone-HMD-VR [16] or a ‘modern’ Oculus DK2 DB-HMD-VR [25,178]. Whilst 

the low-immersion of smartphone-HMD-VR has been discussed, the DK2 is 

categorised as a ‘modern’ DB-HMD-VR device, but is outdated by current standards, 

possessing inferior resolution, FOV, latency, and overall immersiveness compared to 

the newer CV1 HMDs. The factors contributing to the relatively low technical 

specification, specifically FOV and refresh rate, are speculated by Peterson et al. 

[178] to contribute to the increased WML processing in HMD-VR found in their study. 

Moreover, the difference in immersion between devices can be seen in the direct 

comparison conducted by Rupp et al. [6], who found that task performance in CV1-

presented VEs outperformed DK2 and smartphone-HMD-VR, attributing the findings 

to the differences in technical specifications.  

 

Despite the trend of lower-immersion HMD-VR headsets increasing experienced 

WML, there have been several examples of WML being reduced in conditions using 

smartphone-HMD-VR [180], non-modern HMD-VR [169], and development-grade 

DK2 [167,174] configurations. Thus, whilst the HMD used may influence experienced 

WML, it cannot be the only factor. The most likely explanation is aspects of the HMD-

VR configuration which contribute to immersion, but are separate from the 

specifications of the HMD itself, negatively effecting experienced WML. The effect of 

these additional aspects may directly influence WML through increasing extraneous 
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load through task difficulty, or indirectly through cybersickness symptoms or general 

disorientation. For example, the unintuitive HMD-mounted button used by Makransky 

et al. [16] does not support sensorimotor perception and introduced additional load 

by requiring participants to learn to use the input method during the task. Moreover, 

Peterson et al. [25] tracked participant motion using a Microsoft Kinect motion 

camera which was used to represent movement in the VE. However, as the Kinect is 

limited to 30fps, it was speculated that the small delays in movement to 

representation would be noticeable by participants. Similarly, the visual feed of the 

webcam mounted to the DK2 used by Peterson et al. [178] to display the real-world 

was also limited to 30fps, increasing disconnect between the physical action taken 

and reflection in the VE, thus lowering immersion. 

 

Considering the number of factors which contribute to HMD-VR presented VEs, this 

review recommends standardising the reporting of details pertaining to the HMD 

itself and supporting software and hardware used in research. In addition to details 

about the HMD used including any modifications, information regarding the 

manufacturer, model, modifications, and supporting hardware such as host 

computers is important for comparison and replication of research. The reported 

information must include details on the supporting hardware and VE used, because 

limitations in these areas can potentially mask shortcomings of experimental 

designs, or otherwise explain when certain negative effects were found. For 

example, top-end HMDs limited by sub-par computers could suffer diminished frame 

rates/latency, reducing immersion and potentially increasing cybersickness [185]. 

Not only will full reporting of technical specifications lead to a greater understanding 

of how different HMD-VR devices compare in immersiveness and the impact of 

working memory processes, it should in turn lead to researchers making informed 

choices when designing experimental paradigms. 

 

Moreover, there needs to be a greater understanding on the differences between 

levels of immersion between HMD-VR devices. Whilst this review does not advocate 

against using smartphone-HMD-VR or low-immersion HMD-VR in research, there is 

enough evidence to suggest that immersion does play a role in experienced WML. 
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Whilst using smartphone-HMD-VR instead of DB-HMD-VR is sometimes reported as 

a potential shortcoming in an experiment [16], papers such as Sun et al. [180] do not 

discuss how using less immersive smartphone-HMD-VR may influence results 

relative to more immersive models. This can present a restricted view of the utility of 

HMD-VR to those unclear on the differences between categories, which can lead to 

overgeneralisation or misattribution of results to HMD usage generally. Indeed, with 

consideration between the HMD-VR models available, a second necessary 

distinction between ‘modern’ HMD-VR devices becomes apparent. Currently, 

differences between DB-HMD-VR and HS-HMD-VR have been found within the 

‘modern’ HMD-VR, distinguishing between consumer-grade and high-specification 

HMD-VR devices. However, there is a clear distinction in the levels of immersion 

offered between consumer-grade Oculus CV1 and the earlier development-grade 

Oculus DK2 HMD-VR devices which may lead to differences in cognitive processes 

when using the devices. Therefore, going forward in this thesis, development-grade 

DB-HMD-VR devices will be used to refer to early modern models that have 

comparatively lower specifications than the consumer grade Oculus CV1 or HTC 

Vive, to highlight the differences between the HMD-VR devices utilised in research. 

However, it is also anticipated that this expansion will be insufficient going forward, 

where instead either a generation-based identification (e.g. DK2 is generation 1, CV1 

is generation 2, etc.) or a way of categorising immersion may be better suited for 

distinguishing between future developments. 

 

2.3.4.2) Individual Differences 

Another factor which affects the dynamics of HMD-VR and experienced WML is 

individual differences between participants. Individual differences which have been 

demonstrated to influence task performance within HMD-VR are often demographic, 

for example age [190], sex [191], and experience with HMD-adjacent technologies 

[190]. The clearest effect of individual differences captured in this review is the 

comparison of low-spatial ability and high-spatial ability groups in Sun et al. [180], 

who found the former group benefitted from HMD-VR whereas the latter did not. 

Whilst this example can be explained as the HMD-VR VE provided additional 

support to the low-spatial ability group, the finding demonstrates how factors that 

may initially be overlooked can influence experienced load during HMD-VR usage. 
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This however is a very broad topic with many potential faucets, and what 

considerations must be given will be largely dependent on the presented task. 

 

The relative novelty of HMD-VR for a participant was identified in several papers as 

a potential factor that may affect experienced WML, suggesting that new users will 

experience increased excitement in using the device [180] or towards aspects of a 

VE [167]. This excitement is speculated to enhance both attention and cognitive 

processing, thus reducing the experienced WML whilst increasing learning outcomes 

and other measures of task performance. However, Makransky et al. [16] contests 

this interpretation by suggesting that excitement can be distracting and will in fact 

increase load. Regardless, the indications that novelty has an effect means studies 

which do not consider prior experience, including Makransky et al. [16] and Peterson 

et al. [25], may unintentionally introduce confounding effects. Similarly, inexperience 

with input methods, particularly those that are not commonly used by the participant 

demographics outside of research contexts, could introduce extraneous load whilst 

participants learn to use the equipment [16]. Therefore, it is recommended that 

sufficient familiarisation periods with both the HMD-VR-presented VE and input 

method used, such as those used by Li et al. [177], are provided. 

 

Individual differences affecting experienced WML can also result from the HMD-VR 

VE, such as experienced presence or embodiment [192]. For example, the effect of 

experienced presence has been the subject of a review by Coxon et al. [193], who 

reported that HMD-VR usage increases the feeling of ‘being there’ in susceptible 

participants. It has been suggested that increased presence results in enhanced 

focus and reduced distraction [175], therefore participants who are susceptible to the 

feeling of presence may experience lower levels of WML whilst using HMD-VR 

devices. Conversely, whilst presence can positively correlate with cognitive load 

processes (e.g. Li et al. [177]), Makransky et al. [16] reported a negative relationship 

between presence and results in HMD-VR, finding that whilst presence increased, 

both the cognitive load experienced and the learning outcomes did not relative to an 

SB-VR condition.  
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Individual differences can also influence experienced cybersickness. Levels of 

reported cybersickness in this review differs between studies, with some finding that 

symptoms increased in the HMD-VR condition [181], whilst others reporting no 

difference between presentation methods [175]. Regardless, this difference between 

experiments, coupled with participants being differently affected by the same stimuli, 

demonstrates how individual differences influence the experienced symptoms 

[194,195]. However, it is unclear if these symptoms result from the HMD-VR, the 

supporting hardware not being sufficient, an aspect of the VE [196], or some 

combination of these being the cause of the symptoms. It is possible this individual 

difference can be minimised with research identifying which factors introduce the 

highest risk when combining HMD-VR and neurophysiological methods, and making 

appropriate accommodations. For example, if a low frame rate introduces the highest 

levels of nausea [178], taking steps to increase this through improved specifications 

or more efficient programming will be important. Moreover, there are common 

methods employed in VR experiences that are designed to reduce the levels of 

experienced sickness, such as teleportation-based movement and vignettes during 

locomotion [197], that can be employed to ease participant where required, 

dependant on the paradigm used.  

 

Despite the evidence of individual differences interacting with HMD-VR usage, many 

positive results come from studies that do not consider them, leaving it unclear how 

important they are. However, the presence of differing findings between groups [180] 

demonstrates that it is an important factor that should be considered in future 

research. This review therefore recommends studies should collect and report 

relevant individual differences in HMD-VR research to provide additional context to 

results. At minimum, this should include VR experience, experienced presence, and 

pre- and post-experiment cybersickness scales though this list may expand as more 

research is conducted. 

 

2.3.4.3) Unbalanced tasks  

A recurring trend within the reviewed papers is the separation between tasks in the 

HMD-VR and comparison conditions. Whilst the same cognitive processes are being 
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measured between display conditions, there are often differences between how the 

task is presented or completed that may introduce confounding elements to the 

experiment or interpretation. Whilst these studies warrant inclusion into this review 

for demonstrating the research applications of HMD-VR, it is important to understand 

their limitations and how this may affect the conclusions drawn. For example, the 

learning materials delivered in Sun et al. [180] were presented in a PowerPoint 

presentation in real life, opposed to the immersive virtual environment designed 

specifically to aid understanding the material. One part of the learning materials was 

examining the Curiosity Mars Rover, which could be presented as a 3D model 

opposed to a 2D image, allowing more detailed visual inspection in the HMD-VR 

condition. Such differences could potentially change the underlying cognitive 

processes, either from processing a more complicated visual representation or 

potentially having access to more information about the subject, making it unclear to 

what extent the HMD itself is responsible for differences in experienced load. 

However, steps can be taken to minimise these differences through careful control of 

the stimuli, such as ensuring the same information was given in a controlled 

timeframe identically between conditions, as done by Sun et al. [180]. 

 

Yang et al. [182] compared standard pen-and-paper drawing implements in the real-

life condition to designing mannequins in 3D space using virtual painting tools in the 

HMD-VR condition, providing completely different perspectives and way of 

interacting with the task. Whilst one can conclude that HMD-VR facilitates creativity 

from the results, the complex HMD-VR experience makes it nearly impossible to 

determine how much of the HMD-VR device itself was responsible for the reduction 

of load, and how much resulted from the VE used. Therefore, whilst appropriate for 

this review as a broad understanding of HMD-VR in cognitive load research, it is 

important to view these comparisons critically to prevent overgeneralising the 

findings to HMD-VR usage alone. 

 

Unbalanced conditions were also present in the comparisons with SB-VR, for 

example Dong et al. [174] used a black-screened slide based prospective memory 

task in the SB-VR condition where participants must press the appropriate key 
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depending on the numbers presented. The slide-based task was compared against 

the HMD-VR condition consisted of a shopping task in a replication of a 3D town, 

which was navigated using a controller with a rotating chair, and interacted with by 

reading the numbers aloud and moving their heads to select options on a menu. This 

comparison between a ‘HMD-VR experience’ to a screen-based task extends far 

beyond a simple comparison between displays. Whilst Dong et al. [174] does 

demonstrate an application of HMD-VR, there is an argument that it is comparing 

two tasks linked only by cognitive process, and thus does not provide much insight 

into the effect of the headset itself on said processes. This should therefore be 

portrayed clearly in the publication, to prevent misattributing of the results to being 

solely resultant from the display method selected opposed to what is presented. 

Indeed, this criticism extends to all papers that compare against a general ‘VR 

condition’ without acknowledging the range of differences between the conditions. 

 

Secondary aspects of a paradigm can also unbalance tasks. For example, 

Makransky et al. [16] faithfully converted a SB-VR environment to HMD-VR but 

adapted the mouse-based input to the side-mounted button on the HMD itself. As 

such, the increased experienced WML reported in the HMD-VR condition is 

suggested to be in part due the novel and unintuitive interaction method. The 

disparity between input methods highlights two important considerations for 

researchers: participant familiarity with input methods; and how intuitively the input 

methods represent an action. Ideally, identical input methods familiar to participants 

which accurately represent the physical actions taken would be used across 

conditions. However, balanced motion controls are often not possible as using 

motion controls on detached 2D screens is fundamentally different from seeing 

movements accurately represented in fully immersive virtual spaces. HMD-VR can 

however prevent participants seeing physical keyboards and mouses, which can 

result in participants misaligning their hands over the keys leading to confusion, 

increased WML and potentially interrupting the experiment. One potential 

compromise is using gamepads with similar configurations to VR motion controls, but 

this would not facilitate many visuomotor tasks nor take full advantage of the HMD-

VR’s capabilities. Whilst there is no clear solution present, the input methods 

selected should be appropriate for the task and remain as consistent as possible 
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between conditions. The participant should also undergo a familiarisation period prior 

to the experiment to learn how to use the controls correctly, avoiding artificially 

increasing WML during the experiment itself [16]. 

 

2.3.4.4) Unexplored Comparisons  

Whilst this review succeeds in broadly comparing HMD-VR to other display methods, 

no captured neurophysiological paper compares HMD-VR to CAVE or augmented 

reality (AR). The lack of CAVE and AR representation is an important gap in the 

literature, as both offer an alternative “middle ground” between SB-VR and real-life 

currently only explored using behavioural measures (e.g. Demitriadou et al. [198] 

and Halabi et al. [199]). The lack of comparisons with CAVE is not surprising 

considering the practical limitations [27], however it would allow VEs to be explored 

whilst maintaining one’s physical body as opposed to virtual avatars. Conversely, AR 

overlays virtual elements onto the real world, either directly using ’see-through’ 

HMDs (used by Funk et al. [200] and Werrlich et al. [201]), or onscreen using mobile 

devices with cameras (used by Huang et al. [202]). There is an argument that could 

be made that Peterson et al. [178] utilised a form of AR, as the real world was 

presented virtually, however this does not necessarily fit the earlier description of 

overlaying virtual elements of the real world. For the purpose of this review, Peterson 

et al. [178] is considered VR the same way a recording of a roller-coaster presented 

within HMD-VR is. 

 

No comparisons with HS-HMD-VR and an alternative display were found. The 

findings suggest that level of immersion has some effect on experienced WML, 

however devices that offer the highest level of immersion are not represented in the 

current literature. This is an important oversight for two reasons, firstly because it is 

currently unknown how the highest level of immersion influences experienced 

working memory processes compared to alternative displays. Secondly, it could 

potentially indicate that HS-HMD-VR is not suitable for EEG research. EEG has 

been combined with HS-HMD-VR, and found to have limited impact on recorded 

frequency bands [56], however there may be practical limitations preventing HS-

HMD-VR being deployed in working memory paradigms. Additional research 
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focusing on HS-HMD-VR in working memory paradigms is therefore required, 

especially considering the rate at which HMD-VR technology is advancing. 

 

All but one experiment used EEG, and whilst HMD-VR has been successfully 

combined with methods such as fNIRS [203], little can be drawn about BOLD 

responses changes in the brain during HMD-VR usage. It is therefore possible this 

review did not capture examples of HMD-VR interfering with non-electrophysical 

neurophysiological recordings, or potentially missed aspects of the neurological 

response not detectable with EEG. Thus, there may be important considerations 

regarding combined methodologies that will be uncovered by future research.  

 

2.4) Conclusions 

This review systematically examined combined use of HMD-VR and 

neurophysiological recording methodology in the study of working memory 

processes. A range of working memory tasks including attention, learning, and BCI, 

are represented in the current combined HMD-VR and EEG literature. The results 

reviewed indicate that the use of HMD-VR does not inherently negatively influence 

experienced WML across a range of cognitive tasks, instead finding no difference 

between displays or lowering the measured WML performance. Instances where 

increased WML was reported in the HMD-VR condition could be explained by 

secondary factors of the VR configurations used. The findings suggests that HMD-

VR technology is suitable for wider use in psychological and neurological research, 

and potential real-world application. Moreover, it was found that smartphone-HMD-

VR, non-modern DB-HMD-VR, development-grade modern DB-HMD-VR, and 

consumer-grade modern HMD-VR have been successfully combined with EEG 

methodologies to acquire neurophysiological measures of working memory. An 

example of combined modern development-grade HMD-VR and fNIRS was also 

found, demonstrating how HMD-VR is being examined using other 

neurophysiological recording methodologies. However, current research using 

modern HMD-VR is a relatively novel field, and research comparing HMD-VR to 

alternative displays across a wider range of working memory processes, particularly 
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using HS-HMD-VR devices, is required to understand how the technology can be 

best applied in research and application. 
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Chapter 3) Event-Related Potentials in Response to an 

Arithmetic Working Memory Task Presented in a High-

Specification Head-mounted Display Virtual Reality 

Virtual Environment. 

 

3.1) Introduction  

3.1.1) High-Specification Head-Mounted Display Virtual Reality in Neuroscience 

Research  

The systematic review conducted in Chapter 2 found that EEG has been 

successfully used to record neurophysiological measures of experienced WML in 

combination with a range of HMD-VR devices [16,167]. WML-related ERPs have 

been acquired using Google Cardboard smartphone-HMD-VR [204], development-

grade Oculus DK1 and DK2 DB-HMD-VR systems [167,176,178], and the consumer-

grade HTC Vive DB-HMD-VR [66]. Combined HMD-VR and EEG has further been 

reported in published research outside of the systematic review, including Cattan et 

al. [64] using smartphone-HMD-VR in a P300-BCI task and Aksoy et al. [205] using a 

consumer-grade HTC Vive in an N-back task. The use of the combined EEG and 

HMD-VR extends past WML research, with Stolz et al. [206] reporting successful 

ERP acquisition in an HMD-VR experiment studying responses to face presentation 

using the consumer-grade Oculus CV1.  

 

Although the successful combinations of HMD-VR and EEG demonstrate the 

suitability of using both together in neuroscience research, lower-immersion HMDs 

may contribute to unwanted extraneous load in WML tasks and other confounding 

factors in research. For example, it has been demonstrated that the lower resolution 

of low-immersion HMDs makes visually navigating a VE more difficult, resulting in 

lower learning outcomes and engagement [6] or leading to increased cybersickness 

symptoms relative to higher-immersion devices [207]. Secondary aspects of the low-

immersion HMD-VR configuration can also inhibit working memory performance, for 

example if the HMD-VR utilises unintuitive or confusing input methods [16]. However, 
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no paper captured by the systematic review utilises HS-HMD-VR devices such as 

the HTC Vive Pro despite offering the highest levels of immersion, highlighting a 

major gap in the current literature. 

 

Many low-immersion development HMDs have been discontinued in favour of 

higher-specification models, such as the consumer-grade HTC Vive [66,182] or 

Oculus CV1 [179,181]. Relative to the development-grade HMDs, the consumer-

grade devices offer larger resolution displays, enhanced internal components, and 

other improvements making them an attractive option for research applications. 

Moreover, these consumer-grade HMDs have been surpassed by HS-HMD-VR 

devices which offer the highest levels of immersion, and as such are gaining interest 

for use in neuroscience research [208]. However, the wide range of available HMD-

VR devices introduces a large disparity in what ‘HMD-VR’ can be in research. For 

example, the development-grade Oculus DK2 is a very different headset compared 

to high-specification Vive Pro (Figure 3.1). The DK2 contains a singular 5.7” OLED 

screen with a combined 1920x1080 pixel resolution,100-degree field of view, no 

integrated audio, and weighing 440g. The straps are elasticated fabric that are 

tightened around the head, which guide the data and power cables over the midline 

of the scalp. In comparison, the Vive Pro has two 90Hz AMOLED 3.5” screens with 

1440x1600 pixels per eye screen with a combined 110-degree field of view, providing 

a clearer, higher resolution presentation of the VE and more of the periphery 

compared to the DK2. The Vive Pro uses a ratchet-style tightening method of affixing 

the HMD to the head, being held in place from the cushioned face pad and a 

cushioned pad at the back of the head, in combination with an overhead Velcro 

midline strap. Unlike the DK2, the side straps do not make contact with the head. 

The Vive Pro trails the power and data cables down the left side of the head. 

However, the improvements to the Vive Pro also increased the weight to 555g, ~25% 

over the DK2.  
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(a) Front 

View  

  
(b) Side 

View 

  
(c) Top 

View 

  
Figure 3.1: Annotated side-by-side images of an Oculus DK2 (left) and HTC Vive Pro 
(right) from the front (a), side (b) and top (c). The similar sizes of the main units are 
seen in all 3 images. The interpupillary distance and lens distance calibrations for the 
Vive Pro are highlighted in images (a) and (b). The integrated hard plastic straps and 
cushions on the Vive Pro and elastic straps and face cushion of the DK2 are 
highlighted in images (b) and (c). The data trailing wires in the centre strap of the 
Oculus DK2 and on the left side (when worn) are highlighted in orange image (c). 
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Whilst most modern HMD-VR devices facilitate some form of audio delivery, HS-

HMD-VR devices are capable of efficiently combining the higher-fidelity visual 

presentation with higher-grade auditory hardware to facilitate immersive VEs. The 

Vive Pro has cushioned on-ear headphones which are integrated directly into the 

device, allowing directional sound to be delivered whilst blocking out a degree of 

external noise. In comparison, the Oculus Rift CV1 has integrated off-ear 

headphones which do not block external noise; the HTC Vive has a headphone jack 

to use external headphones, but therefore requires an additional wire to be used 

which can potentially obstruct a participant’s movement; and the Oculus DK2 has no 

in-built audio integration and relies on computer speakers or external headphones. 

The increased immersion from the combined visual and auditory elements offered by 

HS-HMD-VR has implications for experimental paradigms which utilise speech or 

otherwise emulate real world situations by increasing presence [209]. 

 

The technical advancements of the Vive Pro over other headsets could be expected 

to promote WML performance [6], however there are several aspects of the HMD’s 

design that could potentially inhibit EEG data acquisition. Firstly, the enhanced 

screen and components could introduce increased electrical noise to the EEG 

recording due to close proximity to the recording electrodes. Whilst electrical noise 

originating from the power cable (50/60Hz) or the screen (90Hz) should be 

identifiable using frequency extraction and eliminated by standard EEG filtering 

techniques, lower frequency noise within the 0-40Hz range may prevent accurate 

EEG recordings of frequency bands commonly used within neuroscience research 

[210,211]. Secondly, the left-mounted power cable may introduce line noise with a 

left hemisphere bias. Thirdly, the design of the head straps, particularly on the back 

of the head, may block or otherwise move the electrodes on the scalp during the 

tightening-up process. This may also prove uncomfortable for participants using EEG 

headcaps with protruding electrode holders, such as the SPESMedica Softcap. 

 

There have been examples of combined HS-HMD-VR, specifically the Vive Pro, and 

EEG. For example, Hertweck et al. [56] examined the noise produced by the Vive 

Pro using time-frequency EEG analysis, and reported that the HMD only introduces 
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the easily filterable 50Hz line noise to the recording or a 100Hz frequency, above 

what is typically analysed in EEG experiments. However, some experiments using 

combined Vive Pro and EEG do not employ a standard EEG array integrated into a 

cap, instead using a modified HMD-VR faceplate (Figure 3.2) to apply electrodes to 

the prefrontal and frontal areas only [73,212,213]. Furthermore, WML studies using 

the Vive Pro with whole-head arrays do not include event-related potential (ERP) in 

the analysis, with successful combinations only utilising time-frequency analyses 

[56,214]. As demonstrated by the systematic review, many studies utilise ERP 

measures of WML, thus it is important that HS-HMD-VR is compatible with the 

analysis method for the method’s application in research. Moreover, the effect of 

different levels of induced load within HS-HMD-VR is underexplored in the current 

literature, rendering it relatively unknown if the use of such devices interacts with 

different levels of experienced load. Therefore, before it can be understood how to 

best take advantage of HMD-VR in research, it must be confirmed that higher 

specification HMD devices can be used in combination with whole-cap EEG 

recording equipment during an ERP recording. 

 

 

Figure 3.2: Image of a modified Vive Pro with the Looxid Link Mask and EEG 
recording system, as used by Costa et al. [212]. This configuration uses dry AF3, 
AF4, AF7, AF8, Fp1, Fp2 electrodes, and uses FPz as the reference. 
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Moreover, auditory and visual stimuli are typically combined into a singular 

experience during HMD-VR research, presenting a unified VE to the participants. 

However, there is little if any research investigating the presentation modalities 

separately in the context of HMD-VR induced WML. The visual and auditory 

presentations of the same information will separately evoke the visuospatial 

sketchpad and phonological loop components of the multicomponent working 

memory system respectively [215], which in turn could result in different levels of 

experienced WML despite the same information being processed [216,217]. Indeed, 

studies comparing the presentation of visual and auditory stimuli using HS-HMD-VR 

compare visual-only presentations to combined audio-visual, instead of auditory-only 

presentation [218]. It is therefore difficult to isolate the effect that the HMD-VR audio 

hardware has on the EEG recording.  

 

A comparison of ERP EEG recordings taken during a working memory task 

presented using HS-HMD-VR would build upon the outcomes of the systematic 

review. Firstly, recording ERP EEG signals during a task presented using HS-HMD-

VR would examine if the techniques can be combined in an ERP experiment, or if 

the combined use impacts the electrophysiological recording and prevents data 

acquisition. Secondly, it would further explore the dynamics between HMD-VR usage 

and levels of experienced load by utilising different levels of load within HMD-VR 

presentation, opposed to the singular levels of load commonly employed in the 

studies identified by the systematic review.  

 

3.1.2) Mental Arithmetic  

There are many WML paradigms that could take advantage of the intricate 

perceptual experience HMD-VR facilitates, such as learning outcome comparisons in 

virtual laboratories [16] or performance in realistic vehicle simulations [32]. However, 

mental arithmetic tasks provide a versatile method of inducing different levels of 

WML currently unutilised in HMD-VR research. Mental arithmetic calculations are 

complex cognitive processes linked to the central executive, visuospatial sketchpad 

and phonological loop working memory components [219,220]. Each equation is 

solved within working memory over several stages: the equation is encoded to WM; 
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the appropriate operation (addition, multiplication, etc.) is retrieved from long term 

memory; each intermediate step is calculated and maintained; and a response is 

provided [219]. Arithmetic paradigms in research are divided between ‘production’ 

tasks, where the answer must be calculated and reported; and ‘verification’ tasks, 

where potential answers are presented, and the participant must determine which if 

any are correct. Verification tasks may present a single potential solution which is 

identified as correct or incorrect, or multiple which must be chosen between. 

Arithmetic paradigms can also differ on how the equation is presented, for example 

displaying operands (the numbers) and operations together or in sequence 

[204,221,222]. 

 

Mental arithmetic tasks offer several major benefits for HMD-VR research using 

WML paradigms. Primarily, the same or equivalent arithmetic stimuli can be 

presented visually or auditorily [223], allowing for different aspects of the HMD-VR 

experience and the respective working memory component to be examined. Both 

visual and auditory presentation of working memory tasks have been used in 

working memory paradigms [224,225] to probe the visuospatial sketchpad and 

phonological loop of the multicomponent working memory model respectively, 

however the control over task difficulty offered by arithmetic stimuli allows for levels 

of load to be manipulated across modalities within the same experiment. Therefore, 

even if visual and auditory arithmetic questions do not evoke equivalent loads [217], 

it will allow exploration of how the visual and auditory aspects of the HMD-VR 

experience are processed differently within the brain, and by extension how said 

processes are effected by different levels of WML. Moreover, as only the arithmetic 

question needs to be presented, simple VEs can be utilised which avoid potentially 

distracting or confusing elements used in more complex learning tasks.  

 

A mental arithmetic paradigm is ideal for the current WML-based exploration of 

HMD-VR for the level of control it offers over the level of induced load. For example, 

it has been long understood that increasing the problem size (the intrinsic difficulty of 

an arithmetic task) of an equation through increasing the number of digits and carry 

overs positively correlates with errors made [226], indicating higher levels of WML. 
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Moreover, the problem size of addition questions can be empirically controlled and 

categorised using the ‘Q-value’ calculation [227] (Figure 3.3). This calculation 

accounts for the steps taken to correctly solve an equation, including carry-overs, by 

summing the logarithms of each pair of digits at each space of the equation (units 

with units, tens with tens, etc.) with the total of the digits in a given position within the 

equation. Each step of solving arithmetic questions has linked to WML [219], and it 

has been found that increasing the number of steps, for example the number of carry 

overs [228], increases experienced load. Arithmetic problems can then be separated 

into distinct brackets of Q-values, allowing questions to be grouped into categories 

ranging between ‘easy’ to ‘too difficult’ [229]. 

 

a: 𝑄(𝑥1 + 𝑦1) = log[𝑥1 + 𝑦1 + (𝑥1 + 𝑦1)] 

 

b: 𝑄(𝑥1 + 𝑦1) = log[𝑥1 + 𝑦1 + (𝑥1 + 𝑦1) + 10 + (𝑥1 + 𝑦1 − 10)] 

 

c: 𝑄(𝑥1𝑥2 + 𝑦1𝑦2) = 𝑄(𝑥1 + 𝑦1) + 𝑄(𝑥2 + 𝑦2 + 𝑐)  

 =log[𝑥1 + 𝑦1 + (𝑥1 + 𝑦1) + 10 + (𝑥1 + 𝑦1 − 10)] + log[𝑥2 + 𝑦2 + (𝑥2 + 𝑦2) + 𝑐2 + (𝑥2 + 𝑦2 + 𝑐2)] 

 
Figure 3.3: The Q-Value Equations. These equations reproduced from Spüler et 
al. [227] are the calculations used to determine the difficulty of various addition 
equations. Equation (a) is used for single-digit plus single-digit equations with no 
carry overs, (b) is used for single-digit plus single-digit equations including carry 
overs, and (c) for multi-digit plus multi-digit equations including a single carry over. 
These equations can be expanded as required to accommodate sums with 
multiple digits. 
 

 

Moreover, current research illustrates how different aspects of mental arithmetic 

paradigms or problems can influence experienced WML [219,230,231]. For example, 

it has been found that limiting presentation times of the arithmetic question during 

calculation increases experienced WML [228]. Moreover, how the question is 

presented affects the experienced load, for example auditorily presented equations 

are found to induce higher WML than visually presented equivalents [217]. Within 

visual presentation, Blankenberger [232] found presenting the information using a 

numerical format (e.g. ‘2+4’) induces a lower load than word-based presentation 

(‘two plus four’), which can be attributed to the additional step of converting the 
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words to numbers. Conversely, increased WML from factors outside of the arithmetic 

question itself results in decreased arithmetic performance [233]. For example, Imbo 

et al. [234] found that participants utilised inferior strategies for solving arithmetic 

problems when under increased WML. Based on these findings, it is possible to 

design a paradigm that avoids introducing extraneous load from the question 

presentation within the HMD-VR VE. 

 

3.1.3) Mental Arithmetic in Event Related Potential Research 

Mental arithmetic tasks are commonly employed in EEG ERP research, which 

typically examine ERP responses to equation presentation in production tasks and 

solution presentation in verification tasks. A common ERP response in the arithmetic 

literature is the P300 response [235–237], and can be detected across the brain in 

response to arithmetic stimuli [236]. The P300 has been linked to several cognitive 

processes associated with different aspects of mental arithmetic calculations, 

including the processing of a presented arithmetic question [204,222,238], evaluation 

of task difficulty during question presentation [235], and target detection of presented 

solutions in verification tasks [237,239]. Typically, a larger amplitude P300 is 

associated with a lower WML in arithmetic contexts for both question and solution 

presentations [204,223,238,239]. The location of the largest P300 response is also 

modulated by the difficulty of the arithmetic task and the modality it is delivered in 

[131], but are typically reported in the parietal regions [204,236,240] and central 

electrodes [204,223]. The hemisphere the largest P300 response is found is 

inconstant, with studies reporting the largest responses originate in the left 

hemisphere [237], right hemisphere [241] and the midline electrodes [223,237]. This 

results from the specific arithmetic operation and modality utilised, as Dickson & 

Federmeier [223] demonstrated responses were larger in the left parietal lobe for 

visually presented and easy questions, and larger in the right parietal lobe for 

auditory and hard questions.  

 

In addition to the P300, earlier N170 components have been reported in response to 

arithmetic stimuli [241]. N170s are more commonly associated with recognition of 

faces [242], and have been demonstrated to be sensitive to different levels of WML 
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within face-perception tasks [135]. However, N170 components have been shown to 

be sensitive to the problem size of arithmetic questions. For example, Moore et al. 

[241] and He et al. [243] found that more difficult arithmetic tasks increased the N170 

response in the left hemisphere over the right and medial regions, reported to 

originate from the parietal lobe and fusiform gyrus respectively. These early N170s 

are speculated to be associated with the encoding of the arithmetic stimuli [241,243], 

however this has currently only been reported in verification tasks, therefore their 

presence in production tasks is unknown. 

 

Post-P300 slow-wave components (SWCs) have also previously been reported in 

arithmetic paradigms, typically manifesting as either a frontal negative response, 

parietal positive response, or combination of these within the 450-750ms range 

[131,244]. Arithmetic SWC are linked to several cognitive processes depending on 

the paradigm employed. For example, arithmetic SWCs represent the identification 

of ‘rule violations’ in arithmetic verification tasks, with presented correct responses 

(lower-WML) having smaller responses than presented incorrect responses (higher-

WML) [223,240,245–247]. In production tasks, the arithmetic SWC is associated with 

the mental calculation process [131,248] required to arrive at the answer. Most 

commonly, SWCs are characterised by the positive inflections in the parietal 

[240,244] and parietal-central regions [221], and is sometimes referred to as a 

positive SWC or the late positive component (LPC). Similar to the P300, positive 

SWCs are reported across hemispheres, being found to be of the largest amplitude 

in the right-hemisphere [223,245], left-parietal region [236], within the midline 

electrodes [237], or independent of any laterality [240]. The amplitudes of SWCs 

have been found to increase with WML within arithmetic verification tasks 

[223,240,246] but have also been reported in response to the presentation of 

increasingly difficult arithmetic questions in response to both visual and auditory 

questions [248]. 

 

3.1.4) Aims of the Present Study 

The technical specifications of HMD-VR devices available in neuroscience and WML 

research have increased drastically since modern HMD-VR devices became more 
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widely accessible, with high-specification HMD-VR providing the greatest levels of 

immersion through the large resolution screens and audio delivery methods. 

However, high-specification devices such as the HTC Vive Pro have not been 

utilised in combination with EEG techniques in WML-based neuroscience studies, 

and it is currently uncertain if HS-HMD-VR devices can be successfully used when 

acquiring ERP responses. This study aims to acquire N170, P300 and SWC ERP 

responses from a working memory mental arithmetic task presented visually and 

auditorily using HS-HMD-VR combined with EEG. The arithmetic task will present a 

series of addition questions comprising of single-digit or double-digit numbers to 

evoke distinct levels of WML within participants. Questions will be presented either 

visually or auditorily within the HMD-VR VE, and participants will be presented with 

each variation of presentation modality and question difficulty. This aim will be 

achieved through identifying ERP responses to visual and auditory mental arithmetic 

stimuli presented using an unmodified HS-HMD-VR device, and recorded using a 

standard EEG headcap. The ERP responses within selected component time 

windows will then be compared based on difficulty/load, electrode location and 

hemispheric location using a repeated measures design. 

 

3.2) Methods 

3.2.1) Participants 

This study recruited 22 university students (Mean Age ± S.E.M = 21.36 ± 0.6 years 

old, range: 18-27 years old), 12 males (M= 22.4 ± 0.9 years old, range: 18-27 years 

old) and 10 females (M= 20.1 ± 0.7 years old, range: 18-24 years old), with normal-

to-corrected vision through opportunity sampling from the Hull University and 

University of York campuses. The number of participants recruited within EEG 

studies typically ranges between 10-30 and averages around 20 (see Larson & 

Carbine, [183] and Clayson et al. [249]), thus the number of participants is standard 

within EEG/ERP research. Two participants were left-handed (1 male, 1 female) 

based on responses to a modified version of the Edinburgh Handedness Inventory 

[250]. Every participant completed a paper-based health questionnaire to exclude 

any with pre-existing conditions or who are taking medication which could affect 

cognitive function. The exclusion criteria were predefined by the researcher, and 
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included neurological conditions such as epilepsy or conditions requiring an electrical 

stimulator (such as a pacemaker) which may introduce noise to the EEG recording. 

Fourteen participants had no prior experience with HMD-VR. Of the 8 who had 

experience, 5 had less than 1 hour of exposure, and 3 had 1-10 hours of use. One 

participant was excluded from data analysis for being unable to finish the experiment 

due to cybersickness. The study was conducted in conformity with the Declaration of 

Helsinki [251], received local ethical approval from the Hull York Medical School 

Ethics Committee (Reference 1303), and all participants provided fully informed 

consent before beginning the experiment. 

 

3.2.2) Materials and Apparatus 

3.2.2.1) Hardware and Software  

The experimental stimuli were constructed and presented using PsychoPy [55], 

which also captured the behavioural data. The audio questions were generated 

using Python [252] and the Google Text-To-Speech [253] plugin, which were then 

converted from .MP3 to .ogg file formats using the MediaHuman Audio Converter 

[254] to be compatible with PsychoPy. The post-test SSQ [160] was also constructed 

in PsychoPy and presented within the VE for participants who opted to complete it 

before taking off the HMD. 

 

The stimuli presentation, virtual environment and behavioural data recording was 

managed by a desktop computer using an i5-2400 processor and Nvidia GTX 980 

GPU, and presented using an HTC Vive Pro headset. A wire connecting the headset 

to the computer was trailed behind the participant to prevent obstructing answer 

input. The Vive Pro has integrated headphones that were placed over the ears, and 

adjustable straps for comfort. The HMD-VR hardware was managed by SteamVR 

software. The HMD was calibrated for each participant by adjusting the integrated 

straps, the FOV adjuster and IPD knob to ensure the HMD was properly configured 

for each participant. 
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The Vive Pro presented the VE in a 1440 x 1600-pixel resolution, and the stimuli was 

rendered on a cinema-style virtual screen within the VE at 1920x1080 pixels using 

the BigScreen Beta application. The distance from the virtual screen to where the 

participant were located within the VE was kept consistent by recentring position of 

the participants before the onset of the experiment, and the entire screen was within 

the participants view when facing forwards. Participants interacted with the VE 

through the Vive Wand controllers, which were represented as cartoon-style hands 

within the VE. These wands emulated a mouse when pointing at the virtual screen, 

and clicks were emulated through pulling the trigger. Within the VE, the ‘hands’ 

emitted a laser-pointer based on the location and orientation of the wand, allowing 

participants to accurately input responses. The headset and input devices were 

tracked by two Vive ‘Lighthouse’ sensors placed on tripod stands positioned to 

provide complete coverage to the experimental area. Ceiling-affixed retractable wire 

guides were employed to relieve downwards pressure on the back of the head from 

the HMD-VR data cable connecting to the control unit (Figure 3.4).  

 

(a) 

 

(b)  

 

Figure 3.4: Annotated images showing the configuration of the laboratory during 
the experimental procedure facing the participant (a), and from behind the 
participant (b). The major components of the VR setup are shown in image a, 
whilst the EEG recording device is shown in image b. The virtual screen was 
configured to appear in front of the participant based on the position of the chair. 
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3.2.2.2) Electroencephalography Recording 

Electroencephalography signals were recorded using 19 channel (FP1, FP2, F7, F3, 

Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) tin-electrode Spes 

Medica Sleepcaps, using the 10-20 configuration and a physically linked-ear 

reference. When required, an additional headcap net was placed over the EEG cap 

to improve the connection between the electrodes and the scalp. The headcap was 

connected to an Io:Bio EEG device [255], recording at a 250Hz sampling rate which 

was then transmitted via Wi-Fi to an Asus Zenphone 6 mobile phone recording 

device. The Io:Bio device was also connected to the computer via a proprietary cable 

to receive EEG event triggers.  

 

3.2.2.3) Mental Arithmetic Task 

The mental arithmetic paradigm used in this current experiment uses a production 

task with the simultaneous presentation of the entire arithmetic equation (except the 

solution), based on the studies conducted by Moore et al [241], Jasinski & Coch 

[237], and Dickson and Federmeier [223] and adapted for HMD-VR presentation. 

Simultaneous presentation of the entire equation was selected as it provides a 

naturalistic way that arithmetic questions are presented in the learning environments, 

and to prevent flashing stimuli that may introduce visual discomfort. A production 

task was selected as it allowed for the motion-based controllers of the HMD-VR 

configuration to be utilised in a naturalistic way for inputting information into a virtual 

number pad (the sequential pressing of multiple buttons), as opposed to selecting 

singular options or responding verbally when verifying a potential answer.  

 

Participants were presented arithmetic questions either visually or auditorily within an 

HMD-VR environment. Two distinct difficulties of arithmetic questions were created 

based on the Q-values [227] and categories used by Chin et al. [229], comprising of 

‘easy’ single-digit plus single-digit and ‘hard’ two-digit plus two-digit questions. The 

‘easy’ questions were selected by generating every combination of single-digit 

questions, then selecting 60 of the 81 at random using Microsoft Excel. This avoided 

a middle-slice bias of Q-values which were centred around the digit 5. Sixty 

questions were selected to remain consistent with previously published literature 
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[256]. No Q-value in this group exceeded 2 (min=0.602, max=1.708, mean=1.365, 

SD=0.269), consistent with the ‘easy’ difficulty category used by Spüler et al. [227] 

and Chin et al. [229]. For the ‘hard’ questions, 81 two-digit questions were generated 

using the =RANDBETWEEN(10, 99) function in Microsoft Excel to generate 2 two-

digit numbers for each potential question. The equations were then ordered on their 

resulting Q-Values from lowest to highest, and the first 60 with a Q value greater 

than 2.3 were extracted, ensuring there was a gap in difficulty between the highest-Q 

‘easy’ question and the lowest-Q ‘hard’ question. No Q-value exceeded 4 (min=2.33, 

max=3.352, mean=2.914, SD=0.317), which is defined as ‘too difficult’ in the 

categories used by Spüler et al. [227] and Chin et al. [229]. 

 

These questions were randomly assigned to 12 blocks of 10 based on difficulty to 

prevent clustering of close Q-value questions. Due to the limited number of possible 

combinations of single-digit equations and to ensure conditions were balanced, 

blocks were repeated between visual and auditory presentations, totalling 24 blocks 

across 4 conditions: ‘Easy Visual’; ‘Hard Visual’; ‘Easy Auditory’; and ‘Hard Auditory’. 

The order of these blocks was pseudo-random, with the order of the blocks 

randomised then modified to prevent two blocks of the same condition being 

presented successively. The order of the blocks was consistent between participants, 

though the exact order of the questions within the blocks were randomised per 

participant.  

 

The edges of the virtual screen within the VE were rendered invisible by filling the 

background of the paradigm as solid black and presenting it in the ‘void’ environment 

in BigScreen (Figure 3.5), which consists of a full black environment with no other 

visual or auditory elements. This gives the illusion at each stage of the experiment 

that the stimuli or response inputs appear as if they are floating in space before the 

participant. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.5: The 4 major screens of the experiment presented using the HMD-VR 
BigScreen program: The fixation cross (a), an example of a visual question (b), the 
response input screen (c), and the subjective difficulty rating (d). The fixation cross is 
also used when auditory questions are delivered to the participant. 

 

3.2.2.4) Behavioural Measures and Participant Demographic Information 

Prior to the onset of the arithmetic task, two factors relevant to prior HMD-VR 

experience were collected in the preliminary questionnaire (Appendix 1). Each 

participant reported prior experience using HMD-VR on one of five time durations: 

“Never”; “< 1 Hour”; “1 Hour to 10 Hours”; “10 to 24 Hours”; and “> 24 Hours”. 

Handedness was captured via a modified Edinburgh Handedness Inventory [250]. 

Participant response to the Edinburgh Handedness Inventory did not dictate which 

hand they used to input answers, as controllers for both hands were provided to 

prevent technical issues.  

 

Three behavioural measures were recorded for each maths question: response time; 

response accuracy; and subjective ratings of question difficulty. Response time is 

automatically captured from the onset of the response input until the ‘enter’ button is 
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pressed. Response accuracy and distance from the correct answer were also 

automatically recorded when the “enter” button is pressed depending on the 

correctness of the participant’s response. After each response, participants were 

asked to ‘Please rate the difficulty of the question:’ using the subjective difficulty 

rating scale. The subjective difficulty scales are based on those used by Paas and 

colleagues [257–259], specifically, modifying the 7-point “extremely easy” to 

“extremely difficult” scale used in Ayres’ [260] arithmetic task for use in HMD-VR. A 

continuous scale is simulated within the HMD-VR VE by using a 500-point scale, 

which facilitates response input when using HMD-VR motion controllers by allowing 

any point in the scale to be selected. The minimum and maximum ends of the used 

scale is marked as “Very Easy” and “Very Hard” respectively, and no numbers or 

sub-categories were presented to prevent visual overload or confusion on the limited 

screen space.  

 

The 16-item SSQ (Appendix 2) was presented at the end of the arithmetic task to 

measure symptoms associated with cybersickness. Participants were given the 

choice to complete this within the HMD-VR VE or using a paper version. Participants 

who ceased the experiment early were only given the paper version option and 

asked to remember how they felt prior to removing the HMD. 

 

3.2.3) Experimental Design  

The experiment design used in the current study comprises of two separate within-

subject 2-way comparisons between arithmetic question difficulty within presentation 

modalities. Equation difficulty is manipulated by using single-digit (‘easy’) and 

double-digit (‘hard’) addition questions which fall within defined q-value ranges 

(defined in section 3.2.2.3). Comparisons are conducted within the visual and 

auditory presentation modalities. One presentation modality is visual, and the other 

presentation modality is auditory, but no comparisons between presentation 

modalities are conducted.  
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3.2.4) Experimental Procedures 

Upon arriving in the EEG laboratory, participants were provided with an information 

sheet (Appendix 3) and an informed consent form (Appendix 4). Upon reading and 

signing the consent form, participants were given the health questionnaire (Appendix 

5) and the preliminary questionnaire to complete. An overview of the task was 

explained to the participant, followed by a demonstration of how to operate the Vive 

wands.  

 

When ready, the researchers put the EEG headcap onto the participant, and the Vive 

Pro was placed over the EEG cap (Figure 3.6). The participant was able to alter the 

interpupillary distance and focus within the Vive Pro so that the VE was clear. This 

was confirmed by having the participant read aloud presented text introducing and 

explaining the experiment. The participant was provided with a Vive Wand for each 

hand, and instructed to use whichever they felt was comfortable for them. This also 

ensured that both hands were represented in the virtual space to reduce visual-

proprioception disconnect. As only one controller could be used to interact with the 

virtual screen at a time, participants were instructed to ‘activate’ the controller in their 

preferred hand by pulling the trigger, which also functioned as a ‘mouse click’ on the 

virtual screen. Controller activation was confirmed by the appearance of a laser-

pointer style beam originating from the controller when pointing at the virtual screen 

within the VE. Whilst it is possible to ‘activate’ the unused controller through an 

additional trigger pull, doing so ‘deactivates’ the other controller, thus participants 

were instructed to avoid doing so during the experiment as to prevent extra button 

presses, participant confusion, and potential EEG noise. 
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(a)

 

(b)

 

Figure 3.6: A view of the combined HMD-VR (Vive Pro) and EEG headcap on a 
participant from the front (a) and side (b) views. The chinstrap kept the EEG cap in 
place. The majority of the EEG electrodes do not make contact with the HMD-VR 
device. The FP1, FP2, F7, and F8 electrodes (Orange) make contact with the 
frontal face cushion. The Fz, Cz, Pz, and ground electrodes (Green) make contact 
with the central Velcro head strap. The O1 and O2 electrodes (blue) make contact 
with the head cushion at the back of the HMD. 

 

Next, the participant underwent a 10-question training session consisting of 5 visual 

and 5 auditory arithmetic questions to familiarise themselves with the procedure, 

controls, and ensure the volume was at a comfortable level. These questions were 

selected from the pool of unused questions to prevent repetition. Upon completion of 

the training phase, the participant was given the opportunity to ask any questions 

and reminded to answer each arithmetic question as quickly and accurately as 

possible. The lights were dimmed in the lab to minimise external distractions, and the 

EEG recording commenced.  

 

Each trial began with a 1000ms fixation cross (Figure 3.7a) followed by a 5000ms 

stimulus presentation (Figure 3.7b). In the visual condition, the question remained on 

screen for the 5000ms period, with the fixation cross acting as the plus sign. In the 

auditory condition, the fixation cross remained for the 5000ms period whilst the audio 

file played. Participants were instructed to rest their forearms on the chair’s armrest 

during question presentation to avoid movement artifacts. The participant was then 

presented with a number-pad (Figure 3.7c) to which they physically pointed the wand 

controller at to input their responses. Each number was selected individually, with the 

EEG Headcap 

Chinstrap 

Vive Pro HMD 

Headphone

s 
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‘enter’ button submitting the response, and the ‘clear’ button resetting the number in 

the event a mistake was made. Upon submitting their response, the subjective 

difficulty rating for the question was presented (Figure 3.7d). The participants were 

provided with unlimited time for these inputs. In total 240 arithmetic questions were 

presented to the participant. Event labels for the EEG triggers were generated based 

on condition and participant accuracy. 

 

 

Figure 3.7: Example of a visually presented addition question trial and block. This 
diagram shows the process of each trial presenting an arithmetic question. a: 
Fixation Cross: A fixation cross is presented for 1000ms in the centre of the screen 
to direct participant’s attention. b: Question Presentation: An example of an easy-
visual condition. In the auditory condition, the fixation cross remains as with Figure 
3.7a, and the equation is read aloud. This stage lasts 5000ms and includes an ERP 
trigger at the start of the stimuli presentation (represented by the dashed vertical red 
line on the diagram). c: Response Input/Equation Response: A number pad is 
presented which is interacted with by pointing the controller at the number to select 
the response, with no time limit and the ability to delete mistaken inputs. d: 
Subjective Difficulty Rating: The 500-point linear scale from ‘Very Easy’ to ‘Very 
Hard’. The blue arrow represents the currently selected point. 
 

Upon completion of the EEG/arithmetic study, the participant was presented with the 

SSQ. When complete, each participant was provided a debriefing form (Appendix 6) 

and given the opportunity to discuss the experiment before leaving the laboratory. In 
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total, each participant spent approximately 90 minutes in the laboratory, with ~50 

minutes of this completing the main experiment. 

 

3.2.5) Data Processing and Statistical Analysis 

3.2.5.1) Electroencephalography Data Processing  

The EEG processing for this study was conducted over 3 stages using the EEGLAB 

toolbox [261] for MATLAB [262] with the ERPLAB plugin [263]. The first processing 

stage was the basic processing, which began with converting the data to a format 

usable by EEGLAB from biowav to the standard EEGLAB ‘.set’ format, and inserting 

electrode location data. The data was automatically referenced to the average of the 

physically linked-ears reference electrodes used during the EEG recording. A 0.5Hz 

Butterworth highpass filter was applied to counter slow frequency signal drift, and a 

50Hz notch filter was applied to remove line noise. A temporary 40Hz lowpass filter 

was applied to aid with the identification of channels requiring interpolation, which 

was then executed on the non-40Hz filtered data.  

 

The purpose of the second stage is to acquire independent component analysis 

(ICA) weights for eyeblink components, allowing eyeblinks to be selectively removed 

from the EEG data. However, isolating eyeblinks requires stricter filtering and artifact 

rejection criteria than are otherwise used in this processing procedure, which may 

unwantedly affect the data. Therefore, only the ICA weights are extracted from this 

stage for later application, and the datasets produced are not used in the final 

analysis. The dataset produced from stage 1 has a 40Hz filter applied to remove 

high-frequency noise. The data is then epoched from -200 to 1004ms (to account for 

a frame drop caused by rounding) based on the presentation onset of the question. 

The epochs are then manually reviewed, and any containing non-eyeblink related 

noise or perturbations are rejected, leaving otherwise clean data with eyeblink 

artifacts. The ICA process was then conducted on this data, which can selectively 

identify the eyeblinks with the EEG data and save the ICA weightings.  
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The third stage of the analysis produces the final ERP outputs. The dataset 

produced by stage 1 was epoched from -200 to 1004ms, and the ICA weights from 

stage 2 were applied. Components were identified using the ‘Label components’ 

function from the ‘Classify components using ICALabel’ menu in EEGLAB. 

Components that were labelled as originating from the eye were manually checked 

to see if they conform with typical eyeblink patterns. ICA components were then 

selectively removed individually and in each combination until a solution which 

removed the eyeblinks with minimal disruption to the EEG data was found. The data 

next underwent artifact rejection by visual inspection to remove remaining noise. The 

averaged ERPs for each condition were calculated individually for each participant, 

and averaged channels and conditions for statistical analysis were produced using 

the channel and bin operation functions, respectively. Every dataset was then 

combined into a grand average, where the mean amplitudes of the time windows for 

each targeted ERP component were extracted. The entire EEG/ERP analysis 

pipeline is shown in Figure 3.8. As no lowpass filter had been applied to this final 

dataset, a 30Hz filtered version of the computed averages and grand average was 

also produced for presentation purposes.  
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Figure 3.8: EEG analysis chart showing all 3 stages of preprocessing procedure. 
Solid black lines show where the entire dataset is used in the next stage. The dotted 
grey line connecting the ‘Identify Channels to Interpolate’ to “Interpolate the Identified 
Channels” in stage 1 represents information from the former stage being used in the 
latter, but no actual data. The solid grey line collecting “Run the ICA” in stage 2 to 
“Apply the ICA Weights” in stage 3 represents part of the data from the former (the 
ICA weights calculated) being applied to the latter. 
 

3.2.5.2) Event Related Potential Time Window Selection 

As this study is a novel investigation examining HMD-VR and mental arithmetic, the 

time windows for each component were visually inspected before statistical testing 

was conducted to ensure the responses were fully captured. The initial time windows 

used for the analysis of each targeted ERP component was based on published 

investigations to identify an appropriate range that peaks have been previously 
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reported (see Muluh [131] for a review), primarily Núñez-Peña et al. [221], Muluh 

[131], Jasinski & Coch [237], Moore et al. [241], and Dickson & Federmeier [223]. 

Specifically, the time windows used were between 100ms and 200ms for the N170, 

250ms and 500ms for the P300, and 400ms and 800ms for the SWC. These time 

windows were considered the initial upper and lower bounds of reported components 

common to arithmetic tasks. These windows were applied to averaged ERPs within 

a presentation modality for each participant individually, and confirmed that the peak 

latency of the respective polarity extracted was observable within this range. At the 

final stage, the mean of the highest and lowest latency was identified, and a window 

length was selected to encompass all peaks within the range. When required, minor 

adjustments were made to round the window to the nearest 5ms.  

 

The visual and auditory time windows are different due to different cognitive 

processes, but also the disparity between the onsets of the stimulus, caused by the 

50ms of silence at the start of each audio files. The issue was corrected by shifting 

the time windows 115ms for the N170 component and 125ms for the P300 and SWC 

components within the auditory conditions. Moreover, the N170 time range had a 

fixed lower limit of 120ms due to a recording artifact associated with the triggers 

being present (Figure 3.9). 

 

Grand Average of All Correct ERPs recorded  

 

 

Figure 3.9: Example of the trigger artifact: This ERP trace (-50 to 150ms) from the 
Fz electrode is extracted from the grand average of all correct trials regardless of 
condition or difficulty. This demonstrates the presence of a negative peak in the 
10-20ms range and a positive peak within the 105-115ms (highlighted with arrows) 
range regardless of the stimuli or difficulties utilized. Because this artifact persists 
until the 115ms point, the lower limit of any time window used for analysis was 
selected as 120ms. 

Negative Peak 

Positive Peak 

Average of all trails  
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The final time windows are as follows: The N170 time window is an 80ms time 

window centred at 160ms in the visual condition and 275ms in the auditory condition; 

the P300 time window is a 200ms window centred on 300ms in the visual condition, 

and 425ms in the auditory condition; the SWC is a 300ms window centred at 600ms 

in the visual condition, and 725ms in the auditory condition. 

 

3.2.5.3) Statistical Analysis 

Statistical analysis for behavioural and electrophysiological data was conducted in 

SPSS 28 [264] and Microsoft Excel [265]. For the behavioural results, the averaged 

response time of correctly answered questions, the average subjective difficulty 

rating, and the number of correct responses was calculated for each participant for 

each condition. The behavioural measures were individually analysed using a series 

of t-tests comparing between difficulties within the visual and auditory modalities. 

Incorrect responses were excluded from the response time analysis to prevent 

outliers resulting from immediate ‘pass’ responses (from pressing the enter button 

immediately without attempting to answer the question) from being included in the 

data. The responses to the post-experiment SSQ are grouped based on the 

subscales of nausea, oculomotor disturbance, disorientation and total score [160], 

which are analysed using a one-sample t-test against zero [266]. 

 

There was a low number of incorrect trials in each condition, with less than 10% (6) 

of responses being incorrect for each participant in the easy visual and easy auditory 

conditions, in all but 3 participants for the hard visual, and all but 5 participants for 

the hard auditory condition. Therefore, there was not enough results to warrant 

comparison within the incorrect responses nor against the correct responses 

[205,244]. These trials were therefore removed from the behavioural response time 

and ERP analyses. 

 

Three types of ERP analysis are utilised: mean amplitude, peak amplitude, and peak 

latency. Each ERP analysis was conducted on each of the targeted time windows 

individually for correct responses only, but separately for each modality. Six ANOVA 
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were conducted per analysis method, totalling 18 across all ERP analyses. Each 

ANOVA consisted of a 3-factor repeated measures design, using a 2x3x3 (difficulty 

[easy, hard] x electrode location [frontal, central, parietal] x hemisphere [left, middle, 

right]) design. Mauchly’s test of sphericity was employed to identify if any main 

effects and interactions violated the sphericity assumption. When sphericity is 

violated, the degrees of freedom of the effect is adjusted using either the 

Greenhouse-Geisser correction when the Greenhouse-Geisser Epsilon is under 

0.75, and the Huynh-Feldt correction when the Greenhouse-Geisser Epsilon is over 

0.75. Post-hoc analysis was conducted using pairwise comparisons, corrected for 

multiple comparisons using the Bonferroni adjustment. The Bonferroni correction 

was used to control for type 1 error when calculating the post hoc comparisons of the 

main effects and interactions. This was selected based on the recommendation of 

Field [267], particularly because of the repeated measures design, low number of 

comparisons within each factor, and the fact that sphericity could often not be 

assumed. As each behavioural results comparison only had two levels, paired t-tests 

were used.  

 

3.3) Results 

3.3.1) Behavioural  

Paired samples T-tests were used for the behavioural comparisons between easy 

and hard conditions for each display type as each only contained 2 levels. One-

sample T-tests were used for the SSQ scores. 

 

3.3.1.1) Number of Correct Reponses  

The behavioural results of the mean number of correct responses (Figure 3.10) find 

that within the visual trials, there were significantly more correct responses for the 

easy-visual (Mean ± SEM (M) = 59.48 ± 0.16, SD = 0.75, range = 58-60) than the 

hard-visual (M = 56.48 ± 0.79, SD = 3.64, range = 44-60) trials (t(20)=4.31, p≤0.001, 

d=0.94). Within the auditory trials, there were significantly more correct responses in 

the easy-auditory (M = 59.33 ± 0.2, SD = 0.91, range = 57-60) over the hard-auditory 

(M = 55.14 ± 0.75, SD = 3.42, range = 47-60) trials (t(20)=6.15, p≤0.001, d=1.34). 
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Figure 3.10: A box plot showing the average number of correct responses per 
condition for all participants. The maximum number of correct responses was 60. 
n=21.  
*Significant differences between conditions, p<0.05. 

 

3.3.1.2) Average Response Time  

The behavioural measure of the response time for correct answers (Figure 3.11) 

finds that within the visual trials, response times for the easy-visual (M = 2.61 ± 0.13, 

SD = 0.61, range = 1.85-3.97) trials were significantly faster than in the hard-visual 

(M = 4.57 ± 0.36, SD = 1.66, range = 2.99-8.88) (t(20)=-7.42, p≤0.001, d=-1.62). 

Within the auditory trials, it was found that the easy-auditory (M = 2.69 ± 0.14, SD = 

0.66, range = 1.78-4.18) was significantly faster than the hard-auditory (M = 7.68 ± 

0.71, SD = 3.26, range = 4.15-15.7) trials (t(20)=-8.18, p≤0.001, d=-1.79). 
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Figure 3.11: A bar chart showing the average response time to the answer input in 
seconds for all conditions. n=21. 
*Significant differences between conditions, p<0.05. 
 

 

3.3.1.3) Subjective Difficulty Rating  

The behavioural measure of subjective difficulty rating (Figure 3.12) found that, 

within the visual trials, it was found that the easy-visual (M = 27.82 ± 5.19, SD = 

23.78, range = 3.93-103.93) trials were rated at a significantly lower difficulty than 

the hard-visual (M = 195.02 ± 19.75, SD = 90.5, range = 40.12-343.2) trials (t(20)=-

9.06, p≤0.001, d=-1.98). Within the auditory trials, it was found that the easy-auditory 

(M = 29.52 ± 6.32, SD = 28.98, range = 3.88-123.18) trials were rated significantly 

lower difficulty than the hard-auditory (M = 239.27 ± 22.26, SD = 102.02, range = 

71.58-417.48) trials (t(20)=-9.91, p≤0.001, d=-2.16). 
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Figure 3.12: A bar chart showing the average subjective difficulty rating for 
each condition on a scale of 1-500. n=21. 
*Significant differences between conditions, p<0.05. 
 

 

 

3.3.1.4) Simulator Sickness Questionnaire  

One-sample t-tests found significant increases for all subscales of the post-

experiment SSQ compared to no change: Nausea (M=39.52 ± 4.83; t(20)=8.07, 

p≤0.001), Oculomotor Disturbance (M=59.56 ± 6.56; t(20)=8.91, p≤0.001), 

Disorientation (M=45.07 ± 6.64; t(20)=6.58, p≤0.001), Total Score (M=56.99 ± 6.33; 

t(20)=8.81, p≤0.001). 

 

3.3.2) EEG Event-Related Potentials  

Individual repeated measures ANOVA (2x3x3 design (difficulty [easy, hard] x 

electrode location [frontal, central, parietal] x hemisphere [left, midline, right]) were 

conducted for each combination of ERP type (mean amplitude, peak amplitude and 

peak latency), modality (visual and auditory) and ERP component (N170, P300, 

SWC). The targeted components are analysed based on the modality-specific time 

windows identified for each component. 
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3.3.2.1) Visual N170 Component 

Separate traces were produced of the average visual ERPs for 9 electrodes (F3, Fz, 

F4, C3, Cz, C4, P3, Pz, P4) for both difficulty conditions (easy and hard) separately 

(Figure 3.13). The statistical analyses for the mean amplitude, peak amplitude and 

peak latency component of the visual N170 component are summarised in Table 3.1. 

In the visual N170 mean amplitude analysis, Mauchly’s Test of Sphericity is violated 

for the interaction between difficulty x electrode (χ2(2)=13.153, p=0.001, ε=0.667) 

only, and is adjusted using the Greenhouse-Geisser correction. The main effect of 

electrode is significant, with post hoc comparisons demonstrating that central (M=-

2.84 ± 0.62) and parietal (M=-3.68 ± 0.58) had larger mean amplitudes than the 

frontal (M=-1.77 ± 0.51) electrodes (t(20)=1.07, p=0.008, d=0.74; t(20)=1.91, 

p=0.004, d=0.80). No interactions are significant.  
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Figure 3.13: The grand average of all 21 participants for the Easy-Visual and Hard-
Visual conditions for the 9 electrodes examined (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4). 
The respective time window for each component is overlaid: The yellow time window 
is the N170 time range (120-200ms), the blue time window is the P300 (200-400ms), 
and the green is the SWC time window (450-750ms). A 30Hz lowpass filter has been 
applied for clarity. n=21. 
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Table 3.1: The ERP ANOVA results for the mean amplitude, peak amplitude and peak latency 
N170 responses in the visual condition. n=21. 

 Mean Amplitude Peak Amplitude Peak Latency 

Within Subject 
Effect 

F df p ηp
2 F df p ηp

2 F df p ηp
2 

Difficulty 4.05 1, 20 0.06 0.17 7.73 1, 20 0.012* 0.28 1.07 1, 20 0.31 0.05 

Electrode 9.22 2, 40 0.001* 0.32 4.95 2, 40 0.012* 0.2 0.6 
1.43, 

28.62 
0.5 0.03 

Hemisphere 0.23 2, 40 0.8 0.01 0.4 2, 40 0.67 0.02 2.37 
1.61, 

32.16 
0.12 0.11 

Difficulty x 
Electrode 

0.3 
1.33, 

26.68 
0.66 0.02 0.04 

1.39, 
27.87 

0.91 <0.01 0.12 
1.36, 

27.22 
0.81 0.01 

Difficulty x 
Hemisphere 

1.29 2, 40 0.29 0.06 3.21 2, 40 0.05 0.14 3.16 2, 40 0.05 0.14 

Electrode x 
Hemisphere 

1.18 4, 80 0.33 0.06 2.46 4, 80 0.05 0.11 1.23 4, 80 0.3 0.06 

Difficulty x 
Electrode x 
Hemisphere 

0.91 4, 80 0.46 0.04 1.61 4, 80 0.18 0.07 0.6 
2.51, 

50.25 
0.59 0.03 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

In the visual N170 peak amplitude analysis, Mauchly’s Test of Sphericity is violated 

for the interaction between difficulty x electrode (χ2(2)=10.86, p=0.004, ε=0.7) only, 

and is adjusted using the Greenhouse-Geisser correction. The main effects of 

difficulty and electrode are significant. Post hoc comparisons found that between 

difficulties, the hard peak amplitude (M=-8.18 ± 0.87) is larger than the easy peak 

amplitude (M=-5.94 ± 0.63) condition (t(20)=2.25, p=0.012, d=0.61). Between 

electrodes, the parietal peak amplitude (M=-7.84 ± 0.76) is larger than the frontal 

peak amplitude (M=-6.27 ± 0.64) (t(20)=1.57, p=0.04, d=0.59), but there are no 

differences from the central electrode.  

 

In the visual N170 peak latency analysis, Mauchly’s Test of Sphericity is violated for 

the main effect of electrode (χ2(2)=9.63, p=0.008, ε=0.72) and the interactions of 

difficulty x electrode (χ2(2)=12.05, p=0.002, ε=0.68) & difficulty x electrode x 

hemisphere (χ2(9)=20.20, p=0.017, ε=0.63), which are adjusted using the 
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Greenhouse-Geisser correction. Moreover, Mauchly’s Test of Sphericity is violated 

for the main effect of hemisphere (χ2(2)=7.43, p=0.024, ε=0.76), which is adjusted 

using the Hyunh-Feldt correction. However, no significant main effects or interactions 

are found. 

 

3.3.2.2) Visual P300 Component  

The statistical analyses for the mean amplitude, peak amplitude and peak latency 

component of the visual P300 component are summarised in table 3.2. In the visual 

P300 mean amplitude analysis, Mauchly’s Test of Sphericity is violated for the main 

effects of electrode (χ2(2)=8.65, p=0.013, ε=0.73) & hemisphere (χ2(2)=8.62, 

p=0.013, ε=0.73) and interactions electrode x hemisphere (χ2(9)=21.22, p=0.012, 

ε=0.71) & difficulty x electrode x hemisphere (χ2(9)=22.23, p=0.008, ε=0.75). In all 

violations the Greenhouse-Giesser correction is used. The main effect of hemisphere 

is significant, with post hoc comparisons finding the midline mean amplitude (M=8.40 

± 0.83) is larger than the right mean amplitude (M=6.67 ± 0.76) (t(20)=1.74, p≤0.001, 

d=1.04).  

 

The interaction between difficulty x electrode is also significant, with post hoc 

comparisons finding that within electrode location and between difficulties, frontal-

easy (M=8.01 ± 0.73) mean amplitude is larger than the frontal-hard mean amplitude 

(M=6.24 ± 0.97) (t(20)=1.77, p=0.007, d=0.65). When comparing within difficulties 

and between electrode locations, there are differences between the easy-central 

(M=8.67 ± 0.74) & easy-parietal (M=6.77 ± 0.94) mean amplitudes (t(20)=1.9, 

p=0.032, d=0.62) and hard-frontal (M=6.24 ± 0.97) & hard-central (M=8.05 ± 1.14) 

mean amplitudes (t(20)=-1.81, p=0.028, d=-0.63), with the central electrode mean 

amplitude being larger in both cases. 
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Table 3.2: The ERP ANOVA results for the mean amplitude, peak amplitude and peak latency 
P300 responses in the visual condition. n=21. 

 Mean Amplitude Peak Amplitude Peak Latency 

Within 
Subject 
Effect 

F df p ηp
2 F df p ηp

2 F df p ηp
2 

Difficulty 0.66 1, 20 0.43 0.03 0.48 1, 20 0.5 0.02 3.42 1, 20 0.08 0.15 

Electrode 2.41 
1.47, 

29.29 
0.12 0.11 2.57 2, 40 0.09 0.11 

10.7
3 

2, 40 <0.001* 0.35 

Hemisphere 5.81 
1.47, 

29.31 
0.013* 0.23 6.6 2, 40 0.003* 0.25 6.17 2, 40 0.005* 0.24 

Difficulty x 
Electrode 

7.22 2, 40 0.002* 0.27 1.38 2, 40 0.26 <0.01 2.47 2, 40 0.1 0.11 

Difficulty x 
Hemisphere 

1.77 2, 40 0.18 0.08 0.39 2, 40 0.68 0.02 0.47 2, 40 0.63 0.02 

Electrode x 
Hemisphere 

1.77 
2.84, 

56.89 
0.17 0.08 2.59 4, 80 0.043* 0.12 1.74 

2.48, 
49.62 

0.18 0.08 

Difficulty x 
Electrode x 
Hemisphere 

2.1 
2.99, 

59.69 
0.11 0.1 2.01 4, 80 0.1 0.09 0.93 4, 80 0.45 0.04 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

In the visual P300 peak amplitude analysis, Mauchly’s Test of Sphericity is not 

violated on any main effect or interaction. The main effect of hemisphere is 

significant, with post hoc comparisons finding the midline hemisphere peak 

amplitude (M=15.79 ± 1.19) is larger than the right hemisphere peak amplitude 

(M=13.7 ± 1.02) (t(20)=2.09, p=0.001, d=1). The interaction between electrode x 

hemisphere is also significant, with post hoc comparisons within hemisphere and 

between electrodes finding a significantly larger peak amplitude in the midline-central 

(M=17.44 ± 1.44) compared to the midline-frontal (M=14.34 ± 1.27) (t(20)=-3.10, 

p=0.001, d=-0.99). Moreover, the post hoc comparisons within electrodes and 

between hemispheres find the central-midline peak amplitude (M=17.44 ± 1.44) is 

larger than the central-right peak amplitude (M=14.29 ± 1.2) (t(20)=3.15, p≤0.001, 

and the parietal-midline peak amplitude (M=15.58 ± 1.14) is larger than parietal-right 

peak amplitude (M=13.28 ± 1.18) (t(20)=2.29, p=0.001, d=0.97). 
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In the visual P300 peak latency analysis, Mauchly’s Test of Sphericity is violated for 

the interaction between electrode x hemisphere (χ2(9)=22.22, p=0.008, ε=0.62), and 

is adjusted using the Greenhouse-Geisser correction. The main effects of electrode 

and hemisphere are significant. Post hoc comparisons between electrodes found the 

parietal peak (M=311.91 ± 8.11) occurred later than both the frontal (M=282.25 ± 

5.51) (t(20)=-29.65, p=0.003, d=-0.83) and central (M=291.97 ± 7.13) (t(20)=-19.94, 

p=0.007, d=-0.77) peaks. Between hemispheres, it is found the peak in the right 

hemisphere (M=302.19 ± 5.78) is later than the midline (M=291.08 ± 6.15) (t(20)=-

11.11, p=0.009, d=-0.74).  

 

3.3.2.3) Visual Slow Wave Component  

The statistical analyses for the mean amplitude, peak amplitude and peak latency 

component of the visual SWC are summarised in table 3.3. For the visual SWC 

mean amplitude analysis, Mauchly’s Test of Sphericity is violated for the main effects 

of electrode (χ2(2)=9.30, p=0.01, ε=0.72) & hemisphere (χ2(2)=7.90, p=0.019, 

ε=0.75), and the interaction between difficulty x electrode (χ2(2)=13.94, p=0.001, 

ε=0.66). Each violation is adjusted using the Greenhouse-Geisser correction. The 

main effect of electrode is significant, with post hoc tests finding that the frontal mean 

amplitude (M=2.15 ± 0.65) is smaller than both the central (M=3.99 ± 0.74) (t(20)=-

1.84, p=0.012, d=-0.71) and parietal (M=5.35 ± 0.87) (t(20)=-3.2, p=0.005, d=-0.79) 

mean amplitudes.  
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Table 3.3: The ERP ANOVA results for the mean amplitude, peak amplitude and peak latency 
slow wave component responses in the visual condition. n=21. 

 Mean Amplitude Peak Amplitude Peak Latency 

Within Subject 
Effect 

F df p ηp
2 F df p ηp

2 F df p ηp
2 

Difficulty 0.75 1, 20 0.4 0.04 1.12 1, 20 0.3 0.05 2.47 1, 20 0.13 0.11 

Electrode 10.76 
1.44, 

28.84 
0.001* 0.35 5.99 

1.27, 
25.34 

0.016* 0.23 1.39 2, 40 0.26 0.07 

Hemisphere 2.83 
1.49, 

29.84 
0.09 0.12 0.37 

1.29, 
25.75 

0.6 0.02 1.11 
1.41, 

28.18 
0.32 0.05 

Difficulty x 
Electrode 

5.01 
1.32, 

26.32 
0.025* 0.2 2.55 

1.29, 
25.83 

0.12 <0.01 3.28 2, 40 0.048* 0.14 

Difficulty x 
Hemisphere 

4.71 2, 40 0.015* 0.19 2.02 
1.49, 

29.82 
0.16 0.09 0.02 

1.64, 
32.85 

0.97 <0.01 

Electrode x 
Hemisphere 

2.12 4, 80 0.09 0.1 2.11 
2.51, 

50.15 
0.12 0.1 3.45 4, 80 0.012* 0.15 

Difficulty x 
Electrode x 
Hemisphere 

2.36 4, 80 0.06 0.11 1.69 4, 80 0.16 0.08 1.99 4, 80 0.1 0.09 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

 

The visual SWC mean amplitude analysis also found a significant interaction 

between difficulty x electrode. Post hoc comparisons within difficulties and between 

electrodes found that, easy-frontal (M=2.14 ± 0.73) mean amplitudes are smaller 

than both the easy-central (M=3.73 ± 0.82) (t(20)=-1.59, p=0.033, d=-0.61) and 

easy-parietal (M=4.56 ± 0.97) (t(20)=-2.41, p=0.047, d=-0.58) mean amplitudes. 

Moreover, the hard-frontal mean amplitude (M=2.16 ± 0.83) is smaller than both the 

hard-central (M=4.25 ± 0.87) (t(20)=-2.1, p=0.008, d=-0.75) and hard-parietal 

(M=6.14 ± 1) (t(20)=-3.98, p=0.002, d=-0.90) mean amplitudes, which in turn differed 

with the hard-parietal being larger than the hard-central mean amplitude (t(20)=-1.88, 

p=0.012, d=-0.71). Furthermore, the interaction between difficulty x hemisphere is 

significant, with post hoc comparisons revealing that the hard-left mean amplitude 

(M=2.97 ± 0.84) is smaller than the hard-midline mean amplitude (M=4.97 ± 0.91) 

(t(20)=-1.99, p=0.006, d=-0.78). 
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For the visual SWC peak amplitude analysis, Mauchly’s Test of Sphericity is violated 

for the main effects of electrode (χ2(2)=16.41, p<.01, ε=0.63) & hemisphere 

(χ2(2)=15.33, p<.01, ε=0.64) and the interactions between difficulty x electrode 

(χ2(2)=15.12, p=0.001, ε=0.65), difficulty x hemisphere (χ2(2)=7.94, p=0.019, ε=0.75) 

& electrode x hemisphere (χ2(9)=21.94, p=0.009, ε=0.63). All violations are adjusted 

using the Greenhouse-Giesser correction. The main effect of electrode is significant, 

with the post hoc comparisons finding the central peak amplitude (M=10.77 ± 0.97) is 

larger than the frontal peak amplitude (M=9.21 ± 0.96) (t(20)=-1.56, p=0.041, d=-

0.59). 

 

For the visual SWC peak latency analysis, Mauchly’s Test of Sphericity is violated for 

the main effect of hemisphere (χ2(2)=10.33, p=0.006, ε=0.71) and the interaction of 

difficulty x hemisphere (χ2(2)=6.77, p=0.034, ε=0.77), which are adjusted with the 

Greenhouse-Giesser and Huynh-Feldt corrections respectively. The interactions 

between difficulty x electrode and electrode x hemisphere are significant. Post hoc 

comparisons of the difficulty x electrode interaction find that, within difficulties and 

between electrodes, the hard-central peak (M=592.83 ± 16.34) is significantly later 

than the hard-parietal peak (M=555.05 ± 14.96) (t(20)=37.78, p=0.032, d=0.61). Post 

hoc comparisons of the electrode x hemisphere interaction find that, within 

hemispheres and between electrodes the midline-central peak (M=601.24 ± 14.32) is 

significantly later than the midline-parietal peak (M=556 ± 13.88) (t(20)=45.24, 

p=0.014, d=0.7). Comparisons within electrodes and between hemispheres find the 

central-midline peak (M=601.24 ± 14.32)) is later than the central-left (M=566.76 ± 

16.04) (t(20)=-34.48, p=0.046, d=-0.58) and central-right (M=560.86 ± 13.09) 

(t(20)=40.38, p=0.001, d=0.95) peaks. 

 

3.3.2.4) Auditory N170 Component  

Separate traces were produced of the average auditory ERPs for 9 electrodes (F3, 

Fz, F4, C3, Cz, C4, P3, Pz, P4) for both difficulty conditions (easy and hard) 

separately (Figures 3.14). The statistical analyses for the mean amplitude, peak 

amplitude and peak latency component of the auditory N170 component are 

summarised in table 3.4. For the auditory N170 mean amplitude analysis, Mauchly’s 
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Test of Sphericity is violated by the main effect of electrode (χ2(2)=6.14, p=0.046, 

ε=0.78) and the interaction of difficulty x electrode (χ2(2)=6.19, p=0.045, ε=0.78), 

which are adjusted using the Huynh-Feldt correction. Moreover, Mauchly’s Test of 

Sphericity is also violated by the interactions of difficulty x hemisphere (χ2(2)=14.82, 

p=0.001, ε=0.65) & difficulty x electrode x hemisphere (χ2(9)=31.58, p<.01, ε=0.54), 

which are adjusted using the Greenhouse-Giesser correction. The main effect of 

electrode is significant, with post hoc comparisons finding that the frontal mean 

amplitude (M=-2.18 ± 0.99) is smaller than the central (M=-3.81 ± 0.91) (t(20)=1.63, 

p=0.002, d=0.86) and parietal (M=-4.63 ± 0.76) (t(20)=2.45, p=0.001, d=0.91) mean 

amplitudes. 
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Figure 3.14: The grand average of all 21 participants for the Easy-Auditory and 
Hard-Auditory conditions for the 9 electrodes examined (F3, Fz, F4, C3, Cz, C4, P3, 
Pz, P4). The respective time window for each component is overlaid: The yellow time 
window is the N170 time range (235-315ms), the blue time window is the P300 (325-
525ms), and the green is the SWC time window (575-875ms). A 30Hz lowpass filter 
has been applied for clarity. 
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Table 3.4: The ERP ANOVA results for the mean amplitude, peak amplitude and peak latency 
N170 responses in the auditory condition. n=21. 

 Mean Amplitude Peak Amplitude Peak Latency 

Within Subject 
Effect 

F df p ηp
2 F df p ηp

2 F df p ηp
2 

Difficulty 1.36 1, 20 0.26 0.06 1.8 1, 20 0.2 0.08 0.1 1, 20 0.76 0.01 

Electrode 13.73 
1.68, 

33.54 
<0.001* 0.41 7.21 

1.37, 
27.43 

0.007* 0.27 0.86 
1.45, 
28.9 

0.4 0.04 

Hemisphere 2.11 2, 40 0.14 0.1 1.85 2, 40 0.17 0.09 1.18 2, 40 0.32 0.06 

Difficulty x 
Electrode 

1.43 
1.67, 

33.49 
0.25 0.07 1.04 

1.66, 
33.15 

0.35 <0.01 0.36 2, 40 0.7 0.02 

Difficulty x 
Hemisphere 

0.63 
1.3, 

25.95 
0.48 0.03 0.38 

1.39, 
27.85 

0.61 0.02 0.23 2, 40 0.8 0.01 

Electrode x 
Hemisphere 

1.11 4, 80 0.36 0.05 2.23 4, 80 0.07 0.1 0.96 4, 80 0.44 0.05 

Difficulty x 
Electrode x 
Hemisphere 

0.76 
2.16, 
43.2 

0.48 0.04 1.18 
1.98, 

39.67 
0.32 0.06 0.39 4, 80 0.82 0.02 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

 

For the auditory N170 peak amplitude analysis, Mauchly’s Test of Sphericity is 

violated by the main effect of electrode (χ2(2)=11.64, p=0.003, ε=0.69) and the 

interactions of difficulty x hemisphere (χ2(2)=10.89, p=0.004, ε=0.7) & difficulty x 

electrode x hemisphere (χ2(9)=34.57, p≤0.001, ε=0.5), which are adjusted using the 

Greenhouse-Giesser correction. Moreover, Mauchly’s Test of Sphericity is also 

violated by the interaction of difficulty x electrode (χ2(2)=6.49, p=0.039, ε=0.78), 

which is adjusted using the Huynh-Feldt correction. The main effect of electrode is 

significant, with post hoc comparisons finding a larger peak amplitude in the central 

electrode (M=-8.82 ± 1.14) than the frontal electrode (M=-6.91 ± 1.26) (t(20)=1.91, 

p=0.001, d=0.98).  

 

For the auditory N170 peak latency analysis, Mauchly’s Test of Sphericity is violated 

by the main effect of electrode (χ2(2)=9.21, p=0.01, ε=0.72), and is adjusted using 

the Greenhouse-Giesser correction. However, no significant main effects or 

interactions are found. 
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3.3.2.5) Auditory P300 Component 

The statistical analyses for the mean amplitude, peak amplitude and peak latency 

component of the auditory P300 component are summarised in table 3.5. For the 

auditory P300 mean amplitude analysis, Mauchly’s Test of Sphericity is violated for 

the main effect of electrode (χ2(2)=6.87, p=0.032, ε=0.77) and the interaction 

between difficulty x electrode (χ2(2)=6.85, p=0.033, ε=0.77), which are adjusted 

using the Huynh-Feldt correction. Moreover, Mauchly’s Test of Sphericity is violated 

for the interaction of difficulty x hemisphere (χ2(2)=9.15, p=0.01, ε=0.72), which is 

adjusted using the Greenhouse-Giesser correction. The main effect of electrode is 

significant, with post hoc comparisons finding the parietal mean amplitude (M=2.12 ± 

0.70) is smaller than the frontal (M=6.03 ± 0.84) (t(20)=3.91, p≤0.001, d=1.44) and 

central (M=5.57 ± 0.80) (t(20)=3.45, p≤0.001, d=1.99) mean amplitudes. 

 

Table 3.5: The ERP ANOVA results for the mean amplitude, peak amplitude and peak latency 
P300 responses in the auditory condition. n=21. 

 Mean Amplitude Peak Amplitude Peak Latency 

Within 
Subject Effect 

F df p ηp
2 F df p ηp

2 F df p ηp
2 

Difficulty 1.36 1, 20 0.26 0.06 0.17 1, 20 0.68 0.01 0.05 1, 20 0.82 <0.01 

Electrode 39.85 
1.64, 

32.73 
<0.001* 0.67 38.17 2, 40 <0.001* 0.66 8.28 

1.49, 
29.7 

0.003* 0.29 

Hemisphere 2.75 2, 40 0.08 0.12 4.82 2, 40 0.013* 0.19 0.92 2, 40 0.41 0.04 

Difficulty x 
Electrode 

1.17 
1.64, 

32.76 
0.31 0.06 1.15 

1.67, 
33.36 

0.32 <0.01 1.08 2, 40 0.35 0.05 

Difficulty x 
Hemisphere 

1.89 
1.45, 

28.94 
0.18 0.09 2.98 

1.31, 
26.12 

0.09 0.13 0.07 
1.65, 

32.93 
0.9 <0.01 

Electrode x 
Hemisphere 

1.57 4, 80 0.19 0.07 3.4 4, 80 0.013* 0.15 1.36 4, 80 0.26 0.06 

Difficulty x 
Electrode x 
Hemisphere 

0.67 4, 80 0.62 0.03 0.96 4, 80 0.43 0.05 0.55 4, 80 0.7 0.03 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 
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For the auditory P300 peak amplitude analysis, Mauchly’s Test of Sphericity is 

violated for the interactions of difficulty x electrode (χ2(2)=6.3, p=0.043, ε=0.78), 

which is adjusted using the Huynh-Feldt correction; and difficulty x hemisphere 

(χ2(2)=14.41, p=0.001, ε=0.653) which is adjusted using the Greenhouse-Giesser 

correction. The main effects of electrode and hemisphere are significant. Post hoc 

comparisons find that between electrodes, the parietal peak amplitude (M=8.24 ± 

0.79) is smaller than both the frontal (M=12.61 ± 1.15) (t(20)=4.37, p≤0.001, d=1.4) 

and central (M=12.5 ± 1.12) (t(20)=4.26, p≤0.001, d=2.08) electrode peak 

amplitudes. Between hemispheres, the midline peak amplitude (M=11.66 ± 1.12) is 

larger than the right peak amplitude (M=10.19 ± 1.01) (t(20)=1.47, p=0.02, d=0.66). 

 

The auditory P300 peak amplitude analysis also found a significant interaction 

between electrode x hemisphere, with post hoc comparisons finding that within 

electrodes and between hemispheres, the central-midline peak amplitude (M=13.95 

± 1.36) is larger than the central-right peak amplitude (M=11.09 ± 1.16) (t(20)=2.86, 

p=0.007, d=0.76). Within hemispheres and between electrodes, it is found that the 

left-parietal peak amplitude (M=8.82 ± 0.82) is smaller than the left-frontal (M=13.21 

± 1.09) (t(20)=4.4, p≤0.001, d=1.28) and left-central (M=12.46 ± 1.1) (t(20)=3.64, 

p≤0.001, d=1.22) peak amplitudes; the midline-parietal peak amplitude (M=8.47 ± 

0.92) is smaller than the midline-frontal (M=12.56 ± 1.31) (t(20)=4.1, p≤0.001, 

d=1.02) and midline-central (M=13.95 ± 1.36) (t(20)=5.48, p≤0.001, d=1.80) peak 

amplitudes; and that the right-parietal (M=7.442 ± 0.865) is smaller than the right-

frontal (M=12.05 ± 1.18) (t(20)=4.61, p≤0.001, d=1.40) and right-central (M=11.09 ± 

1.16) (t(20)=3.65, p≤0.001, d=1.39) peak amplitudes. 

 

For the auditory P300 peak latency analysis, Mauchly’s Test of Sphericity is violated 

for the main effect of electrode (χ2(2)=8.1, p=0.017, ε=0.74) and the interaction 

difficulty x hemisphere (χ2(2)=6.68, p=0.035, ε=0.77), which are adjusted with the 

Greenhouse-Geisser correction and Huynh-Feldt correction respectively. The main 

effect of electrode is significant, with post hoc comparisons showing the parietal 

peak (M=424.64 ± 10.32) is later than the frontal (M=399.14 ± 9.79) (t(20)=-25.49, 
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p=0.016, d=-0.68) and central (M=406.06 ± 10.69) (t(20)=-18.57, p=0.009, d=-0.74) 

peaks.  

 

3.3.2.6) Auditory Slow Wave Component 

The statistical analyses for the mean amplitude, peak amplitude and peak latency 

component of the auditory SWC are summarised in table 3.6. For the auditory SWC 

mean amplitude analysis, Mauchly’s Test of Sphericity is violated for the main effect 

of electrode (χ2(2)=9.937, p=0.007, ε=0.711) and the interaction between difficulty x 

electrode (χ2(2)=10.975, p=0.004, ε=0.695), which were both adjusted with the 

Greenhouse-Giesser correction. However, no significant main effects or interactions 

are found. 

 

Table 3.6: The ERP ANOVA results for the mean amplitude, peak amplitude and peak latency slow 
wave component responses in the auditory condition. n=21. 

 Mean Amplitude Peak Amplitude Peak Latency 

Within Subject 
Effect 

F df p ηp
2 F df p ηp

2 F df p ηp
2 

Difficulty 1.27 1, 20 0.27 0.06 0.38 1, 20 0.55 0.02 0.56 1, 20 0.46 0.03 

Electrode 1.41 
1.42, 

28.42 
0.26 0.07 1.58 

1.64, 
32.83 

0.22 0.07 0.04 2, 40 0.97 <0.01 

Hemisphere 2.53 2, 40 0.09 0.11 2.46 2, 40 0.1 0.11 3.36 2, 40 0.045* 0.14 

Difficulty x Electrode 0.07 
1.39, 
27.8 

0.87 <0.01 0.58 2, 40 0.56 <0.01 1.7 2, 40 0.2 0.08 

Difficulty x 
Hemisphere 

1.87 2, 40 0.17 0.09 1.5 2, 40 0.24 0.07 1.44 2, 40 0.25 0.07 

Electrode x 
Hemisphere 

0.54 4, 80 0.71 0.03 0.35 4, 80 0.85 0.02 1.29 4, 80 0.28 0.06 

Difficulty x Electrode 
x Hemisphere 

1.18 4, 80 0.32 0.06 0.72 4, 80 0.58 0.04 1.6 4, 80 0.18 0.07 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 
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For the auditory SWC peak amplitude analysis, Mauchly’s Test of Sphericity is 

violated for the main effect of electrode (χ2(2)=6.78, p=0.034, ε=0.77), and is 

adjusted using the Huynh-Feldt correction. However, no significant main effects or 

interactions are found. 

 

For the auditory SWC peak latency analysis, Mauchly’s Test of Sphericity is not 

violated on any main effect or interaction. The main effect of hemisphere is 

significant, however post hoc tests find no significant differences between any 

comparison. 

 

3.3.2.7) Summary of the EEG Statistical Analysis 

A summary of the statistical results for the EEG analyses is shown in Table 3.7, 

which shows the P300 had the most significant main effects and interactions, whilst 

the N170 had the fewest. Table 3.7 also demonstrates there was less significant 

main effects and interactions within the auditory condition compared to the visual. 
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Table 3.7: Summary of the results of the arithmetic task EEG statistical analysis. The 
ANOVA results for the mean amplitude, peak amplitude and peak latency for the N170, 
P300 and slow wave component across the analyses of the visual and auditory 
conditions. Main effects and interactions which reach significance p<0.001 are marked 
with **, main effects and interactions which reach significance p<0.05 are marked with *, 
and non-significant results are marked with ‘ns’. 

  

N170 P300 Slow Wave Component 

  

Mean 
Amp. 

Peak 
Amp. 

Peak 
Lat. 

Mean 
Amp. 

Peak 
Amp. 

Peak 
Lat. 

Mean 
Amp. 

Peak 
Amp. 

Peak 
Lat. 

V
is

u
al

 

Difficulty 
ns * ns ns ns ns ns ns ns 

Electrode 
** * ns ns ns ** ** * ns 

Hemisphere 
ns ns ns * * * ns ns ns 

Difficulty x 
Electrode 

ns ns ns * ns ns * ns * 

Difficulty x 
Hemisphere 

ns ns ns ns ns ns * ns ns 

Electrode x 
Hemisphere 

ns ns ns ns * ns ns ns * 

Difficulty x 
Electrode x 
Hemisphere 

ns ns ns ns ns ns ns ns ns 

A
u

d
it

o
ry

 

Difficulty 
ns ns ns ns ns ns ns ns ns 

Electrode 
** * ns ** ** * ns ns ns 

Hemisphere 
ns ns ns ns * ns ns ns * 

Difficulty x 
Electrode 

ns ns ns ns ns ns ns ns ns 

Difficulty x 
Hemisphere 

ns ns ns ns ns ns ns ns ns 

Electrode x 
Hemisphere 

ns ns ns ns * ns ns ns ns 

Difficulty x 
Electrode x 
Hemisphere 

ns ns ns ns ns ns ns ns ns 
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3.4) Discussion 

3.4.1) Mental Arithmetic Task in High-Specification Head-Mounted Display 

Virtual Reality  

This study combined HS-HMD-VR with EEG recording equipment to successfully 

acquire ERP responses in a working memory VR arithmetic task. A 2x2 within-

subject design was used, presenting ‘easy’ single-digit plus single-digit and ‘hard’ 

double-digit plus double-digit addition questions across visual and auditory 

modalities. ERP measures were recorded at the onset of the equation presentation, 

and behavioural measures were taken from the responses. WML-related N170 and 

P300 ERP components previously reported within the arithmetic literature were 

found across all conditions, and positive SWC ERP responses were present in the 

visual question presentations [131,239,241,244].  

 

Statistical analysis of the ERP results find the visual ERP components largely 

correspond to the published literature. The visual N170 responses were largest in 

the central and parietal electrodes, with a larger peak amplitude for ‘hard’ questions 

[241,243]. Visual P300 responses were largest in the midline electrodes, and larger 

in the frontal region for ‘easy’ questions [204,223,238,239]. Within the visual SWC, it 

was found that the parietal region responses were more positive than the frontal 

response across both easy and hard conditions, coinciding with the typical positive 

SWC waveform [131,240,244].  

 

Within the auditory trials, the auditory N170 was found to be larger in the central and 

parietal compared to the frontal electrodes. The auditory P300 responses were 

larger and earlier in the frontal and central electrodes compared to the parietal 

region. A larger auditory P300 peak amplitude was found in the midline electrodes 

compared to the right hemisphere, contesting the larger right-parietal response 

previously reported [223]. There were no significant differences between any 

comparison for the auditory SWC time-window.  
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The behavioural results further corresponded with previous findings, indicating that 

the harder questions evoked a larger WML than the easy questions based on 

measures of task accuracy, response time and subjective difficulty rating 

[219,229,230]. As far as the researcher is aware, at the time of writing this is the first 

study to utilise HS-HMD-VR in a full-head EEG ERP recording, or to examine mental 

arithmetic using HMD-VR. 

 

3.4.1.1) Can Event-Related Potentials be Identified  

This study aimed to investigate if ERP responses could be identified when utilising 

combined HS-HMD-VR and EEG recording equipment. The grand average ERP 

waveforms of the correct responses for both ‘easy’ and ‘hard’ question presentations 

in all 19 electrodes are shown for the visual condition in Figure 3.13, and for the 

auditory condition in Figure 3.14. The aim of this study was successfully achieved, 

with clear N170 and P300 components for both the visual and auditory presentations 

across both ‘easy’ and ‘hard’ questions being identified in each electrode recorded.  

 

In the visual condition (Figure 3.13), a negative peak within the 120-200ms time 

window followed by a positive peak within the 200-400ms time window can be 

identified in all electrodes. The negative and positive peaks are identified as the 

N170 and P300 components respectively, corresponding with ERP components 

during arithmetic stimuli presentation reported in the literature 

[235,236,239,241,243]. The SWC can be identified by the post-400ms positive 

inflections in the majority of electrodes as the P300 peak observed slowly recedes to 

baseline over the course of the 1000ms. The SWC is further evidenced by several 

medial and right-hemisphere electrodes demonstrating a second positive inflection 

starting at the 500ms mark and peaking around 750ms. The visual SWC is most 

prominent in F8, but also present in F4, C4 and T4 [223,237,246], and to a lesser 

extend in Fz and Cz. However, post-400ms negative peaks can be seen in the left-

frontal FP1 and F7 electrodes within the hard-visual condition.  

 

Within the auditory responses (Figure 3.14), a negative peak identified as a N170 

response within the 235-315ms time window followed by a positive peak identified as 
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a P300 within 200-400ms time windows can be identified. These peaks are identified 

as the N170 and P300 despite the later time windows used due to the auditory 

stimuli onset delay. The P300 is most prevalent in the central and frontal electrodes, 

particularly within Cz, C3, C4, Fz, F3 and F4. Examining the ERP waveforms for a 

post-P300 SWC as defined by parietal positivity and frontal negativity demonstrates 

no positivity in any parietal electrode. In all electrodes, the ERP response either 

returns to baseline or becomes negative to similar levels as the frontal electrodes, for 

example in Cz, C4 and P4.  

 

3.4.1.2) Comparison with the Literature  

Whilst ERPs were successfully acquired, HS-HMD-VR is a relatively new 

methodology within neuroscience research, particularly within mental arithmetic 

paradigms. It is therefore unknown if HS-HMD-VR usage introduces extraneous load 

or otherwise unexpected responses which render it unsuitable for WML research. To 

investigate if using HMD-VR results in unexpected outcomes in the WML arithmetic 

task, both the EEG and behavioural responses captured here were statistically 

analysed within presentation modalities. The results gathered are then contrasted 

against results reported in non-HMD-VR arithmetic studies to identify if the results 

gathered are congruent with the existing literature. 

 

3.4.1.2.1) Behavioural 

The visual and auditory behavioural results were consistent with the wider literature. 

When comparing between difficulties, it was found that responses in the hard trials 

across both modalities were significantly slower, less correct and received higher 

subjective difficulty ratings. Despite using different paradigms, previous research 

studying similar mental arithmetic tasks reported similar behavioural results in 

comparison between questions of different levels of difficulty. It is consistently 

reported across various mental arithmetic paradigms that increasing the difficulty of 

an arithmetic question results in longer response times and more incorrect 

responses [239,268,269]. The wider literature on the problem size effect within 

mental arithmetic also reports that longer response times and higher rates of 

incorrect responses are commonly found for tasks requiring a larger WML 
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[219,230,270]. Therefore, the behavioural results found in this present study 

suggests that load was successfully manipulated between difficulties within the 

current experiment.  

 

Despite the similarities in behavioural findings, contrasting the current results against 

comparable studies using visually presented addition questions [268,269] (Figure 

3.18) finds the mean response times are ~1s faster compared to the current results. 

In the current study, it was found that the mean response time was 2.6s for the easy-

visual questions and 4.41s for the hard-visual, whereas Ashcraft & Kirk’s [268] 

second experiment reported ~1.6s and 3.28s respectively for equivalent arithmetic 

trials requiring carries to be performed to reach the solution. However, the disparity 

does not indicate that the HMD-VR slows cognitive processing, and is instead 

argued to result from the differences between the paradigms. Whereas in the current 

study the participant must fully type out the response and press the enter button to 

submit the response, participants in prior studies only needed to press a single 

button [269] or speak the answer aloud [268]. This is reflected in the percentage of 

correct responses, where there are higher rates of correct responses in the current 

study, 99.13% and 94.13% for the easy-visual and hard-visual conditions in the 

current study, opposed to the 94.8% and 90.6% in Ashcraft & Kirk [268].  
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(a)

 

(b)

 

Figure 3.15: Graphs taken from (a) Ashcraft & Kirk [268] and (b) Rebsamen et al. 
[269] demonstrating the behavioural results of comparable conditions in mental 
addition tasks. For graph a, the ‘BF’ (one-digit plus one-digit) and ‘Large’ (two-digit 
plus two-digit) upper ‘carry’ bar is contrasted against the current study. For graph 
b, the first and middle bar presented for each participant represents the one-digit 
plus one-digit and two-digit plus two-digit trials respectively for response time 
(upper graph) and error percentage (lower graph). 
 

 

There were significant increases on the subscales of nausea, oculomotor 

disturbance, disorientation and total (cybersickness) score on the SSQ measured 

compared against an assumed rating of no symptoms. This is in line with other 

reported uses of different types of SB-HMD-VR and DB-HMD-VR devices [271]. 

However, only one participant of the twenty-two recruited exited the experiment due 

to discomfort, suggesting that degree of cybersickness-related symptoms introduced 

by the combined usage of HS-HMD-VR and EEG did not prevent the successful 

completion of the study. 
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3.4.1.2.2) P300  

The most prominent component identified in the ERP waveforms evoked by the 

presentation of arithmetic questions is the P300, which is found in all electrodes 

included within the statistical analysis across difficulties in both presentation 

modalities. Mean amplitude analysis of the visually evoked P300 finds a significant 

interaction between hemisphere and difficulty, showing that the presentation of easy-

visual questions evoked larger P300s in the frontal electrodes than for hard-visual 

questions; and that the central electrode has a significantly larger P300 than the 

frontal electrode in the easy conditions and the parietal electrode in the hard 

conditions. Within the mental arithmetic literature, the P300 component is commonly 

reported in response to the presentation of visual equations, auditory equations and 

potential solutions to equations across a range of task difficulties and problem sizes 

[131,223,237–239]. The finding of larger frontal P300s for the lower WML condition 

during the presentation of visual arithmetic questions is consistent with previous 

findings within the mental arithmetic literature [131,244]. Moreover, larger P300s 

have been reported in lower WML conditions within the wider working memory 

literature, for example in selective attention [272] and n-back [134] paradigms which 

compare tasks of multiple difficulties. However, the P300 found does not significantly 

differ outside of the frontal electrodes, nor was there enough differences between the 

easy-visual and hard-visual P300 for the main effect of difficulty to reach 

significance. The absence of a main effect of difficulty within the visual presentation 

of the question is also consistent with Dickson & Wicha [239], who reported no main 

effects of difficulty towards P300s evoked by the visual presentation of the second 

operand in a sequential presentation.  

 

Moreover, the main effect of hemisphere was significant for mean amplitude, peak 

amplitude and mean latency analyses, which found the P300 in the midline 

electrodes were larger and earlier than those present in the right hemisphere, neither 

of which differed from the left hemisphere. This midline P300 is further demonstrated 

by the significant interaction between electrode and hemisphere within the peak 

amplitude analysis, demonstrating that the Cz electrode had larger P300 responses 

than the Fz and C4 electrodes, and that Pz P300 was larger than P4 P300. Within 

the literature, the P300 associated with mental arithmetic is primarily reported as 
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being largest in the left parietal region [131,236–238,273], opposed to the medio-

central region found in the present study. However, many investigations reporting left 

P300 responses do not consider the midline electrodes [237,238,273], whilst studies 

which report the medio-central areas demonstrate the region is sensitive to different 

problem sizes in equation presentation [204,223].  

 

Within the auditory condition, statistical analysis of the auditory P300s finds the main 

effect of hemisphere was significant within the mean amplitude, peak amplitude and 

peak latency analyses, finding that the parietal electrodes had a lower amplitude and 

later response than both the frontal and central regions, which did not differ. The 

peak analysis of the auditory P300 also revealed a main effect of hemisphere, 

showing that the midline P300 was larger than the right P300, neither of which 

differed from the left. Moreover, a significant interaction between hemisphere and 

electrode demonstrated the peak amplitudes of the parietal responses were lower 

than the central and frontal responses in the left, right and midline electrodes. These 

auditory findings directly contest Kiefer & Dehaene [238], who report that the 

auditory presentation of arithmetic stimuli resulted in the largest P300s being evoked 

in the right-parietal electrodes, opposed to there being the site of the smallest 

responses in the current study. Moreover, the lack of any significant main effect or 

interaction including difficulty contests the findings of Kiefer & Dehaene [238] and 

Dickson & Wicha [239], who reported that larger P300s are evoked by more difficult 

auditorily presented questions at the second operand.  

 

The likely explanation for the auditory P300 findings is from the paradigm used in the 

current study. For at least the first 900ms, participants undergoing auditory trials 

would be attending to and subsequently encoding the equation, as opposed to 

having all the information and beginning the calculation within the visual condition. 

Moreover, as the first operand is still being presented during the early component 

time windows it is likely that little-to-no information about load was available to the 

participants at this time, explaining the lack of difference between difficulties. A 

potential alternative explanation is that the auditory ‘P300’ found is actually the P3a 
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as defined in Polich [274], who suggested that in auditory trials the P300 represents 

attention given to stimuli, and is found to be largest in the central electrodes. 

 

3.4.1.2.3) N170 

The earliest ERP component identified within the responses to presentation of the 

arithmetic questions is the N170. The statistical analysis of the visual N170 peak 

amplitudes finds significant main effects of difficulty, with the harder question 

presentation evoking larger responses. The increase in N170 amplitude towards the 

‘hard’ visual trials correlates to the findings of Moore et al. [241] and He et al. [243], 

who reported similar increases in N170 amplitude to higher WML trials in arithmetic 

verification tasks. Whilst the increase in N170 amplitude for higher levels of WML is 

antithetical to findings within the face-perception literature [135], it is consistent with 

the limited arithmetic literature despite the differences between the production and 

verification paradigms employed.  

 

Mean amplitude statistical analyses of the visual and auditory N170 revealed a 

significant main effect of electrode, which finds that the frontal N170 had a 

significantly smaller (i.e. less negative) amplitude than both the central and parietal 

region N170s across presentation modalities. Moreover, it was found that the frontal 

peak amplitude was significantly smaller than the parietal N170 peak amplitude in 

the visual condition, and than the central N170 in the auditory condition. However, no 

differences between hemispheres or any peak latencies were found. The auditory 

N170 did not differ between difficulties, likely due to the limited amount of information 

available to the participant about the task difficulty at the time the early ERP 

responses are recorded. No N170 analyses across either visual or auditory 

responses found a significant main effect or interaction including hemisphere, nor did 

peak latency differ on any comparison. 

 

The N170 responses reported in this study largely coincides with arithmetic N170 

reported in verification tasks [241,243], demonstrating that HS-HMD-VR can be 

utilised in experiments targeting early components. It is suggested that the N170 
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represents the initial encoding of the presented stimuli [241,243], which possibly 

explains the differences between difficulties in the visual condition and the lack of 

differences between difficulties in the auditory condition. Within the visual condition, 

there is a clear difference in how much information is presented to the participant at 

the point the N170 is recorded, with the hard condition having more digits presented 

at the same time. The N170 has previously been found to be sensitive towards the 

visual presentation of text-based words [275,276], thus it is reasonable to argue as 

there is more to encode the N170 would be larger. Conversely, the available 

information within the auditory condition at the point of the N170 recording is not 

enough to differentiate between difficulties, thus the ‘amount’ of encoding occurring 

between difficulties is balanced. 

 

The arithmetic N170 response is often reported as having a left-hemisphere bias 

[241,243] that is not found in the current study. No potential explanation can be 

offered for this finding, as the N170 reported outside arithmetic stimuli is often largest 

in the right hemisphere [275,276], opposed to the lack of laterality found in the 

present study. Moreover, to the researcher’s knowledge, auditory N170 responses to 

mental arithmetic stimuli have not been previously reported, nor are N170 responses 

often reported during speech perception tasks [277]. It is therefore unknown if the 

largest auditory N170 response being located in the central/parietal region is typical.  

 

It is also possible that the ‘auditory N170’ reported is in fact an N1/N100 ERP 

response related to the identification and encoding of speech stimuli [278,279]. This 

is distinct from the N1 response reported for visual arithmetic stimuli associated with 

the identification of presented stimuli [222], which is centred around the ~200ms 

timepoint post equation onset. It has been reported that the latencies of visually-

evoked and auditorily-evoked P300s using equivalent stimuli do not differ [280,281], 

thus it is reasonable to assume the P300 is time-locked between modalities. 

Therefore, the larger gap between the P300 and N170 time windows for the auditory 

condition compared to the visual implies the ‘auditory N170’ identified is an earlier 

negative component.  
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However, the difference in gaps between time windows between the auditory N170 

and P300 is only 10ms (compared to the 0ms gap in the visual ERPs), and the 

previous comparisons of P300 stimuli were not conducted on arithmetic or numeric 

stimuli. This may imply the P300 is the P200 defined by Remijn et al. [278], however 

the prior findings of P300 in response to auditorily presented arithmetic stimuli [239] 

and actual onset of the auditory stimuli renders this unlikely. Therefore, a dedicated 

examination of the early negative components in response to auditorily and visually 

presented equations, specifically at the presentation of the first operand and second 

operand to examine any additional effect that WML may have on the components, 

would be beneficial to understanding neural response to arithmetic equations. 

Additional comparison between equations and syllable-matched three sentence 

words requiring true/false responses (e.g. ‘Rabbits are mammal’) could also allow 

identification of any effect of numeric stimuli compared to just speech.  

 

3.4.1.2.4) Slow Wave 

The latest component examined in this experiment is the post-P300 SWCs. Unlike 

the uni-directional N170 and P300, SWCs can comprise of increased parietal 

positivity, frontal negativity, or both, typically within the medial and right electrodes 

[131,223,244]. Visual inspection of the visual ERP waveforms gathered within the 

SWC time window shows that all responses are positive, tailing off from the P300 

and persisting until 1000ms. Conversely, visual inspection of the post-P300 auditory 

ERP waveforms finds that the amplitude quickly returned to baseline or became 

negative in all electrodes. 

 

Statistical analysis of the mean amplitude of the visual SWC finds a significant main 

effect of electrode, where both the parietal and central electrodes had a significantly 

higher amplitude than the frontal electrodes. Peak amplitude analysis also found a 

significant main effect of electrode, with the central peak being significantly larger 

than the frontal. There was an interaction between difficulty and electrode which 

found that the mean amplitude of the parietal and central electrodes had a 

significantly higher amplitude than the frontal electrode in the easy condition. Within 
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the hard condition, the parietal electrode had a significantly larger response than the 

central, which in turn was significantly larger than the frontal electrode. The 

significant interaction between difficulty and hemisphere found that the midline 

electrodes had a larger response than the left hemisphere during the hard question 

presentation only.  

 

The increased positive response in parietal electrodes compared to the frontal 

electrodes aligns with the post-P300 positive SWC defined by Muluh [131] and the 

LPCs reported by Núñez-Peña & Honrubia-Serrano [246], Jasinski & Coch [237], 

Suárez-Pellicioni et al. [240] and Dickson & Federmeier [223]. Moreover, the 

hemispheric effect within the hard visual presentation suggests a midline bias similar 

to the results reported by Jasinski & Coch [237]. Whilst the hemispheric effect in the 

present study did not extend to the easy condition, nor between the often reported 

right hemisphere response, differences between hemispheres for post-P300 

components are not always found [240,246].  

 

It has been suggested that the SWC is associated with the mental calculation of the 

presented question, and as such has previously been reported to increase with 

larger problem sizes [131,248] and more complex operations [131,221] in response 

to visually presented arithmetic questions. However, the current visual SWC 

demonstrates no significant effect of difficulty. Whilst it has been previously reported 

the LPCs can be insensitive to load between different arithmetic operations [246], the 

similarity with Ku et al.’s [248] paradigm would suggest differences in difficulty would 

be expected during the different calculations. It is therefore possible that using HS-

HMD-VR modulated experienced WML during the task which lead to the non-

different result, however comparison between arithmetic tasks presented using 

HMD-VR and alternative display methods is required to examine this. 

 

Statistical analyses of the auditory SWC finds no significant main effect or interaction 

within the mean amplitude and peak amplitude ANOVAs. A significant main effect of 

hemisphere is found within the peak latency analysis, but no post hoc comparison is 
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significant. As SWC have not been previously reported for the presentation of 

auditory arithmetic questions (to the researcher’s knowledge), it is possible that the 

lack of difference should be expected. A potential explanation for this lack of 

difference is the auditory stimuli presentation itself. As stated, production tasks such 

as that utilised in the current experiment typically suggest the SWC represents the 

mental calculation process [131,248]. However, as calculation requires the presented 

question to be encoded, the lack of SWC within the auditory condition is likely due to 

the audio files of the question persisting into the ‘SWC’ time-window, thus the 

participant is still encoding at the point of the arithmetic process.  

 

3.4.1.3) Event-Related Potential Conclusions 

This study successfully acquired 3 ERP components associated with mental 

arithmetic processing during the visual and auditory arithmetic question presentation 

using HS-HMD-VR. There is no evidence to suggest that the use of HS-HMD-VR 

inhibited the EEG recording nor ERP analysis, demonstrating that HS-HMD-VR and 

EEG recording technologies can be used together in research contexts. Significant 

statistical differences between difficulty and electrode hemisphere and location were 

found within the ERP components, which correspond with responses reported in the 

wider arithmetic literature. Whilst some questions do remain about how the use of 

HS-HMD-VR influences the level of experienced load within WML paradigms, it is 

clear that HS-HMD-VR is suitable for EEG ERP and WML research paradigms.  

 

3.4.2) Limitations and Future Directions 

3.4.2.1) Comparisons with the Existing Literature  

This study provides evidence supporting the use of HS-HMD-VR in neuroscience 

research. However, there are still differences in the ERP responses found that, when 

compared to the existing literature, highlight the limitations with the current 

experiment. As the behavioural results align with the wider literature, the differences 

in the ERP results are unlikely to result from the use of HS-HMD-VR. Instead, a more 

likely candidate is the difference between the current production paradigm and 
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verification paradigms used in many of the previous studies [223,237,240], or those 

targeting ERP responses to the presentation of the second operand [223,238].  

 

3.4.2.2) Behavioural response time 

It is possible that the response time behavioural measure does not accurately reflect 

calculation time differences between difficulties. Response time was measured from 

the response routine onset to when the ‘Enter’ button was pressed to end the 

routine. Therefore, it is possible that inputting responses to hard questions, which 

required 3-4 button pushes (2-3 digits and enter; M= 3.833s ± 0.0485 across all hard 

questions), resulted in increased response times relative to the 2-3 presses (1-2 

digits and enter) required in the easy condition (M=2.567s ± 0.0645 across all easy 

questions). However, the average time for the easy condition for both modalities was 

~2.5 seconds, which if the participant knew the answer prior to input onset would 

mean each button press requires ~1s to input. If only an additional 1.3s button press 

is required for the hard condition, this would not account for the 2-5 second 

difference between difficulties within conditions. A more likely explanation for the 

differences between conditions is that the hard questions had longer responses due 

to inducing a higher level of WML [239]. A potential method of verifying this was 

explored based on the first number button press on the input screen (opposed to the 

enter button) for correct responses. However attempts to extract the time of the first 

button press was unsuccessful due to an issue with the experiment software not 

consistently logging all button presses in the output file, opposed to the routine time 

of the input response screen. 

 

3.4.2.3) Limited Differences Between Task Difficulties  

A potential limitation of the current study is the relatively low amount of significant 

differences found between difficulties when examining the neurological data. Whilst 

this study achieves its aims and acquires ERP responses, the main effect of difficulty 

was only significant for the N170 peak amplitude, and many interactions did not 

reach significance. The lack of P300 differences is particularly surprising, as the 

component is noted for being sensitive to problem size in working memory arithmetic 

tasks [223,239]. A potential explanation for the limited differences is the number of 
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participants included in the analysis, as increasing the number of participants, and in 

turn the number of trials included in the ERP analysis, can increase the chance of 

finding statistically significant findings [282]. However, as previously stated, using 

~20 participants is standard for EEG research (see Larson and Carbine [183]), with 

particularly large responses such as the P300 requiring as few as 5-7 participants 

[283]. Moreover, significant EEG comparisons within similar arithmetic tasks to that 

used in the current study were found by studies using between 8-10 participants 

[227,229,235]. The minimum threshold of epochs per condition, suggested to be at 

least 6 epochs, required for analysis was also exceeded for all participants included 

in the final analysis [282,284]. Whilst it is possible that recruiting more participants 

would increase the number of significant differences found between difficulties within 

the EEG comparisons, it is unlikely that it would change the overall conclusion of this 

research, nor does it diminish the findings of the present study. 

 

A more plausible explanation for the limited differences between neurological 

measures of WML is that the difficulties between the ‘easy’ and ‘hard’ conditions was 

not as large as the behavioural results may suggest. It is possible a ceiling effect 

resulting from the ‘easy’ single digit equations and the relatively low-difficulty ‘hard’ 

condition exists, which may limit the differences in neurophysiological responses 

measured in the current study. The average number of errors is <1 in both easy 

conditions, <4 in the hard visual condition, and <5 in the hard auditory condition. It 

could therefore be argued that participants performed well across difficulties and 

presentation modalities, and that the relative ease of which participants solved ‘hard’ 

equations did not result in large increase of experienced WML. Moreover, studies 

with similar comparisons between digit sizes or q-values have referred to the 

difficulty categories used in the current study differently. For example, in both Spüler 

et al. [227] and Chin et al. [229], the ‘hard’ questions in the current study would fall 

into the “medium” category. Moreover, Ullsperger et al. [235] refers to single-digit 

equations as “very easy” and the double-digit equations as “easy”, and reported 

larger differences in EEG responses were found when using “medium” three-digit 

equations.  
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By increasing the difficulty of the ‘hard’ conditions, for example by increasing the q-

value bracket of the equations [229] or using an equation with a different operation 

[244], a larger distinction between conditions can be identified which could increase 

the power of the results found. Such comparisons would in turn provide additional 

insight into how HMD-VR interacts with experienced WML, and would be particularly 

beneficial when compared against other display methods to identify the advantages 

and limitations of HMD-VR presentation. Increasing levels of WML by raising the 

values of the highest Q-value bracket used may also produce more significant 

comparisons involving difficulty within the statistical analysis, increasing the power of 

the current results and providing additional insight into neurophysiological responses 

to mental arithmetic tasks. However, increasing the WML experienced in the context 

of the present study is not expected to change the conclusions drawn, as it is 

unlikely that increasing task difficulty would prevent the acquisition of ERP 

responses.  

 

3.4.2.4) Better implementation of the SSQ 

The present study employed the SSQ at the conclusion of the experiment to identify 

if participants experienced adverse effects from combined HS-HMD-VR and EEG 

usage. However, as the SSQ was not also taken before the HMD-VR was placed on 

the participant, it is possible that participants were experiencing some minor level of 

cybersickness-related symptoms prior to onset due to reasons unrelated to the 

HMD-VR device. It is therefore recommended that future HMD-VR experiments 

utilise both a pre- and post-HMD-VR exposure (and any other display) comparison of 

cybersickness to identify any effect that HMD-VR has on cybersickness symptoms, 

as has been employed by Sharples et al. [285] and Xu et al. [181]. It is also unknown 

how the combination of EEG and HMD-VR may further increase discomfort, for 

example due to additional weight on the head or due to the HMD-VR head straps 

applying pressure to the EEG electrodes against the scalp. Therefore, a comparison 

of the SSQ scores between different combinations of EEG and HMD-VR systems is 

also suggested to identify how using the technologies can additionally increase 

participant discomfort, as to minimise any negative affect in future research.  
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3.4.2.5) Comparison with Other Display Methods  

The successful acquisition of ERP components coinciding with those reported in the 

literature is an important step for the utilisation of HS-HMD-VR in neuroscience 

research. However, this study does not examine how HS-HMD-VR influences 

experienced WML compared to lower-immersion display methods. Moreover, direct 

comparison between the amplitudes of ERP components acquired in the present 

study and those reported in the literature cannot be conducted due to the differences 

in paradigms utilised. The task used in the present study utilises a production task 

which measures ERP responses from the presentation of the whole question, which 

differs from the onset of the second operand in other production paradigms [238,239] 

or solution onset in verification tasks [223,237]. Understanding how the use of HS-

HMD-VR modulates WML is the next step to understand how to best utilise the 

technology in psychological and neuroscience research. Therefore, comparison 

between HS-HMD-VR and an alternative display method such as DB-VR utilising the 

same task should be conducted, allowing for the direct comparison of differences in 

experienced WML between conditions.  

 

3.5) Conclusions 

The results found in this current study have important implications for the use of HS-

HMD-VR in wider neuropsychological research. The results found demonstrate that 

EEG signals can successfully be acquired when using HS-HMD-VR equipment. The 

behavioural results have demonstrated that WML can be successfully manipulated 

within HS-HMD-VR devices. Moreover, the EEG results for the visual conditions 

found largely that lower WML arithmetic questions induce larger P300 components 

and similar response patterns within the SWCs. These results indicate that the 

advantages offered by HS-HMD-VR in research can be utilised without inherently 

introducing overwhelming WML nor levels of noise that prevents the successful 

acquisition of neurological responses.   
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COVID-19 Impact Statement  

In early 2020, the COVID-19 global pandemic prevented access to the EEG 

laboratory for an extended period of time. Following the reopening of the laboratory, 

the requirements of masks and face shields made the collection of combined HMD-

VR and EEG data impossible for several more months until restrictions were lifted. 

Tests of a standard medical mask and a double-layered fabric mask with HMD-VR 

resulted in the HMD lenses repeatedly fogging up. The fogging up persisted over 

several removals, cleanings of, and reapplication of the HMD-VR device. Whilst this 

may be resolvable in certain circumstances, the fogging ran a very high risk of 

interrupting any experiment, being uncomfortable to participants (particularly those 

with glasses), and shifting the EEG electrodes when cleaning the lenses. Moreover, 

an uncomfortable level of heat from combined face mask, EEG headcap, and HS-

HMD-VR device was anecdotally reported from members of the laboratory who 

experienced the combination. To prevent participants experiencing unnecessary 

cybersickness symptoms, or otherwise increasing sweat-related artifacts to the 

recorded EEG signal, data collection was paused until the mask restrictions were 

lifted.  

 

I made efficient use of the duration where the COVID-19 restrictions prevented data 

collection by improving sections of this project. Firstly, the systematic review was 

updated to include the most recent papers, and then extended to include additional 

working memory papers as discussed in Chapter 2. Moreover, several time-

frequency analysis methodologies were prepared for the (at the time) planned 

second EEG experiment were designed and coded in Matlab. These methods 

included event-related spectral perturbation (ERSP), event-related 

desynchronisation/synchronisation (ERD/ERS), and power-spectral analysis 

methods, and were selected to facilitate a range of potential working memory 

paradigms for use in HMD-VR.  

 

The following chapter will discuss the re-analysis of the Chapter 3 arithmetic data in 

the context of different preprocessing decisions used in HMD-VR research. During 
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the analysis of the arithmetic data, it became apparent that there was little 

consistency between preprocessing methodologies used in published HMD-VR/EEG 

data. There is minimal published research utilising the HS-HMD-VR Vive Pro device 

used in the arithmetic study in combination with EEG, making it difficult to identify 

how the EEG artifacts identified in the arithmetic data were best removed. Therefore, 

a dedicated exploration of different EEG preprocessing pipelines was compared 

using actual HS-HMD-VR/EEG data collected in the arithmetic study, with the aim of 

ensuring appropriate preprocessing decisions were made in this thesis. 
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Chapter 4) A Comparison of Preprocessing Steps for 

Artifact Removal in Event-Related Potential 

Electroencephalography Data Collected During a High-

Specification Head-Mounted Display Virtual Reality 

Arithmetic Task 

 

4.1) Introduction 

The underlying principles of EEG as a neuroscience technique have remained 

consistent since the inception of the method in 1924 [48]: the brain produces 

excitatory or inhibitory activity in response to stimuli or tasks that can be measured 

as electrical signals. The signals generated by the brain can then be compared 

against another condition or baseline to isolate the neural response to the stimuli. 

Between the EEG recording electrodes and the brain is layers of skull, scalp, 

meninges, and cerebrospinal fluid, necessitating sensitive electrodes and amplifiers 

to enhance the signal to a measurable level [286]. However, the signal enhancement 

also renders EEG sensitive to non-brain physiological and environmental sources of 

electrical noise, which can contaminate the recorded data and subsequent ERP 

analysis if improperly processed [286]. Despite concerns regarding the proximity of 

an HMD-VR device to the recording electrodes, Chapter 3 has demonstrated that 

HS-HMD-VR and EEG can be successfully combined to acquire ERP responses. 

During the analysis process conducted in Chapter 3, three types of artifacts were 

found and successfully minimised or removed through preprocessing steps: eye 

movements and eyeblinks; line noise; and slow-wave drift.  

 

Line noise at the 50/60Hz frequency and associated harmonics can be introduced to 

EEG recordings due to the proximity of the EEG cap to electronic devices [56,287]. 

Slow-wave drift, commonly associated with increased perspiration [288,289] affects 

electrode impedance by introducing a gradual change in the amplitude of a recorded 

signal over time [290,291]. Sweat-related slow-wave drift may have resulted from the 

increased temperature within the HMD-VR increasing perspiration [176,292] or 
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increasing symptoms of cybersickness [194,293]. The increased temperature may 

also cause the conductive electrode gel to dry quicker, changing the electrode 

impedance [294]. Ocular artifacts caused by eye movements, such as eyeblinks, 

were prominent in many datasets captured in the Chapter 3 arithmetic experiment. 

Eyeblinks have previously been associated with symptoms of cybersickness 

[295,296], however they may also result from individual differences between 

participants [297].  

 

The artifacts identified can be reduced or removed using appropriate preprocessing 

steps to reduce the amount of noise. Highpass filters are used to remove slow drift 

[298], line noise and harmonics can be removed by lowpass or notch filtering 

[56,287], and eyeblinks can be removed using epoch rejection [205] or ICA 

[299,300]. However, incorrect selection of preprocessing parameters can distort the 

data and reduce statistical power of extracted ERPs [298]. Moreover, the 

preprocessing parameters selected also depends on the data analysis method 

planned. Certain preprocessing steps are better suited for specific analytical 

purposes, such as improving data quality [301] or facilitating specialised statistical 

analyses [302], meaning comparable paradigms are often preprocessed differently. 

For example, Brouwer et al. [303] filtered between 0.1-100Hz without artifact 

rejection for online classification during a n-back task, whilst Scharinger et al. [134] 

filtered between 0.5-40Hz and used ICA-based ocular artifact rejection to facilitate 

ERP and time/frequency analysis for a comparable n-back paradigm. Despite the 

differences, both studies successfully reported P300 responses, demonstrating that 

there is not a singular ‘correct’ way to process data. Instead, preprocessing must 

balance optimising the data for analysis with removing noise from the EEG 

recording. Therefore, it is important to understand how each preprocessing decision 

changes the EEG data. 

 

4.1.1) Introduction to Main Electroencephalography Processing Steps 

4.1.1.1) Filtering 

Filtering is a common early step in EEG preprocessing pipelines, and is used to 

remove artifacts such as line noise and slow drift by modulating targeted frequency 



158 
 

bands [304]. Filters can be divided between categories, which define the frequencies 

targeted relative to a given value or values. Categories of filters include: highpass 

filters, which reduce the amplitudes of frequencies below a defined value; lowpass 

filters, which reduce the amplitudes of frequencies above a defined value; notch 

filters, which reduce amplitudes of frequency between two values; and bandpass 

filters, which reduce the amplitude of frequencies outside of two values. Filters are 

used to target certain artifacts in EEG recordings, for example using either a 40Hz 

lowpass, a 49-51Hz notch filter, or a 0.1-40Hz bandpass filter would remove 50Hz 

electrical line noise. A 51Hz highpass filter would also remove the 50Hz noise, 

however it would also remove most of the data which contributes to the ERP trace.  

 

Filters are also divided between types based around ‘response functions’, which 

define how the targeted frequencies are modulated or attenuated. Filters used in 

EEG gradually attenuate the frequency around a ‘half-amplitude cut-off’ [298] where 

the signal is attenuated to half its original strength. The order of the filter determines 

the range of surrounding frequencies that are attenuated, and how much attenuation 

is applied. Higher order filters affect a wider range of surrounding frequencies, but 

gradually increase attenuation as the half-amplitude cut-off is approached. Lower 

order filters are ‘steeper’, affecting fewer surrounding frequencies but having larger 

increases in attenuation between each included frequency.  

 

Frequency response function (FRF) filters apply the response function in the 

frequency domain. First, the EEG data is Fourier transformed into the frequency 

domain where a sloped FRF filter with a gain between 0-1 is applied centred on the 

half-amplitude cutoff. The slope’s direction is determined by the category of filter 

used and the steepness is defined by the filter order. Filters targeting two 

frequencies will be comprised of two slopes. The power of each frequency is 

multiplied by the corresponding gain, and then transformed back into the time 

domain using the inverse Fourier transform. Conversely, impulse response function 

(IRF) filters are applied to time domain data through a process called ‘convolution’. 

Each data point within the time range (the impulse) is replaced by the IRF scaled to 
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the amplitude of the impulse it is replacing, and averaged together with a number of 

surrounding datapoints dependant on the order of the filter. 

 

IRF filters can be further divided between finite impulse response filters (FIRs) and 

infinite impulse response filters (IIRs). FIRs are ‘causal’, only including previous time 

points when applying the filter. However, causal filters can result in phase distortion 

causing a temporal shift in the data [305–307], moving the peaks in ERP analysis 

and potentially leading to the misanalysis of the signals [308]. There is also the risk 

of ‘edge artifacts’, where the filter applied at the start and end of the dataset is 

improperly applied due to the lack of available timepoints [298]. FIR filters have been 

used in combined HMD-VR and EEG experiments [66]. 

 

IIR filters such as the Butterworth filter are ‘acausal’, using both forward and 

backward filters to account for the ‘future data’. IIR filters are ‘zero-phase’ and do not 

introduce the phase delays [298] whilst maintaining the shape of the waveforms 

more accurately compared to causal filters [309], reducing the risk of misanalysis 

due to filter artifacts. Butterworth IIR filters are often reported in combined 

EEG/HMD-VR studies [179,205,287], and were utilised in the Chapter 3 arithmetic 

experiment.  

 

The filter category and parameters also have a large effect on the ERP waveform 

[310]. Inappropriate selection of filter values can result in noise not being suitably 

removed, or desirable frequencies being over-attenuated resulting in reduced 

amplitude [298]. To date, no research comparing the effects of various filtering 

parameters on data collected from a combined EEG and HMD-VR study has been 

conducted. Therefore, it is important to identify what filtering parameters have been 

used in the existing literature. 
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4.1.1.2.1) Highpass Filtering 

Highpass filters attenuate frequencies under the defined value, and are therefore 

used to remove slow wave frequencies, for example sweat-related drift, from the 

EEG data [291]. Hypothetically, the upper limit of a highpass filter is the minimum 

frequency a researcher is interested in, which in EEG analysis is typically 1Hz [311]. 

However, Tanner et al. [310] demonstrated higher filter cut-offs can reduce the 

amplitude of ERP components (Figure 4.1), and reduce the power of statistical 

analysis. Highpass filtering therefore requires balancing the artifact removal without 

over-attenuation [307,310]. 

 

 

Figure 4.1: The effects of 0.1Hz to 1Hz highpass filter values on a simulated P600 
component, taken from Tanner et al. [310]. This figure displays how selecting a 
higher half-amplitude cut-off frequency during high-pass filtering affects the 
amplitude of extracted ERP components. 
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An upper limit of 0.1Hz for highpass filters is often recommended in non-HMD-VR 

research, as it offers the ‘optimal trade-off’ between noise reduction and potential 

filtering artifacts without over-attenuating the peaks in the ERP waveform [309,310]. 

In the context of HMD-VR usage, the main consideration is countering the sweat-

related drift. Aksoy et al. [205] report that HMD-VR/EEG studies have used 

anywhere between 0.1-3Hz, though typically 0.5Hz and above [16,25,205]. As the 

reasoning for the selected frequencies is not often stated, it is uncertain if the higher 

filter value is to remove sweat-related drift, or to serve another purpose. Therefore, a 

comparison of high-pass thresholds for removing slow-drift artifacts will be 

conducted to identify which are suitable for combined HS-HMD-VR and EEG 

research. 

 

4.1.1.2.2) Lowpass and Notch Filtering 

Lowpass filters attenuate frequencies above a defined threshold, which can be used 

to remove high frequency noise caused by electronic interference [311]. However, 

lowpass filters can distort ERP responses by reducing the amplitude of averaged 

waveforms, or introduce uniformed temporal shifts to the onset and offset of 

waveforms [298]. An alternative option is notch filtering, which targets and reduces 

specific frequencies bands, for example between 49-51Hz to remove 50Hz line 

noise. Notch filtering is commonly applied in EEG preprocessing [312], as unlike 

lowpass filtering it does not remove higher frequency bands that may be of interest 

to researchers. Notch filters typically have a high order, and thus remove artifacts 

without attenuating the surrounding data. However, like lowpass filters, notch filters 

can introduce phase shift or other time domain distortions when improperly applied 

[312]. As a result of the concerns of using lowpass and notch filters, some 

researchers suggest not using a lowpass filter at all [313], or only using them when 

presenting the ERP data for additional clarity [307]. However, using no high-

frequency filtering can result in electrical noise introduced by an HMD-VR device 

remaining in the data. 

 

Whilst it may seem obvious to remove the high-frequency noise from the data due to 

the proximity of an electrical device to the EEG electrodes, there are examples of no 
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lowpass or notch filtering being applied in HMD-VR studies [205]. Therefore, it may 

suggest that any line noise introduced by HMD-VR is negligible for ERP analysis. 

However, other HMD-VR papers have reported using lowpass filters ranging 

between 40Hz [16] to as low as 20Hz (via a bandpass filter) [25]. Notch filters have 

also been applied within WML-based HMD-VR studies [64] and motor-tasks [314]. 

Due to the range of potential high-frequency filters available, comparison between 

methods used to remove (or not remove) high-frequency noise would be beneficial to 

understanding how HS-HMD-VR and EEG can be combined in research 

applications. 

 

4.1.1.2) Eye Movement Artifact Rejection 

EEG is often contaminated with physiological noise, with eye movements, mouth 

movements, swallowing, muscular activity, and heartbeat contamination introducing 

sudden spikes to the EEG waveform [315]. The most common artifact identified in 

the Chapter 3 experiment was eyeblinks, which comprise of a distinct 

increased/decreased amplitude pattern that can be seen in the frontal electrodes 

extended posterior along the scalp (Figure 4.2) [316]. As the eyelids open and close 

and contact is made with the cornea, or lateral and horizonal eye movements are 

made, the cornea moves. As the cornea is a dipole, changes in its orientation or 

conductance produce detected signals in the EEG recording [315,317]. In ERP 

studies, sudden increase in amplitude can result in false peaks in the averaged 

waveform, which in turn can lead to misinterpretation of the results [317]. Moreover, 

if HMD-VR does increase eyeblinks in certain participants [295,297], the chance of 

overlap between averaged epochs is exacerbated.  
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Figure 4.2: Example of 5 eyeblinks in EEG data, taken from the arithmetic study 
data (see Chapter 3). Eyeblinks are marked with arrows (red colour). The data is 
filtered between 0.5Hz and 40Hz for clarity. The eyeblink artifact is most prominent 
in the frontal electrodes, and reduces in amplitude towards the posterior 
electrodes. 

 

One way of removing eye movement artifacts is through the rejection of affected 

data epochs, either manually through visual inspection or using an automated 

detection algorithm, such as the threshold detection in EEGLab [261]. Whilst 

rejecting contaminated epochs has been utilised to remove artifacts in HMD-VR 

studies, removing too much data can potentially leave insufficient data for analysis 

[282,284]. An alternative method is Independent Component Analysis (ICA), which is 

an algorithm that estimates the distinct sources of signals which comprise the 

complete EEG waveform [318–320]. As EEG data recorded at each electrode 

constitutes the combined activity of distinct but connected areas of the brain (and 

other sources of noise), it is possible to estimate each distinct contribution (‘source’) 

to the recorded signal to form a ‘mixing matrix’ that shows how they interact across 

the scalp. Based on the assumption that the sources are truly independent and non-

gaussian (not normally distributed), ICA identifies and separates (‘decomposes’) an 

estimate of these sources into an ‘unmixing matrix’ by finding ‘maximally 

distinct/independent’ ICA components, meaning there is no overlapping information 

between identified ICA components. The unmixing matrix generated separates the 
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scalp data by channels-by-components, therefore the number of outputted 

components will typically be the same as the number of EEG channels included. ICA 

components can include responses to the stimuli, unrelated processes occurring 

within the brain, and bodily or external artifacts which introduce noise into the 

recorded data. The contaminated ICA components can be selectively removed 

before rebuilding/recombining the data, excluding the artifact whilst preserving the 

brain activity recorded. 

 

It has been found that ICA is highly proficient at removing eyeblinks without altering 

surrounding data [300], whilst comparable methods such as principal component 

analysis can alter the amplitude of surrounding non-blink data [299]. ICA has been 

used in HMD-VR experiments to remove eyeblink artifacts [25,167]. However, ICA is 

a non-linear operation which produces slightly different results each time 

decomposition is performed (Figure 4.3). Pontifex et al. [284] compared P3 

amplitudes of the same data, processed several times within and between different 

ICA algorithms to remove eyeblinks from the data. They found the amplitude of the 

P3 ERP component varied within the same ICA parameters, and between the 

different ICA algorithms. Therefore, care must be taken when utilising ICA methods 

to not reduce the power of the recorded components. 

 

  

Figure 4.3: ICA components identified in the same dataset by two runs of a 
RUNICA algorithm in Matlab. The data is from a single participant in the arithmetic 
study (see Chapter 3). Component 6 (highlighted) is reversed in polarity between 
the examples, despite the parameters being identical. 
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The question remains of which method is optimal for removing eye-based artifacts 

from ERP datasets collected during HMD-VR use. As both improperly implemented 

ICA and epoch rejection risks reducing the power of ERP components, a comparison 

between the methods to identify which is suitable for HS-HMD-VR/EEG experiments 

is required. Comparisons between the methods should include how they affect the 

recorded ERP waveforms, the amount of data removed from the dataset, and the 

changes within the ERP peaks identified in Chapter 3.  

 

4.1.2) Aims of the Present Study 

There is limited guidance or consensus on which preprocessing parameters should 

be utilised when analysing EEG data collected when using HMD-VR. As the use of 

HMD-VR, particularly HS-HMD-VR, is still relatively unexplored in the EEG literature, 

it is important to identify how to avoid errors in the preprocessing selections that may 

negatively affect the data.  

 

The aim of this chapter is to examine how common preprocessing steps in EEG 

analysis can be used to remove artifacts found in EEG recordings during HS-HMD-

VR. Unprocessed data collected for the Chapter 3 arithmetic experiment, which 

contains eyeblinks and eye-movement artifacts, 50Hz electrical line noise, and slow 

drift artifacts, will undergo different variations of steps in preprocessing pipelines. 

The three preprocessing steps varied are 0.1Hz highpass filter (0.1HzHp), 0.5Hz 

highpass filter (0.5HzHp) and 1Hz highpass filter (1HzHp) for slow drift removal; No 

lowpass (NoLp/NF), 50Hz notch filter (50HzNF), and a 30Hz lowpass filter (30HzLp) 

for high frequency electrical noise, and no eye-based artifact removal (No-EBAR), 

ICA eye-artifact removal (ICA-EBAR), and epoch-rejection eye-artifact removal 

(Epoch-EBAR) for eyeblink artifacts. Visual inspection of the continuous EEG 

waveform and comparison within the N170 and P300 peak and mean amplitudes of 

the Cz electrode are considered when comparing between preprocessing 

parameters. The P300 and N170 components within the Cz electrode were selected 

for examination as these were the largest responses identified in Chapter 3 

arithmetic study. 
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4.2) Methods 

4.2.1) Equipment and Procedure 

The participants, materials, apparatus, and experimental procedures used are 

detailed in the Methods section of the arithmetic study in Chapter 3. 

 

4.2.2) Electroencephalography Data Processing 

The data analysis conducted on the ERP data utilises a modified version of the 3-

stage preprocessing pipeline defined in Chapter 3, which varies at three key stages 

to facilitate comparisons within highpass filter values, lowpass/notch filter 

parameters, and eye movement component removal methods. The EEG processing 

was conducted using the EEGLAB toolbox [261] for MATLAB [262] including the 

ERPLAB plugin [263].  

 

All datasets undergo the same first four steps, where the data is imported into a file 

format compatible with EEGLab, non-EEG channels removed, and the electrode 

location data inserted. The first branch of the analysis is the highpass filter, where 

datasets either had a 0.1Hz, 0.5Hz, or 1Hz filter applied. The highpass filter is 

followed by either a 30Hz lowpass, 50Hz notch or no additional filter. Channels 

requiring interpolation are identified by applying a temporary 30Hz lowpass filter, 

which are then interpolated on the non-temporary filtered data. 

 

Each analysis variant undergoes separate ICA preparation and processing in stage 

2. To extract eye movement components, a 30Hz lowpass filter is applied to the no 

lowpass and notch filtered datasets, epochs are extracted between -200 to 4504ms, 

and epochs containing non-eyeblink noise are rejected. The ICA algorithm is then 

applied to each dataset, and the ICA weights are saved. 

 

Returning to the datasets generated at step 7 following channel interpolation (Figure 

4.4), -200 to 4504ms epochs are extracted and the respective ICA weights for each 

variant are applied. Due to the number of variants, the ICA components for each 
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dataset are automatically classified using the ‘label ICA components’ function, which 

examines the hemispheric origin and power of the extracted components to identify if 

the component results from the brain, eye, heart, muscle or other. Once the 

components are identified, datasets either have no eyeblinks removed, eye-related 

components removed using ICA, or eyeblink artifacts removed using epoch rejection, 

resulting in 27 total variants for each dataset. Noisy epochs were identified using the 

pipeline with the highest frequency value for the highpass filter (1Hz), the lowest 

value for the lowpass filter (30Hz Lowpass), and the ICA-EBAR method for eye 

movement removal to minimise the chance data removed resulted from any of the 

three targeted artifacts. The epochs were then rejected from all pipeline variants for 

consistency in the data compared. In the Epoch-EBAR condition, the same epoch 

rejection process was conducted to remove epochs contaminated with eyeblinks 

within the -200 to 1000ms time window, and applied to all Epoch-EBAR variants. The 

average ERP waveform for each individual dataset is then calculated, then combined 

within each variation of the pipeline together to produce the 27 grand average 

datasets. 
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Figure 4.4: Diagram of whole processing pipeline numbered by the order of 
processing steps performed on the data. Black arrows show where the entire 
dataset is used in the connected step. Grey arrows show where only part of the 
information is used from the connected step. Parts of the pipeline which vary for 
comparison are highlighted with a blue outline. Step 10 (marked with an *) only 
rejects epochs containing non-eyeblink noise. 

 

Level of line noise is also extracted by isolating the 200ms baseline for each epoch. 

The baseline period is then converted into power spectral density using a fast 

Fourier transform to identify the level of 50Hz line noise contamination.  

 

4.3.2) Statistical Analysis 

Statistical analysis was conducted in SPSS 28 [264] and Microsoft Excel [265]. Four 

separate three-factor 3x3x3 [highpass (1HzHp, 0.5HzHp, 0.1HzHp) x lowpass 



169 
 

(30HzLp, 50HzNF, NoLp/NF) x ICA (No-EBAR, ICA-EBAR, Epoch-EBAR)] repeated 

measures ANOVA were conducted to compare the effect of the different processing 

variations on the outputted data. The first and second ANOVAs targeted the peak 

and mean amplitudes of the N170 component within the Cz electrode, and the third 

and fourth ANOVA targeted the peak and mean amplitudes of the P300 component 

within the Cz electrode. Mauchly’s test of sphericity was used to identify any main 

effect or interaction which violated the sphericity assumption. When sphericity 

violations are identified, the degrees of freedom are adjusted using the Greenhouse-

Geisser or the Huynh-Feldt corrections when the Greenhouse-Geisser Epsilon is 

under 0.75 or over 0.75 respectively. Post-hoc analysis was conducted using 

pairwise comparisons, corrected for multiple comparisons using the Bonferroni 

correction to control for type 1 error [267].  

 

A paired-sample t-test was used to compare the number of removed epochs 

between the No-EBAR/ICA-EBAR conditions and the Epoch-EBAR conditions to 

identify if significantly more epochs were removed in the Epoch-EBAR variants.  

 

4.3) Results 

4.3.1) Epoch Rejection  

A paired-sample t-test found that there were significantly less epochs included in the 

Epoch-EBAR conditions (M=90.714± 9.973) from the initial 240 per participant 

compared to the No-EBAR/ICA-EBAR conditions (M=201.762± 2.772) (t(20)=10.347, 

p≤0.001, d=2.258). The same number of epochs were removed in the No-EBAR and 

ICA-EBAR conditions. 

 

4.3.2) Effect of Highpass, Lowpass and Eye-Based Artifact Rejection on 

Continuous Data and Topographic Event-Related Potentials  

4.3.2.1) Peak and Mean Amplitudes  

Within the N170 responses, using 0.1HzHp, NoLp/NF and Epoch-EBAR results in 

the largest peak (M=-15.9 ± 3) and mean (M=-6.7 ± 2.1) amplitudes. Using 0.1HzHp, 
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a 30HzLp and ICA-EBAR results in the smallest peak amplitude (M=-3.1 ± 0.9). The 

smallest N170 was found using 0.1HzHp, a 50HzNf and ICA-EBAR results in the 

smallest mean amplitude (M=-0.6 ± 1).  

 

Within the P300 responses, using 0.1HzHp, NoLp/NF and ICA-EBAR results in the 

largest peak amplitude (M=21.2 ± 1.6). The largest mean amplitude resulted from 

using 0.1HzHp, 50Hz notch filter and ICA-EBAR (M=13.1 ± 1.2). The smallest peak 

amplitude is found when using 1HzHp, 30HzLp and No-EBAR (M=10.5 ± 1), and 

using 1HzHp, no lowpass and No-EBAR results in the smallest mean amplitude 

(M=4.4 ± 0.8). 

 

4.3.2.2) Highpass Filtering 

Visual examination of the ERP waveforms comparing highpass filtering level from all 

recorded electrodes (Figure 4.5) shows that using a 0.1HzHp filter results in a 

positive inflection in the Fz, F4, F8, C3, Cz, C4, T4, T5 and Pz electrodes starting at 

~300ms and persisting until the end of the 1000ms waveform. 

 

 

Figure 4.5: Topographic representation of recorded electrodes for highpass filter 
comparisons when using a 50Hz Notch filter and ICA eye-based artifact rejection. A 
positive inflection starting at ~300ms when using the 0.1Hz highpass filter is seen in 
Fz, F4, F8, C3, Cz, C4, T4, T5 and Pz. 
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Self-reported increased perspiration was captured as part of the SSQ administered 

after completion of the Chapter 3 arithmetic task. Of the 21 participants who 

completed the arithmetic task, 4 self-reported a slight increase to sweating, 2 self-

reported a moderate increase, and 15 self-reported no sweating. Thirty second 

extracts from the continuous waveforms for no highpass filter, 0.1HzHp, 0.5HzHp 

and 1HzHp filtered data of two participants, one who reported no increase in 

sweating and one who reported a moderate increase in sweating are shown in 

Figures 4.6 and 4.7 respectively. Visual inspection of the continuous waveforms 

shows clear slow drift artifacts in unfiltered data in both participants (Figures 4.6a 

and 4.7a), which are modulated but not completely removed when using 0.1HzHp 

(Figures 4.6b and 4.7b). When A 0.5HzHp (Figures 4.6c and 4.7c) or 1HzHp (Figures 

4.6d and 4.7d) is applied, the slow drift artifacts are no longer visible, with minor 

differences being visible between the higher frequency value highpass filters.  

 

(a) No highpass filter

 

(b) 0.1Hz Highpass 

 

(c) 0.5Hz Highpass 

 

(d) 1Hz Highpass 

 

Figure 4.6: A comparison of different highpass filters on 30s of minimally 
processed data from a participant reporting no increase in sweating. The effect of 
no highpass filtering is seen in (a); a 0.1Hz highpass filter in (b); a 0.5Hz highpass 
filter in (c); and a 1Hz highpass filter in (d). Data is DC offset to see differences. 
Scale is set to 200mv. 
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(a) No highpass filter 

 

(b) 0.1Hz Highpass 

 

(c) 0.5Hz Highpass 

 

(d) 1Hz Highpass 

  

Figure 4.7: Images of different highpass filters on 30s of minimally processed data 
of a participant reporting a moderate increase in sweating. The effect of no 
highpass filter is seen in figure (a); a 0.1Hz highpass filter in (b); a 0.5Hz highpass 
filter in (c); and a 1Hz highpass filter in (d). Data is DC offset to see differences. 
Scale is set to 200mv. 

 

4.3.2.3) Lowpass/Notch Filtering 

Visual examination of the ERP waveforms from all recorded electrodes (Figure 4.8) 

shows that the 30Hz lowpass and 50Hz notch filters results in less high frequency 

contamination and thus a smoother waveform, but the ERPs otherwise closely 

overlap. Several electrodes including Fp2, F3, C3, C4, T5 and P4 show high levels 

of high frequency noise when NoLp/NF is applied, however this is largely attenuated 

when using the 50HzNF or removed when using the 30HzLp.  

 



173 
 

 

Figure 4.8: Topographic representation of recorded electrodes for lowpass/notch 
comparisons when using a 0.5Hz highpass filter and ICA Eye-based artifact 
rejection. High-frequency noise can be identified in both hemispheres, and is 
primarily visible in the T5, P4, C4 and F3 electrodes. 
 

Inspection of the peaks in Figure 4.9 finds the 50Hz contamination is present when 

no lowpass/notch is applied (Figure 4.9a), modulated when applying the 50Hz notch 

filter (Figure 4.9b), and visibly present but functionally removed when using a 

30HzLp filter (Figure 4.9c). The wider range of attenuated frequencies around and 

beyond 30HzLp is also visible in Figure 4.9c. 

 

(a) No lowpass/notch filter

 

(b) 50Hz Notch filter 

 

(c) 30Hz Lowpass filter 

 

Figure 4.9: Power spectral density graphs comparing 50Hz peaks between 
lowpass/notch filtering methods for 0.5Hz highpass filtered and ICA Eye-based 
artifact rejected data. The solid black line is the average of the individual datasets, 
which are represented by the surrounding dotted coloured lines. (a) No lowpass 
filter is applied; (b) 50Hz notch filter is applied; (c) 30Hz lowpass filter is applied. 
The 50Hz peaks are highlighted with red arrows. 
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4.3.2.3) Eye Artifact Removal on the ERP Waveform 

Visual inspection of Figure 4.12, which shows the effect of the eye-based artifacts 

captured in the current dataset across all highpass/lowpass combinations, finds an 

early negative inflection starting at ~120ms followed by a large positive inflection 

starting at 450ms and persisting until at least 1000ms when no EBAR has been 

removed. Moreover, the topographic array of the ERPs for each EBAR variation 

using 1HzHp and 30Hz lowpass filtering (Figure 4.10) shows this late positive 

inflection contaminated every electrode recorded. The late positive inflection largely 

disappears when eyeblinks were rejected, and has reduced amplitude towards the 

posterior of the head. 

 

 

Figure 4.10: Topographic representation of EBAR comparisons when using 1Hz 
highpass and a 30Hz lowpass filter. The filters were selected to remove any 
additional noise and isolate the effect of the eyeblink artifact on ERP recordings. 
 

The eyeblink component found comprises of an initial negative inflection covering 

both the N170 and P300 time ranges (seen clearest in the FP1 and FP2 electrodes 

in Figure 4.10), reducing the amplitude of the P300 component across the affected 

electrodes. This early negative inflection results in the smallest P300 peaks in all 

preprocessing pipeline variations for both the Fz and Cz electrodes (as seen in 

Figure 4.10), though not necessarily the Pz electrode where the power of the 
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eyeblink has lessened. Moreover, the negative inflection caused by the eyeblink 

artifact does not result in a significantly larger Cz N170 peak compared to Epoch-

EBAR, but is significantly larger than the No-EBAR peak.  

 

The effects of the ICA can be seen in Figure 4.11, which shows how eye-related 

artifacts were removed without removing the other features of the EEG waveform. 

The removal of eye-related components reduces the amplitude of the eyeblink 

artifacts, but the waveform remains largely overlapping with the un-adjusted data. 

 

 

Figure 4.11: Epoched data with (red line) and without (black line) eye-related 
components identified by ICA-EBAR removed. The data was filtered between 0.5-
40Hz for clarity. Eye blinks visible when no ICA components have been removed 
are marked with red arrows. 
 

 

4.3.3) N170 and P300 Statistical Analysis Results 

The grand average ERP waveforms of each preprocessing pipeline variant was 

generated for the Cz electrode, and organised to present the differences between 

highpass filter variations (Figure 4.12), lowpass/notch filter variations (Figure 4.13), 

and EBAR variations (Figure 4.14). 
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Figure 4.12: Comparison between using a 0.1Hz, 0.5Hz and 1Hz highpass filter 
within each combination of lowpass/notch filtering and EBAR method for the Cz 
electrode. The highpass filter was applied before both the lowpass/notch filter and 
EBAR. The yellow time window is the N170 time range (120-200ms) and the cyan 
time window is the P300 time range (200-400ms). n=21. 
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Figure 4.13: Comparison between using a no lowpass or notch filter, a 50Hz notch 
filter and a 30Hz lowpass filter within each combination of highpass filtering and 
EBAR method for the Cz electrode. The highpass filter was applied after the 
lowpass/notch filter and before the EBAR. The yellow time window is the N170 time 
range (120-200ms) and the cyan time window is the P300 time range (200-400ms). 
n=21. 
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Figure 4.14: Comparison between not removing eye-based artifacts, using ICA to 
remove eye-based artifacts, and rejecting contaminated epochs to remove eye-
based artifacts within each combination of highpass filtering and lowpass/notch filter 
for the Cz electrode. The eye-based artifacts were removed after the highpass, and 
lowpass/notch filtering was performed. The yellow time window is the N170 time 
range (120-200ms), and the cyan time window is the P300 time range (200-400ms). 
n=21. 
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4.3.3.1) N170 Peak Amplitude 

For the N170 peak amplitude analysis within the Cz electrode, Mauchly’s test of 

Sphericity is violated for all main effects and interactions: highpass (χ2(2)=27.75, 

p≤0.001, ε=0.57); lowpass/notch (χ2(2)=10.38, p=0.006, ε=0.7); EBAR (χ2(2)=17.98, 

p≤0.001, ε=0.62); highpass x lowpass/notch (χ2(9)=57.29, p≤0.001, ε=0.46); 

highpass x EBAR (χ2(9)=46.29, p≤0.001, ε=0.47); lowpass/notch x EBAR 

(χ2(9)=111.47, p≤0.001, ε=0.39); highpass x lowpass/notch x EBAR (χ2(35)=256.23, 

p≤0.001, ε=0.29). All violations were adjusted using the Greenhouse-Geisser 

correction. The significant main effects and interactions are summarised in table 4.1. 

 
 

Table 4.1: Summary of the main effects and interactions of the N170 peak 
amplitude ANOVA statistical analysis. n=21. 

Within Subjects 
Effect 

F df 
df 

(error) 
p ηp

2 

Highpass 0.17 1.13 22.63 0.71 0.01 

Lowpass/Notch 35.44 1.41 28.15 <0.001* 0.64 

EBAR 11.34 1.24 24.82 0.001* 0.36 

Highpass x 
Lowpass/Notch 

0.28 1.85 36.98 0.74 0.01 

Highpass x 
EBAR 

8.39 1.86 37.16 0.001* 0.3 

Lowpass/Notch 
x EBAR 

6.52 1.57 31.44 0.01* 0.25 

Highpass x 
Lowpass/Notch 

x EBAR 
0.41 2.28 45.69 0.69 0.02 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

 

The main effects of lowpass/notch and EBAR reached significance within the N170 

peak amplitude ANOVA. Post hoc analysis within lowpass/notch comparisons found 

that using NoLp/NF (M=-10.1 ± 1.3) resulted in significantly larger negative peaks 

than 50HzNF (M=-8.9 ± 1.3) (t(20)=-1.148, p=0.003, d=-0.827) and 30HzLp (M=-7.6 

± 1.1) (t(20)=-2.446, p≤0.001, d=-1.492), with 30HzLp further having a smaller peak 

than 50HzNF (t(20)=-1.298, p≤0.001, d=-1.54). Between EBAR methods, it is found 

that using ICA-EBAR (M=-5.2 ± 0.7) resulted in significantly smaller peaks than both 
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No-EBAR (M=-8.4 ± 1.1) (t(20)=-3.213, p=0.002, d=-0.889) and Epoch-EBAR (M=-

13.1 ± 2.3) (t(20)=7.864, p=0.003, d=0.849). 

 

The interaction between highpass x EBAR was significant. Post hoc comparisons 

(table 4.2) found within EBAR and between highpass, peak amplitude significantly 

differed between No-EBAR 1HzHp & No-EBAR 0.5HzHp, and between ICA-EBAR 

1HzHp with both ICA-EBAR 0.5HzHp & ICA-EBAR 0.1HzHp. Within highpass and 

between EBAR methods, it is found that 1HzHp ICA-EBAR resulted in a significantly 

smaller peak than 1HzHp Epoch-EBAR, that 0.5HzHp ICA-EBAR (M=-5.1 ± 0.7) 

resulted in a significantly smaller peak than both 0.5HzHp No-EBAR & 0.5HzHp 

Epoch-EBAR, and that 0.1HzHp ICA-EBAR had a significantly smaller peak than 

0.1HzHp No-EBAR and 0.1HzHp Epoch-EBAR.  
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Table 4.2: Post hoc comparisons within the significant interaction of EBAR and Highpass filter 
within the N170 peak amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

 EBAR 
Highpass 

No-EBAR 
1HzHp 

-7.95 0.97 
No-EBAR 
0.5HzHp 

-8.87 1.21 2.74 20 0.92 0.34 0.04* 

No-EBAR 
1HzHp 

-7.95 0.97 
No-EBAR 
0.1HzHp 

-8.41 1.36 0.6 20 0.46 0.77 1 

No-EBAR 
0.5HzHp 

-8.87 1.21 
No-EBAR 
0.1HzHp 

-8.41 1.36 -0.83 20 -0.46 0.56 1 

ICA-EBAR 
1HzHp 

-6.51 0.67 
ICA-EBAR 
0.5HzHp 

-5.14 0.66 -3.74 20 -1.38 0.37 0.004* 

ICA-EBAR 
1HzHp 

-6.51 0.67 
ICA-EBAR 
0.1HzHp 

-3.94 0.96 -3.44 20 -2.58 0.75 0.01* 

ICA-EBAR 
0.5HzHp 

-5.14 0.66 
ICA-EBAR 
0.1HzHp 

-3.94 0.96 -1.83 20 -1.2 0.66 0.25 

Epoch-EBAR 
1HzHp 

-12.18 2.12 
Epoch-EBAR 

0.5HzHp 
-13.14 2.36 1.79 20 0.97 0.54 0.26 

Epoch-EBAR 
1HzHp 

-12.18 2.12 
Epoch-EBAR 

0.1HzHp 
-13.86 2.69 1.41 20 1.68 1.2 0.52 

Epoch-EBAR 
0.5HzHp 

-13.14 2.36 
Epoch-EBAR 

0.1HzHp 
-13.86 2.69 0.96 20 0.71 0.74 1 

Highpass 
EBAR 

1HzHp  
No-EBAR 

-7.95 0.97 
1HzHp  

ICA-EBAR 
-6.51 0.67 -2.23 20 -1.43 0.64 0.11 

1HzHp  
No-EBAR 

-7.95 0.97 
1HzHp 

Epoch-EBAR 
-12.18 2.12 2.49 20 4.23 1.7 0.07 

1HzHp  
ICA-EBAR 

-6.51 0.67 
1HzHp 

Epoch-EBAR 
-12.18 2.12 3.38 20 5.66 1.67 0.01* 

0.5HzHp  
No-EBAR 

-8.87 1.21 
0.5HzHp  
ICA-EBAR 

-5.14 0.66 -3.99 20 -3.73 0.94 0.002* 

0.5HzHp  
No-EBAR 

-8.87 1.21 
0.5HzHp 

Epoch-EBAR 
-13.14 2.36 2.23 20 4.27 1.92 0.11 

0.5HzHp  
ICA-EBAR 

-5.14 0.66 
0.5HzHp 

Epoch-EBAR 
-13.14 2.36 3.78 20 8.01 2.12 0.003* 

0.1HzHp  
No-EBAR 

-8.41 1.36 
0.1HzHp  
ICA-EBAR 

-3.94 0.96 -4.11 20 -4.47 1.09 0.002* 

0.1HzHp  
No-EBAR 

-8.41 1.36 
0.1HzHp 

Epoch-EBAR 
-13.86 2.69 2.59 20 5.45 2.11 0.053 

0.1HzHp  
ICA-EBAR 

-3.94 0.96 
0.1HzHp 

Epoch-EBAR 
-13.86 2.69 4.1 20 9.92 2.42 0.002* 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

The interaction between lowpass/notch x EBAR also reached significance, 

summarised in table 4.3. The main findings are that, within EBAR method and 

between lowpass/notch filters, all interactions reached significance, with NoLp/NF 
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consistently resulting in the largest peak and 30HzLp resulting in the smallest peak 

amplitudes. Within lowpass/notch and between EBAR, it is found that ICA-EBAR 

resulted in significantly smaller peaks compared to No-EBAR and Epoch-EBAR 

across all lowpass/notch variants. The comparison between No-EBAR and Epoch-

EBAR reaches significance in NoLp/NF only, with NoLp/NF No-EBAR (M=-9.2 ± 1.1) 

resulting in a smaller peak than NoLp/NF Epoch-EBAR (M=-15.1 ± 2.7) (t(20)=5.87, 

p=0.048, d=0.575). 
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Table 4.3: Post hoc comparisons within the significant interaction of EBAR and lowpass/notch 
filter within the N170 peak amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

 EBAR 
Lowpass/

Notch  

No-EBAR 
NoLp/NF 

-9.2 1.12 
No-EBAR 
50HzNF 

-8.5 1.2 -2.93 20 -0.7 0.24 0.03* 

No-EBAR 
NoLp/NF 

-9.2 1.12 
No-EBAR 
30HzLp 

-7.52 1.13 -8.01 20 -1.68 0.21 <0.001* 

No-EBAR 
50HzNF 

-8.5 1.2 
No-EBAR 
30HzLp 

-7.52 1.13 -6.74 20 -0.98 0.15 <0.001* 

ICA-EBAR 
NoLp/NF 

-5.98 0.67 
ICA-EBAR 
50HzNF 

-5.24 0.75 -3.03 20 -0.75 0.25 0.02* 

ICA-EBAR 
NoLp/NF 

-5.98 0.67 
ICA-EBAR 
30HzLp 

-4.36 0.69 -7.42 20 -1.62 0.22 <0.001* 

ICA-EBAR 
50HzNF 

-5.24 0.75 
ICA-EBAR 
30HzLp 

-4.36 0.69 -6.44 20 -0.87 0.14 <0.001* 

Epoch-EBAR 
NoLp/NF 

-15.07 2.69 
Epoch-EBAR 

50HzNF 
-13.07 2.33 -2.97 20 -2 0.67 0.02* 

Epoch-EBAR 
NoLp/NF 

-15.07 2.69 
Epoch-EBAR 

30HzLp 
-11.03 2.09 -4.74 20 -4.04 0.85 <0.001* 

Epoch-EBAR 
50HzNF 

-13.07 2.33 
Epoch-EBAR 

30HzLp 
-11.03 2.09 -4.43 20 -2.04 0.46 0.004* 

Lowpass/
Notch 
EBAR 

NoLp/NF  
No-EBAR 

-9.2 1.12 
NoLp/NF 
ICA-EBAR 

-5.98 0.67 -4.14 20 -3.22 0.78 0.002* 

NoLp/NF  
No-EBAR 

-9.2 1.12 
NoLp/NF 

Epoch-EBAR 
-15.07 2.69 2.64 20 5.87 2.23 0.048* 

NoLp/NF 
ICA-EBAR 

-5.98 0.67 
NoLp/NF 

Epoch-EBAR 
-15.07 2.69 3.86 20 9.09 2.35 0.003* 

50HzNF  
No-EBAR 

-8.5 1.2 
50HzNF  

ICA-EBAR 
-5.24 0.75 -3.99 20 -3.27 0.82 0.002* 

50HzNF  
No-EBAR 

-8.5 1.2 
50HzNF 

Epoch-EBAR 
-13.07 2.33 2.44 20 4.57 1.87 0.07 

50HzNF  
ICA-EBAR 

-5.24 0.75 
50HzNF 

Epoch-EBAR 
-13.07 2.33 3.95 20 7.83 1.98 0.002* 

30HzLp  
No-EBAR 

-7.52 1.13 
30HzLp  

ICA-EBAR 
-4.36 0.69 -4.08 20 -3.16 0.78 0.002* 

30HzLp  
No-EBAR 

-7.52 1.13 
30HzLp 

Epoch-EBAR 
-11.03 2.09 2.15 20 3.52 1.63 0.13 

30HzLp  
ICA-EBAR 

-4.36 0.69 
30HzLp 

Epoch-EBAR 
-11.03 2.09 3.73 20 6.67 1.79 0.004* 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 
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4.3.3.2) N170 Mean Amplitude 

Within the N170 mean amplitude analysis, the assumption of sphericity is violated for 

all main effects and interactions: highpass (χ2(2)=24.185, p≤0.001, ε=0.581); 

lowpass/notch (χ2(2)=15.908, p≤0.001, ε=0.638); EBAR (χ2(2)=9.597, p=0.008, 

ε=0.716); highpass x lowpass/notch (χ2(9)=60.271, p≤0.001, ε=0.367); highpass x 

EBAR (χ2(9)=43.769, p≤0.001, ε=0.468); lowpass/notch x EBAR (χ2(9)=45.153, 

p≤0.001, ε=0.557); highpass x lowpass/notch x EBAR (χ2(35)=438.664, p≤0.001, 

ε=0.292). All violations were adjusted using the Greenhouse-Geisser correction. The 

significant main effects and interactions are summarised in Table 4.4. 

 

Table 4.4: Summary of the main effects and interactions of the N170 mean 
amplitude analysis. n=21. 

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

Highpass 0.62 1.16 23.26 0.46 0.03 

Lowpass/Notch  16.11 1.28 25.53 <0.001* 0.45 

EBAR 7.32 1.43 28.64 0.01* 0.27 

Highpass X Lowpass/Notch  3.74 1.47 29.33 0.048* 0.16 

Highpass x EBAR 10.67 1.87 37.42 <0.001* 0.35 

Lowpass/Notch x EBAR 4.48 2.23 44.58 0.01* 0.18 

Highpass x Lowpass/Notch x EBAR 0.94 2.34 46.74 0.41 0.05 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

The main effects of lowpass/notch and EBAR reach significance in the N170 mean 

amplitude analysis. Post hoc comparisons find that between lowpass/notch, using 

NoLp/NF (M=-3.9 ± 1) results in significantly larger mean amplitudes than 50HzNF 

(M=-3.6 ± 1) and 30HzLp (M=-3.6 ± 1) filters. Moreover, between EBAR methods, it 

is found that using ICA-EBAR (M=-1 ± 0.7) results in significantly smaller mean 

amplitudes than both No-EBAR (M=-4.3 ± 1.1) (t(20)=-3.321, p=0.001, d=-0.938) and 

Epoch-EBAR (M=-5.7 ± 1.7) (t(20)=4.666, p=0.015, d=0.685). 
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Several interactions reached significance within the N170 mean amplitude analysis. 

The significant interaction between highpass x lowpass/notch is summarised in Table 

4.5, however no significant post hoc comparisons are found within lowpass/notch 

and between highpass. The main findings within highpass and between 

lowpass/notch is that each comparison utilising NoLp reaches significance for post 

hoc comparisons, resulting in larger mean amplitudes than both 50HzNF and 

30HzLp across all highpass filtering variations and subsequently matching the 

results found in the main effect of lowpass/notch.  
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Table 4.5: Post hoc comparisons within the significant interaction of lowpass/notch filter and 
highpass filter within the N170 mean amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

Lowpass/Notch 
Highpass 

NoLP/NF 
1HzHp 

-4.03 0.86 
NoLP/NF 
0.5HzHp 

-4.02 1.01 -0.03 20 -0.01 0.3 1 

NoLP/NF 
1HzHp 

-4.03 0.86 
NoLP/NF 
0.1HzHp 

-3.54 1.27 -0.7 20 -0.5 0.71 1 

NoLP/NF 
0.5HzHp 

-4.02 1.01 
NoLP/NF 
0.1HzHp 

-3.54 1.27 -0.97 20 -0.49 0.5 1 

50HzNF 
1HzHp 

-3.81 0.88 
50HzNF 
0.5HzHp 

-3.71 1.04 -0.34 20 -0.11 0.31 1 

50HzNF 
1HzHp 

-3.81 0.88 
50HzNF 
0.1HzHp 

-3.22 1.29 -0.85 20 -0.6 0.7 1 

50HzNF 
0.5HzHp 

-3.71 1.04 
50HzNF 
0.1HzHp 

-3.22 1.29 -0.99 20 -0.49 0.49 1 

30HzLp 
1HzHp 

-3.79 0.84 
30HzLp 

0.5HzHp 
-3.79 1 -0.01 20 0 0.3 1 

30HzLp 
1HzHp 

-3.79 0.84 
30HzLp 

0.1HzHp 
-3.3 1.26 -0.69 20 -0.49 0.71 1 

30HzLp 
0.5HzHp 

-3.79 1 
30HzLp 

0.1HzHp 
-3.3 1.26 -0.98 20 -0.49 0.5 1 

Highpass 
Lowpass/Notch  

1HzHp 
NoLP/NF 

-4.03 0.86 
1HzHp 

50HzNF 
-3.81 0.88 -5.28 20 -0.22 0.04 <0.001* 

1HzHp 
NoLP/NF 

-4.03 0.86 
1HzHp 
30HzLp 

-3.79 0.84 -7.12 20 -0.24 0.03 <0.001* 

1HzHp 
50HzNF 

-3.81 0.88 
1HzHp 
30HzLp 

-3.79 0.84 -0.34 20 -0.02 0.05 1 

0.5HzHp 
NoLP/NF 

-4.02 1.01 
0.5HzHp 
50HzNF 

-3.71 1.04 -5.65 20 -0.32 0.06 <0.001* 

0.5HzHp 
NoLP/NF 

-4.02 1.01 
0.5HzHp 
30HzLp 

-3.79 1 -9.21 20 -0.23 0.03 <0.001* 

0.5HzHp 
50HzNF 

-3.71 1.04 
0.5HzHp 
30HzLp 

-3.79 1 1.32 20 0.09 0.06 0.61 

0.1HzHp 
NoLP/NF 

-3.54 1.27 
0.1HzHp 
50HzNF 

-3.22 1.29 -3.93 20 -0.32 0.08 0.002* 

0.1HzHp 
NoLP/NF 

-3.54 1.27 
0.1HzHp 
30HzLp 

-3.3 1.26 -7.54 20 -0.24 0.03 <0.001* 

0.1HzHp 
50HzNF 

-3.22 1.29 
0.1HzHp 
30HzLp 

-3.3 1.26 0.9 20 0.08 0.09 1 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

A second significant interaction between highpass x EBAR (table 4.6) is found. Post 

hoc comparisons within EBAR and between highpass finds highpass filtering only 
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differs within ICA-EBAR, with ICA-EBAR 1HzHp resulting in a significantly larger 

mean amplitude than both ICA-EBAR 0.5HzHp and ICA-EBAR 0.1HzHp. Moreover, 

ICA-EBAR 0.5HzHp produces a significantly larger mean amplitude than ICA-EBAR 

0.1HzHp. Within highpass and within EBAR, it is found ICA-EBAR results in 

significantly smaller mean amplitude than both No-EBAR and Epoch-EBAR within 

both 0- 5HzHp and 0.1Hz, but not within 1HzHp filtering: 0.5HzHp ICA-EBAR < 

0.5HzHp No-EBAR & 0.5HzHp Epoch-EBAR; 0.1HzHp ICA-EBAR < 0.1HzHp No-

EBAR & 0.1HzHp Epoch-EBAR. 
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Table 4.6: Post hoc comparisons within the significant interaction of EBAR and highpass 
filter within the N170 mean amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

 EBAR 
Highpass 

No-EBAR 
1HzHp 

-4.1 0.9 
No-EBAR 
0.5HzHp 

-4.8 1.18 1.96 20 0.7 0.36 0.19 

No-EBAR 
1HzHp 

-4.1 0.9 
No-EBAR 
0.1HzHp 

-4.15 1.38 0.06 20 0.05 0.83 1 

No-EBAR 
0.5HzHp 

-4.8 1.18 
No-EBAR 
0.1HzHp 

-4.15 1.38 -1.07 20 -0.65 0.61 0.89 

ICA-EBAR 
1HzHp 

-2.62 0.64 
ICA-EBAR 
0.5HzHp 

-0.98 0.69 -4.02 20 -1.64 0.41 0.002* 

ICA-EBAR 
1HzHp 

-2.62 0.64 
ICA-EBAR 
0.1HzHp 

0.52 0.95 -4.83 20 -3.14 0.65 <0.001* 

ICA-EBAR 
0.5HzHp 

-0.98 0.69 
ICA-EBAR 
0.1HzHp 

0.52 0.95 -2.7 20 -1.5 0.56 0.04* 

Epoch-EBAR 
1HzHp 

-4.92 1.39 
Epoch-EBAR 

0.5HzHp 
-5.74 1.75 1.58 20 0.82 0.52 0.39 

Epoch-EBAR 
1HzHp 

-4.92 1.39 
Epoch-EBAR 

0.1HzHp 
-6.42 2.14 1.32 20 1.5 1.14 0.61 

Epoch-EBAR 
0.5HzHp 

-5.74 1.75 
Epoch-EBAR 

0.1HzHp 
-6.42 2.14 0.95 20 0.68 0.72 1 

Highpass 
EBAR 

1HzHp  
No-EBAR 

-4.1 0.9 
1HzHp  

ICA-EBAR 
-2.62 0.64 -2.48 20 -1.48 0.6 0.07 

1HzHp  
No-EBAR 

-4.1 0.9 
1HzHp 

Epoch-EBAR 
-4.92 1.39 0.75 20 0.82 1.1 1 

1HzHp  
ICA-EBAR 

-2.62 0.64 
1HzHp 

Epoch-EBAR 
-4.92 1.39 2.09 20 2.3 1.1 0.15 

0.5HzHp  
No-EBAR 

-4.8 1.18 
0.5HzHp 
ICA-EBAR 

-0.98 0.69 -4.14 20 -3.82 0.92 0.002* 

0.5HzHp  
No-EBAR 

-4.8 1.18 
0.5HzHp 

Epoch-EBAR 
-5.74 1.75 0.64 20 0.94 1.47 1 

0.5HzHp 
ICA-EBAR 

-0.98 0.69 
0.5HzHp 

Epoch-EBAR 
-5.74 1.75 3.05 20 4.76 1.56 0.02* 

0.1HzHp  
No-EBAR 

-4.15 1.38 
0.1HzHp 
ICA-EBAR 

0.52 0.95 -4.35 20 -4.67 1.07 0.001* 

0.1HzHp  
No-EBAR 

-4.15 1.38 
0.1HzHp 

Epoch-EBAR 
-6.42 2.14 1.39 20 2.27 1.63 0.54 

0.1HzHp 
ICA-EBAR 

0.52 0.95 
0.1HzHp 

Epoch-EBAR 
-6.42 2.14 3.56 20 6.94 1.95 0.01* 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

The interaction between lowpass/notch x EBAR reaches significance, and is 

summarised in table 4.7. The main findings in the interaction between lowpass/notch 

x EBAR is that with between lowpass/notch, NoLp/NF results in significantly larger 
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mean amplitude than both 50HzNF and 30HzLp across EBAR methods, mirroring 

the comparisons within the main effect of lowpass/notch filters. Moreover, within 

lowpass/notch and between EBAR it is found that using ICA-EBAR results in a lower 

mean amplitude than both No-EBAR and Epoch-EBAR across all lowpass/notch 

filtering methods, matching the comparisons within the main effect of EBAR. 
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Table 4.7: Post hoc comparisons within the significant interaction of EBAR and lowpass/notch 
filter within the N170 mean amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

 EBAR 
Lowpass/Notch 

No-EBAR 
NoLP/NF 

-4.5 1.11 
No-EBAR 
50HzNF 

-4.28 1.14 -2.64 20 -0.22 0.09 0.047* 

No-EBAR 
NoLP/NF 

-4.5 1.11 
No-EBAR 
30HzLp 

-4.27 1.1 -9.08 20 -0.23 0.03 <0.001* 

No-EBAR 
50HzNF 

-4.28 1.14 
No-EBAR 
30HzLp 

-4.27 1.1 -0.12 20 -0.01 0.09 1 

ICA-EBAR 
NoLP/NF 

-1.16 0.7 
ICA-EBAR 
50HzNF 

-0.95 0.72 -3.82 20 -0.2 0.05 0.003* 

ICA-EBAR 
NoLP/NF 

-1.16 0.7 
ICA-EBAR 
30HzLp 

-0.97 0.69 -5.96 20 -0.18 0.03 <0.001* 

ICA-EBAR 
50HzNF 

-0.95 0.72 
ICA-EBAR 
30HzLp 

-0.97 0.69 0.32 20 0.02 0.06 1 

Epoch-EBAR 
NoLP/NF 

-5.93 1.72 
Epoch-EBAR 

50HzNF 
-5.5 1.74 -5.78 20 -0.43 0.07 <0.001* 

Epoch-EBAR 
NoLP/NF 

-5.93 1.72 
Epoch-EBAR 

30HzLp 
-5.64 1.7 -7.33 20 -0.29 0.04 <0.001* 

Epoch-EBAR 
50HzNF 

-5.5 1.74 
Epoch-EBAR 

30HzLp 
-5.64 1.7 1.81 20 0.14 0.08 0.25 

Lowpass/Notch 
EBAR 

NoLP/NF 
No-EBAR 

-4.5 1.11 
NoLP/NF 
ICA-EBAR 

-1.16 0.7 -4.33 20 -3.34 0.77 0.001* 

NoLP/NF 
No-EBAR 

-4.5 1.11 
NoLP/NF 

Epoch-EBAR 
-5.93 1.72 1.04 20 1.43 1.38 0.94 

NoLP/NF 
ICA-EBAR 

-1.16 0.7 
NoLP/NF 

Epoch-EBAR 
-5.93 1.72 3.22 20 4.78 1.48 0.01* 

50HzNF  
No-EBAR 

-4.28 1.14 
50HzNF  

ICA-EBAR 
-0.95 0.72 -4.25 20 -3.33 0.78 0.001* 

50HzNF  
No-EBAR 

-4.28 1.14 
50HzNF 

Epoch-EBAR 
-5.5 1.74 0.88 20 1.23 1.4 1 

50HzNF  
ICA-EBAR 

-0.95 0.72 
50HzNF 

Epoch-EBAR 
-5.5 1.74 3.05 20 4.55 1.49 0.02* 

30HzLp  
No-EBAR 

-4.27 1.1 
30HzLp  

ICA-EBAR 
-0.97 0.69 -4.3 20 -3.29 0.77 0.001* 

30HzLp  
No-EBAR 

-4.27 1.1 
30HzLp 

Epoch-EBAR 
-5.64 1.7 1 20 1.38 1.38 0.99 

30HzLp  
ICA-EBAR 

-0.97 0.69 
30HzLp 

Epoch-EBAR 
-5.64 1.7 3.15 20 4.67 1.48 0.02* 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

4.3.3.3) P300 Peak Amplitude 

Within the P300 peak amplitude analysis, Mauchly’s test of Sphericity is violated for 

all main effects and interactions: highpass (χ2(2)=28.205, p≤0.001, ε=0.564); 
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lowpass/notch (χ2(2)=21.985, p≤0.001, ε=0.593); EBAR (χ2(2)=7.693, p=0.021, 

ε=0.75); highpass x lowpass/notch (χ2(9)=53.803, p≤0.001, ε=0.503); highpass x 

EBAR (χ2(9)=43.492, p≤0.001, ε=0.502); lowpass/notch x EBAR (χ2(9)=69.709, 

p≤0.001, ε=0.386); highpass x lowpass/notch x EBAR (χ2(35)=152.588, p≤0.001, 

ε=0.331). The main effect of EBAR is adjusted using the Huynh-Feldt correction, 

whilst the remaining violations were adjusted with the Greenhouse-Geisser 

correction. The significant main effects and interactions are summarised in table 4.8. 

 

Table 4.8: Summary of the main effects and interactions of the P300 peak 
amplitude analysis. n=21. 

Within Subjects 
Effect 

F df 
df 

(error) 
p ηp

2 

Highpass 10.34 1.13 22.56 0.003* 0.34 

Lowpass/Notch 33.23 1.19 23.73 <0.001* 0.62 

EBAR 7.74 1.6 31.9 0.003* 0.28 

Highpass x 
Lowpass/Notch 

1.41 2.01 40.24 0.26 0.07 

Highpass x EBAR 4.51 2.01 40.17 0.02* 0.18 

Lowpass/Notch x 
EBAR 

5.72 1.54 30.85 0.01* 0.22 

Highpass x 
Lowpass/Notch x 

EBAR 
1.19 2.65 53.03 0.32 0.06 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

Each main effect reached significance in the P300 peak amplitude analysis: 

highpass; lowpass/notch; and EBAR. Post hoc comparisons between highpass filters 

found that using a 1HzHp (M=14.3 ± 0.9) filter resulted in significantly smaller peaks 

than both 0.5HzHp (M=16.4 ± 1.1) (t(20)=-2.094, p≤0.001, d=-1.095) and 0.1HzHp 

(M=18.6 ± 1.6) (t(20)=-4.292, p=0.007, d=-0.759). Between lowpass/notch filters, it is 

found that using the 30HzLp (M=15.1 ± 1.1) resulted in significantly smaller peaks 

than both NoLp/NF (M=17.5 ± 1.2) (t(20)=2.456, p≤0.001, d=1.488) and 50HzNF 

(M=16.7 ± 1.1) (t(20)=1.653, p≤0.001, d=2.821). Between EBAR methods, post hoc 

comparisons find using No-EBAR (M=13.5 ± 1.1) results in significantly reduced 
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peaks compared to both ICA-EBAR (M=17.1 ± 1.1) (t(20)=-3.624, p=0.006, d=-

0.779) and Epoch-EBAR (M=18.8 ± 1.8) (t(20)=-5.318, p=0.017, d=-0.679). 

 

Two interactions reach significance within the P300 peak amplitude analysis. The 

first interaction to reach significance is between highpass x EBAR, summarised in 

table 4.9. Post hoc comparisons within EBAR and between highpass find that using 

No-EBAR 1HzHp results in significantly smaller peaks than No-EBAR 0.5HzHp and 

No-EBAR 0.1HzHp; using ICA-EBAR results in significantly smaller peaks than both 

ICA-EBAR 0.5HzHp and ICA-EBAR 0.1HzHp; and using Epoch-EBAR 1HzHp 

results in smaller peaks than Epoch-EBAR 0.5HzHp only. Within highpass and 

between EBAR, significant post hoc comparisons include 1HzHp Epoch-EBAR 

resulting in a larger peak than 1HzHp No-EBAR and 1HzHp ICA-EBAR, 0.5HzHp 

No-EBAR resulting in a smaller peak than both 0.5HzHp ICA-EBAR and 0.5HzHp 

Epoch-EBAR; and 0.1HzHp ICA-EBAR resulting in a larger peak than 0.1HzHp No-

EBAR. 
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Table 4.9: Post hoc comparisons within the significant interaction of EBAR and Highpass filter 
within the P300 peak amplitude ANOVA analysis. n=21 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

 EBAR 
Highpass  

No-EBAR 
1HzHp 

11.59 1.05 No-EBAR 
0.5HzHp 

13.08 1.13 -2.8 20 -1.5 0.54 0.03* 

No-EBAR 
1HzHp 

11.59 1.05 No-EBAR 
0.1HzHp 

15.76 1.54 -2.76 20 -4.17 1.51 0.04* 

No-EBAR 
0.5HzHp 

13.08 1.13 No-EBAR 
0.1HzHp 

15.76 1.54 -2.45 20 -2.67 1.09 0.07 

ICA-EBAR 
1HzHp 

13.9 0.99 ICA-EBAR 
0.5HzHp 

17.06 1.22 -6.31 20 -3.16 0.5 <0.001* 

ICA-EBAR 
1HzHp 

13.9 0.99 ICA-EBAR 
0.1HzHp 

20.33 1.57 -5.39 20 -6.42 1.19 <0.001* 

ICA-EBAR 
0.5HzHp 

17.06 1.22 ICA-EBAR 
0.1HzHp 

20.33 1.57 -2.48 20 -3.26 1.32 0.07 

Epoch-EBAR 
1HzHp 

17.49 1.34 Epoch-EBAR 
0.5HzHp 

19.12 1.75 -2.64 20 -1.63 0.61 0.047* 

Epoch-EBAR 
1HzHp 

17.49 1.34 Epoch-EBAR 
0.1HzHp 

19.77 2.49 -1.45 20 -2.28 1.57 0.48 

Epoch-EBAR 
0.5HzHp 

19.12 1.75 Epoch-EBAR 
0.1HzHp 

19.77 2.49 -0.62 20 -0.66 1.06 1 

Highpass 
EBAR 

1HzHp  
No-EBAR 

11.59 1.05 1HzHp  
ICA-EBAR 

13.9 0.99 -2.53 20 -2.32 0.92 0.06 

1HzHp  
No-EBAR 

11.59 1.05 1HzHp 
Epoch-EBAR 

17.49 1.34 -3.83 20 -5.91 1.54 0.003* 

1HzHp  
ICA-EBAR 

13.9 0.99 1HzHp 
Epoch-EBAR 

17.49 1.34 -3.55 20 -3.59 1.01 0.01* 

0.5HzHp  
No-EBAR 

13.08 1.13 0.5HzHp 
ICA-EBAR 

17.06 1.22 -3.33 20 -3.98 1.19 0.01* 

0.5HzHp  
No-EBAR 

13.08 1.13 0.5HzHp 
Epoch-EBAR 

19.12 1.75 -3.31 20 -6.03 1.82 0.01* 

0.5HzHp 
ICA-EBAR 

17.06 1.22 0.5HzHp 
Epoch-EBAR 

19.12 1.75 -1.62 20 -2.05 1.27 0.36 

0.1HzHp  
No-EBAR 

15.76 1.54 0.1HzHp 
ICA-EBAR 

20.33 1.57 -3.49 20 -4.57 1.31 0.01 

0.1HzHp  
No-EBAR 

15.76 1.54 0.1HzHp 
Epoch-EBAR 

19.77 2.49 -2.08 20 -4.02 1.93 0.15 

0.1HzHp 
ICA-EBAR 

20.33 1.57 0.1HzHp 
Epoch-EBAR 

19.77 2.49 0.27 20 0.56 2.06 1 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

The second significant interaction is between lowpass/notch x EBAR. The main 

findings of post hoc comparisons between lowpass/notch x EBAR are summarised in 

table 4.10. It is found that, within EBAR and between lowpass/notch, using a 30HzLp 
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results in significantly lower peak amplitude than both 50Hz and NoLp/NF across all 

EBAR methods, as found in the main effect of EBAR. Moreover, comparisons within 

lowpass/notch and between EBAR find utilising no EBAR results in significantly 

lower peak amplitudes than ICA-EBAR and Epoch-EBAR across all lowpass/notch 

methods, matching the findings of the main effect of lowpass/notch method.  
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Table 4.10: Post hoc comparisons within the significant interaction of EBAR and lowpass/notch 
filter within the P300 peak amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

 EBAR 
Lowpass/Notch  

No-EBAR 
NoLP/NF 

14.41 1.11 
No-EBAR 
50HzNF 

13.67 1.1 1.95 20 0.73 0.37 0.2 

No-EBAR 
NoLP/NF 

14.41 1.11 
No-EBAR 
30HzLp 

12.35 1.07 5.92 20 2.06 0.35 <0.001* 

No-EBAR 
50HzNF 

13.67 1.1 
No-EBAR 
30HzLp 

12.35 1.07 9.77 20 1.33 0.14 <0.001* 

ICA-EBAR 
NoLP/NF 

17.97 1.19 
ICA-EBAR 
50HzNF 

17.31 1.13 2.4 20 0.67 0.28 0.08 

ICA-EBAR 
NoLP/NF 

17.97 1.19 
ICA-EBAR 
30HzLp 

16.02 1.07 7.32 20 1.96 0.27 <0.001* 

ICA-EBAR 
50HzNF 

17.31 1.13 
ICA-EBAR 
30HzLp 

16.02 1.07 9.13 20 1.29 0.14 <0.001* 

Epoch-EBAR 
NoLP/NF 

20.25 2.02 
Epoch-EBAR 

50HzNF 
19.24 1.74 1.76 20 1.01 0.58 0.28 

Epoch-EBAR 
NoLP/NF 

20.25 2.02 
Epoch-EBAR 

30HzLp 
16.9 1.7 5.52 20 3.35 0.61 <0.001* 

Epoch-EBAR 
50HzNF 

19.24 1.74 
Epoch-EBAR 

30HzLp 
16.9 1.7 10.55 20 2.34 0.22 <0.001* 

Lowpass/Notch 
EBAR 

NoLP/NF  
No-EBAR 

14.41 1.11 
NoLP/NF 
ICA-EBAR 

17.97 1.19 -3.63 20 -3.57 0.98 0.01* 

NoLP/NF  
No-EBAR 

14.41 1.11 
NoLP/NF 

Epoch-EBAR 
20.25 2.02 -3.16 20 -5.84 1.85 0.02* 

NoLP/NF 
ICA-EBAR 

17.97 1.19 
NoLP/NF 

Epoch-EBAR 
20.25 2.02 -1.56 20 -2.27 1.46 0.41 

50HzNF  
No-EBAR 

13.67 1.1 
50HzNF  

ICA-EBAR 
17.31 1.13 -3.42 20 -3.63 1.06 0.01 

50HzNF  
No-EBAR 

13.67 1.1 
50HzNF 

Epoch-EBAR 
19.24 1.74 -3.23 20 -5.56 1.72 0.01* 

50HzNF  
ICA-EBAR 

17.31 1.13 
50HzNF 

Epoch-EBAR 
19.24 1.74 -1.47 20 -1.93 1.31 0.47 

30HzLp  
No-EBAR 

12.35 1.07 
30HzLp  

ICA-EBAR 
16.02 1.07 -3.63 20 -3.67 1.01 0.01* 

30HzLp  
No-EBAR 

12.35 1.07 
30HzLp 

Epoch-EBAR 
16.9 1.7 -2.86 20 -4.55 1.59 0.03* 

30HzLp  
ICA-EBAR 

16.02 1.07 
30HzLp 

Epoch-EBAR 
16.9 1.7 -0.69 20 -0.88 1.27 1 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 
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4.3.3.4) P300 Mean Amplitude 

For the P300 mean amplitude analysis within the Cz electrode, Mauchly’s test of 

Sphericity is violated for the main effects of highpass (χ2(2)=31.08, p≤0.001, 

ε=0.554) and lowpass/notch (χ2(2)=22.994, p≤0.001, ε=0.588). Moreover, the 

assumption of sphericity is violated for the interactions between highpass x 

lowpass/notch (χ2(9)=40.429, p≤0.001, ε=0.463, highpass x EBAR (χ2(9)=32.747, 

p≤0.001, ε=0.535), lowpass/notch x EBAR (χ2(9)=47.379, p≤0.001, ε=0.582), and 

highpass x lowpass/notch x EBAR (χ2(35)=476.401, p≤0.001, ε=0.346). All sphericity 

violations were adjusted with the Greenhouse-Geisser correction. The significant 

main effects and interactions are summarised in table 4.11. 

 

Table 4.11: Summary of the main effects and interactions of the P300 
mean amplitude analysis. n=21. 

Within Subjects 
Effect 

F df 
df 

(error) 
p ηp

2 

Highpass 9.14 1.11 22.16 0.01* 0.31 

Lowpass/Notch 24.04 1.18 23.5 <0.001* 0.55 

EBAR 6.19 2 40 0.01* 0.24 

Highpass x 
Lowpass/Notch 

4.38 1.85 37.05 0.02* 0.18 

Highpass x EBAR 5.99 2.14 42.76 0.004* 0.23 

Lowpass/Notch x 
EBAR 

6.6 2.33 46.56 0.002* 0.25 

Highpass x 
Lowpass/Notch x 

EBAR 
2.12 2.77 55.38 0.11 0.1 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

Within the P300 mean amplitude ANOVA, the main effect of all 3 factors reached 

significance. Post hoc comparisons within highpass found that using a 1HzHp filter 

resulted in a significantly smaller mean amplitude than 0.5HzHp and 0.1HzHp. 

Within lowpass/notch filters, using a 50HzNF resulted in a significantly larger mean 

amplitude than both NoLp/NF and 30HzLp. Within EBAR, the only significant 
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difference was between ICA-EBAR (M=9.9 ± 0.8) and No-EBAR, with ICA-EBAR 

resulting in a larger mean amplitude.  

 

The interaction between highpass x lowpass/notch was significant, and the post hoc 

comparisons are summarised in table 4.12. Post hoc comparisons of the interaction 

between highpass x lowpass/notch find that the significant differences do not deviate 

from the main effects of both factors. Within lowpass/notch and between highpass, 

using a 1HzHp filter significantly reduces mean amplitude compared to both 

0.5HzHp and 0.1HzHp filters across all lowpass/notch filtering methods. Within 

highpass and between lowpass/notch, using the 50Hz notch filter results in 

significantly larger mean amplitudes than NoLp/NF and 30HzLp across each 

highpass filtering method. 
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Table 4.12: Post hoc comparisons within the significant interaction of highpass filter and 
lowpass/notch filter within the P300 mean amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

Lowpass/Notch 
Highpass 

NoLP/NF 
1HzHp 

6.19 0.57 
NoLP/NF 
0.5HzHp 

8.1 0.82 -4.7 20 -1.9 0.41 <0.001* 

NoLP/NF 
1HzHp 

6.19 0.57 
NoLP/NF 
0.1HzHp 

10.02 1.33 -3.17 20 -3.83 1.21 0.01* 

NoLP/NF 
0.5HzHp 

8.1 0.82 
NoLP/NF 
0.1HzHp 

10.02 1.33 -2.06 20 -1.93 0.94 0.16 

50HzNF 
1HzHp 

6.39 0.59 
50HzNF 
0.5HzHp 

8.39 0.83 -4.97 20 -2 0.4 <0.001* 

50HzNF 
1HzHp 

6.39 0.59 
50HzNF 
0.1HzHp 

10.38 1.3 -3.43 20 -4 1.17 0.01* 

50HzNF 
0.5HzHp 

8.39 0.83 
50HzNF 
0.1HzHp 

10.38 1.3 -2.23 20 -2 0.9 0.11 

30HzLp 
1HzHp 

6.24 0.58 
30HzLp 

0.5HzHp 
8.13 0.82 -4.63 20 -1.89 0.41 <0.001* 

30HzLp 
1HzHp 

6.24 0.58 
30HzLp 

0.1HzHp 
10.02 1.34 -3.1 20 -3.78 1.22 0.02* 

30HzLp 
0.5HzHp 

8.13 0.82 
30HzLp 

0.1HzHp 
10.02 1.34 -2 20 -1.9 0.95 0.18 

Highpass 
Lowpass/Notch 

1HzHp 
NoLP/NF 

6.19 0.57 
1HzHp 

50HzNF 
6.39 0.59 -6.3 20 -0.19 0.03 <0.001* 

1HzHp 
NoLP/NF 

6.19 0.57 
1HzHp 
30HzLp 

6.24 0.58 -2.04 20 -0.05 0.02 0.16 

1HzHp 
50HzNF 

6.39 0.59 
1HzHp 
30HzLp 

6.24 0.58 4.07 20 0.14 0.04 0.002* 

0.5HzHp 
NoLP/NF 

8.1 0.82 
0.5HzHp 
50HzNF 

8.39 0.83 -5.38 20 -0.29 0.05 <0.001* 

0.5HzHp 
NoLP/NF 

8.1 0.82 
0.5HzHp 
30HzLp 

8.13 0.82 -1.29 20 -0.03 0.02 0.64 

0.5HzHp 
50HzNF 

8.39 0.83 
0.5HzHp 
30HzLp 

8.13 0.82 4.41 20 0.26 0.06 0.001* 

0.1HzHp 
NoLP/NF 

10.02 1.33 
0.1HzHp 
50HzNF 

10.38 1.3 -4.13 20 -0.36 0.09 0.002* 

0.1HzHp 
NoLP/NF 

10.02 1.33 
0.1HzHp 
30HzLp 

10.02 1.34 -0.09 20 0 0.03 1 

0.1HzHp 
50HzNF 

10.38 1.3 
0.1HzHp 
30HzLp 

10.02 1.34 3.83 20 0.36 0.09 0.003* 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 
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The interaction between highpass x EBAR reached significance for the P300 mean 

amplitude (table 4.13). Post hoc comparisons within EBAR and between highpass 

found only comparisons within ICA-EBAR methods significantly differed, with ICA-

EBAR 0.1HzHp resulting in larger mean amplitudes than both ICA-EBAR 1HzHp and 

ICA-EBAR 0.5HzHp. Moreover, the mean amplitude when using ICA-EBAR 0.5HzHp 

was significantly larger than when using ICA-EBAR 1HzHp. Within highpass and 

between EBAR, it is found that utilising ICA-EBAR resulted in significantly higher 

mean amplitudes than No-EBAR across all highpass filters, matching the main effect 

of EBAR. Moreover, an additional comparison reaches significance between EBAR 

methods within the 1HzHp highpass filters only, with 1HzHp Epoch-EBAR resulting 

in a larger mean amplitude than 1HzHp No-EBAR. 
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Table 4.13: Post hoc comparisons within the significant interaction of EBAR and highpass filter 
within the P300 mean amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

 EBAR 
Highpass 

No-EBAR 
1HzHp 

4.47 0.82 
No-EBAR 
0.5HzHp 

5.75 1.05 -2.48 20 -1.29 0.52 0.07 

No-EBAR 
1HzHp 

4.47 0.82 
No-EBAR 
0.1HzHp 

8.15 1.51 -2.55 20 -3.68 1.45 0.06 

No-EBAR 
0.5HzHp 

5.75 1.05 
No-EBAR 
0.1HzHp 

8.15 1.51 -2.29 20 -2.39 1.05 0.1 

ICA-EBAR 
1HzHp 

6.88 0.58 
ICA-EBAR 
0.5HzHp 

9.97 0.95 -6.82 20 -3.09 0.45 <0.001* 

ICA-EBAR 
1HzHp 

6.88 0.58 
ICA-EBAR 
0.1HzHp 

12.88 1.24 -5.91 20 -6.01 1.02 <0.001* 

ICA-EBAR 
0.5HzHp 

9.97 0.95 
ICA-EBAR 
0.1HzHp 

12.88 1.24 -2.75 20 -2.92 1.06 0.04* 

Epoch-EBAR 
1HzHp 

7.48 0.86 
Epoch-EBAR 

0.5HzHp 
8.89 1.19 -2.4 20 -1.41 0.59 0.08 

Epoch-EBAR 
1HzHp 

7.48 0.86 
Epoch-EBAR 

0.1HzHp 
9.39 1.9 -1.24 20 -1.91 1.54 0.69 

Epoch-EBAR 
0.5HzHp 

8.89 1.19 
Epoch-EBAR 

0.1HzHp 
9.39 1.9 -0.48 20 -0.51 1.06 1 

Highpass 
EBAR 

1HzHp  
No-EBAR 

4.47 0.82 
1HzHp  

ICA-EBAR 
6.88 0.58 -2.84 20 -2.41 0.85 0.03* 

1HzHp  
No-EBAR 

4.47 0.82 
1HzHp 

Epoch-EBAR 
7.48 0.86 -3.1 20 -3.01 0.97 0.02* 

1HzHp  
ICA-EBAR 

6.88 0.58 
1HzHp 

Epoch-EBAR 
7.48 0.86 -0.79 20 -0.6 0.76 1 

0.5HzHp  
No-EBAR 

5.75 1.05 
0.5HzHp 
ICA-EBAR 

9.97 0.95 -3.67 20 -4.21 1.15 0.01* 

0.5HzHp  
No-EBAR 

5.75 1.05 
0.5HzHp 

Epoch-EBAR 
8.89 1.19 -2.38 20 -3.13 1.32 0.08 

0.5HzHp 
ICA-EBAR 

9.97 0.95 
0.5HzHp 

Epoch-EBAR 
8.89 1.19 0.99 20 1.08 1.09 1 

0.1HzHp  
No-EBAR 

8.15 1.51 
0.1HzHp 
ICA-EBAR 

12.88 1.24 -3.7 20 -4.74 1.28 0.004* 

0.1HzHp  
No-EBAR 

8.15 1.51 
0.1HzHp 

Epoch-EBAR 
9.39 1.9 -0.9 20 -1.24 1.38 1 

0.1HzHp 
ICA-EBAR 

12.88 1.24 
0.1HzHp 

Epoch-EBAR 
9.39 1.9 2.02 20 3.49 1.73 0.17 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

The third interaction to reach significance within the P300 mean amplitude analysis 

is lowpass/notch x EBAR, which is summarised in table 4.14. Post hoc comparisons 

within EBAR and between lowpass/notch find that the mean amplitude when using 
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No-EBAR 30HzLp is significantly larger than No-EBAR NoLp/NF, ICA-EBAR 50HzNF 

is significantly larger than both ICA-EBAR NoLp/NF & ICA-EBAR 30HzLp, and 

Epoch-EBAR 50HzNF is significantly larger than both Epoch-EBAR NoLp/NF & 

Epoch-EBAR 30HzLp. Post hoc comparisons within lowpass/notch and between 

EBAR find that using ICA-EBAR results in significantly larger mean amplitudes than 

No-EBAR across all lowpass/notch filtering methods, mirroring significant 

comparisons within the main effect of EBAR. 
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Table 4.14: Post hoc comparisons within the significant interaction of EBAR and lowpass/notch 
filter within the P300 mean amplitude ANOVA analysis. n=21. 

 Cond 1 M SEM Cond 2 M SEM t df 
M-
Diff  

Std. 
Err 

p 

 EBAR 
Lowpass/Notch 

No-EBAR 
NoLP/NF 

6.06 0.98 
No-EBAR 
50HzNF 

6.22 1 -2.17 20 -0.16 0.08 0.13 

No-EBAR 
NoLP/NF 

6.06 0.98 
No-EBAR 
30HzLp 

6.09 0.98 -2.62 20 -0.03 0.01 0.049* 

No-EBAR 
50HzNF 

6.22 1 
No-EBAR 
30HzLp 

6.09 0.98 1.69 20 0.14 0.08 0.32 

ICA-EBAR 
NoLP/NF 

9.83 0.81 
ICA-EBAR 
50HzNF 

10.05 0.83 -3.35 20 -0.22 0.07 0.01* 

ICA-EBAR 
NoLP/NF 

9.83 0.81 
ICA-EBAR 
30HzLp 

9.84 0.8 -0.28 20 -0.01 0.05 1 

ICA-EBAR 
50HzNF 

10.05 0.83 
ICA-EBAR 
30HzLp 

9.84 0.8 3.07 20 0.21 0.07 0.02* 

Epoch-EBAR 
NoLP/NF 

8.42 1.22 
Epoch-EBAR 

50HzNF 
8.88 1.23 -7.58 20 -0.46 0.06 <0.001* 

Epoch-EBAR 
NoLP/NF 

8.42 1.22 
Epoch-EBAR 

30HzLp 
8.46 1.23 -1.82 20 -0.04 0.02 0.25 

Epoch-EBAR 
50HzNF 

8.88 1.23 
Epoch-EBAR 

30HzLp 
8.46 1.23 6.1 20 0.42 0.07 <0.001* 

Lowpass/Notch
EBAR 

NoLP/NF 
No-EBAR 

6.06 0.98 
NoLP/NF 
ICA-EBAR 

9.83 0.81 -3.86 20 -3.77 0.98 0.003* 

NoLP/NF 
No-EBAR 

6.06 0.98 
NoLP/NF 

Epoch-EBAR 
8.42 1.22 -2.03 20 -2.36 1.16 0.17 

NoLP/NF 
ICA-EBAR 

9.83 0.81 
NoLP/NF 

Epoch-EBAR 
8.42 1.22 1.29 20 1.41 1.1 0.64 

50HzNF  
No-EBAR 

6.22 1 
50HzNF  

ICA-EBAR 
10.05 0.83 -3.75 20 -3.83 1.02 0.004* 

50HzNF  
No-EBAR 

6.22 1 
50HzNF 

Epoch-EBAR 
8.88 1.23 -2.21 20 -2.65 1.2 0.12 

50HzNF  
ICA-EBAR 

10.05 0.83 
50HzNF 

Epoch-EBAR 
8.88 1.23 1.05 20 1.17 1.11 0.91 

30HzLp  
No-EBAR 

6.09 0.98 
30HzLp  

ICA-EBAR 
9.84 0.8 -3.85 20 -3.76 0.98 0.003* 

30HzLp  
No-EBAR 

6.09 0.98 
30HzLp 

Epoch-EBAR 
8.46 1.23 -2.04 20 -2.37 1.17 0.17 

30HzLp  
ICA-EBAR 

9.84 0.8 
30HzLp 

Epoch-EBAR 
8.46 1.23 1.27 20 1.39 1.09 0.66 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

4.3.3.5) Summary of the Statistical Analysis 

A summary of the statistical results is shown in Table 4.15, which shows that the 

effects of lowpass/notch filtering method and EBAR, along with the interactions 
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between highpass x EBAR and lowpass/notch x EBAR are significant for each 

component and analysis examined. The effect of highpass and interaction between 

highpass x EBAR were only significant for the P300 window, with the interaction only 

being significant for the mean amplitude analysis. 

 
Table 4.15: Summary of the results of the statistical analysis for the 
comparison of preprocessing steps. The ANOVA results for the N170 
peak amplitude, N170 mean amplitude, P300 peak amplitude and P300 
mean amplitude for each main effect and interaction. Main effects and 
interactions which reach significance p<0.001 are marked with **, main 
effects and interactions which reach significance p<0.05 are marked 
with *, and non-significant results are marked with ‘ns’. 

 

N170 Peak 
Amplitude 

N170 Mean 
Amplitude 

P300 Peak 
Amplitude 

P300 Mean 
Amplitude 

Highpass ns ns * * 

Lowpass/Notch ** ** ** ** 

EBAR * * * * 

Highpass x 
Lowpass/Notch 

ns ns ns * 

Highpass x 
EBAR 

* ** * * 

Lowpass/Notch 
x EBAR 

* * * * 

Highpass x 
Lowpass/Notch 

x EBAR 
ns ns ns ns 

 

4.4) Discussion 

Three artifacts linked to the use of HMD-VR during EEG recordings were found 

within the HS-HMD-VR presented arithmetic task reported in Chapter 3: electrical 

line noise; eye-related artifacts including eyeblinks and eye movements; and sweat-

related slow drift. Whilst the artifacts were reduced or removed using standard EEG 

preprocessing guidance in the arithmetic experiment, no existing comparison 

between HMD-VR or HS-HMD-VR preprocessing pipelines could be found. As HS-

HMD-VR may exacerbate the recorded artifacts, the improper selection of 

preprocessing parameters may not sufficiently reduce EEG artifacts, or might result 

in over-attenuation of the data. Three preprocessing steps related to the removal of 

the identified EEG artifacts, highpass filtering, lowpass/notch filtering, and eye 

movement artifact removal, were examined to identify appropriate preprocessing 



204 
 

pipelines parameters for HS-HMD-VR/EEG data. To the researcher’s knowledge, this 

is the first formal comparison of these preprocessing methods within the context of 

HMD-VR/EEG research, and offers an important contribution into understanding how 

EEG artifacts can be removed from the waveform. 

 

The purpose of analysis in this Chapter was not to simply identify which combination 

of preprocessing steps produces the largest ERP peak and mean amplitudes, 

however the differences in amplitude between the pipelines does provide insight into 

how each processing step changes the data. The mean and peak amplitudes of two 

ERP components identified in Chapter 3, the N170 and P300, were analysed over 

separate 3x3x3 ANOVA for easy-visual epochs in the centro-medial electrode Cz.  

 

The effects of lowpass/notch filter and EBAR reached significance for the N170 peak 

and mean amplitude ANOVAs, and all three main effects reached significance for the 

P300 peak and mean amplitude ANOVAs. Within highpass filters, using a 0.1Hz 

highpass filter resulted in the largest P300 components. Within lowpass/notch filters, 

using no lowpass resulted in the largest N170 mean and peak amplitudes, but the 

50Hz notch filter resulted in the largest P300 mean amplitude. Using no lowpass 

filter or a 50Hz notch filter did not significantly differ the P300 peak amplitude, but 

both resulted in a larger peak amplitude than when using a 30Hz lowpass. Within 

EBAR methods, using EBAR-ICA resulted in the smallest N170 peak and mean 

amplitudes, but also the smallest P300 peak amplitude. Only EBAR-ICA resulted in a 

larger P300 mean amplitude over No-EBAR.  

 

The differences in which preprocessing steps result in the largest mean or peak 

amplitude between N170 and P300 ERP components demonstrates there is not a 

one-size fits all solution for optimising ERP responses in HS-HMD-VR research. 

Moreover, the interactions between the processing steps can result in the order of 

amplitude sizes within comparisons of a one processing step changing, depending 

on what other processing steps are used in the same pipeline. For example, the 

N170 peak amplitude comparison between 1Hz and 0.5Hz highpass filters within 
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EBAR methods finds that, when using ICA-EBAR, 1Hz results in a significantly larger 

peak. However, when No-EBAR is used, using a 0.5Hz results in the larger N170 

peak amplitude. Moreover, it is known that earlier steps can affect the success or 

effectiveness of later steps, for instance 1Hz filters supporting later ICA compared to 

lower frequency value highpass filters [321], though with the trade-off of having 

reduced ERP peaks [310]. Therefore, examination of each decision individually is 

required to identify effectiveness of the artifact removal method against the impact 

on the ERP waveform, and thus to identify what compromises were suitable for HS-

HMD-VR/EEG data. 

 

4.4.1) Eye-Based Artifact Removal Methods 

In the Chapter 3 arithmetic experiment, eyeblinks and eye movement artifacts were 

found to be prominent in many of the datasets collected. When the epochs are 

averaged together, the eye-based artifacts from the data were found to be 

represented as a negative inflection within the ERP waveforms that encompassed 

the N170 and P300 time windows. The negative inflection was followed by a large 

positive inflection at ~500ms which persisted past 1000ms, and would encompass 

later components such as the SWC. To ensure the integrity of any analysis 

conducted on these components, the artifact must be removed. 

 

 In Chapter 3, ICA was used to remove eye-based artifacts, but other HMD-VR 

experiments have rejected eyeblink contaminated epochs to successfully remove the 

artifact [205]. In the current study, it is found removing eye movement artifacts 

through epoch rejection is unsuitable for the current HS-HMD-VR and task 

configuration. Of the 240 epochs across all four conditions included in the Chapter 3 

arithmetic experiment for each dataset, only an average of 38% of epochs were 

accepted when eye motion artifacts were rejected. Moreover, six datasets contained 

conditions with less than six epochs remaining when epoch rejection was used to 

remove eye movement artifacts. As these datasets failed to meet the minimum 

threshold required for inclusion [282,284], an additional 6% of the total data would be 

removed from the final analysis. When the total number of rejected epochs is 



206 
 

compared to the 84% accepted when using ICA analysis, using epoch rejection 

becomes difficult to recommend for the data collected using HS-HMD-VR. 

 

Unlike Epoch-EBAR, ICA-EBAR successfully removes eyeblinks without discarding 

large percentages of the data, resulting in a clean waveform that contains clear N170 

and P300 components. The statistical analysis found that ICA-EBAR resulted in the 

smallest N170 peaks, which likely results from the full removal of eye-movement 

artifacts [322,323] in the EBAR-ICA condition, opposed to the ICA reducing the 

amplitude of the ERP component [284]. It has previously been demonstrated that 

removing both eyeblink and movement artifacts using ICA resulted in a negative 

trend within the ERP waveforms being fully removed [323]. In Figure 4.14, most filter 

combinations have a late negative inflection present in the Epoch-EBAR but not in 

the ICA-EBAR variants within the Pz electrodes. Therefore, it is possible that subtle 

eye movements which were not or could not be identified during visual inspection of 

the epochs were removed by the ICA automatic classification system, rendering ICA 

as the superior method for their removal. However, as the Epoch-EBAR variants 

were more positive towards the anterior of the brain, removing the negative trend in 

the waveform may be dependent on the electrode examined. Regardless of the 

reason, the comparisons conducted highlight the need for additional consideration 

when selecting what artifact rejection technique to use within HMD-VR 

environments, particularly if a task encouraging or requiring visual exploration of the 

VE is used which may provoke eye artifacts. 

 

4.4.2) Highpass Filters 

Comparisons between highpass filter frequency values were conducted to compare 

the removal of the slow wave artifacts present in the Chapter 3 arithmetic task 

datasets. Slow wave artifacts in EEG recordings can be caused by sweat-related 

changes in skin impedance, artificially increasing or decreasing the amplitude over 

time [290]. Sweat-related drift is a large concern during HMD-VR usage, as it has 

been reported perspiration can increase for some participants during HMD-VR usage 

[289]. In the Chapter 3 arithmetic study, ~30% of participants self-reported increased 

sweating as part of the SSQ during HS-HMD-VR usage. However, evidence of slow 
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drift artifacts is also found in participants who did not report increased perspiration 

(Figure 4.6), suggesting an alternative cause of drift, such as the conductive 

electrode gel drying [294]. 

 

For the P300 ERP component, it was found that using a 1Hz highpass filter results in 

a significantly smaller peak and mean amplitude than 0.5Hz and 0.1Hz highpass 

filters, which persists when restricting datasets to ICA-EBAR data only. When 

restricting the data to ICA-EBAR datasets, it is also found that utilising higher 

frequency value highpass filters reduces the amplitude of P300 peaks, as expected 

from previous comparisons between highpass filters [45,290,306,310]. Moreover, the 

relative increase of N170 amplitude when utilising higher frequency highpass filters 

matches those found by Kappenman & Luck [290] within a warm and humid 

environment, similar to what may be experienced during HMD-VR usage. The 

removal of the increased negativity of the N170 indicates that positive slow-wave 

contamination has been removed when using the 0.5Hz and 1Hz highpass filters. 

 

It is found in this study that use of higher frequency value highpass filtering results in 

an overall reduced positivity within the averaged ERP waveform, resulting in a 

smaller P300 but larger N170 response. Whilst it has been argued by Luck [45] and 

Tanner et al. [310] that the use of filters above 0.1Hz can result in distorted 

waveforms, evidence collected within HS-HMD-VR data suggests that a 0.1Hz 

highpass filter is not sufficient to fully remove slow drift artifacts recorded during 

combined EEG and HS-HMD-VR usage. Conversely, applying a higher frequency 

value highpass filter than necessary increases the amplitude of earlier negative 

components such as the N170 at the cost of reducing the amplitude of the later 

positive P300 component. It is therefore argued here that using a 0.5Hz highpass 

filter offers the optimal trade-off between minimising the slow wave artifacts and 

distorting the ERP. The use of the 0.5Hz highpass filter offers the additional benefit of 

being suitable for multiple ERP components, for example the N170 and P300, whilst 

not over-modulating either during analysis. Moreover, it has been previously reported 

that using 0.5Hz highpass filter increases the statistical power of the data compared 

to 0.1Hz highpass filtered data [290,298], providing an additional benefit. 
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4.4.3) Lowpass and Notch Filtering 

The third factor examined is the lowpass/notch filter, which in the current 

preprocessing pipeline is used to remove high-frequency electrical line noise from 

the EEG recording resulting from the Vive Pro HS-HMD-VR device [56,287]. Within 

HMD-VR research, line noise has previously been removed using lowpass filters set 

below the line noise frequency [16], notch filters targeting 50Hz or 60Hz line noise 

frequencies [64], or has not been removed from the EEG data [205].  

 

The statistical analysis conducted revealed that using the 30HzLp resulted in 

significantly smaller N170 and P300 Cz peak amplitudes than using a 50HzNF or no 

lowpass filter. Moreover, using no lowpass or notch filter resulted in a significantly 

larger N170 peak amplitude compared to the 50Hz notch filter, but not between P300 

peak amplitudes. Mean amplitude comparisons found that using no lowpass resulted 

in a larger N170 mean amplitude compared to 50HzNf and 30Hz, whereas the 

50HzNF resulted in a significantly larger mean P300 compared to no lowpass and 

30Hz.  

 

In the context of ERPs captured within HS-HMD-VR, the close-proximity of the 

recording EEG cap to the HMD renders it difficult to recommend taking no steps to 

remove electrical artifacts introduced by the device. However, unless a researcher 

wants to remove the harmonics of the line noise, it is also unnecessary to utilise a 

stricter lowpass filter. It is therefore argued that utilising a 50Hz notch filter targeting 

the frequency of the local line noise is a suitable compromise for the negatable 

reduction in peak amplitude.  

 

4.5) Conclusions  

The purpose of this chapter was not to imply the existence of a singular ideal EEG 

preprocessing pipeline universally applied to every dataset using any form of HMD-

VR. Instead, the study aimed to prevent errors which could lead to misrepresentation 

of the data collected in HS-HMD-VR experiments. A balance between strictness and 
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leniency must be found in all EEG data preprocessing decisions, for example 

applying too strong filtering will over-attenuate the data, but using too weak artifact 

removal may result in false positive or negative differences. To this end, this 

comparison concludes that utilising a 0.5Hz highpass filter, a notch filter targeting 

local line noise, and ICA-based rejection of eyeblinks and eye motion artifacts is 

suitable for ERP data collected in a HS-HMD-VR experiment. The combination of 

preprocessing methodology identified allows the targeting of multiple ERP 

components of different polarities, whilst minimising slow wave drift, electrical line 

noise, and eye-movement related artifacts found in HS-HMD-VR EEG data. To date, 

and as far as the researcher is aware, this is the first comparison of EEG 

preprocessing methodologies for artifact removal in an EEG data collected in a HS-

HMD-VR experiment. The recommendations for removing noise proposed in this 

chapter are formed from data acquired when using a simple HS-HMD-VR VE that 

required no movement during the ERP recording periods. The noise removed thus 

resulted from the use of HMD-VR rather than the task or VE used. Therefore, it is 

argued that the recommendations are not specific to arithmetic tasks, and should be 

applicable to experiments presented in HS-HMD-VR (at least those using the Vive 

Pro) which target the N170 or P300 component. Additional consideration must be 

given to other potential sources of noise depending on the task, such as participant 

movement during recording or originating from different HMD-VR devices. However, 

it is anticipated that the same or similar artifact removal methods to those described 

in this chapter should also be sufficient for reducing these potential sources of noise. 
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Chapter 5) A Comparison Learning and Recall in a 

Spatial Navigation Working Memory Maze Task 

Presented in Head-Mounted Display and Desktop Virtual 

Reality Environments 

 

5.1) Introduction 

The experiment conducted in Chapter 3 demonstrated that HS-HMD-VR and EEG 

can be combined to successfully acquire ERP responses during working memory 

arithmetic tasks. The analysis of ERP responses in working memory studies typically 

focuses on ERP components occurring within the first 1000ms post-stimuli 

presentation, such as the ~140-210ms N170, the ~200-550ms P3/P300 and the 

~450-750ms post-P300 SWC components identified in Chapter 3. Although ERP 

responses in working memory studies have been examined up to 4000ms post-

stimulus onset [324], there are many working memory-related cognitive processes, 

including sustained attention [325], mental manipulation/rotation [326] and spatial 

navigation [327], which can persist past four seconds.  

 

5.1.1) Electroencephalography Frequency Analysis using Power Spectral 

Density  

An alternative methodology for analysing EEG data is frequency analysis, which 

examines changes within bands of neuronal oscillations associated with cognitive 

processes [328–330]. Neurons in brain regions associated with a given cognitive 

process can synchronise or desynchronise during either activation or inhibition 

(depending on the cognition, brain region, and oscillation frequency), resulting in 

measurable changes in the amplitudes of different frequency bands [331,332]. The 

changes in amplitude can then be compared to a baseline or another condition to 

gain a deeper insight into neural processing. Frequency analysis methods can be 

time-locked for examining changes in frequency over time, such as event-related 

spectral perturbation ERSP [333] and ERD/ERS [334]. 
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Frequency analysis can also be examined over non-time locked events using a 

power spectral density (PSD) analysis, which in EEG analyses typically utilises the 

‘Welch method’ [49,330,335]. The Welch method uses a series of discrete Fourier 

transforms, which convert data from the time domain to the frequency domain [331]. 

These discrete Fourier transforms are typically conducted over short overlapping 

time windows for the whole time series data to smooth the data, before being 

averaged together to produce the PSD [49,330]. From this PSD, the absolute power 

or relative power between trial and a baseline for selected frequency bands can be 

extracted and statistically analysed [336,337]. In addition to analysing the power of 

individual frequency bands, ratios between absolute power can also be utilised. For 

example, the theta/alpha ratio (TAR), also called the ‘cognitive load index’ or ‘task 

load index’, is a ratio between the frontal theta and parietal alpha activity, typically in 

the fronto-medial and parietal-medial electrodes, and is used to calculate differences 

in WML between conditions [129,338]. 

 

5.1.2) Power Spectral Density Frequency Analysis in Working Memory High-

Specification Head-Mounted Display Virtual Reality Research 

Frequency analysis of EEG data has previously been utilised in HMD-VR 

experiments. For example, collecting ERD data using the non-modern virtual 

Research Eight HMD [339]; ERSP data using smartphone-HMD-VR [340]; PSD 

using the development-grade Oculus DK1 [341], or combinations of the PSD, ERD 

and ERSP using the consumer-grade Oculus CV1 [342,343]. Several examples of 

frequency analysis comparing WML between HMD-VR and an alternative display 

method were identified in the systematic review conducted in Chapter 2. For 

example, Juliano et al. [175] examined relative beta activity, Li et al. [177] used a 

beta/theta ratio, and Škola & Liarokapis [179] utilised a classifier to distinguish WML 

using mu & beta data in modern HMD-VR experiments.  

 

To date there has been little working memory or adjacent research using the Vive 

Pro HS-HMD-VR which analysed the data using absolute or relative frequency 

power analysis. Of the few examples identified, the primary focus has been on 

measuring differences in WML between conditions presented within the HS-HMD-VR 
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VEs. Most studies identified compared changes in frontal theta and/or parietal alpha 

frequency bands [344–346], one study compared the relative power of, and a ratio 

between, frontal and occipital beta alpha [67], and one utilised multivariate pattern 

classification methods for theta, alpha and beta activity [347]. The focus on the theta, 

alpha and beta frequency bands is not surprising, as these are the most commonly 

reported frequencies in the WML literature [122], yet there are some important gaps 

in the HS-HMD-VR literature. Primarily, there is a distinct lack of comparative 

working memory studies utilising PSD-based power analysis between HS-HMD-VR 

and an alternative display in working memory studies.  

 

5.1.3) Spatial Navigation and Working Memory 

One area of working memory that has taken advantage of the immersive VEs offered 

by HMD-VR devices, and would also facilitate frequency analysis over longer trial 

durations to compare levels of WML, is spatial navigation. Spatial navigation is the 

cognitive process of establishing, maintaining and updating a route between two 

points in space, either through recall or cues in the environment. Spatial navigation 

relies on working memory processes for the maintenance and updating of route 

information, for example attention [348], decision making [349], and executive 

function [350]. Spatial navigation is further associated with visuospatial processes 

and visuospatial working memory (VSWM) for processing external cues and 

information about an individual’s current location relative to a goal or target [351–

353]. Spatial navigation is a vital process that humans undertake in daily life, such as 

navigating through a supermarket whilst shopping [354] or changing lanes whilst 

driving a car [355]. However, increasing working memory demands during navigation 

can negatively impact performance and later route recall [356].  

 

Spatial processing can be divided between egocentric and allocentric processing, 

which are explored through variations of spatial navigation tasks. Egocentric spatial 

processing is where locations of external points in space are processed relative to 

the individual’s current perspective [357,358]. Egocentric spatial navigation is 

commonly investigated using route learning tasks, which involve guiding participants 

through an environment with instruction to remember the navigation steps, before 
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having them retravel the route unassisted [359]. Allocentric spatial processing is 

independent of the individual, and is where the representation of external points in 

space are processed relative to each other [358,360]. In research, allocentric tasks 

include learning navigation routes using maps [361,362], but can include task 

performance measures following egocentric presentation. For example, completing a 

cognitive map from memory following egocentric exploration [363,364]. Both 

egocentric and allocentric spatial navigation have been linked to visuospatial working 

memory, and those with a higher VSWM capacity have been reported to perform 

better in spatial navigation tasks [351,361,362,365]. 

 

Spatial navigation tasks will often include neurophysiological measures to examine 

neural correlates of spatial navigation or VSWM. Primarily, EEG is used to examine 

alpha, beta, and theta neural oscillations through power analysis or ERD/ERS during 

navigation [70,366–368]. The most commonly reported frequency band for spatial 

navigation, theta, is found to increase in the frontal region during more complex 

navigation and during recall of previously learnt routes [369,370]. In the context of 

spatial navigation, theta activity is believed to be associated with the processing and 

encoding of route navigation information [371], along with the working memory 

processes of learning and decision making [372]. Similarly, attention-related parietal 

alpha activity during navigation has been found, though this has been reported to 

both increase or decrease depending on the task [370,372].  

 

5.1.3.1) Spatial Navigation and Head-Mounted Display Virtual Reality 

There has been particular interest in the use of HMD-VR in spatial navigation 

research and application, as the displays offer high ecological validity, presence, and 

embodiment within VEs [373]. HMD-VR has been utilised in a range of spatial 

navigation paradigms, including spatial memory [374], spatial updating [375,376], the 

effect of spatial cognitive training on route learning [377], and the use of landmarks 

during route learning [378]. HS-HMD-VR Vive Pro devices have also seen use in 

spatial navigation research in combination with EEG [379,380]. 
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The high ecological validity and benefits offered by HMD-VR in spatial navigation is 

demonstrated through the similarities with real-life navigation, and the improvement 

over DB-VR navigation. Murcia-López & Steed [146] found that participants in an 

HMD-VR VE emulated the navigation paths used in real-life navigation, and had 

better spatial recall over DB-VR. Ruddle et al. [381] compared DB-VR and non-

modern DB-HMD-VR recall following route learning through a building. They found 

that participants not only navigated faster in the HMD-VR condition, but also visually 

explored the environment more. The difference in visual exploration can be partially 

attributed to the keyboard and mouse compared to the naturalistic head-turning used 

in the DB-VR and HMD-VR conditions respectively. The differences between inputs 

highlights the importance of balancing the input methods for accurate comparison. 

 

Despite the advantages offered by HMD-VR, not every study has reported that HMD-

VR enhances spatial navigation performance relative to other displays. Marraffino et 

al. [382] had participants complete a scavenger hunt in HMD-VR and DB-VR, and 

found no difference in the level of detail between the allocentric cognitive maps, 

which are the drawn recreations of the navigated route recalled from memory, 

produced between display conditions. However, they did report that participants with 

more video game experience performed better in the HMD-VR condition. A similar 

lack of difference between cognitive maps produced post-exploration was found in 

the comparison of DB-HMD-VR and real-life environment by Dong et al. [383].  

 

Some papers have found that spatial navigation performance in HMD-VR can be 

reduced relative to DB-VR presentation. Plechatá et al. [354] tasked participants with 

exploring a virtual supermarket in either DB-VR or HMD-VR, and later navigating 

from memory to a set of target items. Older participants performed better in the DB-

VR condition, and whilst younger participants did not differ between displays. It was 

also found that higher levels of fatigue were reported during HMD-VR usage, 

suggesting cybersickness may be a concern in HMD-VR based spatial navigation. 

Moreover, Srivastava et al. [166] compared cognitive maps following exploration of 

an urban VE presented using HMD-VR and DB-VR. Cognitive maps were found to 
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be more accurate in the DB-VR condition, whilst inducing a lower WML and 

cybersickness scores than HMD-VR. 

 

5.1.4) Maze Tasks in Working Memory Research  

The use of maze tasks are common in the spatial navigation and working memory 

literature, offering a controlled way of presenting egocentric learning and recall 

paradigm in the context of spatial navigation [384]. For example, a typical learning 

and recall maze paradigm will guide participants through a maze using visual cues at 

junctions, which the participant must attend to and hold in working memory. The 

visual cues are then removed on later repetitions, which the participant must 

navigate unguided from memory [70,370].  

 

Maze tasks also facilitate the easy integration and testing of additional elements that 

may affect spatial navigation. A simple route learning task between a set start and 

finish point [369,385] can be integrated with landmarks at junctions [370] or on the 

walls of the maze [386] to provide additional visual cues. Moreover, mazes can be 

easily adapted to provide different levels of WML through increasing or decreasing 

the length and number of turns within a maze [369,387]. Alternatively, difficulty can 

be increased or decreased by adding useful or distracting elements to the 

environment, for example by changing the colours of the walls [70]. Secondary tasks 

have similarly been utilised in maze paradigms to increase experienced WML during 

navigation [388,389]. As with other forms of spatial navigation, Meneghetti et al. 

[388] demonstrated that higher VSWM capacity or ability improves task performance 

during maze navigation when under higher levels of load. 

 

There are several different types of maze layouts used by researchers which are 

designed for different tasks, and are largely divided between radial arm mazes, 

traditional mazes, and T-junction mazes. Radial arm mazes [390] are simple central 

circular rooms with several corridors branching off, one of which will be correct 

(Figure 5.1a). Radial arm mazes are typically used in the study of learning and 

memory in rats [391,392], but have more recently been proposed to be used in 
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human research through VR [327,390]. Traditional mazes (such as those used by 

Erkan [393] and Sharma et al. [394]) are more akin to real-world mazes, containing 

start and end points and comprising of inconsistent pathway lengths and turns 

(Figure 5.1b). Traditional mazes place a heavier emphasis on exploration but can 

introduce a wealth of secondary information that may inform participants about the 

correct path. For example, a participant may remember a turn halfway down a 

corridor following the first left turn, as opposed to remembering just the sequence of 

turns.  

 

(a) Radial maze 
(b) Traditional 

maze 
(c) T-junction maze 

(d) 3-Choice 

T-junction maze 

   
 

Figure 5.1: Examples of types of mazes used in previous spatial navigation 
paradigms. Palombi et al. [390] used a radial maze (a); Erkan [393] used a 
traditional maze (b); Bischof & Boulanger [70] used a T-junction maze (c); and 
Kober et al. [370] used a 3-choice variant of the T-junction maze (d). 

 

T-junction mazes, such as those used by Bischof & Boulanger. [70], Kahana et al. 

[369] and Kober et al. [370], are uniformed decision-based paths which are designed 

to minimise secondary information. Participants navigate down a corridor and are 

met with a set number of potential pathways to follow, leading to the next turn 

decision or a dead end. T-junctions will typically consist of binary 2-decision junctions 

(Figure 5.1c), but can utilise 3 or more in certain paradigms (Figure 5.1d). 

 

Despite the interest in HMD-VR in spatial navigation, the use of mazes and guided 

navigation tasks are currently underrepresented in the HMD-VR literature. Whilst 

maze-based environments have previously been used in HMD-VR [394–397], very 

few investigate spatial navigation and outcomes from route learning. Of those that 

could be identified, only two examined route learning in comparison with another 
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display method. Sousa Santos et al. [398] compared HMD-VR and DB-VR in spatial 

navigation tasks performed in a maze, where participants had to recall the location of 

objects. They found that more objects were recalled in the DB-VR condition, along 

with faster navigation speed and further distance travelled. More recently, Hsieh et 

al. (2018) compared the completion time and post-exposure cognitive maps of a 

maze-based learning and recall task presented using DB-HMD-VR with motion 

controllers and a DB-VR using a keyboard and mouse. The mazes used consisted of 

unguided 3-choice junction mazes, with landmarks either placed in the distance, 

placed at each junction, or placed by the participant at will during navigation. It was 

found that mazes were completed quicker in the DB-VR condition, but the level of 

detail of the cognitive maps produced was higher in the HMD-VR condition.  

 

5.1.4.1) Electroencephalography in Maze Navigation 

A range of EEG methodologies have been utilised in maze navigation, finding 

changes in activation are primarily associated with the alpha and theta bands of 

activity [366,370]. It is typically found that frontal theta activity increases during 

spatial navigation of mazes [70,385], and is more frequently found during complex 

mazes over simple, and during recall over learning [369]. Theta has also been found 

to increase during active navigation relative to passive guided navigation [372]. 

Parietal alpha activity has also been found to increase during active navigation of 

mazes [372], but decrease when more immersive displays are used [370]. 

 

5.1.5) Aims of the Present Study  

HMD-VR is poised to be one of the most important methodological advancements for 

spatial navigation research. The ability to present immersive fully controlled VEs 

during route learning, navigational recall, or free exploration could allow for a deeper 

exploration of human VSWM than previously possible. 

 

To date, no published spatial navigation tasks utilising a learning and recall task 

within a complete T-junction maze in HS-HMD-VR could be identified. When 

considering the conflicting findings of other spatial navigation tasks comparing 
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between DB-VR and HMD-VR, it is currently unknown if HMD-VR would benefit or 

impair spatial navigation and working memory processes relative to DB-VR during 

maze navigation. Moreover, no comparison utilising EEG between HS-HMD-VR and 

DB-VR in a maze task was found, leaving it uncertain how experienced WML and 

associated neural responses during navigation differ between displays. To address 

this gap in the literature, and to increase understanding of how the use of HMD-VR 

impacts experienced WML relative to DB-VR during spatial navigation, a learning 

and recall task presented using HS-HMD-VR and DB-VR will be conducted. This 

learning and recall spatial navigation task will compare between the display 

methods, maze difficulty level and navigation types.  

 

It is apparent throughout the literature that theta and alpha activation are heavily 

linked to both WML and spatial navigation, with the ratio between these frequencies 

serving as a measure of experienced cognitive load. Therefore, EEG power analysis 

of continuous data for theta and alpha bands of activity, in addition to the TAR, will be 

utilised to measure WML experienced between display conditions, between 

navigation types, and between maze difficulty through differing the length and 

number of turns.  

 

Spatial navigation using HS-HMD-VR, and how it compares to other display 

methods, is an important yet underexplored aspect of the working memory literature. 

To date, no comparison of different levels of WML between HS-HMD-VR and an 

alternative display method during a full maze navigation task has been conducted. 

Moreover, it is unclear what effect different objectives during navigation, such as 

route learning or recall, will have on working memory processes between different 

display methods. This study aims to use a spatial navigation task to compare HS-

HMD-VR and DB-VR using behavioural task performance and PSD-based EEG 

measures of WML. Frontal-central theta-band EEG activity, parietal-central alpha-

band activity, and a theta-alpha ratio will be acquired during the active navigation of 

learning, active navigation of recall, and passive guided navigation of a path through 

a maze VE presented using HS-HMD-VR and DB-VR. WML will be manipulated by 

presenting mazes over 3 levels of increasing difficulty (4, 8 and 12 turns). 
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Behavioural measures, including participant task completion time, number of wrong 

turns, subjective difficulty rating, and cybersickness symptoms will be acquired. The 

absolute power of alpha and theta EEG frequency bands and the TAR will be 

compared between displays, difficulty level, and between learning, recall, and guided 

navigation using a repeated measures design. 

 

5.2) Methods  

5.2.1) Participants  

A total of 27 participants aged between 18 and 55 (Mean Age ± S.E.M = 23.26 ± 0.9 

years old, range: 18-39 years old) with normal-to-corrected vision were recruited (9 

female, M= 22.8 ± 1.0 years old, range: 18-27 years old; 18 male, M= 23.5 ± 1.3 

years old, range: 18-39 years old) through opportunity sampling at the University of 

Hull campus. The number of participants recruited was within the standard range for 

EEG research (see Larson and Carbine [183]). As it was unknown what navigation 

strategies would be employed by participants, the upper age limit is below the typical 

decline in allocentric spatial navigation ability associated with 60-70 year olds 

[399,400]. Each participant provided informed consent, and completed a paper-

based health questionnaire (Appendix 5) to exclude individuals with medical 

concerns or neurological conditions that may affect cognitive function. Moreover, 

participants with medical conditions which necessitate an electrical stimulator, which 

may introduce noise to an EEG recording, were also excluded. The exclusion criteria 

were predefined by the researcher. The study was conducted in conformity with the 

Declaration of Helsinki [251], and received local ethical approval from the Hull York 

Medical School Ethics Committee (Reference 1303). 

 

Based on the Edinburgh Handedness Inventory responses, 3 participants (2 male, 1 

female) were left-handed. Four participants had never used HMD-VR before, 9 

reported <1hour of total usage, 7 reported 1-10 hours, 4 reported 10-24 hours, and 2 

reported over 24 hours of usage. Five participants reported playing an average of 0 

hours of video games per week, 6 reported <1hour per week, 5 reported between 1-
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7 hours per week, 5 reported 7-14 hours per week, and 2 reported over 14 hours a 

week. 

 

A total of 7 participants exited the study before completion due to cybersickness. The 

early-exit participants comprised of all 4 who reported no prior HMD-VR experience, 

1 participant who reported less than 1 hour of experience, and 2 participants with 1-

10 hours of HMD-VR experience. Moreover, of the early-exit participants, 3 reported 

playing an average of 0 hours of video games a week, 2 reported playing less than 1 

hour per week, and 1 reported playing between 1-7 hours per week.  

 

Three participants were excluded due to technical difficulties with the EEG device 

preventing successfully data recording. Two participants were excluded due to not 

successfully completing at least one maze run of every trial block. One EEG dataset 

was removed during analysis due to high levels of unremovable noise. A total of 14 

datasets were included in the analysis. 

 

5.2.2) Materials and Apparatus 

5.2.2.1) Hardware and Software 

The experimental maze was constructed using the ‘Valve Hammer Editor’ software 

and presented using the ‘Garry’s Mod’ software. Two additional plugins for Garry’s 

Mod were used to support the experiment: The VR Mod to make the VE compatible 

with HMD-based 6DOF navigation; and the PyGmod module for compatibility with 

the Python-based code for the EEG triggers. The HMD-VR hardware was managed 

by SteamVR software, which was supplemented with the Driver4VR to allow the 

emulation of HMD-VR controller input using the Xbox 360 controller. Additional code 

was written in the Lua and Python programming languages to support the maze task. 

The Lua code controlled the maze, progression of the experiment, what the function 

of each square is, where the virtual avatars are teleported to, and the formatting and 

outputting of behavioural data. The Python code interfaced with the trigger wire to 

deliver EEG trigger marks to the to the Io:Bio recording device. 
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All experimental and VR software, along with display and input hardware, was 

managed by a desktop computer using an I7-9700K processor with a GTX2080 

graphics card. The monitor used in the DB-VR condition was a 28 inch 3840 x 2160 

(4K) pixel monitor with a 90Hz refresh rate. A HTC Vive Pro headset with a 1440 x 

1600-pixel resolution, coupled with external tracking ‘lighthouses’ to track spatial 

position for 6 DOF exploration, was used in the HMD-VR condition. The HMD was 

calibrated for each participant by having the participant hold the HMD-VR in a 

comfortable position over the face, and then adjusting the head straps. Participants 

manually adjusted the FOV slider and IPD knob for visual clarity. The wire 

connecting the Vive Pro to the computer was trailed behind and to the side of the 

participant to prevent EEG headcap or trigger wires making contact. Audio was 

muted for both conditions, and the integrated Vive Pro headphones were kept off the 

ears. A standard wired Xbox 360 gamepad controller was used for input in both the 

HMD-VR and DB-VR display conditions. Rotating the point of view was possible in 

both condition using the right joystick on the gamepad controller, but participants 

could also move the point of view by turning their heads whilst wearing the HMD-VR. 

Participants were placed in a static seat to prevent participants physically turning at 

maze junctions. Mazes were navigated by participants using joystick-based 

continuous locomotion in both conditions. As participants were seated on a 

stationary chair, they had to rely on the controller to complete turns in the maze. All 

inputs on the controller were disabled to prevent participants unintentionally 

interrupting the experiment, except for the left and right joystick for lateral movement 

and camera rotation respectively. The ‘start’ button which opened the options menu 

could not be disabled, so participants were instructed to not touch this button. An 

additional keyboard and mouse were connected to the computer so the researcher 

could advance the experiment when required (Figure 5.2).  

 



222 
 

(a)

 

(b)

 
Figure 5.2: Annotated images showing the configuration of the laboratory during 
the experimental procedure. (a) shows the participant position, HMD-VR 
configuration, DB-VR screen station. (b) shows the EEG system (Io:Bio) and the 
researcher’s station. The researcher’s station is rotated slightly to provide a better 
view of the participant station. The VE was calibrated to be centred around where 
the participant is seated. When not in use, the HMD-VR device was removed from 
the participant desk. 
 

5.2.2.2) Electroencephalography Recording 

Spes Medica Sleepcaps with 19 tin electrodes (FP1, FP2, F7, F3, Fz, F4, F8, T3, 

C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) in the international 10-20 electrode 

configuration and a linked-ear reference was used to record the EEG signal. A 

headcap net was placed over the EEG cap when required to improve the connection 

between the electrodes and the scalp. The EEG headcap was connected to an 

Io:Bio physiological recording device [255], which in turn transmitted the data via Wi-

Fi to an Asus Zenphone 6. EEG data was recorded using a 250Hz sampling rate. 

The Io:Bio device was also connected to the computer via a proprietary cable, which 

allowed it to receive EEG event triggers from the Python section of the maze function 

code. 

 

5.2.2.3) Stimuli/Mazes 

The grid-based T-junction mazes constructed for this experiment are based on the 

design principles as used by Bischof & Boulanger [70] and Kahana et al. [369]. The 

mazes were constructed using ‘squares’ placed into a square-grid template, with 

each grid space being the same size. Mazes were constructed from 6 types of 

square: ‘Start Square’, where the participant begins each trial; ‘End Squares’, which 

Lighthouse 1 Lighthouse 2 

Io:Bio EEG device, recoding 

phone and trigger wire 

Control 

Computer 

(behind 

chair) 

HMD Control 

Unit 

Researcher’s 

station 

Participant position, HMD-VR 

and DB-VR screen  
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if active mark the end of the trial and will teleport the participant’s avatar to the start 

of the maze or to the preparation room; ‘Correct Path’ corridor squares with a single 

entrance and exit that are part of the correct route through the maze; ‘Decision’ 

corridor squares immediately before a junction; ‘Junction’ with an entrance and two 

exits, one left and one right; and ‘Wrong Path’ corridors or false junctions which lead 

to dead ends. Each section/turn follows the same format: participants walk down a 

‘correct path’ corridor before reaching a ‘decision’ square. The square following the 

‘decision’ is a ‘junction’, where they must make a binary left/right turn. Should the 

participant make the correct turn, they will then continue the maze and repeat the 

process until the end point is reached. Should the participant make a wrong turn, 

they will follow a ‘wrong turn’ corridor before being met with a dead-end at the false 

junction. Both turns following a false junction are immediately terminated with a wall 

after the space of one grid-square. The dead-end is not visible until participants 

reach the false junction, preventing visual cues indicating the correct decision being 

visible from the decision junction. 

 

The mazes have a total of 12 turns, divided into 3 equal-length sections comprising 

of 4 turns. The 3 sections of a maze denote the 3 difficulties of the trial: 4 turns/1 

section (easy), 8 turns/2 sections (medium) and 12 turns/3 sections (hard). For each 

difficulty level, 4 turns are added onto the preceding turns previously navigated. In 

the first difficulty level, 4 new turns (section 1) are learned in isolation; in the second 

difficulty level, 4 new turns are added onto the 4 turns from section 1, totalling 8 

turns; and in the third difficulty level, 4 new turns are added onto the already learned 

8 turns from section 1 and 2, totalling 12 turns. End squares placed after the 4th, 8th 

and 12th junction were only active during the corresponding difficulty level.  

 

Mazes also varied depending on the condition. During learning and guided phases, a 

black line was visible on the floor showing participants the correct path through the 

maze (Figure 5.3a), and lead towards a black wall denoting the end of the maze 

section (Figure 5.3b). During recall phases, there was no black path nor black wall to 

show the end of the maze (Figure 5.3c). A fixation cross appeared and disabled 

locomotion for 5 seconds prior to each run (Figure 5.3d). 
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(a) View from a junction in learning or 

guided trial 

 

(b) View of the end of a maze in a 

learning or guided trial 

 

(c) View from a corridor in a recall trial 

 

 

(d) View of a fixation cross in a recall 

trial 

 

Figure 5.3: A series of screenshots from the maze in difference locations and 
conditions. The black line showing the correct navigation of a maze route at a 
junction is during the learning and guided trials is shown in (a). The black wall 
shown end of the current guided route is shown in (b). An example of approaching 
a junction in a recall trial is seen in (c). (c) also shows what would be visible to a 
participant after turning 90 degrees at a junction for both the correct and wrong 
paths. Moreover, (c) also represents the end point of recall trials, where no marker 
of the end is provided. The fixation cross before presented before every maze run 
is presented in (d). 

 

Each maze section contains the same number of squares to navigate for consistency 

between sections and mazes. No directional information was provided in the maze 

other than the path presented in the leaning and guided phases. The floor was dark 

grey with a white grid pattern, and the walls were a lighter grey with a white grid 

pattern. The grid pattern was carefully sized and aligned between the floor and wall 

to prevent any minor misalignment providing a clue as to the correct direction. 

Similarly, the ‘sky’ was a solid blue colour, with no clouds or other visual markings 

which could introduce directional hints or distractions. Each grid-square within the 

maze had a single light source placed directly into its centre, so the maze was 

consistently and evenly lighted throughout. 
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5.2.2.4) Maze Criteria  

The mazes constructed were subject to the following four rules to ensure mazes 

were distinct but balanced in complexity:  

1. The maze must have a clear path from start to end without any overlapping 

squares. 

2. Repeated patterns of 2 turns comprising of 50% or more of the total maze, 

and patterns of 3, 4 or 6 of over 50% of the maze are not allowed. 

a. Patterns of 2 turns that total of 6 or more (50% of the maze) 

b. Patterns of 3 turns that comprise of 9 or more turns (75% of the maze) 

c. Patterns of 4 turns that comprise of 8 or more turns (66% of the maze) 

d. Patterns of 6 turns repeated twice (100% of the maze) 

3. The same turn-sequence section cannot be used in any other maze 

regardless of position. 

4. The final mazes cannot be ‘mirrored’ or ‘reversed’ from each other. 

 

Ten potential turn sequences (Table 5.1) were identified and placed into every unique 

combination of 3 sections without repetition, totalling 720 potential mazes. Potential 

mazes that included sets of 3 of the same turns sequentially, which would result in 

overlap, were removed to leave 348 potential mazes. From here, the first 36 

potential mazes which do not contain two turn sequences in the same positions were 

extracted. Any maze after the first in a list that had the same turn-sections in the first 

and second phase position, the second and third phase position, or the first and third 

phase position were removed. The pool of 36 candidate mazes then had a random 

number assigned to them, and were reordered into a list based on this number from 

lowest to highest. The final mazes were examined individually until two appropriate 

mazes could be constructed based on the first and second criteria. It was found that, 

despite preventing mazes containing three sequential left or right turns, sometimes 

the turn sequences would result in overlap when balancing the length of the 

corridors, and thus were unsuitable. After selection of the first maze, the third and 

fourth criteria were also applied. All the mazes considered and tested, including the 

two primary mazes selected, are shown in Table 5.2. 
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Table 5.1: All possible turn sequence 
sections applicable to the maze 
parameters. Left turns in the 
sequence are marked as ‘L’, and 
right turns are marked as ‘R’. 

A LLRL F RLLR 

B LLRR G RLRL 

C LRLL H RLRR 

D LRLR I RRLL 

E LRRL J RRLR 
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Table 5.2: The outcome of the maze testing and selection process for the primary 
mazes. Left turns in the sequence are marked as ‘L’, and right turns are marked as 
‘R’. Accepted mazes are highlighted in green. The criteria which rejected mazes 
which included sections previously being used in accepted mazes was only applied 
after the first maze was accepted. 

Maze 

ID 

Phase 

1 

Phase 

2 

Phase 

3 

Full Sequence Accept/Reject 

12 F: RLLR A: LLRL C: LRLL RLLRLLRLLRLL Rejected, RLL x4/Overlap 

25 F: RLLR B: LLRR D: LRLR RLLRLLRRLRLR Accepted, Maze-A 

31 A: LLRL D: LRLR E: LRRL LLRLLRLRLRRL Rejected, LR x3 

16 J: RRLR G: RLRL E: LRRL RRLRRLRLLRRL Rejected, RRL x3/Overlap 

13 I: RRLL H: RLRR C: LRLL RRLLRLRRLRLL Rejected, Overlap 

28 C: LRLL G: RLRL H: RLRR LRLLRLRLRLRR Rejected, LR x3 

2 F: RLLR D: LRLR A: LLRL RLLRLRLRLLRL Rejected, F used  

26 E: LRRL I: RRLL G: RLRL LRRLRRLLRLRL Rejected, reverse of F-B-D 

33 D: LRLR B: LLRR A: LLRL LRLRLLRRLLRL Rejected, B Used 

11 A: LLRL J: RRLR G: RLRL LLRLRRLRRLRL Rejected, RLR x3 

36 A: LLRL I: RRLL H: RLRR LLRLRRLLRLRR Rejected, LLRLRRx2  

5 J: RRLR H: RLRR B: LLRR RRLRRLRRLLRR Rejected, RRL x3 

32 G: RLRL I: RRLL F: RLLR RLRLRRLLRLLR Rejected, F-B-D in reverse  

35 C: LRLL I: RRLL J: RRLR LRLLRRLLRRLR Rejected, LLRR x2 

17 G: RLRL C: LRLL I: RRLL RLRLLRLLRRLL Rejected, RLL x3 

24 C: LRLL H: RLRR D: LRLR LRLLRLRRLRLR Rejected, D used 

30 D: LRLR E: LRRL G: RLRL LRLRLRRLRLRL Rejected, D used 

34 H: RLRR D: LRLR B: LLRR RLRRLRLRLLRR Rejected, D used 

29 B: LLRR E: LRRL C: LRLL LLRRLRRLLRLL Rejected, B used 

21 J: RRLR C: LRLL G: RLRL RRLRLRLLRLRL Rejected, 4x LR 

19 G: RLRL F: RLLR H: RLRR RLRLRLLRRLRR Rejected, 4x RL 

4 D: LRLR A: LLRL I: RRLL LRLRLLRLRRLL Rejected, D used 

15 I: RRLL J: RRLR F: RLLR RRLLRRLRRLLR Rejected, RRLLRR 

1 H: RLRR E: LRRL F: RLLR LRRLRLLRRLLR Rejected, F used 

3 E: LRRL J: RRLR B: LLRR LRRLRRLRLLRR Rejected, B used 

20 B: LLRR A: LLRL G: RLRL LLRRLLRLRLRL Rejected, B used 

14 F: RLLR C: LRLL J: RRLR RLLRLRLLRRLR Rejected, F used 

22 E: LRRL C: LRLL H: RLRR LRRLLRLLRLRR Rejected, Overlap  

23 B: LLRR C: LRLL F: RLLR LLRRLRLLRLLR Rejected, B used 

8 C: LRLL J: RRLR A: LLRL LRLLRRLRLLRL Accepted, Maze-B 
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7 G: RLRL J: RRLR E: LRRL RLRLRRLRLRRL Rejected, 4x RL 

10 A: LLRL E: LRRL D: LRLR LLRLLRRLLRLR Rejected, D used 

6 A: LLRL G: RLRL J: RRLR LLRLRLRLRRLR Rejected, 4x LR 

27 D: LRLR F: RLLR E: LRRL LRLRRLLRLRRL Rejected, D used 

9 E: LRRL F: RLLR D: LRLR LRRLRLLRLRLR Rejected, F used 

18 H: RLRR A: LLRL D: LRLR RLRRLLRLLRLR Rejected, D used 

 

A third maze was designed as a backup in case a dataset was lost due to technical 

issue, but the participant otherwise completed the maze. The maze was constructed 

from the remaining 4 unused turn sequences (E, G, H and I, Table 5.1). Each 

potential combination of the 4 turn sequences was tested. Of the 24 potential 

combinations, 13 mazes had no triple-repeated-turns, were randomly ordered, and 

tested until an appropriate maze which fitted the criteria was found (Table 5.3). 

 
Table 5.3: The outcome of the maze testing and selection process for the ‘backup’ 
maze. Left turns in the sequence are marked as ‘L’, and right turns are marked as ‘R’. 
Accepted mazes are highlighted in green. After a suitable maze was found, no 
additional testing was performed. 

Maze ID Phase 

1 

Phase 

2 

Phase 

3 

Full Sequence Accept/Reject 

2-6 G: RLRL E: LRRL I: RRLL RLRLLRRLRRLL Accepted, Maze-C 

2-2 E: LRRL G: RLRL I: RRLL LRRLRLRLRRLL N/A 

2-5 G: RLRL E: LRRL H: RLRR RLRLLRRLRLRR N/A 

2-8 G: RLRL I: RRLL H: RLRR RLRLRRLLRLRR N/A 

2-7 G: RLRL H: RLRR E: LRRL RLRLRLRRLRRL N/A 

2-10 H: RLRR E: LRRL I: RRLL RLRRLRRLRRLL N/A 

2-9 H: RLRR E: LRRL G: RLRL RLRRLRRLRLRL N/A 

2-3 E: LRRL I: RRLL G: RLRL LRRLRRLLRLRL N/A 

2-11 I: RRLL G: RLRL H: RLRR RRLLRLRLRLRR N/A 

2-13 I: RRLL H: RLRR E: LRRL RRLLRLRRLRRL N/A 

2-1 E: LRRL G: RLRL H: RLRR LRRLRLRLRLRR N/A 

2-4 E: LRRL I: RRLL H: RLRR LRRLRRLLRLRR N/A 

2-12 I: RRLL G: RLRL E: LRRL RRLLRLRLLRRL N/A 
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The final 3 maze paths are as follows:  

• Maze-A: RIGHT-LEFT-LEFT-RIGHT-LEFT-LEFT-RIGHT-RIGHT-LEFT-RIGHT-

LEFT-RIGHT 

• Maze-B: LEFT-RIGHT-LEFT-LEFT-RIGHT-RIGHT-LEFT-RIGHT-LEFT-LEFT-

RIGHT-LEFT 

• Maze-C: RIGHT-LEFT-RIGHT-LEFT-LEFT-RIGHT-RIGHT-LEFT-RIGHT-

RIGHT-LEFT-LEFT 

 

To prevent overlap between maze squares, the length of ‘corridors’ varied between 3 

and 5 grid-squares. This does mean the differences in length of the corridors before 

each turn could be noticed by a particularly astute participant; however the visual 

similarity, relatively quick speed of navigation, and lack of any pattern between 

corridor length and turn direction means it is unlikely a participant will utilise this 

information in learning the turns.  

 

Each trial was separated by a ‘preparation room’ (Figure 5.4), which contained two 

buttons on opposing walls. These served as rooms to explain the next trial to the 

participant, and to apply or remove the HMD-VR as required. The button could only 

be interacted with by the researcher’s keyboard. Moreover, a short practice course 

was produced for the familiarisation procedure (Figure 5.5). Unlike the maze which 

had wrong turns and walls past the eyeline, the practice course had a singular 

correct path leading to a black box at the end which served as the endpoint. The 

path contained 90 degree and 180 degree turns to emulate the movement required 

for correct and incorrect turns respectively in the main maze. The walls were halfway 

between the floor and default eyeline so participants could see the complete path 

whilst learning to use the controller or the HMD-VR device. 
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Figure 5.4: Screenshot of the inside of a ‘preparation room’. The view from the 
opposite rotation is identical. 
 

(a) View from the start of 

the familiarisation path 

 

(b) View of the end of the 

familiarisation path 

 

(c) Top-down view of the 

familiarisation path 

 

Figure 5.5: Screenshots of the pathway used for the familiarisation period. A 
screenshot from the start is shown in (a), showing the heightened walls of the start 
room and the lower walls of the path. The end point is shown in (b). A top down 
view of the familiarisation path and a preparation room in the top right is shown in 
(c). 
 

As Garry’s Mod is built upon a first-person shooter game, weapons are provided to 

the player by default and ‘heads-up display’ elements such as health and ammo 

counter are present on the screen. Any such ‘video game’ element are removed or 

disabled as the participant is placed into the VE, as leaving the participant armed 

may lead to extraneous load through distraction, or attempts to ‘cheat’ by marking 

the correct path using bullet holes in the maze.  

 

Movement speed between displays was verified by comparing the time taken to 

navigate three straight-line courses comprised of the same number of squares of 
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each maze difficulty level. The default DB-VR speed was reduced from an arbitrary 

value of 200 to 177, which resulted in a >0.1s difference between displays for path 

lengths of each difficulty level (Table 5.4). Similarly, the horizontal sensitivity (turn 

speed) was also balanced between conditions. The DB-VR was slowed using the 

horizontal speed slider in the settings (Figure 5.6) until the time taken to complete a 

single 180-degree turn was ~1s in both conditions.  

 

Table 5.4: The time taken to complete straight line paths 
totalling the same distance as the 3 lengths of the turn 
sequences between display types. 
 DB-VR (177) HMD-VR (200) Difference 
4-Turn Length Average 14.42s 14.44s 0.02s 

8-Turn Length Average 28.87s 28.95s 0.08s 

12-Turn Length 
Average 43.34s 43.42s 0.08s 

 

 

 

Figure 5.6: A screenshot of the Garry’s mod settings used for the horizontal turn 
speed in the DB-VR condition. 
 

The virtual avatar given to participants was made invisible for three reasons. Firstly, 

it has previously been found that utilising virtual avatars can have negative effects on 

performance [146]. Secondly, as the participant was seated, there may be a visual-

vestibular disconnect in seeing legs walking if the participant looks down. Thirdly, the 

software utilised to enable controller support in VR places the virtual hands in the 

participants’ field of vision. Not only could this be a distracting element, but the hands 

could not be placed into the same position in the DB-VR condition. 
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5.2.2.5) Behavioural Measures 

A preliminary questionnaire (Appendix 7) was used to capture information about 

each participant’s experience with HMD-VR, video games, and gamepad controllers. 

Handedness was also captured in the preliminary questionnaire using a modified 

Edinburgh Handedness Inventory [250], with additional measures of prior experience 

with virtual reality, prior experience with video games, and experience with video 

game input methods. The 16-item SSQ was applied at 3 points: prior to the 

commencement of the input and HMD-VR familiarisation procedure, following the 

completion of the DB-VR block, and following the completion of the HMD-VR block. 

The SSQ was read aloud by the researcher and completed verbally by the 

participant for consistency between the conditions. 

 

Within the maze task, three behavioural measures were recorded per trial: 

completion time; number of wrong turns; and if the trial was completed. Completion 

time was recorded from when the participant was able to move to when the contact 

was made with the end square. Wrong turns were counted each time the ‘wrong 

path’ block was entered following a junction, and the total number of wrong turns per 

maze run were recorded. Recall trials were considered successfully completed if the 

end square was reached without any wrong turns being taken. For the learning and 

guided phases, the participant had to reach the end square and was considered 

successful regardless of wrong turns. A 5-minute time limit was implemented for 

each condition block, which if reached would count the current run as failed. Each 

trial comprised of between 1-6 runs of the maze with a minimum of 1 complete run 

being required for inclusion in the statistical analysis. 

 

5.2.3) Experimental Design 

The current experiment uses a 2x3x3 within-subjects design to examine the effect of 

display method on spatial navigation performance across three navigation types and 

three maze difficulties. Behavioural and EEG measures of WML are compared 

between the two display methods of HMD-VR and DB-VR, three navigation types of 

learning, recall and guided navigation, and three difficulty levels of 4-turn, 8-turn and 

12 turn mazes. The first two mazes constructed used for the task are also 
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behaviourally compared in a 2x3x3 design to identify differences in maze difficulty 

that may influence experimental outcomes. Behavioural measures are compared 

between Maze-A and Maze-B, the three navigation types, and the three maze 

difficulties. 

 

5.2.4) Experimental Procedure 

Upon arriving at the laboratory, participants were provided with a participant 

information sheet (Appendix 3), consent form (Appendix 4), a health questionnaire 

(Appendix 5), and the preliminary questionnaire (Appendix 10) to be completed in 

this order. Following completion of these forms, the ‘baseline’ SSQ is also recorded. 

The maze task was completed over the familiarisation, the DB-VR and the HMD-VR 

phases. The familiarisation phase was always completed first, whilst the order of the 

DB-VR and HMD-VR phases counterbalanced between participants. 

 

The familiarisation phase introduces participants to the input method used to 

navigate the maze, and the use of HMD-VR during navigation. Participants were 

instructed to navigate a training path as many times as possible within a 5-minute 

time limit, starting slowly and gradually increasing movement speed. Each run of the 

practice path consists of a 5-second fixation cross, for which locomotion is disabled, 

and ends with an endpoint that restarts the process. Upon reaching the 5-minute 

limit, the participant was teleported back to the preparation room. The training path 

was then navigated again whilst the participant was in HMD-VR. Upon completion of 

the familiarisation phase, the EEG headcap was fitted to the participant. 

 

Both the DB-VR and HMD-VR phases follow the same 10-step procedure comprising 

4 types of trial blocks: eyes open; maze learning trials; maze recall trials; and maze 

guided trials. The maze trial blocks were completed 3 times (once per difficulty level) 

for each of the 2 display conditions. For the learning phase, participants were 

instructed to follow a path from the start to the end of the maze, and attempt to learn 

the correct sequence of turns. Upon reaching the end square, the participant was 

teleported back to the start of the maze if less than three successful maze runs had 
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been conducted, or to the preparation room if either three successful maze runs or 

six total maze runs had been completed.  

 

Each learning phase is followed by a recall phase, where participants are instructed 

to navigate the same maze unguided. The recall phase is completed when the maze 

is navigated a total of 3 times without error, or 6 attempted runs including failed runs 

had been completed. A limit of 6 attempts was selected to prevent participants 

having more opportunity to successfully complete the lower difficulty conditions, as 

12 turn mazes took ~45 seconds to complete (without mistakes), whereas the 4 and 

8 turns took ~15 and ~30 seconds respectively. A total of 6 attempts of the 12 turn 

condition would therefore take at least 4 minutes and 30 seconds, leaving insufficient 

time to complete a seventh run. The limit also acted to prevent increased frustration 

or similar reactions at repeated failures which may result in a participant ceasing 

attempts [401]. Participants were instructed that in the event they make a wrong turn 

(denoted by a dead end), they should proceed to the end of the maze to restart. 

Upon reaching the end of the maze, participants are teleported to either the start of 

the maze if less than 3 correct or 6 total runs had been completed, or back to the 

preparation room should these criteria be met. Upon completion of a recall phase, 

participants were asked to rate the subjective difficulty of the maze on a scale of 1-

10 (1 = very easy, 10 = very hard). 

 

Upon completion of 3 learning and recall phases, the participants underwent three 

‘guided’ phases. The guided phase is functionally identical to the learning phase, but 

with instruction to follow the path without memorising the turn sequence. Upon 

completion of the third guided phase in either display condition, the SSQ is recorded, 

and the display block is completed.  

 

Upon completion of the second display block, participants were asked if they had a 

method or strategy of remembering the turn sequences in the maze, before having 

any EEG and HMD-VR equipment removed, provided a debrief form, and thanked 
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for their time. Participants were given the opportunity to ask any final questions, 

before leaving the laboratory.  

 

The HMD-VR was calibrated for visual clarity each time it is placed onto the 

participant, and verified by having participants read aloud a passage visible on the 

wall within the VE explaining the maze task. Before each block, participants are 

placed into a virtual preparation room, where instructions for the following trial are 

verbally provided. The researcher was positioned in the laboratory facing away from 

the computer screen and out of view of the participant. Participants were therefore 

instructed to inform the researcher when they completed a trial block. 

 

In instances where EEG system-related technical issues were encountered which 

prevented data collection for one display condition, and providing the other condition 

was completed successfully, participants were invited back to the laboratory. In such 

instances, the participant completed the third maze designed exclusively for this 

occurrence. In instances when this occurred, the participant underwent a 

familiarisation period as normal if the HMD-VR data was being re-captured, or only 

the DB-VR familiarisation period if the DB-VR data is being recaptured. The EEG 

data acquired was then included with the main analysis.  

 

After the loss of several early datasets due to technical problems with the EEG 

device corrupting recorded data, the procedure was modified to include time to reset 

the EEG recording during each preparation room. For the first 11 participants, 2 

datasets were recorded for the experiment, one for each display condition. However, 

it was found that the EEG recording device sometimes corrupted data during some 

point in the recording process which was undetectable until later analysis. Therefore, 

from the 12th participant onwards separate datasets were recorded for each trial 

block, leading to 20 recordings in total. The restarting of the EEG recording system 

did extend the time spent in the preparation room by ~30s each time it was visited, 

but this was deemed necessary to prevent usable data being lost or comparisons 

between data being excluded from the later ANOVA analysis.  
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5.2.5) Electroencephalography Data Preprocessing 

The EEG data was preprocessed using the EEGLAB toolbox [261] for MATLAB [262] 

and the ERPLAB plugin [263]. Data processing was conducted over three stages 

(Figure 5.7).  

 

In the first phase, the data was converted from a biowav (.bwv) file type to the EEG 

dataset (.set) format for EEGLAB compatibility. Electrode location data was applied 

to the dataset, followed by the application of a 0.5Hz highpass and a 50Hz notch 

filter. Datasets with separate recordings for each phase were appended to match the 

datasets with continuous recordings for each display. All datasets had a temporary 

40Hz notch filter applied to identify noisy or disconnected channels, which were then 

interpolated on the non-40Hz filtered data.  
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Figure 5.7: EEG analysis chart showing all 3 stages of the absolute power 
extraction. Solid black lines show where the entire dataset is carried through to the 
next processing step. The dotted grey line connecting the ‘Identify Channels to 
Interpolate’ to ‘Interpolate channels’ in stage 1 represents information from the 
former stage being used in the latter, but no actual data. The grey line collecting 
‘Run the ICA’ in stage 2 to ‘Apply the ICA Weights’ in stage 3 represents the ICA 
weights calculated only being applied to the latter. 

 

 

The second phase prepared the data for ICA to identify artifacts originating from the 

eyes. The continuous data had a 40Hz lowpass filter applied, and artifact rejection 

for non-eyeblink artifacts was performed on the continuous data. Recorded EEG 

data between each trial block was removed, and the ICA weightings were acquired. 

 

The third phase prepared and extracted the absolute power values of the theta and 

alpha frequency bands. The dataset produced in stage 1 has the ICA weightings 

from stage 2 applied, and eye artifact components removed. Data between trial 

blocks was also removed and manual artifact rejection was performed on the 
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continuous data. Finally, each individual run of the maze was extracted from the 

dataset, and converted to power spectral density using 1 second windows with 50% 

overlap. The absolute power of mean theta activity (5-8Hz) in the Fz electrode and 

mean alpha activity (10-13Hz) in the Pz electrode was extracted for each trial block 

across conditions. The TAR is calculated by dividing the absolute powers of the theta 

activity in the Fz electrode by the absolute power of the alpha activity in the Pz 

electrode [338].  

 

5.2.6) Data and Statistical Analysis  

Statistical analysis was performed using SPSS 28 [264] and Microsoft Excel [265]. 

Behavioural data was compared between displays (DB-VR and HMD-VR) and 

mazes (Maze-A and Maze-B). The completion time was calculated from the end of 

the baseline period to the end point of a maze being reached. Total completion time 

is analysed over two 2x2x3 ANOVA, one comparing between displays (display [DB-

VR, HMD-VR] x condition [Learning, Recall] x difficulty level [4-turns, 8-turns, 12-

turns]) and the other between mazes (2x2x3 design (maze [Maze-A, Maze-B] x 

condition [Learning, Recall] x difficulty level [4-turns, 8-turns, 12-turns]). A second set 

of completion time ANOVA comparisons using the same factors was conducted for 

the time to navigate the final section (comprising of the ‘new’ 4 turns and corridors 

added at that difficulty level) of each completed maze run. The completion time for 

the final 4 turns was extracted as they comprise of a consistent distance between 

difficulty phases and mazes, and thus allow a comparison of WML between 

conditions. The average number of wrong turns per recall trial was calculated by 

dividing the total number of wrong turns by the total number of runs per recall block. 

Both the average number of wrong turns and the average subjective difficulty rating 

for each recall block was compared using a repeated measures 2x3 ANOVA 

between displays (DB-VR, HMD-VR x difficulty level (4-turns, 8-turns, 12-turns), and 

using a repeated measures 2x3 ANOVA between mazes (maze [Maze-A, Maze-B] x 

difficulty level [4-turns, 8-turns, 12-turns]). Statistical significance was determined by 

a p-value of less than p<0.05. 
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The absolute theta power, absolute alpha power, and the TAR data for the correct 

run of each trial block was analysed using a series of 3-factor repeated measures 

design ANOVA using a 2x3x3 design (display [DB-VR, HMD-VR] x condition 

[Learning, Recall, Guided] x difficulty level [4-turns, 8-turns, 12-turns]) to compare 

differences between conditions.  

 

All ANOVAs conducted used Mauchly’s test of sphericity to identify main effects and 

interactions which violated the sphericity assumption. When a violation was found, 

the degrees-of-freedom of the main effect or interaction was adjusted using the 

Greenhouse-Geisser correction when the Greenhouse-Geisser Epsilon was under 

0.75, and the Huynh-Feldt correction when the Greenhouse-Geisser Epsilon was 

over 0.75. Bonferroni-adjusted pairwise comparisons were conducted for post-hoc 

analysis of significant main effects and interactions. 

 

5.3) Results 

5.3.1) Behavioural Results  

5.3.1.1) Completion Time Between Display Conditions 

5.3.1.1.1) Total Maze Navigation Time 

A 2x2x3 repeated measures ANOVA (display [DB-VR, HMD-VR] x condition 

[Learning, Recall] x difficulty level [4-turns, 8-turns, 12-turns]) was conducted for the 

total completion time of successfully completed maze runs between displays. 

Mauchly’s Test of Sphericity was violated by the interactions between display x 

difficulty level (χ2(2)=6.95, p0.031, ε=0.7), which was adjusted using the 

Greenhouse-Geisser correction. The mean completion time between displays, 

conditions and difficulties is displayed in Table 5.5. 
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Table 5.5: The mean and SEM of the total maze completion time for the 
learning and recall trials presented in DB-VR and HMD-VR across the 4-turn, 
8-turn and 12-turn maze difficulties. n=14. 

 Display DB-VR HMD-VR 

 Difficulty 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 

Total Maze 
Completion 

Time (s) 

Learning 

15 ± 0.7 28.89 ± 
1.07 

41.64 ± 
0.69 

14.36 ± 
0.64 

27.76 ± 
0.78 

40.62 ± 
0.94 

Recall 

14.38 ± 
0.63 

28.53 ± 
1.33 

42.09 ± 
0.93 

14.17 ± 
0.63 

26.89 ± 
0.5 

41.87 ± 
1.01 

 

The main effects of difficulty level reached significance (Table 5.6). Post hoc 

comparisons found between conditions, 4-turn mazes (M=14.48s ± 0.47) were 

completed significantly faster than 8-turn maze trials (M=28.02 ± 0.78) (t(13)=-32.29, 

p=<0.001, d=-8.63) and 12=turn maze trials (M=41.55 ± 0.63) (t(13)=-68.77, 

p=<0.001, d=-18.38). The 8-turn maze trials were also completed significantly faster 

than the 12-turn maze trials (t(13)=-35.78, p=<0.001, d=-9.56). 

 

Table 5.6: Main effects and interactions of the total maze completion time 
ANOVA between displays, navigation conditions and difficulties. n=14. 

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

Display 1.23 1 13 0.29 0.09 

Condition 0.03 1 13 0.87 0.00 

Difficulty Level 
2320.03 2 26 <0.001* 0.99 

Display x Condition 0.15 1 13 0.71 0.01 

Display x Difficulty 
Level 

0.96 1.39 18.06 0.37 0.07 

Condition x Difficulty 
Level 

3.21 2 26 0.06 0.20 

Display x Condition x 
Difficulty Level 

0.60 2 26 0.56 0.04 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 
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5.3.1.1.2) Final Section Navigation Time 

A second 2x2x3 repeated measures ANOVA (display [DB-VR, HMD-VR] x condition 

[Learning, Recall] x difficulty level [4-turns, 8-turns, 12-turns]) was conducted for the 

completion time of the final section only for successfully completed maze runs 

between displays. Mauchly’s Test of Sphericity was not violated by any interaction or 

main effect. The mean completion time between displays, conditions and difficulties 

is displayed in Table 5.7. 

 

Table 5.7: The mean and SEM of the final section completion time for the 
learning and recall trials presented in DB-VR and HMD-VR across the 4-turn, 
8-turn and 12-turn maze difficulties. n=14. 

 Display DB-VR HMD-VR 

 Difficulty 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 

Total Maze 
Completion 

Time (s) 

Learning 

15 ± 0.7 13.81 ± 
0.74 

13.07 ± 
0.21 

14.36 ± 
0.64 

13.03 ± 
0.39 

12.62 ± 
0.26 

Recall 

14.38 ± 
0.63 

13.57 ± 
0.78 

13.27 ± 
0.42 

14.17 ± 
0.63 

12.43 ± 
0.14 

12.97 ± 
0.4 

 

The main effects of difficulty level reached significance (Table 5.8). Post hoc 

comparisons found between conditions, 4-turn mazes (M=14.48s ± 0.47) were 

completed significantly slower than 8-turn maze trials (M=13.21 ± 0.4) (t(13)=-4.47, 

p=<0.001, d=1.19) and 12=turn maze trials (M=12.98 ± 0.2) (t(13)=3.846, p=0.002, 

d=1.03). 
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Table 5.8: Main effects and interactions of the final section maze 
completion time ANOVA between displays, navigation conditions and 
difficulties. n=14. 

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

Display 1.77 1 13 0.21 0.12 

Condition 0.58 1 13 0.46 0.04 

Difficulty Level 
12.56 2 26 <0.001* 0.49 

Display x Condition 0.02 1 13 0.90 0.00 

Display x Difficulty 
Level 

0.70 2 26 0.51 0.05 

Condition x Difficulty 
Level 

1.22 2 26 0.31 0.09 

Display x Condition x 
Difficulty Level 

0.38 2 26 0.69 0.03 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

5.3.1.2) Subjective Difficulty Rating Between Display Conditions 

A 2x3 repeated measures ANOVA (display [DB-VR, HMD-VR] x difficulty level [4-

turns, 8-turns, 12 turns]) was conducted for the subjective difficulty level rating 

between displays. The mean subjective difficulty rating and SEM between displays 

can be seen in table 5.9, and the ANOVA is summarised in table 5.10. The main 

effect of difficulty level (χ2(2)=13.28, p≤0.001, ε=0.6) violated Mauchly’s Test of 

Sphericity, and was adjusted using the Greenhouse-Geisser correction. Only the 

main effect of difficulty level reached significance (Table 5.10), with post hoc tests 

finding that the 4-turn mazes (M=1.5 ± 0.2) were rated significantly lower on the 

measure of subjective difficulty than the 8-turn mazes (M=3.2 ± 0.3) (t(13)=-1.71, 

p≤0.001, d=-1.72) and 12-turn mazes (M=5 ± 0.5) (t(13)=-3.54, p≤0.001, d=-1.97). 

The difference between 8-turn and 12-turn mazes also reached significance, with 8-

turn mazes (t(13)=-1.82, p≤0.001, d=-1.74) being rated as a lower subjective 

difficulty. 
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Table 5.9: The mean and SEM of the subjective difficulty ratings on a 
scale of 1 to 10 for the recall trials presented in DB-VR and HMD-VR 
across the 4-turn, 8-turn and 12-turn maze difficulties. n=14. 
Display DB-VR HMD-VR 

Difficulty level 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 

Subjective Difficulty 
Rating 

1.5 ± 
0.2 

3.36 ± 
0.37 

5.07 ± 
0.52 

1.43 ± 
0.17 

3 ± 0.3 
4.93 ± 
0.54 

 

Table 5.10: Main effects and interactions of the subjective difficulty rating on a 
scale of 1 to 10 ANOVA between displays and difficulties. n=14. 

Within Subjects 
Effect 

F df 
df 

(error) 
p ηp

2 

Display 0.883 1 14 0.363 0.059 

Difficulty level 48.645 1.185 16.588 <0.001* 0.777 

Display x Difficulty 
level 

0.528 2 28 0.595 0.036 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

 

5.3.1.3) Average Number of Wrong Turns Between Display Conditions 

A 2x3 repeated measures ANOVA (display [DB-VR, HMD-VR] x difficulty level [4-

turns, 8-turns, 12 turns]) was conducted for the average number of wrong turns 

between displays. The mean number of wrong turns per run and SEM between 

displays can be seen in table 5.11, and the ANOVA is summarised in table 5.12. 

Mauchly’s Test of Sphericity was violated by the main effect of difficulty level 

(χ2(2)=35.5, p≤0.001, ε=0.51)) and interaction between Display x Diff (χ2(2)=12.38, 

p=0, ε=0.61), both of which was adjusted using the Greenhouse-Geisser correction. 

No main effects or interactions reached significance (table 5.12). 

 

Table 5.11: The mean and SEM of the number of wrong turns per run for the recall 
trials presented in DB-VR and HMD-VR across the 4-turn, 8-turn and 12-turn maze 
difficulties. n=14. 

Display DB-VR HMD-VR 

Difficulty level 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 

Average Number 
of Wrong Turns 

0.07 ± 0.06 0.04 ± 0.02 0.5 ± 0.31 0.05 ± 0.05 0.02 ± 0.02 0.31 ± 0.2 
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Table 5.12: Main effects and interactions of the average number of wrong turns 
ANOVA tests between displays and difficulties. n=14. 

Within Subjects 
Effect 

F df 
df 

(error) 
p ηp

2 

Display 1.25 1 13 0.28 0.09 

Difficulty level 2.11 1.03 13.35 0.17 0.14 

Display x Difficulty 
level 

0.58 1.22 15.82 0.49 0.04 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

 

5.3.1.4) Completion Time Between Mazes 

5.3.1.4.1) Total Maze Navigation Time 

The total completion time for whole maze runs between mazeIDs was compared 

using a 2x2x3 repeated measures ANOVA (mazeID [Maze-A, Maze-B] x condition 

[Learning, Recall] x difficulty level [4-turns, 8-turns, 12-turns]). The mean completion 

times and SEM between mazes can be seen in table 5.13. Mauchly’s Test of 

Sphericity was violated by the interaction between mazeID x difficulty level 

(χ2(2)=7.64, p0.02, ε=0.68), which was adjusted using the Greenhouse-Geisser 

correction.  

 

Table 5.13: The mean and SEM of the total completed maze navigation time 
for the learning and recall trials presented in Maze-A and Maze-B across the 4-
turn, 8-turn and 12-turn maze difficulties. n=14. 

 MazeID Maze-A Maze-B 

 Difficulty 4-Turn 8-Turn 
12-
Turn 4-Turn 8-Turn 12-Turn 

Adjusted 
Maze 

Completion 
Time (s) 

Learning 

13.93 ± 
0.26 

27.35 ± 
0.46 

40.37 ± 
0.51 

15.43 ± 
0.87 

29.29 ± 
1.2 

41.89 ± 
1.02 

Recall 

14.13 ± 
0.61 

26.84 ± 
0.38 

40.87 ± 
0.6 

14.42 ± 
0.65 

28.59 ± 
1.37 

43.09 ± 
1.15 

 

The main effects of mazeID and difficulty level reach significance (Table 5.14). Post 

Hoc comparisons between mazeIDs find that Maze-A (M=27.25s ± 0.36) was 

completed significantly faster than Maze-B (M=28.79s ± 0.91) (t(13)=-2.422, 
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p=0.031, d=0.44). Between difficulty levels, post hoc comparisons find that the 4-turn 

condition (M=14.48s ± 0.47) was completed significantly faster than the 8-turn 

(M=28.08s ± 0.78) (t(13)=-13.54, p=<0.001, d=-8.38) and 12-turn conditions 

(M=51.55s ± 0.68) (t(13)=-27.08, p=<0.001, d=-18.38). The 8-turn condition was also 

completed significantly faster than the 12-turn condition (t(13)=-13.54, p=<0.001, d=-

9.56). 

 

Table 5.14: Main effects and interactions of the total maze completion time 
ANOVA between mazeIDs, navigation conditions and difficulties. n=14. 

Within Subjects 
Effect 

F df 
df 

(error) 
p ηp

2 

Maze ID 5.86 1 13 0.03* 0.31 

Condition 0.03 1 13 0.87 0.00 

Difficulty Level 
2320.03 2 26 <0.001* 0.99 

MazeID x 
Condition 

0.14 1 13 0.72 0.01 

MazeID x 
Difficulty Level 

1.18 1.36 17.68 0.31 0.08 

Condition x 
Difficulty Level 

3.21 2 26 0.06 0.20 

MazeID x 
Condition x 

Difficulty Level 

1.27 2 26 0.30 0.09 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

5.3.1.4.2) Final Section Navigation Time 

The completion time of the final section for completed maze runs between mazeIDs 

was compared using a 2x2x3 repeated measures ANOVA (mazeID [Maze-A, Maze-

B] x condition [Learning, Recall] x difficulty level [4-turns, 8-turns, 12-turns]). The 

mean completion times and SEM between mazes can be seen in table 5.15. 

Mauchly’s Test of Sphericity was not violated by any main effect or interaction.  
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Table 5.15: The mean and SEM of the completion time for the final section of each 
completed maze for the learning and recall trials presented in Maze-A and Maze-B 
across the 4-turn, 8-turn and 12-turn maze difficulties. n=14. 

 MazeID Maze-A Maze-B 

 Difficulty 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 

Adjusted 
Maze 

Completion 
Time (s) 

Learning 

15 ± 0.7 13.81 ± 
0.74 

13.07 ± 
0.21 

14.36 ± 
0.64 

13.03 ± 
0.39 

12.62 ± 
0.26 

Recall 

14.38 ± 
0.63 

13.57 ± 
0.78 

13.27 ± 
0.42 

14.17 ± 
0.63 

12.43 ± 
0.14 

12.97 ± 
0.4 

 

 

The main effect of difficulty level reached significance (Table 5.16). Post Hoc 

comparisons between difficulty levels find that the 4-turn condition (M=14.48s ± 0.47) 

was completed significantly slower than the 8-turn (M=13.21s ± 0.4) (t(13)=4.47, 

p=<0.001, d=1.17) and 12-turn conditions (M=12.98s ± 0.2) (t(13)=3.85, p=0.002, 

d=1.03).  

 

Table 5.16: Main effects and interactions of the final section completion 
time ANOVA between mazeIDs, navigation conditions and difficulties. 
n=14. 

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

Maze ID 4.48 1 13 0.054 0.26 

Condition 0.58 1 13 0.46 0.04 

Difficulty Level 
12.56 2 26 <0.001* 0.49 

MazeID x Condition 0.94 1 13 0.35 0.07 

MazeID x Difficulty 
Level 

0.57 2 26 0.57 0.04 

Condition x Difficulty 
Level 

1.22 2 26 0.31 0.09 

MazeID x Condition x 
Difficulty Level 

0.83 2 26 0.45 0.06 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 
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5.3.1.5) Subjective Difficulty Between Mazes 

A 2x3 repeated measures ANOVA (mazeID [Maze-A, Maze-B] x difficulty level [4-

turns, 8-turns, 12 turns]) was conducted for the subjective difficulty rating between 

mazeIDs. The mean subjective difficulty rating and SEM between mazeIDs can be 

seen in table 5.17, and the ANOVA is summarised in table 5.18. It was found that the 

main effect of difficulty level (χ2(2)=13.28, p≤0.001, ε=0.6) violated Mauchly’s Test of 

Sphericity, and was adjusted using the Greenhouse-Geisser correction. 

  

Table 5.17: The mean and SEM of the subjective difficulty ratings for the recall trials 
in Maze-A and Maze-B across the 4-turn, 8-turn and 12-turn maze difficulties. n=14. 

MazeID Maze-A Maze-B 

Difficulty level 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 

Subjective 
Difficulty Rating 

1.43 ± 0.2 3.07 ± 0.34 4.64 ± 0.52 1.5 ± 0.17 3.29 ± 0.34 
5.36 ± 
0.52 

 

Table 5.18: Main effects and interactions of the subjective difficulty rating 
ANOVA between MazeIDs and difficulties. n=14.  

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

MazeID 2.4 1 13 0.15 0.16 

Difficulty level 49.55 1.2 15.58 <0.001* 0.79 

MazeID x Difficulty 
level 

3.84 2 26 0.04* 0.23 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

The main effect of difficulty level and the interaction between mazeID x difficulty level 

reached significance. For all post hoc comparisons within the main effect of difficulty 

level and in the interaction between mazeIDs and difficulty levels, it is found that the 

4-turn mazes were rated as a significantly lower subjective difficulty than both the 8-

turn and 12-turn mazes; which also significantly differed across comparisons with the 

8-turn mazeID being rated lower (Table 5.19). One significant post hoc comparison is 

found within difficulties and between mazeIDs, with the 12-turn Maze-A being rated 

as a significantly lower subjective difficulty than the 12-turn Maze-B. 
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Table 5.19: Post hoc comparisons of the significant main effects and interactions for the subjective 
difficulty rating ANOVA between mazeIDs. n=14.  
Comparison Cond 1 M SEM Cond 2 M SEM t df M-Diff  Std. Err P 

Difficulty 
Level 

4-Turns 1.46 0.15 8-Turns 3.18 0.31 -6.45 13 -1.71 0.27 <0.001* 

4-Turns 1.46 0.15 12-Turns 5 0.5 -7.38 13 -3.54 0.48 <0.001* 

8-Turns 3.18 0.31 12-Turns 5 0.5 -6.5 13 -1.82 0.28 <0.001* 

Difficulty 
Level x 
MazeID 

4-Turns 
Maze-A 

1.43 0.2 
4-Turns 
Maze-B 

1.5 0.17 -0.32 13 -0.07 0.22 0.75 

8-Turns 
Maze-A 

3.07 0.34 
8-Turns 
Maze-B 

3.29 0.34 -0.76 13 -0.21 0.28 0.46 

12-
Turns 

Maze-A 
4.64 0.52 

12-Turns 
Maze-B 

5.36 0.52 -2.69 13 -0.71 0.27 0.02* 

MazeID x 
Difficulty 

Level  

Maze-A 
4-Turns  

1.43 0.2 
Maze-A 
8-Turns 

3.07 0.34 -5.68 13 -1.64 0.29 <0.001* 

Maze-A 
4-Turns 

1.43 0.2 
Maze-A 

12-Turns 
4.64 0.52 -6.51 13 -3.21 0.49 <0.001* 

Maze-A 
8-Turns 

3.07 0.34 
Maze-A 

12-Turns 
4.64 0.52 -5.4 13 -1.57 0.29 <0.001* 

Maze-B 
4-Turns  

1.5 0.17 
Maze-B 
8-Turns 

3.29 0.34 -6.36 13 -1.79 0.28 <0.001* 

Maze-B 
4-Turns 

1.5 0.17 
Maze-B 

12-Turns 
5.36 0.52 -7.87 13 -3.86 0.49 <0.001* 

Maze-B 
8-Turns 

3.29 0.34 
Maze-B 

12-Turns 
5.36 0.52 -6.11 13 -2.07 0.34 <0.001* 

Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

5.3.1.6) Wrong Turns Between Mazes 

A 2x3 repeated measures ANOVA (maze [Maze-A, Maze-B] x difficulty level [4-turns, 

8-turns, 12 turns]) was also conducted for the average number of wrong turns 

between mazeIDs. The mean number of wrong turns per run and SEM between 

mazeIDs can be seen in table 5.20, and the ANOVA is summarised in table 5.21. 

Mauchly’s Test of Sphericity was violated by the main effect of difficulty level 

(χ2(2)=35.5, p≤0.001, ε=0.51)and the interaction between mazeID x difficulty level 

(χ2(2)=11.14, p=0, ε=0.62), both of which is adjusted using the Greenhouse-Geisser 

correction. No main effects or interactions reach significance (Table 5.21). 
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Table 5.20: The mean and SEM of the number of wrong turns per run for the recall 
trials in Maze-A and Maze-B across the 4-turn, 8-turn and 12-turn maze difficulties. 
n=14. 

MazeID Maze-A Maze-B 
Difficulty level 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 
Average Number 
of Wrong Turns 

1.43 ± 0.2 3.07 ± 0.34 4.64 ± 0.52 1.5 ± 0.17 3.29 ± 0.34 5.36 ± 0.52 

 

Table 5.21: Main effects and interactions of the average number of wrong 
turns ANOVA between MazeIDs and difficulties. n=14.  

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

MazeID 3.52 1 14 0.08 0.20 

Difficulty level 2.21 1.03 14.37 0.16 0.14 

MazeID x Difficulty 
level 

1.95 1.24 17.31 0.18 0.12 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

5.3.1.7) Simulator Sickness Questionnaire Results  

Separate 1 factor 3-way (Condition [Baseline, DB-VR, HMD-VR]) repeated measures 

ANOVA analyses were conducted for the four subscales of the SSQ (Total score, 

Combined Nausea, Oculomotor Disturbance, Disorientation). The mean value and 

SEM for each SSQ subscale can be seen in table 5.22 and are summarised in table 

5.22. Mauchly’s Test of Sphericity was violated for the subscale of Disorientation 

(χ2(2)=18.55, p≤0.001, ε=0.56), which was adjusted using the Greenhouse-Geisser 

correction.  

  



250 
 

Table 5.22: The mean and SEM of the 4 SSQ measures taken for 
each display type. n=14. 

Comparison Baseline Desktop HMD-VR 

Total Score 5.34 ± 2.24 12.02 ± 3.42 24.84 ± 6.21 

Combined Nausea 4.77 ± 2.18 8.18 ± 2.8 21.12 ± 5.21 

Oculomotor 
Disturbance 

5.96 ± 2.66 14.62 ± 4.16 22.74 ± 6.1 

Disorientation 1.99 ± 1.99 5.97 ± 2.4 19.89 ± 7.11 

 

Each of the four ANOVA conducted for the SSQ analysis reached significance (Table 

5.23), and post hoc comparisons are summarised in Table 5.24. Within the 

subscales of total score and disorientation, it is found that HMD-VR significantly 

increase cybersickness ratings over baseline and DB-VR presentations. Within 

subscale combined nausea, it is both DB-VR and HMD-VR that significantly increase 

reported cybersickness symptoms over baseline. All post hoc comparisons within the 

subscale of oculomotor disturbance reached significance, finding that both DB-VR 

and HMD-VR significantly increased cybersickness measures above baseline, and 

that HMD-VR significantly increased cybersickness above DB-VR. Within Combined 

Nausea, it was found that both DB-VR and HMD-VR evoked significantly higher 

ratings of cybersickness than baseline.  

 

Table 5.23: Main effects and interactions of the 4 ANOVA conducted for 
the SSQ subscale scores. n=14.  

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

Total Score 9.15 2 26 <0.001* 0.41 

Combined Nausea 8.17 2 26 <0.001* 0.39 

Oculomotor 
Disturbance 

6.8 2 26 <0.001* 0.34 

Disorientation 6.57 1.12 14.55 0.02* 0.34 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 
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Cond=Condition, M=Mean, SEM=Standard Error of the Mean, t=T-value,  
df=Degrees of Freedom, M-Diff=Mean Difference, Std. Err= Standard Error, P=Significance 
Bold print and * indicate statistically significant differences, p<0.05. 

 

5.3.1.8) Methods of Remembering the Maze  

Thirteen of the 14 participants included in the analysis reported using a strategy to 

remember the maze path. Nine participants reported remembering groups of 4 turns. 

Two participants reported remembering the whole route, with 1 participant later 

reporting using the names of characters from a TV show to remember the turns. One 

participant reported remembering every right turn by the turn number in the 

sequence (i.e. counting the turns during navigation, and remembering which of those 

number was a right turn). One participant reported imagining a top-down view of the 

maze developed during guided navigation. 

 

5.3.2) Electroencephalography Results 

The grand average absolute power of theta power in the Fz electrode for the 

learning, recall and guided conditions for all combinations of display type and maze 

difficulties can be seen in Figures 5.8, 5.9 and 5.10 respectively. The grand average 

Table 5.24: Post hoc comparisons of each SSQ ANOVA conducted between display conditions. 
n=14.  

Comparison Cond 1 M SEM Cond 2 M SEM t df M-Diff  Std. 
Err P 

Total Score 

Baseline 5.34 2.24 DB-VR 12.02 3.42 -0.92 13 -3.41 3.69 0.37 

Baseline 5.34 2.24 HMD-VR 24.84 6.21 -3.31 13 
-

16.35 4.94 0.01* 

DB-VR 12.02 3.42 HMD-VR 24.84 6.21 -3.18 13 -
12.95 4.08 0.01* 

Combined 
Nausea 

Baseline 4.77 2.18 DB-VR 8.18 2.8 -2.51 13 -8.66 3.45 0.03* 

Baseline 4.77 2.18 HMD-VR 21.12 5.21 -3.67 13 -
16.78 4.58 <0.01* 

DB-VR 8.18 2.8 HMD-VR 21.12 5.21 -1.5 13 -8.12 5.42 0.16 

Oculomotor 
Disturbance 

Baseline 5.96 2.66 DB-VR 14.62 4.16 -2.28 13 -3.98 1.74 0.04* 
Baseline 5.96 2.66 HMD-VR 22.74 6.1 -2.86 13 -17.9 6.26 0.01* 

DB-VR 14.62 4.16 HMD-VR 22.74 6.1 -2.25 13 -
13.92 

6.19 0.04* 

Disorientation 

Baseline 1.99 1.99 DB-VR 5.97 2.4 -2.03 13 -6.68 3.28 0.06 
Baseline 1.99 1.99 HMD-VR 19.89 7.11 -3.81 13 -19.5 5.11 <0.01* 

DB-VR 5.97 2.4 HMD-VR 19.89 7.11 -2.45 13 -
12.82 5.24 0.03* 
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alpha absolute power in the Pz electrode for the learning, recall and guided 

conditions for all combinations of display type and maze difficulties can be seen in 

Figures 5.11, 5.12 and 5.13 respectively. 

 

 

Figure 5.8: A logarithmic periodogram of the Fz electrode for the learning condition 
across difficulties and displays. The theta frequency band (5-8Hz) is identified 
between the horizontal lines. 
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Figure 5.9: A logarithmic periodogram of the Fz electrode for the recall condition 
across difficulties and displays. The theta frequency band (5-8Hz) is identified 
between the horizontal lines. 
 

 

 

Figure 5.10: A logarithmic periodogram of the Fz electrode for the guided condition 
across difficulties and displays. The theta frequency band (5-8Hz) is identified 
between the horizontal lines. 
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Figure 5.11: A logarithmic periodogram of the Pz electrode for the learning condition 
across difficulties and displays. The alpha frequency band (10-13Hz) is identified 
between the horizontal lines. 
 

 

 

Figure 5.12: A logarithmic periodogram of the Pz electrode for the recall condition 
across difficulties and displays. The alpha frequency band (10-13Hz) is identified 
between the horizontal lines. 
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Figure 5.13: A logarithmic periodogram of the Pz electrode for the guided condition 
across difficulties and displays. The alpha frequency band (10-13Hz) is identified 
between the horizontal lines. 
  

5.3.2.1) Theta Absolute Power 

The mean absolute theta power and SEM for each condition included in the analysis 

is shown in table 5.25. For the 2x3x3 repeated measures ANOVA analyses of theta 

absolute power (table 5.26) during recall and learning maze navigation, Mauchly’s 

Test of Sphericity is violated for the main effect of display condition x difficulty level 

(χ2(9)=18.92, p=0.03, ε=0.56), and adjusted with the Greenhouse-Geisser correction. 

The main effect of condition is statistically significant (F(2, 26)=4.36, p=0.023, 

ηp2=0.25), but no post hoc comparison reaches significance.  

 

Table 5.25: The mean and SEM of the theta band absolute 
power in the DB-VR and HMD-VR display methods, the learning, 
recall and guided conditions, and the 4-turn, 8-turn and 12-turn 
maze difficulties. n=14. 
Display DB-VR  HMD-VR 
Difficulty 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 

Learning 
10.62 ± 
1.23  

12.5 ± 
1.96 

12.63 ± 
1.72 

10.61 ± 
1.44 

11.09 ± 
1.54 

10.97 ± 
1.32 

Recall 
11.12 ± 
1.37 

12.13 ± 
1.54 

12.42 ± 
1.71 

10.79 ± 
1.48 

11.78 ± 
1.73 

11.78 ± 
1.67 

Guided 
10.89 ± 
1.37 

11.69 ± 
1.77 

11.6 ± 1.5 
9.83 ± 
1.27 

9.91 ± 
1.31 

9.92 ± 
1.34 

All values are given as μV2/Hz +/- SEM 
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Table 5.26: Main effects and interactions of the theta absolute 
power ANOVA. n=14.  

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

Display 0.95 1 13 0.349 0.07 

Condition 4.36 2 26 0.023* 0.25 

Difficulty level 1.75 2 26 0.194 0.12 

Display x Condition 1.19 2 26 0.321 0.08 

Display x Difficulty 
level 

0.67 2 26 0.522 0.05 

Condition x Difficulty 
level 

0.55 3.17 52 0.659 0.04 

Display x Condition x 
Difficulty level 

0.48 2.26 52 0.643 0.04 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

5.3.2.2) Alpha Absolute Power 

The mean absolute alpha power and SEM for each condition included in the analysis 

is shown in Table 5.27. For the 2x3x3 repeated measures ANOVA analyses of alpha 

absolute power during recall and learning maze navigation, Mauchly’s Test of 

Sphericity was violated for interactions between condition x difficulty level 

(χ2(9)=50.92, p≤0.001, ε=0.39) and between display x condition x difficulty level 

(χ2(9)=23.85, p≤0.001, ε=0.55). All sphericity violations were adjusted with the 

Greenhouse-Geisser correction. No main effect or interaction in the alpha band 

analysis reached significance (Table 5.28).  

 

Table 5.27: The mean and SEM of the alpha band absolute 
power in the DB-VR and HMD-VR display methods, the 
learning, recall and guided conditions, and the 4-turn, 8-turn 
and 12-turn maze difficulties. n=14. 

Display DB-VR HMD-VR 
Difficulty 4-Turn 8-Turn 12-Turn 4-Turn 8-Turn 12-Turn 

Learning 
4.93 ± 
0.62 

5.7 ± 
0.58 

5.97 ± 
0.69 

5.94 ± 
0.93 

5.84 ± 
0.66 

6.08 ± 
0.72 

Recall 
6.25 ± 
1.32 

6.04 ± 
0.93 

5.51 ± 
0.68 

6.06 ± 
0.93 

6.05 ± 
0.91 

6.23 ± 
0.94 

Guided 
5.69 ± 
0.68 

6.42 ± 
0.67 

6.52 ± 
0.81 

5.63 ± 
0.59 

6.89 ± 
0.93 

6.68 ± 
0.83 

All values are given as μV2/Hz +/- SEM 
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Table 5.28: Main effects and interactions of the alpha absolute power 
ANOVA. n=14.  

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

Display 1.25 1 13 0.284 0.09 

Condition 2.47 2 26 0.105 0.16 

Difficulty level 2.81 2 26 0.079 0.18 

Display x Condition 0.13 2 26 0.876 0.01 

Display x Difficulty 
level 

0.06 2 26 0.938 <0.001 

Condition x Difficulty 
level 

0.89 1.57 52 0.402 0.06 

Display x Condition x 
Difficulty level 

1.27 2.2 52 0.299 0.09 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 

 

5.3.2.3) Theta/Alpha Ratio  

The mean TAR and SEM for each condition included in the analysis is shown in table 

5.29, and visualised for the learning condition in Figure 5.14, the recall condition in 

Figure 5.15, and the guided condition in Figure 5.16. For the 2x3x3 repeated 

measures ANOVA analyses of the TAR during navigation (Table 5.30), Mauchly’s 

Test of Sphericity was violated for interactions between condition x difficulty level 

(χ2(9)=20.89, p=0.01, ε=0.63) and between display x condition x difficulty level 

(χ2(9)=17.53, p=0.04, ε=0.6), and is adjusted by the Greenhouse-Geisser correction. 

 

Table 5.29: The mean and SEM of the theta/alpha ratio in the DB-VR 
and HMD-VR display methods, the learning, recall and guided 
conditions, and the 4-turn, 8-turn and 12-turn maze difficulties. n=14. 

Display DB-VR HMD-VR 

Difficulty 4-Turns 8-Turns 
12-
Turns 4-Turns 8-Turns 

12-
Turns 

Learning 2.34 ± 0.3 
2.31 ± 
0.33 

2.31 ± 
0.28 

1.93 ± 
0.23 

1.99 ± 
0.24 

1.98 ± 
0.24 

Recall 2.28 ± 0.3 
2.39 ± 
0.37 

2.44 ± 
0.35 

1.98 ± 
0.25 

2.09 ± 
0.32 

2.04 ± 
0.25 

Guided 2.09 ± 0.3 1.98 ± 0.3 1.99 ± 0.3 
1.84 ± 
0.22 

1.6 ± 0.21 
1.63 ± 
0.22 
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Figure 5.14: A bar chart of the theta/alpha ratio during the learning condition across 
both displays and all difficulties. Error bars show the standard error of the mean. 
n=14. 
 

 

Figure 5.15: A bar chart of the theta/alpha ratio during the recall condition across 
both displays and all difficulties. Error bars show the standard error of the mean. 
n=14. 
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Figure 5.16: A bar chart of the theta/alpha ratio during the guided condition across 
both displays and all difficulties. Error bars show the standard error of the mean. 
n=14. 
 
 

The main effect of condition reaches significance (Table 5.30; Figure 5.17), with post 

hoc tests finding that the guided condition (M=1.86 ± 0.22) resulted in a lower TAR 

than the learning condition (M=2.14 ± 0.25) (t(13)=0.29, p=0.01, d=<0.001) and the 

recall condition (M=2.21 ± 0.28) (t(13)=0.35, p=0.01, d=<0.001). 

 

Table 5.30: Main effects and interactions of the theta/alpha ratio ANOVA. 
n=14.  

Within Subjects Effect F df 
df 

(error) 
p ηp

2 

Display 2.97 1 13 0.108 0.19 

Condition 12.18 2 26 <0.001* 0.48 

Difficulty level 0.03 2 26 0.975 <0.001 

Display x Condition 0.03 2 26 0.975 <0.001 

Display x Difficulty 
level 

0.05 2 26 0.955 <0.001 

Condition x Difficulty 
level 

1.27 2.53 52 0.299 0.09 

Display x Condition x 
Difficulty level 

0.26 2.39 52 0.807 0.02 

F=F Value, df=Degrees of Freedom, p= Significance, ηp2=Partial Eta Squared 
Bold print and * indicate statistically significant differences, p<0.05. 
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Figure 5.17: A bar chart of the average theta/alpha ratio for displays and difficulties 
within each navigation condition. Significant differences are marked with a *. Error 
bars show the standard error of the mean. n=14. 
*Significant differences between conditions, p<0.05. 
 

5.4) Discussion 

This working memory study examined spatial navigation performance during a route 

learning and recall maze task, comparing within and between HMD-VR and DB-VR 

presentation using behavioural and EEG measures. Participants were guided 

through a T-junction maze consisting of a series of left/right turn decisions with 

instruction to learn the route, before navigating the same maze unguided. Upon 

completion of the active navigation trials, the participant was instructed to passively 

follow the same guided path without attempting to learn the route. The mean 

absolute power for the frontal-central theta and parietal-central alpha EEG frequency 

bands, and the TAR between these, were extracted from each successful run of a 

maze.  

 

The analysis of the behavioural results found that completion time of successful 

runs, subjective ratings of difficulty, and average number of wrong turns did not differ 

between displays. It was found that, whilst overall the shorter mazes were completed 

quicker, the more difficult mazes were completed quicker when restricting completion 

time to the final 4 turns of the maze (the ‘new’ part of the maze the participant had to 
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learn in addition to maintaining the previously navigated route). It may be possible 

that as the 4-turn learning condition was the first conducted in the maze task 

following the familiarisation period, participants were still familiarising themselves 

with the input method and thus navigated slower. Subjective ratings of difficulty 

increased with difficulty levels, with participants rating the 4-turn mazes as easier 

than the 8-turn, which in turn were rated easier than the 12-turn maze. The SSQ 

results found that HMD-VR increased symptoms of cybersickness over baseline 

across all subscales, and over DB-VR in the subscales of total score, oculomotor 

disturbance, and disorientation. 

 

The EEG results found that the actively navigated learning and recall conditions 

resulted in a significantly higher TAR than the passively navigated guided condition, 

indicating active navigation resulted in a higher level of WML [129]. No significant 

differences between the TARs of displays or difficulties were found. No comparisons 

within absolute theta band or alpha band activities reached significance. 

 

Despite the interest in utilising HMD-VR in spatial navigation research [373], to this 

researcher’s knowledge this study is the first to successfully utilise the HS-HMD-VR 

Vive Pro display device in a full maze spatial navigation task. It is demonstrated in 

this study that HS-HMD-VR can be utilised as a tool to investigate spatial navigation, 

as participants successfully completed a 12-turn T-junction in the immersive VE.  

 

5.4.1) Maze Tasks and Spatial Navigation High-Specification Head-Mounted 

Display Virtual Reality 

The results in this study find no differences in subjective difficulty ratings or objective 

task performance differences between HS-HMD-VR and DB-VR presented T-junction 

mazes, indicating there was no difference in WML between displays. Previous spatial 

navigation tasks comparing between HMD-VR and alternative displays have also 

reported no differences between navigation performance [383]. A potential 

explanation for the behavioural findings is participant age, as Plechatá et al. [354] 

found that older participants had reduced spatial navigation outcomes in an HMD-VR 
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supermarket learning and recall task compared to DB-VR. When restricted to ‘young’ 

participants with a similar mean age to the current study (23.3 to 25.4 years old), 

there was no difference in spatial navigation outcomes between display types.  

 

An alternative explanation for the lack of difference between conditions is identified 

in Murcia-López & Steed [146], who compared between spatial navigation task 

performance in simple low-fidelity and realistic high-fidelity VEs. They found that 

when using high-fidelity VEs, task performance in HMD-VR outperformed DB-VR. 

However, when a low-fidelity VE was used, which is visually similar to the type of 

textures used in the current maze task (Figure 5.18), there was no difference of 

performance between display conditions. It is therefore possible that a more ‘realistic’ 

maze presented in HMD-VR would be more beneficial to spatial navigation. 

 

a) Low-fidelity virtual 

environment  

b) High-fidelity virtual 

environment 

c) Real world environment  

   

Figure 5.18: Image taken from Murcia-López and Steed [146] displaying the 3 
types of environments used in their study. The low-fidelity VE (a) has visual 
similarities to the walls and floors utilised in the current maze task (Figure 5.3), 
whereas the high-fidelity VE (b) recreation of the real-world environment (c) 
contains more texture and lighting detail. 

 

Individual differences between participants may have also been a factor in the WML 

experienced in HMD-VR navigation. Marraffino et al. [382] found that, on average, 

there was no difference in spatial navigation outcomes between HMD-VR and DB-

VR presentation. However, when distinguishing between low and high video-game 

experience groups, comparing those who play weekly or more frequently to those 

who do not, they found that high video-game experience participants performed 

better across both displays. Moreover, high video-game experience participants 
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performed better in the HMD-VR condition compared to the DB-VR condition. 

However, video-game experience has been previously found to have a negative 

impact on working memory learning outcomes in non-spatial navigation tasks 

presented in HMD-VR [190]. Whilst the exact benefits of prior video-game 

experience to working memory processes in HMD-VR is currently uncertain, it could 

be a factor in the findings reported by this study. In the current maze task, only 5 of 

the participants included in the final datasets reported playing less than 1 hour of 

video games per week, with the majority datasets included coming from participants 

who could be categorised as having high video-game experience. It is possible that 

experienced VSWM performance was impacted by participant experience (or lack 

thereof) with adjacent technology, minimising the differences between displays.  

 

The input method used to control virtual movement in the present study was a 

joystick-based gamepad controller. When the joystick on the gamepad was pushed 

away from the centre resting point, a participant’s avatar in the VE would begin 

travelling in the direction the joystick is pushed until it is released. Participants were 

also seated in a fixed chair to discourage head turning during HMD-VR navigation, 

as the gamepad also controlled rotation in the VE through a second joystick. The 

same input method was used for both DB-VR and HMD-VR displays in Srivastava et 

al.’s [166] free-exploration and cognitive map recall task, which reported that HMD-

VR presentation increased WML and cybersickness symptoms relative to DB-VR. 

The researchers argue that, because continuous locomotion does not provide the 

same physical motion information from walking, the benefits of using HMD-VR is 

negated or reversed. However, studies utilising button-based navigation have found 

improved learning outcomes in the HMD-VR condition with only rotational real-world 

movement [381]. Therefore, full physical motion is not required to benefit from HMD-

VR in spatial navigation. 

 

In the current study, HMD-VR usage increased cybersickness compared to baseline 

and DB-VR usage, which potentially increased experienced WML [165] and negated 

the benefits of HMD-VR to spatial navigation. Moreover, cybersickness was cited as 

the reason all 7 (~25%) participants who exited the study early were unable to 
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complete the experiment. It is possible that that the input method used in the current 

study contributed to the levels of cybersickness experienced during HMD-VR spatial 

navigation. Comparisons between input methods in HMD-VR have found that the 

use of controller-based continuous movement can increase measures of 

cybersickness compared to methods such as teleporting and physical walking 

[147,402,403]. It is therefore possible that, if balanced comparisons between 

displays are not required, symptoms of cybersickness may be reduced if more 

realistic movement methods are utilised, such as walking in place to emulate the 

real-world walking [404].  

 

5.4.2) Absolute Power Analysis in High-Specification Head-Mounted Display 

Virtual Reality  

The EEG captured for this experiment isolated the absolute power of the theta and 

alpha frequency bands in the frontal-central and parietal-central electrodes 

respectively. The only statistically significant difference in EEG responses found that 

passive guided navigation resulted in a smaller TAR compared to the active learning 

and recall conditions. The larger TAR found during active navigation suggests that 

participants were under a higher WML during these conditions [129], as would be 

expected whilst conducting a task requiring attention, learning and decision making. 

However, no other comparisons between display type, navigation condition, or 

difficulty levels reach statistical significance when using measures of the absolute 

power of alpha band activity, absolute power in theta band activity, or the TAR. The 

results therefore suggest that WML did not differ between displays, during any active 

navigation condition, or between any difficulty level. This is partially supported by the 

behavioural results, which also found no differences in completion time or number of 

wrong turns between difficulty levels or displays. 

 

5.4.2.1) Theta and Alpha Band Activity During Navigation 

Spatial navigation has long been associated with theta-band activity across a range 

of paradigms [70,367,394]. In maze tasks, theta activity has been found to increase 

during higher levels of VSWM load, such as during active navigation, recall and 

when navigating more complex mazes [70,369,370,372]. Moreover, both alpha and 



265 
 

theta activity have been associated with VSWM tasks presented between levels of 

immersiveness. It has been shown that theta increases when using a 3D display 

[371] and alpha decreases when utilising higher immersion single-wall CAVE 

compared to DB-VR display methods [370], similar to increases in WML [405–407]. 

However, in the current study, no differences in theta activity were found between 

displays, difficulties or conditions. Moreover, theta during active navigation was not 

significantly different than during passive navigation.  

 

A potential explanation for the absence of theta activity differences is relative 

difference in theta EEG oscillatory activity between participants. Kober & Neuper, 

[385] report that, whilst theta activity increases for both sexes during spatial 

navigation, increased theta activity is associated with increased spatial navigation 

performance in female participants, but decreased spatial navigation performance in 

male participants. Moreover, it is also known that there are differences of at-rest 

midline theta and alpha power between sexes of participants, including those 

similarly aged to those recruited in the current study [408]. Sex could therefore be an 

important variable to consider when interpreting the results found in the study, as 10 

of the 14 datasets included in the analysis were from male participants. It is therefore 

possible that the weighting towards male participants reduced the overall theta 

power, however the small sample sizes, particularly when wanting to compare 

against the female sample, prevents formal analysis.  

 

Alpha band activity, whilst less commonly reported in spatial navigation 

investigations than theta band activity, has been reported to be sensitive to maze 

length in spatial navigation [409]. Nguyen Do et al. [376] find that alpha band activity 

desynchronises both during straight line navigation, and when translating allocentric 

into egocentric spatial information during navigation. Whereas a large portion of the 

current maze task involves travelling in straight lines between junctions, no 

differences in alpha are found between conditions in the present study. Moreover, 

only a single participant reported using an allocentric method of remembering the 

maze (reporting they imagined looking down on a representation of the maze), 

whereas the majority of participants remembered partial or complete turn sequences. 
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It is therefore unlikely that the alpha activity being comparable between difficulties 

and between displays results from balanced the use of allocentric and egocentric 

recall methods between participants.  

 

It is possible that cybersickness experienced by the participants influenced the alpha 

and theta band activity recorded. There have been several studies which have 

assessed cybersickness symptoms and EEG frequency bands, but no consensus on 

how cybersickness effects EEG frequency band activity has been reached. Jang et 

al. [410] found alpha band activity desynchronises during symptoms of 

cybersickness, whereas Naqvi et al. [411] and Krokos & Varshney [412] report frontal 

theta and parietal alpha activity increased with cybersickness symptoms. Whilst it 

may contribute to the EEG results, cybersickness is unlikely the complete reason for 

the absolute power findings. If the alpha and theta activity did change with 

cybersickness, a difference between the display conditions reporting significantly 

different levels of cybersickness symptoms would be expected, but such a difference 

is not found. Therefore, whilst it is important to consider cybersickness and the effect 

on WML and EEG recording, it cannot explain the current EEG findings alone. 

 

5.4.2.2) The Theta/Alpha Ratio and the Working Memory Load Perspective  

Participants in the present study were tasked with remembering increasing number 

of turn sequences, designed to evoke different levels of WML. This increasing turn 

sequence is analogous to digit span tasks, where participants must remember 

increasingly-sized lists of numbers [405,413]. In WML tasks, frontal theta and parietal 

alpha activity are well documented to increase and decrease respectively under 

heightened levels of load [121,134,405]. Therefore, the TAR, which is sometimes 

called the ‘cognitive load index’, was selected as a measure of WML [338]. The 

sensitivity of the TAR to WML is demonstrated by finding the significant increase in 

TAR during active learning and recall navigation compared to the passive guided. 

Moreover, the TAR has been used to investigate factors related to experienced 

immersion in VR research [129], and thus should be suitable for identifying 

differences in experienced WML between display conditions and difficulties.  
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The lack of significant differences between display types is not considered a 

negative result for HMD-VR usage. As with the Chapter 2 systematic review, the 

objective of this study is not to show that HMD-VR is ‘better’ than DB-VR for working 

memory tasks such as spatial navigation, but to demonstrate how it is an appropriate 

tool for neuropsychological research. In the current study, there is no difference 

between displays on any measure, suggesting that the use of HMD-VR did increase 

WML in comparison to DB-VR.  

 

The most likely explanation for the absence of differences in EEG and behavioural 

measures between conditions and difficulty levels is that the 4-turn, 8-turn and 12-

turn maze lengths did not differ enough in difficulty to induce distinct levels of WML. 

The decision to utilise 4, 8 and 12 turns was based on the working memory capacity 

of 7+/-2 [90]. A length of 4 turns was selected to probe under the working memory 

capacity range, 8 turns was selected to probe within the working memory capacity 

range, and 12 turns was selected to exceed the working memory capacity range by 

being over the 9 item maximum limit. There is precedence for expecting a difference 

between the 4 and 12 turn conditions, as previous comparisons between 6 and 12 

turns have resulted in measurable differences in theta EEG [369].  

 

The behavioural results found no significant differences in the number of wrong 

turns, indicating the ‘hardest’ mazes did not differ in performance from the easiest 

despite the higher number of turns. Participants overcame their working memory 

capacity by chunking turns together into groups of 2 or 4, reducing the WML 

necessary between runs (though 2 participants reported remembering the entire path 

in sequence). Moreover, the average subjective difficulty rating of the 12-turn course 

(on a scale of 1 = very easy to 10 = very hard) was 5, and only one participant was 

excluded for having no successful runs in a 12-turn recall trial. These findings 

indicate that the majority of participants experienced relatively little issues completing 

the course, and were not cognitively overloaded nor particularly challenged during 

navigation. No participant reported using the corridor length as a guide or aid to 

remembering turns, so it is believed the different length corridors were unnoticed or 

ignored. 
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The present study does not find any difference in EEG theta frequency band activity 

between learning and recall during spatial navigation. It has previously been reported 

that recall during spatial navigation results in higher levels of theta activity compared 

to learning during spatial navigation [70,369]. More recently, a comparison between 

learning and recall during spatial navigation found no difference in theta band activity 

[370], aligning with the findings of the current study. 

 

A potential explanation for the lack of EEG differences between learning and recall 

trials is the amount of information held online in working memory during each form of 

navigation. After the first of the 3 learning runs of the maze completed for each for 

learning condition, participants should be holding some form of the complete 

sequence in their working memory, totalling the complete sequence by the end of the 

learning blocks. It is therefore possible that only the first of each maze learning run 

was actually ‘learning’, and subsequent runs was maintenance and reinforcement of 

the information in working memory. We know participants held this information as 

they were able to subsequently complete the recall trial, which required the same 

amount of information being maintained in working memory. It may therefore be 

worthwhile restricting data extraction to the first learning condition maze run only, or 

comparing the first and final maze run to identify differences in TAR. 

 

5.4.3) Limitations and Future Directions  

The number of participants included in the final analysis for the present study was 

within the standard range used for EEG research [183], with 14 participants 

previously being used in similar EEG-based maze paradigms [70]. However, other 

spatial navigation experiments using frequency analysis have included ~30 datasets 

in the final analysis [370], including those utilising HMD-VR [394]. The lower number 

of participants may therefore have reduced the power of any statistical analysis 

performed, potentially limiting the power of the EEG findings reported or resulting in 

a type 2 error. Future studies should therefore ensure more participants are 

recruited, and minimise the number of participants who exit the study by reducing 

factors which can result in cybersickness symptoms. Future studies examining 

methods of reducing cybersickness in HMD-VR, which was the principle cause for 
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the loss of datasets in the current experiment, must conducted to better understand 

how to prevent data loss. 

 

Due to the number of participants exiting the study early or otherwise having data 

excluded, Maze-A was used in the HMD-VR condition 10 times and the DB-VR 

condition 4 times in the included datasets. Care was taken to implement rules when 

designing mazes to prevent one maze being ‘harder’ than the other, however 

comparison of the behavioural results suggest that Maze-B was more difficult than 

Maze-A. Participants completed Maze-B significantly slower than Maze-A, and 

subjectively rated the 12-turn difficulty level of Maze-B as significantly more difficult 

than 12-turn difficulty level of Maze-A. However, not every behavioural measure finds 

the mazes differed in difficulty. There was no difference in the average number of 

wrong turns between mazes, and the 4-turn and 8-turn version of each maze did not 

differ between mazeIDs. It is therefore uncertain to what degree the mazes 

contributed to the results found, as the ‘easier’ maze was used in the HMD-VR 

condition more frequently, though not enough to result in significant differences 

between displays.  

 

It is advised that future studies take care when designing maze paradigms and 

implement stricter requirements on maze navigation paths to prevent differences in 

maze difficulties influencing the results found. It is also recommended that 

researchers conduct a behavioural pilot study to compare the difficulties of potential 

mazes for use in spatial navigation research. 

 

5.5) Conclusions 

This study has demonstrated that HS-HMD-VR can be successfully utilised in spatial 

navigation-based learning and recall paradigms using T-junction mazes. Task 

performance and EEG measures were compared between HS-HMD-VR and DB-VR 

mazes, utilising balanced VEs and input methods. Absolute power recordings of 

theta and alpha frequency band activity from the frontal-medial and parietal-medial 

electrodes respectively were acquired using EEG in both display conditions. Whilst it 
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was found that active navigation, such as learning and recall, resulted in a larger 

TAR than passively guided navigation, no other differences between display 

conditions were found within the behavioural and EEG results. Moreover, no 

behavioural differences between task performance were found between maze 

difficulties. These results indicate that HS-HMD-VR does not increase WML over DB-

VR during spatial navigation. 

 

Reported levels of cybersickness symptoms were higher in post-HMD-VR usage 

compared to baseline and post-DB-VR usage. Whilst several participants withdrew 

from the experiment early due to cybersickness, the majority of participants 

successfully completed the experiment, showing how HS-HMD-VR is suitable for use 

in the study of spatial navigation. Moreover, those who withdrew primarily consisted 

of participants with no prior experience with HMD-VR, indicating that the use of 

certain HS-HMD-VR VEs should only be utilised with individuals who are familiar 

with the display method. 

 

Whilst maze tasks have been previously utilised using HMD-VR [397,398,414] to the 

researcher’s knowledge this is the first HMD-VR and HS-HMD-VR study to use a T-

junction maze. Moreover, it is believed to be the first to combine the Vive Pro HS-

HMD-VR device and EEG during a learning and recall maze task. It has been 

demonstrated that participants successfully learned increasing lengths of turn 

sequences through a T-junction maze in both display conditions using conventional 

gamepad controls. 
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Chapter 6) General Discussion, Limitations and Future 

Directions 

 

6.1) General Discussion  

The overarching aim of this thesis was to investigate the combined use of HMD-VR 

and EEG as a methodology in the study of working memory. HMD-VR devices 

became accessible and affordable to the general public with the release of the first 

‘modern’ HMD-VR device in 2013, resulting in a renewed interest in the use of 

immersive display technology in psychological and neuroscience research [5,20,29]. 

Subsequently, a range of relatively low-immersion smartphone HMD-VR and 

relatively mid-immersion DB-HMD-VR configurations have been successfully 

combined with EEG in studies of working memory processes, as reported in the 

systematic review (Chapter 2). It was also found that high-immersion HS-HMD-VR 

devices such as the HTC Vive Pro had not been used in comparative working 

memory research, nor generally in studies utilising EEG ERP measures. 

 

The first major finding of this thesis is that HS-HMD-VR, specifically the HTC Vive 

Pro, can be used in combination with EEG methodologies. Two working memory 

studies, an arithmetic task (Chapter 3) and a spatial navigation task (Chapter 5), 

were successfully conducted using HS-HMD-VR in combination with EEG. The 

studies used a range of EEG analysis methods to successfully distinguish between 

levels of WML between conditions within each task. In the arithmetic task, N170 and 

P300 ERP responses acquired during visual presentation of addition arithmetic 

questions could be used to distinguish between question difficulties. In the spatial 

navigation task, a ratio between the absolute powers of the theta and alpha 

frequency bands, a measure associated with WML [129,338], was found to increase 

during active learning and recall navigation compared to passive guided navigation. 

It is also demonstrated in the preprocessing comparison study (Chapter 4) that 

standard EEG data preprocessing methods can be used to remove line noise, eye-

based artifacts and slow drift artifacts associated with the use of HS-HMD-VR.  
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The second major finding in this thesis is that HMD-VR does not inherently evoke a 

larger WML compared to DB-VR presentations of a working memory task. The 

comparison of HS-HMD-VR and DB-VR in the spatial navigation task, which was 

designed to have minimal differences between the task presentation outside of 

display method used, found no difference in behavioural or EEG measures of WML 

between displays on any comparison. The spatial navigation task results build upon 

the outcomes of the systematic review, which concluded that various non-high 

specification HMD-VR configurations including smartphone HMD-VR, non-modern 

DB-HMD-VR and modern DB-HMD-VR also do not inherently increase experienced 

WML compared to alternative displays during working memory tasks 

[66,167,173,180]. When WML was reported to increase in the HMD-VR condition in 

the papers included in the systematic review, the increased load could be attributed 

to an aspect of the VR configuration separate from the display device itself, such as 

an inappropriate input method [16] or the low refresh rate of the displayed image 

[25]. 

 

The compatibility of HMD-VR and EEG coupled with the finding that HMD-VR does 

not inherently increase WML over other display methods opens a range of potential 

studies which can benefit from the advantages offered by the display method. In 

research, experiments can utilise HMD-VR to present ecologically valid VEs whilst 

blocking out external distractions. For example, HS-HMD-VR can be used to place 

participants into the driving seat of a virtual car within a high-fidelity VE to study 

dangerous driving conditions in a safe environment. Attention, WML and stress can 

be compared using EEG and behavioural measures during various distractions, 

presence of driving assistance tools (automatic gearboxes, acceleration/breaking 

guideline, etc.), or various weather conditions [24,188,415,416]. The popularity of 

HMD-VR in recent years has also resulted in an increase in compatible software that 

have be repurposed for research, for example the logic-based problem solving game 

‘Keep Talking and Nobody Explodes’ [417] and the block puzzle game ‘Cubism’ 

[418]. For the hypothetical driving experiment, the commercially available video 

game ‘Assetto Corsa’, a racing simulator which provides control over the vehicles, 

track and weather, has already been used in research comparing HMD-VR and DB-

VR presentations [419].  



273 
 

It was also found in this thesis that the combination of HMD-VR and EEG in 

neuroscience research did not require extensive technical expertise to utilise the 

methods together. No specialised modifications of either the Vive Pro HMD-VR 

device or the SPESMedica EEG Sleepcap were required in either the Chapter 3 

arithmetic task or the Chapter 5 spatial navigation, as the soft foam-padded 

electrodes were able to be placed under the HMD. In both experiments conducted in 

this thesis, commercially available software was used to present the paradigms. 

Whilst the Garry’s Mod software did require modification for the maze study, 

dedicated software for spatial navigation paradigms [420] or toolkits for experimental 

data collection in the Unity game engine [421], both of which natively support HMD-

VR, are available. With the range of software available now, it is expected that future 

studies will often have pre-packaged or easy-to-construct solutions available for 

whatever paradigm that will be employed. Once the data was collected, no 

specialised knowledge or method was required (outside of understanding general 

EEG procedures and analysis techniques) to preprocess the EEG data for statistical 

analysis. The parameters compared for each preprocessing step in the HMD-VR 

EEG artifact removal study were selected as they have been used both within and 

outside of HMD-VR research. 

 

The finding that HMD-VR does not increase total WML compared to other display 

methods also has implications for the practical applications of the display method. As 

the use of the HMD-VR does not inherently increase WML, VEs tailored to maximise 

attention and reduce WML can be designed and utilised in a range of scenarios. 

HMD-VR can facilitate teaching and workplace use by presenting learning materials 

and virtual office spaces designed in a way to minimise extraneous load, maximising 

the working memory resources available for the current task. The practical 

applications of HMD-VR are of particular interest following the increase in remote 

learning following the COVID-19 pandemic, where being able to present immersive 

classroom environments could reduce the external distractions reported during 

online classes [106,422]. 
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6.2) Limitations and Future Directions 

6.2.1) Comparisons of Working Memory Load Between Different Head-Mounted 

Display Virtual Reality Devices 

A criticism of the existing literature identified in the systematic review is that the 

immersiveness of HMD-VR configurations used in research is often overlooked 

during the interpretation of working memory results. Not considering the effect of 

immersiveness is particularly problematic when using configurations with relatively 

low immersiveness, of which initial comparisons have found can increase WML 

relative to higher immersion configurations [6]. However, the exact relationship 

between HMD-VR immersiveness and WML is uncertain, as there has been limited 

comparisons between HMD-VR devices, or between otherwise roughly equivalent 

devices [423]. A similar limitation applies to the current thesis, in that the conclusions 

drawn may only apply to the Vive Pro HS-HMD-VR. The Vive Pro used provided a 

higher immersion over the development-grade DB-HMD-VR and smartphone-HMD-

VR devices found in the systematic review. However, as no direct comparisons of 

WML was conducted between HMD-VR devices within this thesis, nor have the 

same studies been completed with other HMD-VR configurations, it is difficult to 

conclude if HS-HMD-VR had any effect on experienced WML. 

 

It is recommended here that future studies examining the effect of HMD-VR on 

working memory should include comparisons between different HMD-VR 

configurations. By comparing WML experienced from the same task presented 

between HMD-VR configurations, the impact that individual factors of each display 

and the overall immersiveness has on working memory processes can be identified. 

Additional measures of presence and cybersickness should also be captured during 

these comparisons to further understand the subjective and negative effects of each 

display configuration. 

 

An additional benefit of comparison between HMD-VR devices is that differences in 

the electrical artifacts introduced to the EEG recording can be identified. The 

comparison between the Vive Pro and Oculus Rift CV1 by Weber et al. [287] has 
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demonstrated that different devices can introduce different frequency band artifacts, 

likely resulting from the internal components used in each HMD. It is therefore 

possible that components in modern standalone HMD-VR devices, such as internal 

batteries or wireless Wi-Fi and Bluetooth capabilities absent in most DB-HMD-VR 

devices, may introduce different frequency noise or other artifacts to an EEG 

recording. Understanding the effect of different HMD-VR configurations on the EEG 

recording will allow researchers to make informed decisions when selecting which 

HMD to use in research, and how to preprocess the EEG data to remove the 

artifacts prior to analysis. 

 

6.2.2) Cybersickness in Head Mounted Display Virtual Reality 

The overarching limitation of HMD-VR identified in this thesis is the increased 

cybersickness whilst using immersive HMD-VR. Participants in both the arithmetic 

and spatial navigation tasks reported cybersickness symptoms following completion 

of the respective HMD-VR conditions. Whilst cybersickness is not an exclusive issue 

for HMD-VR, as it is also found to increase in DB-VR in the Chapter 5 spatial 

navigation task, the increase in cybersickness symptoms reported was significantly 

larger following HMD-VR presentation. 

 

Cybersickness can impact both the recording and interpretation of working memory 

results in studies conducted using HMD-VR and EEG. Cybersickness has been 

linked to increased WML in HMD-VR conditions [32,141], introducing extraneous 

load and serving as a confounding factor when interpreting working memory results. 

Cybersickness has further been found to affect the same P300 ERP component 

[424] and theta & alpha EEG frequencies bands [410–412] used as measures of 

WML in this thesis. This overlap between cybersickness and WML EEG measures 

could make it difficult to distinguish between working memory-related cognitive 

processes and cybersickness-related neural responses in the captured data. For 

instance, it is possible that WML would be lower in the HMD-VR condition of the 

Chapter 5 spatial navigation task if not for the increased cybersickness found in the 

HMD-VR condition. However, without a way of separating the effect of 

cybersickness, or through a comparison with a group who did not experience any 
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cybersickness during spatial navigation, it is impossible to determine if cybersickness 

had a large enough effect to change the results found. 

 

At its most severe, cybersickness prevented the acquisition of data altogether, as 

demonstrated by the 1 (out of 22) participant in the Chapter 3 arithmetic task and the 

7 (out of 27) participants in the Chapter 5 spatial navigation task who exited the 

respective studies early due to cybersickness symptoms. The difference between the 

number of self-excluded participants is likely a result of the task used, as 

cybersickness has been associated with the ‘sensory mismatch’ between seeing 

visual information indicating the body is moving in space when a person is stationary 

[157–159]. In the spatial navigation task, participants visually experienced 

continuous locomotion including rotation whilst navigating the VE, but whilst sat 

looking forward in a chair in the real world. Compared against the arithmetic task 

where participants were presented a low-visual stimulation VE whilst seated, the 

increase is unsurprising. However, as one participant exited the arithmetic study 

early due to nausea, the sensory disconnect cannot be the only explanation for 

increased cybersickness symptoms. 

 

To prevent data loss and adding extraneous load to working memory, it is important 

that future HMD-VR research takes steps to minimise cybersickness wherever 

possible in HMD-VR research. The most basic step that every experiment must take 

is to ensure the HMD-VR is properly calibrated for each participant, as 

recommended in Chapter 1 and used in the arithmetic and spatial navigation tasks. 

In the studies conducted within this thesis, blocks of text that had to be read aloud 

were used to check that interpupillary distance and HMD position were correct. The 

blocks of text displayed emphasised that if it was not clear and easy to read, the 

participant must tell the researcher so it can be corrected. Calibration must include 

the peripheral areas of vision, as visual distortions in the peripheral vision can 

exacerbate cybersickness symptoms [186]. By extension, it is recommended that 

software which fully supports HMD-VR, or has been optimised in a way to reduce 

cybersickness symptoms [197], is utilised in to prevent visual compatibility issues 

that may give rise to visual artifacts in the VE.  
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It is also important ensure the technical specifications of the equipment used can 

support the smooth presentation of a VE within HMD-VR. Factors including low 

refresh rate of a screen [187] and high latency, the delay between an action such as 

head movement being performed in real life and it being reflected in the VE [425], 

can increase the sensory mismatch and lead to feelings of discomfort. Researchers 

must ensure prior to the onset of the experiment that no sudden drops in refresh 

rate, or noticeable delays between actions being performed and the actions being 

reflected in the VE, are present in the experimental procedure used. 

 

Additional recommendations will be largely paradigm specific. In tasks requiring 

navigation, joystick-based continuous locomotion, as used in the spatial navigation 

task, has been found to increase cybersickness symptoms in participants over 

teleportation-based navigation [403,426–428]. Ideally, the sensory disconnect 

between visual and vestibular information would be minimised by using walking-

based navigation in HMD-VR [429]. Naturalistic methods of navigation that have 

been previously used in HMD-VR include physically walking in a large real-world 

space [430], and through peripheral technology such as omnidirectional treadmills 

which emulates naturalistic locomotion in HMD-VR VEs whilst staying in one location 

in the real world [431]. 

 

Researchers must also be aware of what individual factors between participants may 

affect cybersickness severity. Recently published research has identified motion 

sickness susceptibility and video game experience as key predictors of 

cybersickness [432]. A lack of prior experience with HMD-VR is also found to be 

associated with cybersickness in the current thesis, dependent on the ‘intensity’ of 

the VE. In the arithmetic task, which used a ‘gentle’ stationary VE with minimal visual 

stimuli, only one of the fourteen participants reporting no prior VR experience exited 

the study. Conversely, all participants in the Chapter 5 spatial navigation task with no 

prior HMD-VR experience exited the study early due to cybersickness, likely due to 

the relatively high visual demands of the continuous locomotion used to navigate the 

mazes.  
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6.2.3) Scales of Immersiveness to Rate HMD-VR Devices 

The advancements in the technical specifications of HMD-VR devices in recent 

years warrants a review of how HMD devices are categorised. In Chapter 1, four 

subcategories of HMD-VR were identified of relative immersiveness: HS-HMD-VR, 

which offers the highest immersion; high-immersion standard consumer-grade DB-

HMD-VR; mid-immersion standalone HMD-VR; and low-immersion smartphone 

HMD-VR. Whilst these sub-categories were appropriate for when the research was 

conducted, the technical specifications of recent HMD-VR devices overlap between 

the sub-categories. For example, a standalone Meta Quest 3 HMD-VR device 

released in 2023 has a 2064x2208 pixel-per-eye resolution, a 110 degree FOV, and 

a 120Hz refresh rate display. Compared to the at-the-time ‘high specification’ Vive 

Pro used in this thesis, which was released in 2018 and has 1440x1600 pixels-per 

eye, a 110 degree FOV, and an up to 90Hz refresh rate display, the standalone Meta 

Quest 3 offers a higher level of immersion. The division between a standalone HMD-

VR device and a DB-HMD-VR device is also now less clear. Apicella et al. [433] state 

the standalone HMD-VR used in their experiment was “low end” due to the quality of 

the VE being restricted by the internal components processing the VE, which cannot 

currently create the quality of VEs used in DB-HMD-VR. However, recent standalone 

HMD-VR devices such as the Meta Quest series can also operate as DB-HMD-VR 

devices through wired or wireless connection to a host computer processing a VE. 

Wireless connection also has the additional benefit of not requiring physical 

tethering, removing a physical restriction common for standard DB-HMD-VR use.  

 

Considering the ongoing advancement of HMD-VR technology, it is recommended 

the way immersiveness is categorised or measured is reviewed to facilitate future 

comparison between HMD-VR devices in the study of WML. Instead of continuing to 

use distinct categories of devices, the development of an ‘immersiveness scale’ that 

accounts for each aspect of an HMD-VR display relating to immersiveness, including 

resolution, field of view, degrees-of-freedom, weight, screen latency, and any 

movement restrictions (i.e. tethering to a computer) is recommended. These factors 

should in turn be weighted based on how much they effect experienced presence, 

cybersickness and experienced WML, which can be examined by manipulating each 

factor within the same headset. Using the device settings, settings within the VR 
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management software or restrictions coded into a VE, certain parameters such as 

rendering resolution or degrees of freedom can be restricted, allowing comparisons 

between specific factors. Each item on the immersiveness scale should also have an 

upper limit based on human sensorimotor perception where further technical 

improvements will not be noticeable. For example, a 360-degree field of view will not 

be of any additional benefit to sensorimotor perception compared to a 270-degree 

field of view if normal naturalistic looking is only ~200 degrees [434].  

 

Whilst it is important to identify the immersiveness of an HMD-VR configuration, any 

benefits to WML and other cognitive functions can be reduced or reversed if the 

immersive experience presented through the display is substandard. Therefore, a VE 

immersiveness scale examining factors that can affect visuospatial processing within 

the VE should be developed. The VE immersiveness scale should include factors not 

wholly dependent on the HMD-VR device, such as frames-per-second of the VE, the 

latency between input and representation in the VE, and the fidelity of the VE, each 

of which can be affected by graphical processing power. Peripheral devices such as 

the appropriateness of input methods of the VE and if and how navigation within the 

VE was performed should also be considered in the VE immersiveness scale. Some 

factors included in the scale may be more appropriately measured in broad 

categories opposed to specific numbers. For example, for the input method in a 

driving task, a steering wheel would be one-to-one with the real world, physically 

moving motion controllers to emulate the movements of a steering wheel would be 

semi-realistic, using a gamepad controller may be unrealistic but suitable (as fine 

control is offered to acceleration and steering), and a keyboard would be unrealistic 

and unsuitable (rate of acceleration or turning cannot be finely adjusted). 

Alternatively, if a scale is not used, the listed factors should still be reported as they 

pertain to WML and cybersickness and may aid interpretation of the results.  

 

The benefits of the immersiveness scales are threefold. Firstly, it will make 

researchers more aware of the importance of selecting appropriate HMD-VR 

configurations for each research paradigm. In particular, the immersiveness scale 

will help new researchers better understand the technology available and the 
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differences between configurations. Secondly, examining the differences between 

HMD-VR configurations will allow a better understanding on how the technology 

impacts WML, presence and cybersickness, building upon the comparisons 

suggested in Section 6.2.2. Thirdly, reporting the HMD-VR and VE immersiveness 

scales will increase the replicability of an experiment by allowing exact specifications 

of VR configuration and VE to be recreated. If the exact parameters are not 

available, differences between conditions can still be quantified. 

 

6.2.4) Systematic Review Future Directions 

6.2.4.1) Updated Systematic Review 

The systematic review was an important early step into broadly understanding both 

how HMD-VR had been combined with neurophysiological recording methods, and 

how HMD-VR influences working memory load relative to alternative display 

methods. The majority of papers included in the final analysis comprised of SB-VR 

display methods, with some comparisons between real life conditions and none 

between CAVE or augmented reality display methods. The review collated papers 

covering a wide range of working memory tasks comparing between displays, and 

did not focus on any specific working memory related cognition. The inclusive criteria 

allowed for a broad identification of if and how HMD-VR effects processing 

compared to other displays.  

 

Technology and research have progressed since the systematic review was 

conducted, and newly published papers comparing WML in HMD-VR to alternative 

display methods may provide additional evidence in support or refuting the 

conclusions reached by the current systematic review. It is therefore recommended 

that a follow-up review is conducted to explore how the technology and research has 

progressed over time, and what effect this has had on our understanding of the use 

of HMD-VR in working memory processes. This review should also capture papers 

using newer high-immersion HMD-VR devices, potentially allowing investigation of 

how different levels of immersion within HMD-VR can effect working memory 

processes. 
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A follow up review may also not require neurophysiological methodologies as a 

necessary inclusion criterion, as the behavioural results in the included papers in the 

systematic review and the objective behavioural measures in the Chapter 5 spatial 

navigation task largely corresponded with the neurophysiological results. 

 

6.2.4.2) Nomenclature of Head-Mounted Display Virtual Reality 

It was found in the systematic review that the nomenclature used for HMD-VR in 

published research papers is inconsistent, using ‘HMD-VR’ [173,177] ‘immersive 

virtual reality’ [16,178], ‘VR Headsets’ [176], and simply ‘VR’ [180] interchangeably. 

Inconsistent or uninformative terminology can make it difficult to identify which HMD-

VR configuration was used in an experiment, or if an HMD was used at all. 

 

The argument for standardising VR terminology in published research papers has 

been made before [435], however a consistent method has yet to be used in the 

wider academic literature. It is suggested here that a consistent naming structure 

that can include all forms of VR is used when reporting or discussing VR 

methodologies. When using a form of VR, the abbreviated display method followed 

by ‘VR’ should be used to inform readers that a VE was used, and how it was 

presented. For example, ‘HMD-VR’ would refer to head-mounted display-based VEs, 

and ‘DB-VR’ for desktop-computer-based VEs. Additional modifiers can be used at 

the start of the terms to further clarify the methods employed, for example 

‘smartphone HMD-VR’. When possible, any relevant details about the VR method 

should also be reported, including models of display, relevant details about 

supporting hardware (e.g. the graphics card on a computer generating the VE), and 

any modifications made to the device. 

 

6.2.5) Arithmetic Task Limitations and Future Directions 

Within the arithmetic task, two limitations are identified that should be considered 

when designing future arithmetic-based studies. The first limitation is that the ERP 

responses were taken from the onset of the question presentation, which prevented 
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comparison between presentation modalities and limited the power of the auditory 

conclusions. Participants immediately had access to all the information required to 

perform the calculation in the visual condition, as evidenced by the presence of the 

positive SWC [131,248]. Conversely, the auditory trials took ~1s for the easy 

condition and ~2s for the hard condition to fully deliver the same information, 

meaning the question was still being encoded at the time of the ERP recording. As 

there are most likely different cognitive processes occurring at the time of the ERP 

recording between modalities, comparisons of ERP components between visual and 

auditory conditions were inappropriate for this design and were not conducted.  

 

One solution for future research would be to change the paradigm, for example 

presenting the equation in sequence and taking an ERP recording from the 

presentation of the operation or second operand [204,221,256]. This has three main 

benefits, in that it can be used to induce a level of load within the participant through 

the size of the first operand, can better balance between visual and auditory 

presentations, and allows more direct comparison with the existing literature. 

However, it has been previously reported that even within sequential presentation, 

the stimuli presentation between visual and auditory digits is different due to the time 

differences required to present the same information, which can prevent balanced 

comparison [248]. An alternative solution would be to measure ERP responses from 

the presentation of a potential solution using a verification task [241]. Verification 

paradigms allow for an additional level of control on WML through how correct the 

solution is [223,240,245–247]. The solution could also be presented in the same 

modality (i.e. visually) regardless of how the equation was presented, allowing a 

more balanced comparison [238,239]. It is further possible to combine these 

paradigms and take measurements at both the second operand and the solution 

presentation, leading to increased amount of extractable information.  

 

The second limitation in the auditory experiment is that, due to the audio file 

generation method used, there is a ~50ms silent period at the start of each auditory 

question. However, the time windows used for the auditory condition were ~100ms 

later relative to the visual condition, suggesting that the perceivable onset of the 
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auditory stimuli was even longer. It is for this reason it is difficult to identify exactly 

which auditory ERP components have been found in the current study, further 

preventing comparison between conditions. Future studies should avoid this by more 

rigorously inspecting each generated audio file to identify where the sound begins in 

the spectrographic representations of the soundwaves, and when audio can actually 

be heard. 

 

6.2.6) Preprocessing Comparison Future Directions 

Future research should expand upon the EEG preprocessing comparison study by 

including additional variations of the preprocessing steps examined for data collected 

during HS-HMD-VR use. Within highpass filtering, additional half-amplitude cut-off 

frequencies between 0.1Hz and 0.5Hz [310] can be examined to find the optimal 

trade-off between noise and amplitude reductions. Other methods of removing eye-

based artifacts can also be compared, such as the ‘cleanline’ plugin for EEGLab 

[311] and or similar algorithms that identify and remove ocular artifacts from the 

continuous waveform. 

 

Additional EEG configurations and preprocessing steps could also be compared in 

the context of EEG data collected in a HS-HMD-VR study. One example would be to 

compare between the types of filters used. Highpass and lowpass filtering is 

performed in this thesis using Butterworth filters, however it has been suggested that 

FIR filters are more successful at removing 50Hz line noise from the EEG signal [57]. 

Another example is the reference used during data collection and pre-processing. 

Each study in this thesis collected data using a physically linked ears reference 

joined by a wire, which should be compared against other referencing methods that 

have been used in combined HMD-VR and EEG experiments. Methods including 

single-ear referencing [176,177], linked-mastoid referencing [16,63], and the offline 

average re-reference [175] have previously been reported in the HMD-VR literature, 

though how these effect data collected using HMD-VR is uncertain. Comparison with 

single ear electrode usage in particular would be important in asymmetrical HMD-VR 

devices, such as the Vive Pro which trails the power and data cable down the left 

side of the HMD. The use of single-ear referencing with asymmetrically designed 
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HMD-VR may not accurately remove the electrical noise across the scalp, resulting 

in distorted waveforms. 

 

6.2.7) Maze Task Limitations and Future Directions 

The mazes developed for the spatial navigation task were designed to increase in 

difficulty within displays to measure three distinct levels of WML during active 

learning and recall navigation. The results found that whilst passively navigating a 

maze resulted in a lower WML compared to active learning or recall navigation, there 

was no differences in the neurophysiological measures of WML between maze 

difficulties. A total of two participants recruited for the spatial navigation task were 

excluded for not passing a run in a maze recall block, one for failing an 8-turn maze, 

and the other for a 12-turn maze. Considering the high success rate, and that 

previous studies comparing between maze difficulties have reported behavioural and 

EEG measures of WML being different between maze difficulties and between 

learning & recall routes [369,370], it is unlikely the lack of difference in WML found 

resulted from an overloaded working memory system in all conditions. Instead, a 

more likely explanation is that the presented mazes were similarly ‘easy’ for most 

participants.  

 

Future studies should therefore ensure the gap in difficulty between simpler and 

more complex mazes is sufficiently wide enough to evoke different levels of WML. In 

the spatial navigation task, the 4 and 12 turns did not result in significantly distinct 

WMLs, so increasing the maximum number of turns to 16 may be more suitable. An 

alternative solution would be to increase the number of potential directions at each 

junction to 3, similar to that used by Hsieh et al. [414]. By increasing the number of 

potential directions at each junction, the possible number of turn sequences 

increases exponentially, and the chances of a participant guessing the correct 

direction at a junction is reduced. 

 

A second factor that may have contributed to the relatively low difficulty of the higher-

turn mazes is the repetition of the first 4 and 8 turns of the maze in subsequent maze 
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lengths. To comply with the limitations imposed by the Hammer editor and Garry’s 

Mod, mazes were repeated between difficulties by increasing the amount of the 

complete maze participants explored. The improved recall of the repeated turn 

sequences could be similar to the ‘Hebb repetition effect’ reported in repeated 

exposure to lists of items, where repetition of early items in the list improves recall of 

later items [436]. It is therefore recommended that future studies utilise completely 

novel mazes between difficulties, and by extension use specialised software capable 

of developing mazes in larger and more complex VEs useable in DB-VR and HMD-

VR. 

 

6.2.8) Small Sample Sizes 

A criticism that can be levelled against both experiments conducted in this thesis is 

the small sample sizes utilised compared to non-EEG research. Despite conforming 

to standard EEG practice for number of participants initially recruited, both studies 

could be argued to comprise of small sample sizes which may limit the power and 

generalisability of the conclusions reached [183,249]. Specifically, it is possible that 

the small sample size used hindered the statistical analysis conducted, and thus 

potentially introduced a source of bias or confound to the data [249]. This is 

particularly relevant for the spatial navigation experiment, where only 14 datasets 

were included in the final analysis, which likely contributed to the lack of significant 

findings between difficulties levels and between display conditions. Whilst the mental 

arithmetic tasks reached the average number of participants in an EEG study, 

previous spatial navigation tasks have reported recruiting 25 or more participants 

[370,385]. It is therefore suggested that future experiments conducted using EEG, 

particularly when combined with HMD-VR, utilise larger sample sizes to avoid 

biasing the data. This is especially important when considering the relative infancy of 

the combined EEG and HMD-VR literature, where the relatively small number of 

comparisons between other similar experiments can make identifying anomalous 

results more difficult.  

 

This is not to suggest the limited EEG results found in the spatial navigation 

experiment resulted only from the small sample size used. Previous studies using 
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EEG have reported finding significant differences when using similar or lower 

numbers of participants, for example between 12-16 participants in spatial navigation 

experiments [70,371,429]. It is therefore suggested that, whilst the low number of 

participants likely contributed to the limited findings, it is also unlikely to be the only 

reason that minimal significant findings were reported. 

 

It is also unknown if using a larger sample size would change the outcomes of the 

preprocessing pipeline comparison conducted in Chapter 4. However, it is unlikely 

the overall conclusions would change as the same data was manipulated between 

conditions. The consistent data means that any differences must result from the 

preprocessing decisions rather than differences within or between participants. 

Moreover, other comparisons of EEG preprocessing steps, such as Tanner et al. 

[310], also have used 22 participants, making it difficult to tell if a different number of 

participants would affect the outcomes. 

 

6.3) Conclusions  

This methodological thesis has examined the utility of combined HMD-VR and EEG 

in the study of working memory. Evidence is provided that HMD-VR is suitable for 

use both in combination with EEG, and in the study of working memory processes. 

HS-HMD-VR has been successfully combined with EEG recording measures in two 

working memory tasks utilising different ERP and power spectral density measures 

of WML. WML was successfully manipulated within the arithmetic task as evidenced 

by the behavioural and ERP results. Moreover, a distinction between passive and 

active navigation was found in the theta/alpha ratio within the spatial navigation task. 

Artifacts associated with the use of HMD-VR were successfully minimised using 

standard EEG preprocessing parameters. 

 

It is also found that HMD-VR does not inherently increase WML relative to other 

display methods across the systematic review and in a comparison of WML between 

HS-HMD-VR and DB-VR in a maze task. The finding that HMD-VR does not 

introduce unwanted extraneous load means the advantages of the immersive 
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display, such as removing external distractions and allowing users to focus on a 

presented task, can be applied in both research settings and within real-world 

applications. Whilst cybersickness was found to be a problem for some individuals, it 

did not prevent the successful completion of the experiments by the majority of 

participants, and methods for reducing the impact of cybersickness in future 

research have now been are identified. Ultimately, this thesis concludes that HMD-

VR is a useful tool for neuroscience and working memory based research, and 

should be further explored to identify how to best take advantage of the display 

method.   
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Appendices  

Appendix 1) Participant Information Sheet 

Participant Information Sheet 
 

Project title  Non-invasive skin surface monitoring of brain and heart activity using 
integrated mobile systems and virtual reality/augmented reality. 

Principal 
investigator  

Name: Dr Aziz Asghar 
  
Email address: aziz.asghar@hyms.ac.uk 
  
Contact telephone number: 01482 464150 

Student 
investigators 
 

Name: Mr Adam Durnin and Mr Matthew Barras 
  
Email addresses: hyad28@hyms.ac.uk, m.r.barras@2014.hull.ac.uk 
  
Contact telephone number: 01482 462109 or 01482 462079 

 

What is the purpose of this project?  

The purpose of this project is to conveniently and safely record the electrical activity of the 
brain (brain waves or electroencephalogram, EEG), heart (electrocardiogram, ECG), eyes 
(electrooculogram, EOG) or muscles (electromyogram, EMG) by placing sensors called 
electrodes onto the skin surface and using our developed mobile monitoring equipment. 
We would like to use the mobile monitor systems in healthy participants who are lying 
down, sitting, standing and walking and compare the results with standard monitoring 
equipment. Moreover, we may non-invasively measure your skin conductivity (galvanic 
skin response), temperature and humidity, your pulse oximetry, and use eye-tracking and 
positional tracking (3D acceleration). We are also interested in studying how the body 
responds to hearing sounds and seeing images such as still or moving pictures. You may be 
asked to listen to various sounds and/or look at images during different types of 
movement (lying down, sitting and walking). Sounds will be presented via speaker or 
headphones. The level of sound volume will be adjusted so that it is comfortable for you. 
You may be asked to view visually presented information on a screen such as on a smart 
phone, PC monitor or head-mounted virtual reality or augmented reality headsets. You 
may also be asked to complete various questionnaires. The investigators will explain in 
advance what the study will involve. Please do ask the investigators if you have any 
questions or concerns. 

 

Why have I been chosen?  

We are looking for 18-55 year old healthy participants. You have been sent this 
information because we believe you might fit these requirements. 

 
 
 
 
 

https://mail.hull.ac.uk/owa/redir.aspx?C=Qsqe9MQjtRUwAfUF_Pue24Du-UM83a51lIS1cEQOIm5wEwP2UVTWCA..&URL=mailto%3aaziz.asghar%40hyms.ac.uk
https://mail.hull.ac.uk/owa/redir.aspx?C=zG6ABXqdDv0euygs_Xfpd0h6654xIi6W9mrnzsZXyCBwEwP2UVTWCA..&URL=mailto%3ahyad28%40hyms.ac.uk
mailto:m.r.barras@2014.hull.ac.uk
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What happens if I volunteer to take part in this project?  

First, it is up to you to decide whether or not to take part. If you decide to take part you 
will be given this Participant Information Sheet to keep and asked to complete the 
attached Participant Consent Form. You should give the Participant Consent Form to the 
investigator at the earliest opportunity. You will also have the opportunity to ask any 
questions you may have about the project. If you decide to take part you are still free to 
withdraw at any time and without needing to give a reason. 
 

IMPORTANT 
THIS STUDY WILL NOT CLINICALLY EVALUATE ANY INDIVIDUAL PARTICIPANT’S BRAIN, 
HEART, EYE OR MUSCLE FUNCTION. THE STUDY INVESTIGATORS ARE NOT QUALIFIED TO 
CLINICALLY INTERPRET THE SIGNALS RECORDED BY THE MONITORS. SHOULD THE 
INVESTIGATORS NOTICE A FINDING WHICH MAY BE OF CONCERN THE PARTICIPANT’S UK 
GENERAL PRACTITIONER WILL BE INFORMED OF THE FINDING. IF YOU PREFER US NOT TO 
CONTACT YOUR UK GENERAL PRACTITIONER, OR YOU ARE NOT REGISTERED WITH A UK 
GENERAL PRACTITIONER, THEN YOU WILL NOT BE ABLE TO PROCEED IN TAKING PART IN 
THIS STUDY. NO DIAGNOSTIC OR CLINICIAL ADVICE WILL BE OFFERED BY THE 
INVESTIGATORS. 

 

What will I have to do?  

You will be asked to attend a testing session held in our laboratory at the Loxley Building, 
University of Hull. Please bring and wear comfortable clothing, and do not use any product 
in your hair in the morning prior to the experiment. On arrival you will be met by the 
investigator who will brief you on the testing procedures and answer any questions or 
concerns that you might have. After signing a Participant Consent Form, the investigator 
will ask you to complete a questionnaire requesting some information on your present 
state of health. You will be asked to perform a series of tasks including lying down, sitting, 
standing and walking while wearing the monitoring equipment. For brain activity 
monitoring an EEG cap and/or cup electrodes will be placed onto the head, and for the 
heart ECG monitoring sticky pads are placed on the chest. You may be asked to listen to 
sounds, look at still or moving images, or respond to tasks presented on a screen including 
in virtual reality and augmented reality environments. We may also attach a pulse 
oximetry monitor onto one finger (monitors blood oxygen levels), monitor skin surface 
temperature, humidity and skin conduction and your level of physical activity may be 
recorded via gyroscopes/accelerometers. 
 
After you have completed the tests, the investigator will give you a debrief sheet 
explaining the nature of the research, how you can find out about the results, and how you 
can withdraw your data if you wish. Water will be available for you to drink, although you 
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will not be able to drink during the time you are performing the testing. It is estimated that 
the total time to complete this study will be approximately 90 minutes. Shower facilities 
are available if required. 

 

Will I receive any financial reward or travel expenses for taking part?  

No. 

 

Are there any other benefits of taking part?  

No. 

 

Will participation involve any physical discomfort or harm?  

Sticky pads or electrode gel are routinely used in clinical and research environments and 
are generally very well tolerated by participants. 
 
There is a possible risk of skin reactions to the adhesive in the sticky pads or from the 
electrode gel. In the unlikely event of this occurring we can try to use sticky pads/gel from 
a different supplier. 
 
There is a possibility that that you may experience nausea/motion sickness when viewing 
images presented to you on a screen. These symptoms can particularly occur if you are 
wearing virtual reality or augmented reality headsets. Should you experience 
nausea/motion sickness please let the researcher know and your participation in the study 
will be stopped. 
 
The device/system we intend to use has been locally independently safety assessed by a 
colleague in the School of Engineering, University of Hull. 
 

 

Will I have to provide any bodily samples (e.g. blood or saliva)?  

No. 

 

Will participation involve any embarrassment or other psychological stress?  

For the ECG electrode placement access to the chest area will be required while this is 
achieved. 

 

What will happen once I have completed all that is asked of me?  

Your data will be anonymised and added to the group results in readiness for a research 
publication in a peer reviewed journal. 

 

How will my taking part in this project be kept confidential?  

You will be allocated an anonymous participant code that will always be used to identify 
any data that you provide. Your name or other personal details will not be associated with 
your data. Your consent form and personal details will be stored separately from your 
data. All paper records will be stored in a locked filing cabinet, accessible only to the 
research team, and all electronic information will be stored on a password-protected 
computer and password-protected USB memory stick and encrypted SD card. All 
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information and data gathered during this research will be stored in line with the 1998 
Data Protection Act and will be destroyed 10 years following the conclusion of the study. 
During that time the data may be used by members of the research team only for purposes 
appropriate to the research question, but at no point will your personal information or 
data be revealed. 
 

 

How will my data be used?  

Ultimately your data will be included within the group results in readiness for a research 
publication in a peer reviewed journal, having been anonymised first. 

 

Who has reviewed this study?  

This project has undergone ethical scrutiny and all procedures have been risk assessed and 
approved by the Hull York Medical School Ethics Committee. 

 

What if I am unhappy during my participation in the project?  

You are free to withdraw from the project at any time. During the study itself, if you decide 
that you do not wish to take any further part then please inform the researcher and they 
will facilitate your withdrawal. You do not have to give a reason for your withdrawal. Any 
personal information or data that you have provided (both paper and electronic) will be 
destroyed or deleted as soon as possible after your withdrawal. After you have completed 
the research you can still withdraw your personal information and data by contacting the 
researcher. If you are concerned that regulations are being infringed, or that your interests 
are otherwise being ignored, neglected or denied, you should inform the Principal 
Investigator, Dr Aziz Asghar, Email: aziz.asghar@hyms.ac.uk, Telephone: 01482 464150. 

 

How do I take part?  

Contact the investigator using the contact details given below. He or she will answer any 
queries and explain how you can get involved.  
 
Name: Mr Adam Durnin and Mr Matthew Barras 
  
Email addresses: hyad28@hyms.ac.uk, m.r.barras@2014.hull.ac.uk 
  
Contact telephone number: 01482 462109 or 01482 462079 

  

mailto:aziz.asghar@hyms.ac.uk


340 
 

Appendix 2) Participant Consent Form 

 

Appendix 3) Participant Debrief Form 

Participant Debrief Form 
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Project title  
Non-invasive skin surface monitoring of brain and heart activity using 

integrated mobile systems and virtual reality/augmented reality. 

Principal 
investigator  

Name: Dr Aziz Asghar 
  
Email address: aziz.asghar@hyms.ac.uk 
  
Contact telephone number: 01482 464150 

Student 
investigators 

 

Name: Mr Adam Durnin and Mr Matthew Barras 
  
Email addresses: hyad28@hyms.ac.uk, m.r.barras@2014.hull.ac.uk 
  
Contact telephone number: 01482 462109 or 01482 462079 

 

What was the purpose of the project?  

Our general aim is to determine whether quality datasets can be captured using 
ambulatory recording systems when presenting cognitive tasks on various screens 
including within virtual reality (VR) and augmented reality (AR). 

 

How will I find out about the results?  

The results will be grouped with those of other study participants and the data published in 
a peer reviewed journal. 

 

Will I receive any individual feedback?  

Feedback to individual participants will not be available as the data will be considered in a 
group context. 

 

What will happen to the information I have provided?  

Your data will be stored safely, will remain confidential, and will be destroyed after 10 
years. The data may be shared amongst different researchers but only for the purposes of 
research, but in all cases we will ensure appropriate confidentiality. 

 

How will the results be disseminated?  

The results may be published in a scientific journal or presented at a conference. The data 
will be generalised, so that your individual data and personal information will not be 
identifiable. 

https://mail.hull.ac.uk/owa/redir.aspx?C=Qsqe9MQjtRUwAfUF_Pue24Du-UM83a51lIS1cEQOIm5wEwP2UVTWCA..&URL=mailto%3aaziz.asghar%40hyms.ac.uk
https://mail.hull.ac.uk/owa/redir.aspx?C=zG6ABXqdDv0euygs_Xfpd0h6654xIi6W9mrnzsZXyCBwEwP2UVTWCA..&URL=mailto%3ahyad28%40hyms.ac.uk
mailto:m.r.barras@2014.hull.ac.uk
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Have I been deceived in any way during the project?  

No. 

 

If I change my mind and wish to withdraw the information I have provided, how do I 
do this?  

Please send an email to aziz.asghar@hyms.ac.uk or a letter (Dr Aziz Asghar) stating that 
you would like to withdraw your personal information and data from the study. You do not 
need to give a reason for withdrawing. 
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Appendix 4) Health Questionnaire 

Health Questionnaire 

The information in this document will be treated as strictly confidential 

Name: ....................................................................................................................... 
 
Date of Birth: ............................... Age: .............. Sex: ......................... 
 
Blood pressure: ……………… Resting Heart Rate: ………………….  
 
Height (cm): ……….....  Weight (Kg): ………....  
 
Occupation: ........................................ 
 
Please answer the following questions by putting a circle round the appropriate response or 
filling in the blank. 

 
 1. Do you have, or have you ever had a: 
 

Neurological condition e.g. epilepsy Yes/No 
 Heart complaint/ heart disease Yes/No 
 Heart pacemaker Yes/No 
 Neuro-stimulator Yes/No 
 
If you answered Yes, please do not participate further in this study. 
 
 
2. How would you describe your present level of exercise activity? 

 Sedentary / Moderately active / Active / Highly active 
 
3. Please outline a typical weeks exercise activity 
 
……………………………………………………………………………………............... 
…………………………………………………………………………………................... 
……………………………………………………………………………………................ 
 
 4. How would you describe your present level of lifestyle activity? 
 Sedentary / Moderately active / Active / Highly active 
 
 5. How would you describe your present level of fitness? 
 Unfit / Moderately fit / Trained / Highly trained 
 
 6. Smoking Habits Are you currently a smoker?   Yes / No 
    How many cigarettes do you smoke …….. per day 
    Are you a previous smoker?   Yes / No 
    How long is it since you stopped?  ......... years 
    How many did you smoke?  ......... per day 
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 7. Do you drink alcohol?                               Yes / No 
 
 If you answered Yes and you are male do you drink more than 28 units a 
week? 
          Yes / No 
 
 If you answered Yes and you are female do you drink more than 21 units a 
week? 
          Yes / No  

 8.   Have you had to consult your doctor within the last six months?     Yes / 
No 

If you answered Yes, Have you been advised not to exercise? 
            Yes / No  

 
 9. Are you presently taking any form of medication?      Yes / 
No 

If you answered Yes, Have you been advised not to exercise? 
            Yes / No  

 
10. Do you currently have any form of muscle or joint injury?       Yes / 
No  

If you answered Yes, please give details…………………………………. 
………………………………………………………………………………… 
……………………………………………………………………………........ 

    
11.  Are you suffering from any known serious infection? Yes / No 
 
12. As far as you are aware, is there anything that might prevent you from 
 successfully completing the tests that have been outlined to you? Yes / No. 

If you answered Yes, please give details…………………………………. 
………………………………………………………………………………… 

……….................……………………………………………………………………. 

 

PLEASE SIGN AND DATE  

 
Participant’s Signature: ……………………………………………
 Date………………… 

 
Investigator’s Signature:………………………………………………..
 Date…………………  
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Appendix 5) Arithmetic Experiment Preliminary Questionnaire 
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Appendix 6) Paper Version of the Simulator Sickness Questionnaire 
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Appendix 7) Preliminary Questionnaire for the Spatial Navigation  

Experiment  

Preliminary Questionnaire 

1. Do you have any experience using virtual reality headsets (e.g. Oculus Rift, 
PSVR, Google Cardboard)? If so, please list the headsets you have used: 

………………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………… 

2. If you have answered yes to question 1, please circle the amount of time you 
have used VR for:  

Never < 1 Hour 1 Hour to 10 Hours 10 to 24 Hours > 24 Hours 

3. Please circle your preferences in the use of hands in the following activities or 
objects: 

Writing Always 
Right 

Usually 
Right 

Both 
Equally  

Usually 
Left  

Always 
Left 

Throwing Always 
Right 

Usually 
Right 

Both 
Equally  

Usually 
Left 

Always 
Left 

Toothbrush Always 
Right 

Usually 
Right 

Both 
Equally  

Usually 
Left 

Always 
Left 

Spoon Always 
Right 

Usually 
Right 

Both 
Equally  

Usually 
Left 

Always 
Left 

4. Other than VR, do you play video games? If so, how many hours per week on 
average do you play: 

Never < 1 Hour 1 Hour to 7 Hours 7 to 14 Hours > 14 Hours 

5. Please circle the devices you use to play games on 
 
Console (Xbox, 
PlayStation, Switch) 

PC Mobile Other (please write below) 

6. Of this, how much of this is played using a gamepad/controller? For example, 
an Xbox controller. 
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Never 1-20% 20-40% 40-60% 60-80% 80-100% 

7. Please list the genre of games you mostly play (first person shooter, racing, 
etc.:) 

…………………………………………………………………………………………………………………………….. 

…………………………………………………………………………………………………………………………… 

 


