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Abstract: This article presents an optimal tracking controller retrofitted with a nonlinear 
adaptive integral compensator, specifically designed to ensure robust and accurate position-
ing of Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles (UAVs) that utilize 
contra-rotating motorized propellers for differential thrust generation. The baseline position 
controller is synthesized by employing a fixed-gain Linear Quadratic Integral (LQI) tracking 
controller that stabilizes position by tracking both state variations and pitch-axis tracking 
error integral, which adjusts the voltage to control each coaxial propeller’s speed accurately. 
Additionally, the baseline tracking control law is supplemented with a rate-varying integral 
compensator. It operates as a nonlinear scaling function of the tracking-error velocity and 
the braking acceleration to enhance the accuracy of reference tracking without sacrificing its 
robustness against exogenous disruptions. The controller’s performance is analyzed by per-
forming experiments on a tailored hardware-in-the-loop aero-pendulum testbed, which is 
representative of VTOL UAV dynamics. Experimental results demonstrate significant im-
provements over the nominal LQI tracking controller, achieving 17.9%, 61.6%, 83.4%, 43.7%, 
35.8%, and 6.8% enhancement in root mean squared error, settling time, overshoot during 
start-up, overshoot under impulsive disturbance, disturbance recovery time, and control 
energy expenditure, respectively, underscoring the controller’s effectiveness for potential 
UAV and drone applications under exogenous disturbances. 

Keywords: VTOL UAVs; position tracking; linear quadratic integral control; rate-varying integral 
compensator; hyperbolic function; hardware-in-the-loop validation 
 

1. Introduction 
The Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) is a flight 

dynamic system that is utilized in various aerospace applications because of its versatility 
and ability to hover, take off, and land vertically [1,2]. Their lack of dependence on a dedi-
cated runway provides them with the necessary operational flexibility. Some of the key ap-
plications of VTOL UAVs include aerial videography, surveillance for security, search and 
rescue, precision agriculture to optimize farming practices, environmental and infrastruc-
ture inspection, and package delivery [3,4]. The aerodynamically driven pendulum systems 
imitate the flight dynamics of a VTOL rotorcraft. They are thus preferred as ideal candidates 
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to validate the VTOL control strategies in a laboratory environment [5]. The aero-pendulum 
comprises an apparatus rod with a motorized propellor at one end to generate the thrust for 
take-off while the other end is pivoted about a rotational encoder to measure the system’s 
pitch angle [6]. The motorized propeller attached to the rod’s tail generates the thrust that is 
dynamically adjusted to regulate the rotorcraft’s pitch. The tail elevator also aids in contin-
uously reorienting the VTOL UAV while tracking time-varying reference trajectories or 
compensating for external perturbations during the flight mode [7]. 

The utilization of the coaxial rotor assembly has garnered a lot of attention in recent 
VTOL UAV system designs [8]. Where two motorized propellers are commissioned on 
the rod’s tail such that one rotates in the opposite direction to the other [9]. Consequently, 
both propellers generate torques that are equal in magnitude but act in opposite direc-
tions, canceling each other out. The differential thrust thus generated by the contra-rotat-
ing propellers effectively eliminates the heeling moment caused by the torque created in 
a single propeller system [10]. This arrangement can continue to self-stabilize the system 
in the event of a motor failure, making it far less likely to cause an accident. 

1.1. Related Work 

Owing to their under-actuated configuration, the VTOL aero-pendulum systems re-
quire agile control efforts to regulate their posture during take-off and landing and to track 
reference trajectories during flight [11]. This control problem becomes significantly harder 
when the system encounters exogenous disturbances, parametric uncertainties, severe 
weather patterns, or abrupt load changes [12]. Numerous VTOL control methodologies are 
suggested in the scientific literature to deal with such circumstances [13,14]. The pervasive 
Proportional–Integral–Derivative (PID) controllers are well known for their reliable control 
yield; however, their design simplicity limits their performance against exogenous disturb-
ances [15]. Without auxiliary augmentations, they lack the flexibility to effectively address 
the VTOL’s intrinsic nonlinear dynamics [6]. As compared to conventional PID controllers, 
the Fractional Order PID (FOPID) controller design provides increased versatility by incor-
porating fractional derivative and integral operators, which improves the system’s robust-
ness against random disturbances and environmental indeterminacies [16]. However, opti-
mizing the FOPID controllers is more complex and computationally intensive due to the 
fractional parameters [17]. The model predictive controllers can effectively handle the con-
straints posed by the complex dynamics of the VTOL systems; however, their high real-time 
processing requirements make them computationally intensive [18]. 

The fuzzy logic controllers offer an intuitive design, and their behavior can be cus-
tomized by reconfiguring the linguistic rules and the associated membership functions, 
which supplements the controller’s adaptability [19]. However, the fine-tuning of the 
rules and membership functions is a labor-intensive task that requires expert knowledge 
[20]. The neural network-based controllers can self-learn the dynamics of the VTOL aero-
pendulum and self-tune the critical controller parameters via training, providing opti-
mum control decisions as the operating conditions vary [21]. The training process auton-
omously designs the compensator, which does not necessitate manual parameter tuning. 
However, neural controller synthesis requires large sets of training data, which makes it 
computationally expensive [22]. The RL controllers do not require an accurate mathemat-
ical model of the aero-pendulum. Instead, they can learn and adapt to state variations 
through continuous interaction with the environment, making them suitable for aero-dy-
namics systems [23]. However, this technique has a data-intensive nature and may lead 
to unsafe actions during the learning phase. 

Nonlinear controllers are formulated to address the intrinsic nonlinearities of aero-
dynamic systems, offering enhanced robustness across a broader range of operating con-
ditions, which reduces the need for linearization [24,25]. However, they typically require 
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a detailed and accurate mathematical model, which can be challenging to derive [26]. Ad-
ditionally, the model derivation and identification via complex mathematical tools tends 
to increase the algorithm’s computational burden [27]. The backstepping control is re-
nowned for its good tracking performance [28]. However, they have a complex design 
that requires extensive tuning and are highly sensitive to measurement noise [29]. The 
Sliding Mode Control scheme is extensively utilized to robustly reject the perturbations 
and uncertainties in nonlinear systems; however, the high-frequency switching induces 
chattering in the control signal, which affects the actuator’s health [30]. 

The Linear Quadratic Regulator (LQR) is highly favored for optimal control of under-
actuated mechatronic systems by taking into account the state dynamics and control pro-
file of a linearized VTOL system [31]. However, its dependence on the dynamics of VTOL 
UAVs limits its resilience against the unmodeled nonlinear characteristics and, thus, ren-
ders it sensitive to external perturbations and modeling inaccuracies [32]. Additionally, 
the nominal LQR structure is also ineffective in tracking control applications [33]. Gener-
ally, an integrator operating on the state error in pitch angle (connected in unity feedback) 
is introduced in the LQR law for asymptotic tracking of time-varying reference positions 
[34]. The linear quadratic integral (LQI) trackers offer faster and smoother transient re-
sponses by leveraging full-state feedback, which naturally addresses these couplings. Dy-
namic output controllers, while theoretically capable, often involve intricate tuning pro-
cedures that increase design complexity, especially for nonlinear or time-varying systems 
like VTOL [35]. Output-based controllers, particularly static ones, rely on a subset of out-
put states and may struggle to handle inter-variable dependencies efficiently [36]. They 
exhibit limited control authority over unmeasured dynamics, which can degrade transient 
performance. Despite the efficacy of the LQI trackers, concurrently achieving accurate ref-
erence tracking and robust disturbance rejection in VTOL UAVs during flight mode is a 
challenge for scientists. 

Finally, handling actuator saturation is a critical factor in controlling VTOL systems. 
The study in [37] presents a delay-kernel-dependent approach to improve control perfor-
mance under actuator saturation and mixed delays, guaranteeing better system stabiliza-
tion. Similarly, the study in [38] uses interval type-2 fuzzy logic to provide a distributed-
delay-dependent framework for stabilizing systems with stochastic delays as well as ac-
tuator saturation. Despite their efficacies, the methodologies discussed above are not well-
suited to address the complex coupling issues associated with the VTOL systems. 

1.2. Salient Contributions 

The salient contribution of this article is to devise an optimal position-tracking con-
troller retrofitted with a nonlinear adaptive integral compensator that ensures robust 
tracking simultaneous with strong disturbance rejection in VTOL systems. The ubiquitous 
LQI compensator is used as the baseline tracking controller for the aero-pendulum-type 
VTOL systems with coaxial contra-rotating propellers. The asymptotic stability analysis 
of the baseline LQI tracking controller is also discussed subsequently. The prescribed con-
trol scheme is realized by replacing the integral portion of the LQI tracker with a nonlinear 
rate-varying integral (RVI) compensator instead, which enhances the system’s reference-
tracking accuracy as well as its adaptability against exogenous perturbations. This article’s 
innovative contributions are postulated below: 

1. Augmenting the integral portion in the baseline LQI tracking control law with an RVI 
compensator to further robustify the controller’s performance. A nonlinear hyper-
bolic function of the system’s tracking-error velocity as well as its braking accelera-
tion is used to formulate the RVI compensator. 
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2. Verification of the proposed compensator design by conducting hardware-in-the-
loop (HIL) experiments on a custom-designed laboratory-scale aero-pendulum plat-
form with contra-rotating propellers. 
The proposed modifications yield a robust and accurate position controller that offers 

excellent tracking and disturbance rejection capabilities. Owing to its adaptability, the 
proposed controller efficiently responds to both small and large variations in the reference 
positions despite the VTOL system’s many inherent nonidealities. Finally, the RVI com-
pensator enables the tracking control law to quickly revert the direction of the state re-
sponse without contributing large oscillations and overshoots (or undershoots). The pro-
posed enhancements to the LQI compensator are specifically tailored for robust tracking 
and disturbance rejection in VTOL UAV systems. 

In contrast to the adaptive controller design proposed in [6] that relies on 49 pre-
calibrated fuzzy rules for online adaptation of a single parameter, the proposed approach 
employs a hyperbolic scaling function that dynamically adapts the integral term in the 
control law to tracking error velocity and braking acceleration to provide a more flexible 
and robust control effort. In comparison to the fuzzy-adaptive control law, this scheme is 
computationally economical. Additionally, the RVI’s incorporation into the compensator 
design increases the controller’s design flexibility, which helps reduce oscillations and 
overshoots more efficiently than the fuzzy-adaptive PID framework suggested in [6], un-
derscoring the enhanced transient performance and adaptability of the proposed scheme. 

The design and validation of an LQI tracking controller with an RVI compensator for 
accurate positioning and robust tracking control of an aero-pendulum-based VTOL sys-
tem has not been attempted in the scientific literature available. Hence, this article explores 
this innovative idea. 

The remainder of the paper is organized into five sections: The system’s mathemati-
cal model and the baseline state space tracking controller are derived in Section 2. The 
control law is formulated in Section 3. The offline parameter-tuning procedure is dis-
cussed in Section 4. The comparative analysis of the designed controllers via customized 
hardware experiments is performed in Section 5. Finally, Section 6 concludes the paper. 

2. System Modeling and Control 
The derivation of the aero-pendulum’s state space model, as well as the constitution of 

its closed-loop optimal tracking control scheme, is presented in the following section. The 
schematic representing the aero-pendulum’s free-body diagram is illustrated in Figure 1 [6]. 
The aero-pendulum system considered in this work comprises two coaxial motorized pro-
pellers commissioned on the tail of the pendulum’s rod, as shown in Figure 2 [39]. 
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Figure 1. Free-body diagram of the aero-pendulum positioning system [6]. 

 

Figure 2. Coaxial motors with propellers [6]. 

2.1. Aero-Pendulum Modeling 

The derivation of the transfer function and its state-space model of the aero-pendu-
lum-type VTOL system is presented below [39]. Equation (1) describes the torques oper-
ating on the rigid body system: 𝜏௧ − 𝑚ଵ𝑔 cos൫𝜃(𝑡)൯ 𝑙ଵ + 𝑚ଶ𝑔 cos൫𝜃(𝑡)൯ 𝑙ଶ − 12 𝑚𝑔 cos൫𝜃(𝑡)൯ 𝑙 = 0 (1)

where 𝜏௧ is the torque acting on the pendulum, 𝑚ଵ is the pendulum arm’s mass, 𝑔 is 
the acceleration due to gravity, 𝜃 is the pendulum’s angular position with respect to the 
vertical axis (as shown in Figure 1), 𝑙ଵ is the distance between the propellers and the pivot 
point, 𝑚ଶ is the pendulum’s counter mass, 𝑙ଶ is the distance between the counter mass 
and the pivot point, 𝑚 is the pendulum’s total mass, and 𝑙 is the pendulum arm’s total 
length. The propeller generates a thrust force (𝐹௧), which acts perpendicular to the rotor 
assembly. The resultant torque (𝜏௧) is given by Equation (2) [40] 𝜏௧ = 𝐹௧𝑙ଵ = 𝐾௧𝐼(𝑡) (2)

where 𝐾௧ is the current-torque constant and 𝐼 represents the motor’s current. The pro-
peller’s torque, as well as the counter mass’s gravitational torque, act in the same direc-
tion, reinforcing one another. The thrust is continually varied until the pendulum stabi-
lizes at the desired reference position. The torque applied to the system at equilibrium is 
determined by Equation (3) [40]: 𝐾௧𝐼(𝑡) − 𝑚ଵ𝑔𝑙ଵ + 𝑚ଶ𝑔𝑙ଶ − 12 𝑚𝑔𝑙 = 0 (3)

The second-order differential equation describing the pendulum’s rotational motion 
in relation to the thrust torque is given by Equation (4) [41]: 𝐽𝜃ሷ(𝑡) + 𝐵𝜃ሶ(𝑡) + 𝐾𝜃(𝑡) = 𝐾௧𝐼(𝑡) (4)

where 𝐽, 𝐵, and 𝐾 represent the pendulum’s moment of inertia along the pitch axis, its 
viscous-damping coefficient, and its stiffness coefficient, respectively. A composite body’s 
moment of inertia with 𝑞 point-masses is given by Equation (5): 

𝐽 =  𝑚𝑟ଶ
ୀଵ   (5)
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where 𝑚  represents the body’s mass and 𝑟  represents the distance between the 𝑘௧ 
object and the axis of rotation. The transfer characteristics relating to the pendulum’s an-
gular position with its motor’s input current are expressed in Equation (6): 𝜃(𝑠)𝐼(𝑠) = 𝐾௧𝐽𝑠ଶ + 𝐵𝐽 𝑠 + 𝐾𝐽  (6)

The differential equation governing the motor dynamics is presented as follows [37]: 𝐿𝐼ሶ(𝑡) + 𝑅𝐼(𝑡) = 𝑉(𝑡) (7)

where 𝐿 is the motor’s internal inductance, 𝑅 is the motor’s resistance, and 𝑉 is the 
motor’s control input voltage. The transfer function of the DC motor is presented as 
shown in Equation (8): 𝐼(𝑠)𝑉(𝑠) = 1𝐿𝑠 + 𝑅𝐿  (8)

By combining Equations (6) and (8), the system’s transfer function is presented as 
shown below: 𝜃(𝑠)𝑉(𝑠) = 𝑏𝑠ଷ + 𝑎ଵ𝑠ଶ + 𝑎ଶ𝑠 + 𝑎ଷ (9)

where  𝑎ଵ =  + ோ , 𝑎ଶ =  + ோ , 𝑎ଷ = ோ , 𝑏 =  

Table 1 describes the aforementioned modeling parameters. The expression in Equa-
tion (6) is transformed into the time domain, as shown in Equation (10). 𝜃ሸ(𝑡) + 𝑎ଵ𝜃ሷ(𝑡) + 𝑎ଶ𝜃ሶ(𝑡) + 𝑎ଷ𝜃(𝑡) = 𝑏𝑉(𝑡) (10)

As discussed earlier, the baseline control law is augmented with an auxiliary position 
error integral variable 𝜀(𝑡), expressed in Equation (11), to optimize the reference-tracking 
accuracy and robustness against bounded perturbations [42]: 𝜀(𝑡) = න 𝑒(𝑡) 𝑑𝑡  (11)

such that, 𝑒(𝑡) = 𝜃(𝑡) − 𝜃(𝑡). 
Where 𝑒(𝑡) computes the error between the system’s actual position 𝜃(𝑡) and ref-

erence position 𝑟(𝑡). The differential equations formulated above are used to derive the 
state-space model of the system. Equation (12) represents the mathematical form of a lin-
ear system: 𝑥ሶ(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡) + 𝑭𝑟(𝑡), 𝑦(𝑡) = 𝑪𝑥(𝑡) + 𝑫𝑢(𝑡) (12)

where 𝑥(𝑡), 𝑦(𝑡), 𝑢(𝑡), and 𝑟(𝑡) are the system’s sate vector, output vector, control in-
put, and the reference position input, respectively. The matrices 𝑨, 𝑩, 𝑭, 𝑪, and 𝑫 de-
note the system matrix, control input matrix, reference input matrix, output matrix, and 
feed-forward matrix, respectively. The system’s state vector as well as its control input 
vector are identified in Equation (13). 𝑥(𝑡) = ሾ𝜃(𝑡) 𝜃ሶ(𝑡) 𝜃ሷ(𝑡) 𝜀(𝑡)ሿ், 𝑢(𝑡) = 𝑉(𝑡) (13)

The aero-pendulum VTOL system’s state-space model is expressed in Equation (14) 
[10]. 
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𝑨 = ൦ 0 1 0  00 0 1  0−𝑎ଷ−1 −𝑎ଶ0 −𝑎ଵ 00  0 ൪ , 𝑩 = 00𝑏0 , 𝑭 = 0001 , 𝑪 = 1 0 0 00 1 0 000 00 1 00 1 , 𝑫 = 0000  (14)

The position variables 𝜃(𝑡), 𝜃ሶ(𝑡), 𝜃ሷ(𝑡), and the error-integral variable 𝜀(𝑡) are the 
output variables of the system. The model parameters of the aero-pendulum testbed used 
in this research work are given in Table 1 [16]. 

Table 1. Model parameters of the experimental aero-pendulum setup [6]. 

Parameters Description Value Units 𝐾௧ Current-torque constant 0.029 Nm/V 𝐽 Moment of inertia 0.058 kgm2 𝐵 Viscous-damping coefficient 0.041 Nms/rad 𝐾 Stiffness coefficient 0.320 kgm2/s2 𝑅  Motor resistance 3.0 Ω 𝐿 Motor inductance 0.06 H 

2.2. Baseline LQI Tracker Formulation 

This section formulates the baseline LQI tracker for the accurate position of the aero-
pendulum VTOL system. The LQI tracker is a full-state feedback tracking control proce-
dure that optimizes the system’s reference-tracking accuracy and effectively dampens the 
overshoots (and undershoots) by retrofitting the conventional LQR law with an error-in-
tegral state variable [43]. The first step is to minimize a Quadratic Performance Index 
(QPI), expressed in Equation (15), of the control input and state variables [44]. 𝐽 = 12 න (𝑥(𝑡)்𝑸𝑥(𝑡) + 𝑢(𝑡)்𝑹𝑢(𝑡))ஶ

 𝑑𝑡 (15)

where 𝑸 ∈ ℝ4×4 is a preset positive semi-definite state-weighting matrix and 𝑹 ∈ ℝ is a 
preset positive definite control-weighting matrix. The aforementioned weighting matrices 
penalize the changes in the control input and the states. The 𝑸 and 𝑹 matrices used for 
the proposed VTOL system are represented as shown in Equation (16). 𝑸 = diag(𝑞ఏ 𝑞ఏሶ 𝑞ఏሷ 𝑞க), 𝑹 = 𝑝 (16)

The coefficients of these matrices are selected such that 𝑞௫ ≥ 0 and 𝑝 > 0. This con-
dition is a necessary requirement to yield an asymptotically stable control law. The offline 
tuning procedure used to optimize these coefficients is discussed in Section 4. Once the 
aforementioned weighting matrices are optimized offline, the Hamilton–Jacobi–Bellman 
(HJB) equations are used to derive the optimal tracking control law. Their solution deliv-
ers the Algebraic Riccati Equation (ARE) given in Equation (17) [44]: 𝑨்𝑷 + 𝑷𝑨 − 𝑷𝑩𝑹ିଵ𝑩்𝑷 + 𝑸 = 0 (17)

where 𝑷 ∈ ℝ4×4 is the solution of the ARE. It is a positive definite symmetric matrix. The 
optimal gain vector 𝑲 is evaluated as mentioned in Equation (18) [44]: 𝑲 = 𝑹ିଵ𝑩்𝑷 (18)

where 𝑲 = ሾ𝑘ఏ 𝑘ఏሶ 𝑘ఏሷ 𝑘கሿ. The nominal LQI control law is indicated in Equation (19). 𝑢(𝑡) = −𝑲𝑥(𝑡)  (19)

The LQI tracker’s asymptotic convergence is investigated via the following Lya-
punov function [17]: 𝑍(𝑡) = 𝑥(𝑡)்𝑷𝑥(𝑡) > 0, for 𝑥(𝑡) ≠ 0 (20)
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Stability Proof: The first derivative of 𝑍(𝑡) is derived, as shown below. 𝑍ሶ(𝑡) = 2𝑥(𝑡)்𝑷𝑥ሶ(𝑡) = 2𝑥(𝑡)்𝑷(𝑨 − 𝑩𝑲)𝑥(𝑡) = 2𝑥(𝑡)்𝑷(𝑨 − 𝑩𝑹ିଵ𝑩்𝑷)𝑥(𝑡) = 𝑥(𝑡)்(𝑷𝑨 + 𝑨்𝑷)𝑥(𝑡) − 2𝑥(𝑡)்(𝑷𝑩𝑹ିଵ𝑩்𝑷)𝑥(𝑡) 

(21)

By substituting Equation (17) in Equation (21), 𝑍ሶ(𝑡) is simplified as shown below. 𝑍ሶ(𝑡) = −𝑥(𝑡)்𝑸𝑥(𝑡) − 𝑥(𝑡)்(𝑷𝑩𝑹ିଵ𝑩்𝑷)𝑥(𝑡)  < 0 (22)

Hence, if 𝑹 = 𝑹் > 0  and 𝑸 = 𝑸் ≥ 0 , then 𝑍ሶ(𝑡)  is a negative-definite function. 
Thus, satisfying the above conditions can preserve the asymptotic stability of the designed 
LQI tracker. 

Figure 3 shows the block diagram of the LQI control approach. The voltage control 
signals provided by the LQI tracker are applied to the leading and the aft motors. To re-
alize the contra-rotating motion, the same magnitudes but opposite polarities of the volt-
age signals are applied to the leading and the aft motors, as shown in Figure 3. This ar-
rangement aids in nullifying the heeling moment generated otherwise. The actuators use 
the applied input voltage to produce appropriate current signals that rotate the motorized 
propellers, which eventually helps the aero-pendulum to track the reference position. 

 

Figure 3. Block diagram of the baseline LQI tracking control scheme. Red lines indicate the add-on 
to the conventional control scheme to highlight the novelty of the present work. 

3. Proposed Control Methodology 
This section documents the systematic formulation of a nonlinear LQI tracker to de-

liver robust tracking and disturbance rejection while addressing the nonidealities that ex-
ist in the aero-pendulum system, such as integrator wind-up, stiction, and overshoots 
caused by the rapid variations in the setpoint [45]. 

The proposed control scheme’s design strategy is discussed below. Consider the 
baseline LQI tracking control law expressed in Equation (19). 

The baseline control law 𝑢(𝑡) = −𝑲𝑥(𝑡) is expanded and rewritten as expressed in 
the following equation: 𝑢(𝑡) = −𝑲𝜽𝑥ఏ(𝑡) − 𝑘க𝜀(𝑡) (23)

where 𝑲𝜽 = ሾ𝑘ఏ 𝑘ఏሶ 𝑘ఏሷ ሿ and 𝑥ఏ(𝑡) = ሾ𝜃(𝑡) 𝜃ሶ(𝑡) 𝜃ሷ(𝑡)ሿ். From Equation (11), the fol-
lowing expression can be deduced: 𝜀ሶ(𝑡) = 𝑒(𝑡) (24)
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By using numerical differentiation, 𝜀(𝑡) − 𝜀(𝑡 − 𝑇)𝑇 = 𝑒(𝑡) (25)

where 𝑇 is the sampling interval. The above expression can also be written as the follow-
ing: 𝜀(𝑡) = 𝜀(𝑡 − 𝑇) + 𝑒(𝑡) 𝑇 (26)

The RVI scheme is realized by retrofitting the error-integral 𝜀(𝑡), expressed in Equa-
tion (26), with the following two auxiliary nonlinear adaptation blocks [45]: 

1. Velocity-driven integral modulator: To deal with the nonidealities (integral wind-up 
and stiction problems) inherent to the aero-pendulum system. 

2. Braking-acceleration compensator: To dampen the transient disturbances and over-
shoots while maintaining the tracking speed and accuracy of the aero-pendulum as 
per the changes in the braking acceleration of the reference trajectory. 
The augmentation of the pre-calibrated nonlinear adaptation blocks tends to increase 

the proposed control law’s adaptability and responsivity to nonlinear dynamics and ex-
ogenous disturbances while preserving the system’s control economy for a broad range 
of reference trajectories (multi-step, ramp, and sinusoidal). The following sub-sections 
present a step-by-step development of the aforementioned nonlinear adaptation blocks 
and their augmentation with the proposed control law. 

3.1. Velocity-Driven Integral Modulator 

The nominal LQI controller typically lacks robustness against step changes in the ref-
erence positions and, thus, inevitably exhibits large overshoots (or undershoots) due to 
the actuator saturation caused by the integral wind-up [45]. Additionally, the effects of 
stiction at the mechanical joint, as well as the actuator deadband, unavoidably lead to a 
delay in the tracking response for the ramp and sinusoidal reference trajectories. The large 
overshoots associated with the integral wind-up are most prominent under large step 
changes when the system is required to track and approach the new setpoint quickly, de-
spite the large step change. Hence, the occurrence of the overshoots is driven by the sys-
tem’s velocity 𝜃ሶ(𝑡). The error velocity of the aero-pendulum is expressed as follows: 𝑒ሶ(𝑡) = 𝜃ሶ(𝑡) − 𝜃ሶ(𝑡) (27)

For step changes in the reference, the variations in 𝑒ሶ(𝑡) are proportional to the vari-
ations in the system’s velocity 𝜃ሶ(𝑡). The aforementioned problem is thus addressed by 
augmenting the LQI tracker’s error-integral variable 𝜀(𝑡) with a bounded and even-sym-
metric nonlinear function driven by the system’s velocity error 𝑒ሶ(𝑡). The nonlinear func-
tion is designed via the following metarules [45]: 

1. The magnitude of the nonlinear factor is kept high (closer to unity) when 𝑒ሶ(𝑡) is low, 
which maintains the integral term in its normal form and allows it to yield nominal 
control action. 

2. The magnitude of the nonlinear factor is gradually made smaller (closer to zero) 
when 𝑒ሶ(𝑡) increases, which reduces the impact of the integral term and softens the 
integral control yield. 
This nonlinear factor iteratively multiplies with the entire cumulative integral, caus-

ing the integral to reset itself at high velocities (when the set point is changing abruptly) 
and minimizing overshoot caused by the integral windup. As per the aforementioned me-
tarules, a bounded and even-symmetric nonlinear algebraic function of the system’s ve-
locity error 𝑒ሶ(𝑡)  is required to formulate the nonlinear factor. Hence, a velocity error-
driven hyperbolic secant function (HSF) is used in this research. The expression of the 
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proposed error velocity-driven integral modulator (VDIM), constituted to attenuate the 
overshoots due to integral wind-up, is shown in Equation (28): 𝜀(𝑡) = (𝜀(𝑡 − 𝑇) + 𝑒(𝑡) 𝑇) 𝑚(𝑡) (28)

such that 𝑚(𝑡) = sech൫𝛼 𝑒ሶ ଶ(𝑡)൯  where sech(. )  denotes the HSF, and 𝛼  represents the 
HSF’s variation rate. The static friction inhibits the aero-pendulum’s reference tracking. 
Due to friction, the pendulum’s velocity 𝜃ሶ(𝑡) becomes negligible while the magnitude of 
velocity error 𝑒ሶ(𝑡) enlarges. This phenomenon inevitably reduces the magnitude of the 
nonlinear factor, 𝑚(𝑡), which in turn yields a reasonably softer integral control action. 
This arrangement renders the nonlinear factor ineffective and leads to large overshoots. 
The waveform of the VDIM is shown in Figure 4. 

The variance of the nonlinear factor depends on 𝛼. A small-fixed setting of 𝛼 ren-
ders the 𝑚(𝑡) less responsive to 𝑒ሶ(𝑡) variations, degrading the system’s setpoint track-
ing capability. Conversely, a large-fixed setting of 𝛼 makes 𝑚(𝑡) highly responsive to 
the abrupt variations in 𝑒ሶ(𝑡), but it also makes the control input highly discontinuous and 
inevitably introduces oscillations in the state response as 𝑒ሶ(𝑡) oscillates between the re-
gions of high- and low-velocity errors. To address this issue, the variation rate 𝛼 is adap-
tively modulated online via a pre-calibrated regulator that is driven by the variations in 
the reference velocity 𝜃ሶ, as shown in Equation (29). 𝛼(𝑡) = 𝛼୫ୟ୶ ቆ0.01 + sech ቆห𝜃ሶห𝜃ሶ୫ୟ୶ ቇቇ (29)

The value of 𝛼୫ୟ୶ is calibrated offline by using the parameter selection procedure 
presented in Section 4. This arrangement is very beneficial as it reduces 𝛼 under large 𝑒ሶ(𝑡) caused by stiction. 

 

Figure 4. Waveform of the VDIM. 

The small 𝛼 slows down the variation rate of 𝑚(𝑡) causing it to expand. This main-
tains 𝑚(𝑡) at a relatively larger magnitude, which aids in applying a tighter control effort 
to address the stiction. Conversely, under small 𝑒ሶ(𝑡) or non-stiction, the value of 𝛼 is in-
flated to speed up the variation rate of 𝑚(𝑡), making the integral control term regain its 
robustness and adaptability to changes in 𝑒ሶ(𝑡). With this implantation of the said augmen-
tation, the modified expression of the error VDIM is expressed as shown in Equation (30). 𝜀(𝑡) = (𝜀(𝑡 − 𝑇) + 𝑒(𝑡) 𝑇) sech൫𝛼(𝑡) 𝑒ሶ ଶ(𝑡)൯  (30)

3.2. Braking–Acceleration Compensator 

The LQI controller is utilized to track reference trajectories accurately while effec-
tively minimizing tracking errors. Despite its ability to accurately track the setpoint at 
constant velocities, the integral term itself changes slowly. However, in the reference tra-
jectories with abruptly changing velocities, the sluggish integral behavior typically leads 
to ineffective setpoint tracking [45]. This phenomenon inevitably results in large over-
shoots, particularly at corner points of the reference trajectory where the velocity setpoint 
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sharply transits to zero. Even with the augmentation of the prescribed VDIM, the integral 
term sluggishly reduces to zero at the resting point (zero setpoint velocity) of the reference 
trajectory. To attenuate the overshoots during the braking phase, a braking-acceleration 
compensator (BAC) is introduced alongside the tracking error in the modified integrator 
expression, as shown below. 𝜀(𝑡) = ൫𝜀(𝑡 − 𝑇) + ൫𝑒(𝑡) + 𝐾 𝜃ሷ൯ 𝑇൯ sech൫𝛼(𝑡) 𝑒ሶ ଶ(𝑡)൯  (31)

where 𝜃ሷ is the braking acceleration and 𝐾 is the pre-defined weightage associ-
ated with it. The weighted braking acceleration term nullifies the impact or error in calcu-
lating the integral term. Consequently, this modification enables the integral to die down 
quickly when the velocity setpoint approaches zero, which effectively prevents the occur-
rence of large overshoots. 

It is to be noted that a system enters its braking phase when its relative rate is nega-
tive. The relative rate informs the system regarding the dynamic speed (acceleration or 
deceleration) of the reference trajectory. The relative rate of the reference trajectory is com-
puted as the product of its velocity 𝜃ሶ  and acceleration 𝜃ሷ , at a given instant, as 
shown below [45]: 𝑞(𝑡) = 𝜃ሷ𝜃ሶ  (32)

The braking acceleration depends on 𝜃ሷ of the trajectory. However, it is only acti-
vated in the RVI expression when the reference trajectory is decelerating to zero setpoint 
velocity (that is, 𝑞(𝑡) < 0). This rule is mathematically expressed as follows [45]. 𝜃ሷ = ቊ𝜃ሷ 𝑖𝑓 𝑞(𝑡) < 00 𝑖𝑓 𝑞(𝑡) ≥ 0  (33)

To comply with the metarules discussed above, the instantaneous value of the brak-
ing acceleration is dynamically adjusted online using the following nonlinear function: 𝜃ሷ = 𝜃ሷ tanhଶ൫𝛿(𝑡) 𝑞(𝑡)൯ step൫−𝑞(𝑡)൯  (34)

where 𝛿(𝑡) is the time-varying variance of the even symmetric tanhଶ(. ) function, which 
represents the square of the hyperbolic-tangent function tanh(. ). The step൫−𝑞(𝑡)൯ func-
tion is unity for 𝑞(𝑡) < 0, and zero otherwise. The waveform of 𝜃ሷ is shown in Fig-
ure 5. The variance of the tanhଶ(. ) function is adjusted inversely with respect to the var-
iations in the magnitude of 𝜃ሷ, by using the even symmetric sech(. ) function formula-
tion below. 𝛿(𝑡) = 𝛿୫ୟ୶ ቆ0.01 + sech ቆห𝜃ሷห𝜃ሷ୫ୟ୶ ቇቇ  (35)

The value of 𝛿୫ୟ୶ is calibrated offline by using the parameter selection procedure 
presented in Section 4. The time-varying variance 𝛿(𝑡) offers several merits in regulating 
the braking acceleration. 

 

Figure 5. Waveform of the braking–acceleration compensator. 
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Firstly, it enables smooth modulation of the acceleration, avoiding abrupt changes 
that could introduce instability or cause jerky movements caused by rapid trajectory 
shifts. Secondly, it allows the controller to adapt to dynamic conditions, such as changes 
in payload or joint friction, which ensures robust performance across various operating 
scenarios. Thirdly, it dynamically adjusts the sensitivity of the function, dictating the 𝜃ሷ in proportion to the magnitude of 𝑞(𝑡), allowing precise error correction for ef-
fective trajectory tracking. Finally, this approach prevents over-correction by flattening 
the response when deviations are small while ensuring faster corrections for larger errors 
to maintain stability. Additionally, by matching the braking effort to the required level, 
the control energy consumption is minimized, which eventually optimizes the perfor-
mance of robotic systems—especially those powered by batteries. 

3.3. Proposed Control Law Formulation 

As discussed earlier, the RVI scheme is synthesized by augmenting the integrator 
term of the LQI with the VDIM and BAC functions, respectively. The LQI controller, thus 
retrofitted with a pre-configured adaptive nonlinear RVI, is referred to as the LQ-RVI con-
troller in this study. The proposed LQ-RVI control law is expressed in Equation (36). 𝑢(𝑡) = −𝑲𝜽𝑥ఏ(𝑡) − 𝑘க𝜀(𝑡)  (36)

The RVI variable 𝜀(𝑡)  is dynamically adjusted after every sampling interval, as 
shown below: 𝜀(𝑡) = ൫𝜀(𝑡 − 𝑇) + ൫𝑒(𝑡) + 𝐾 𝜃ሷ൯ 𝑇൯ sech൫𝛼(𝑡) 𝑒ሶ ଶ(𝑡)൯ (37)

such that, 𝜃ሷ = 𝜃ሷ tanhଶ൫𝛿(𝑡) 𝑞(𝑡)൯ step൫−𝑞(𝑡)൯, 
where 𝑞(𝑡) = 𝜃ሷ𝜃ሶ, 𝛿(𝑡) = 𝛿୫ୟ୶ ൬0.01 + sech ൬หఏሷ ೝหఏሷ ౣ౮ ൰൰, 
and,  𝛼(𝑡) = 𝛼୫ୟ୶ ൬0.01 + sech ൬หఏሶ ೝหఏሶ ౣ౮ ൰൰. 

The LQ-RVI tracking controller’s block diagram is depicted in Figure 6. 

 

Figure 6. The LQ-RVI tracking controller’s block diagram. Red lines indicate the add-on to the 
conventional control scheme to highlight the novelty of the present work. 

4. Parameter-Tuning Procedure 
The performance of the baseline LQI controller relies on the system’s state variations 

as well as the control input adjustments. The optimal control effort is ensured by assigning 
appropriate coefficients to the control-weighting matrix and state-weighting matrix, ex-
pressed in Equation (38), while solving the optimal control problem. 
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𝑸 = diag(𝑞ఏ 𝑞ఏሶ 𝑞ఏሷ 𝑞க), 𝑹 = 𝑝 (38)

However, the heuristic tuning of these matrices is constrained by the designer’s ex-
pertise, potentially limiting the system’s ability to precisely follow reference trajectory and 
recover optimally from disturbances. Similarly, the performance of the RVI block in the 
prescribed control scheme, formulated in Equation (37), relies on the predefined settings 
of the following set of control parameters. 𝐾, 𝛼୫ୟ୶, and 𝛿୫ୟ୶ (39)

The cost function given in Equation (40) is minimized to optimize the controller pa-
rameters offline. 𝐽 = න (𝑒(𝜏)ଶ + 𝑢(𝜏)ଶ) 𝑑𝜏௧

  (40)

The cost function assigns equal weightage to both variables to effectively minimize 
the error while concurrently economizing the control energy expenditure to achieve this 
objective. The weights for the state and control costs, 𝑞௫ and 𝑝, are tuned within a range 
of 0 to 100. Keeping in view the influence of 𝐾, 𝛼୫ୟ୶, and 𝛿୫ୟ୶ on the control law, their 
values are selected from the range 0 and 10. 

An overview of the parameter optimization procedure is depicted in Figure 7 [1]. 
Section 5 details the experimental procedure used for tuning these parameters. The opti-
mization process begins with the initial settings of 𝑸 = diag(1 1 1 1), 𝑹 = 0.1, 𝐾 =1, 𝛼୫ୟ୶ = 1, and 𝛿୫ୟ୶ = 0.1. Each trial involves appropriately adjusting the parameters, 
allowing the aero-pendulum to track and stabilize itself at a reference setpoint of +60 deg. 
(counterclockwise) from its rest position and maintaining its balance for 40 s to measure 
the cost function 𝐽,, where 𝑘 denotes the trial number. The algorithm searches the en-
tire parameter space by following the descending gradient of the prescribed cost function 
[17]. If the current cost 𝐽, is lower than that of the previous trial 𝐽,ିଵ, the global mini-
mum cost variable 𝐽,୫୧୬ is updated accordingly. The search for the optimal solution con-
cludes either when the maximum number of trials 𝑘୫ୟ୶ is reached or when 𝐽,୫୧୬ con-
verges to a predefined threshold. The threshold value is determined heuristically via pre-
liminary algorithmic runs. 

 

Figure 7. Flow of the parameter-tuning process [17]. 

These pilot tests help identify a threshold that balances computational efficiency with 
solution quality, preventing both unnecessary processing and premature termination of 
the tuning process. For the initial settings of 𝑸, 𝑹, 𝐾, 𝛼୫ୟ୶, and 𝛿୫ୟ୶, the minimum rec-
orded cost is 𝐽,୫୧୬ ൎ 0.62 × 10. Typically, a fraction of 𝐽,୫୧୬  is selected as the stopping 
criterion to ensure the algorithm converges efficiently without excessive computation. A 
higher scale value increases the computational load, while a lower value may cause the 
process to end too early. Hence, the algorithm is terminated when either 𝐽,୫୧୬ →
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0.01 𝐽,୫୧୬  or 𝑘୫ୟ୶ condition is met. Hence, in this study, the threshold for 𝐽,୫୧୬ is set to 0.6 × 10ସ and 𝑘୫ୟ୶ is set to 25. 
The parameter settings thus evaluated for the controllers designed in this study are 𝑸 = diag(65.82 8.66 2.15 50.74), 𝑹 = 1.14, and 𝐾 = 8.18, 𝛼୫ୟ୶ = 36.8, and 𝛿୫ୟ୶ =25.6 . The corresponding state feedback gains, calculated using Equation (18), are 𝑲 =ሾ−9.57 −3.26 −1.08 11.24ሿ. 

5. Experimental Evaluation 
The specific hardware setup and the scenarios for experimentally characterizing the 

performance of the prescribed control scheme are detailed in this section. The perfor-
mance of the LQ-RVI tracking controller is benchmarked against the baseline LQI tracking 
controller via customized hardware-in-the-loop experiments. 

5.1. Experimental Setup 

The aero-pendulum’s platform used for hardware-in-the-loop (HIL) experimentation 
is displayed in Figure 8. Two +12.0 V DC motors with propellers, having a diameter of 
0.20 m, are connected coaxially at the free end of a lightweight aluminum rod. At the rod’s 
pivot end, a rotary encoder is connected. The encoder measures the rod’s angular dis-
placement 𝜃(𝑡) in real-time and feeds the acquired data to an 8-bit embedded microcon-
troller (Arduino Uno by Sparkfun Electronics). The said microcontroller serves as a serial 
communication relay between the hardware platform and the software control procedure. 
The digitized encoder measurements are serially transmitted at 9600 bps to a customized 
control application that is implemented using the MATLAB/Simulink 2018b. The software 
is operated on a 64-bit and 1.8 GHz personal computer with 8.0 GB RAM. The sampling 
frequency is set at 500 Hz. The microcontroller is interfaced with Simulink 2018b by in-
stalling the support packages for the Arduino Uno hardware. The control application re-
ceives the updated values of 𝜃(𝑡) after  sampling instant and evaluates its higher order 
derivates, 𝜃ሶ(𝑡)  and 𝜃ሷ(𝑡) , using the built-in numerical differentiation blocks. Once all 
state variables are acquired, the updated control signals are computed. Apart from the 
control computations, the aforementioned software application also helps graphically vis-
ualize real-time state variations during HIL experiments. It also logs the data for analysis. 
The control procedure modifies the control signals and serially transmits them to the mi-
crocontroller. 
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Figure 8. The aero-pendulum setup for VTOL UAV experiments. 

The microcontroller converts the acquired data into corresponding PWM signals. It 
applies them to the electronic speed controller (ESC) of each brushless DC motor to vary 
the thrust generated by the propellers. For reference, the pitch angle of the aero-pendulum 
is regarded as zero degrees when it is at rest or suspended freely. The control signal 𝑢(𝑡) 
is bounded between ± 12.0 V to avoid actuator saturation. 

5.2. Tests and Results 

The control behavior of the closed-loop aero-pendulum system for VTOL applica-
tions is evaluated using the following five test cases. These customized test cases provide 
insights into the robustness, disturbance handling, and tracking ability of the proposed 
LQ-RVI controller, benchmarked against the LQI controller, under different real-world 
conditions. 
A. Step reference tracking: A VTOL drone typically encounters step changes in pitch (or 

thrust) when it is required to perform precise maneuvers, such as takeoff, landing, or 
hovering at a new position. Hence, this test case evaluates the system’s capability to 
track sudden changes in the reference input. The test is conducted by applying a ref-
erence input of +60 deg. (counterclockwise) to a resting aero-pendulum, as shown in 
Figure 9. The reference-tracking ability of the two controllers is depicted in Figure 10. 

B. Modeling-error compensation: A VTOL drone typically experiences uncertainties 
due to unmodeled dynamics, parameter variations (e.g., changing mass during 
flight), or aerodynamic nonlinearities. Hence, this test assesses the controller’s ro-
bustness when there are inaccuracies or real-time variations in the system model. To 
perform the test, a mass of 0.15 kg is added with the pendulum’s arm at t = 0 sec. 
mark, as shown in Figure 11. This modification alters the system’s dynamics and 
hence the coefficients of the matrix 𝑨, which eventually dampens the system’s time 
domain profile. The subsequent behavior of each controller is depicted in Figure 12. 

C. Noise compensation: A VTOL drone relies on sensors to estimate state variables. 
However, these sensors are prone to noise, especially in turbulent environments. 
Hence, this test case evaluates the controller’s immunity against measurement noise 
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from sensors. The test is performed by introducing a band-limited white-noise signal, 
having a frequency of 1.0 Hz and a signal-to-noise ratio of 20 dB, as a random se-
quence in the error signal 𝑒(𝑡). The consequent time domain profiles displayed by 
each controller are illustrated in Figure 13. 

D. Impulsive-disturbance rejection: During flight, a VTOL drone often encounters im-
pulsive disturbances contributed by gusts of wind, bird strikes, or mechanical shocks. 
Hence, this test case evaluates the system’s ability to reject abrupt (impulse-like) ex-
ternal forces. The test is conducted by injecting a pulse signal, having a magnitude of 
±1.0 V and duration of 100.0 ms, in the system’s control input. The positive pulse is 
injected at t = 20 s. and the negative pulse is injected at t = 40 s. The disruptions in the 
time domain profiles of each controller are illustrated in Figure 14. 

E. Payload-imbalance compensation: A VTOL drone often operates in environments 
with steady external forces, such as constant wind drift or step variations caused by 
payload imbalance. Thus, this test case measures the system’s ability to compensate 
for such continuous external forces or disturbances. The test is performed by sud-
denly adding the 0.15 kg mass beneath the pendulum’s arm, as shown in Figure 8, at 
t = 30 sec. mark. The perturbations in the time domain profiles of each controller are 
illustrated in Figure 15. 

F. Multi-step reference tracking: To execute flight missions involving precise maneu-
vers, a VTOL drone is required to follow a sequence of target angular positions over 
time. Thus, this test case measures the system’s robustness to track step variations in 
the reference trajectory. The test is conducted by applying a reference input of +60 
deg. (counterclockwise) to a resting aero-pendulum, followed by a step change of +30 
deg. (counterclockwise). The multi-step reference tracking ability of each controller 
is depicted in Figure 16. 

 

Figure 9. Pendulum at an angular position of 60.0 deg. 
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Figure 10. Aero-pendulum’s step reference tracking response under nominal conditions. 

 

Figure 11. Aero-pendulum setup with additional mass attached beneath its arm [6]. 

 

Figure 12. Aero-pendulum’s step reference-tracking response under model variations. 
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Figure 13. Aero-pendulum’s step reference-tracking response under white noise. 

 

Figure 14. Aero-pendulum’s step reference-tracking response under impulsive disturbances. 

 

Figure 15. Aero-pendulum’s step reference-tracking response under sudden payload imbalance. 

 

Figure 16. Aero-pendulum’s multi-step reference-tracking response under nominal conditions. 
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5.3. Discussions 

The experimental results are analyzed via the following performance indices: 

• Ess: The root mean squared value of error 𝑒(𝑡). It is computed as ∑ ට൫()൯మ , where 𝑛 
is the total number of samples; 

• ts: Time taken by the response to settle within ±2% of the reference value; 
• trec: Time taken by the response to recover and settle within ±2% of the reference value 

following a disturbance; 
• OS: Magnitude of the peak overshoot of response during the initial start-up; 
• Mp: Magnitude of the peak overshoot or undershoot of response after a disturbance; 
• Ums: The mean-squared value of the control input voltage, providing an estimate of 

the average control energy consumed by the controller. 
Table 2 summarizes the experimental results. The outcomes validate the proposed 

control law’s robust tracking and disturbance rejection capacity. 
In Test A and Test F (Figures 10 and 16), the LQI controller exhibits mediocre tracking 

of the reference step input, with a noticeable overshoot followed by oscillations and a 
longer settling time. The LQ-RVI shows a relatively better tracking ability, negligible over-
shoot, faster convergence rate, minimal steady-state fluctuations, and an improved con-
trol input economy. In Test B (Figure 12), the LQI maintains an oscillatory tracking per-
formance while exhibiting sensitivity to changes in the model parameter, with a slight 
degradation in accuracy and settling time. The LQ-RVI controller manifests relatively bet-
ter robustness and enhanced adaptability to model uncertainties while minimizing the 
control energy expenditure. 

Table 2. Summary of experimental results where A-F denote the tests referred in the description 

Experiment 
Performance Index Tracking Controller Improvement  

(%) Symbol Unit LQI LQ-RVI 

A 

Ess deg. 10.78 8.85 17.9 
OS deg. 12.16 2.02 83.4 
ts sec. 15.52 5.96 61.6 

Ums V2 21.41 19.96 6.8 

B 

Ess deg. 10.97 9.59 12.6 
OS deg. 8.98 1.57 82.5 
ts sec. 18.75 9.82 47.6 

Ums V2 22.71 21.48 5.4 

C 

Ess deg. 11.07 8.26 25.4 
OS deg. 11.08 0.48 95.7 
ts sec. 17.15 7.64 55.5 

Ums V2 23.26 22.19 4.6 

D 

Ess deg. 10.18 7.75 23.9 
Mp deg. 22.29 12.54 43.7 
trec sec. 4.41 2.83 35.8 
Ums V2 24.66 23.25 5.7 

E 

Ess deg. 10.79 8.48 21.4 
Mp deg. 32.58 19.44 40.33 
trec sec. 8.92 7.33 17.8 
Ums V2 23.74 22.06 7.1 

F 

Ess deg. 14.28 12.35 13.5 
OS deg. 10.09 0.17 98.3 
ts sec. 15.28 5.54 63.7 

Ums V2 25.56 24.08 5.8 
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In Test C (Figure 13), the LQI controller exhibits poor noise rejection behavior with 
consistent perturbations in the response. The LQ-RVI controller improves the noise rejec-
tion behavior, exhibiting a smoother response under the same noise-disturbance levels. In 
Test D (Figure 14), the LQI-controlled system experiences noticeable deviations from the 
reference trajectory, followed by a slower recovery. The LQ-RVI controller effectively 
dampens the impulsive disturbances and quickly reverts the response to the reference 
position while effectively attenuating the peak control input requirements. The response 
highlights the controller’s enhanced resilience to abrupt disturbances. In Test E (Figure 
15), the LQI controller struggles to maintain steady-state accuracy after the introduction 
of the disturbance(s). It also demonstrates a relatively slower transient recovery response. 
The LQ-RVI controller exhibits a comparatively better trajectory-tracking accuracy by ef-
ficiently reacting to the payload variations. 

The LQI controller exhibits a conservative tracking capability and lacks robustness 
against disturbances and model uncertainties in every testing scenario. In contrast, the 
LQ-RVI controller offers precise tracking behavior and superior robustness across all sce-
narios, including noise, disturbances, and model variations. The enhanced performance 
of the LQ-RVI controller is credited to the augmentation of the rate-varying integrator 
with the baseline LQI controller, which speeds up the response and attenuates the over-
shoots as well as the consequent oscillations during the start-up phase, the disturbance 
conditions, and the braking phase. The intuitive and self-learning capability of the pro-
posed controller enables it to handle the parametric uncertainties efficiently. 

5.4. Sensitivity Analysis 

The parameters 𝐾ୟ, 𝛼୫ୟ୶, and 𝛿୫ୟ୶ directly impact the controller’s adaptability, re-
sponsiveness, and robustness against nonlinearities. As discussed in Section 3, the param-
eter 𝐾ୟ regulates the magnitude of the braking force applied by the braking acceleration 
compensator (BAC) on the control law. The parameter 𝛼୫ୟ୶ regulates the responsiveness 
of the velocity-driven integral modulator (VDIM) to variations in velocity error. Finally, 
the parameter 𝛿୫ୟ୶  modulates the dynamic sensitivity of the BAC, ensuring smooth 
modulation of the braking effort. 

To evaluate the efficacy of these parameter settings and their influence on the LQ-RVI 
controller’s behavior, a detailed sensitivity analysis was conducted by subjecting the tuned 
values of 𝐾ୟ, 𝛼୫ୟ୶, and 𝛿୫ୟ୶, as specified in Section 4, to a 10.0% decrease and a 10.0% in-
crease, separately. Experiment A is conducted to assess the system’s reference tracking be-
havior under nominal conditions for each modified parameter configuration. The time-do-
main reference-tracking profiles of the LQ-RVI controlled system for three different settings 
of each parameter (𝐾ୟ, 𝛼୫ୟ୶, and 𝛿୫ୟ୶) are shown separately in Figures 17–19, respectively. 
Table 3 presents a quantitative overview of the sensitivity analysis. 

 

Figure 17. Aero-pendulum’s reference tracking response under different settings of 𝐾ୟ. 
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Figure 18. Aero-pendulum’s reference tracking response under different settings of 𝛼୫ୟ୶. 

 

Figure 19. Aero-pendulum’s reference tracking response under different settings of 𝛿୫ୟ୶. 

Table 3. Quantitative sensitivity analysis of the LQ-RVI controller. 

Parameter 
Performance Index Parameter Setting 
Symbol Unit +10% Change Nominal −10% Change 

𝐾 

Ess deg. 8.17 8.85 9.87 
OS deg. 10.27 2.02 1.01 
ts sec. 8.72 5.96 11.05 

Ums V2 22.05 19.96 18.84 

𝛼୫ୟ୶ 

Ess deg. 8.25 8.85 10.09 
OS deg. 15.47 2.02 1.39 
ts sec. 7.85 5.96 11.14 

Ums V2 21.92 19.96 18.92 

𝛿୫ୟ୶ 

Ess deg. 8.11 8.85 10.83 
OS deg. 9.01 2.02 1.87 
ts sec. 9.66 5.96 12.52 

Ums V2 22.38 19.96 19.13 

The findings of the sensitivity analysis confirm that the nominal parameter settings 
produce the best tracking accuracy while maintaining a reasonable settling time. A large 
value of 𝐾 slightly enhances the compensator’s response speed during the deceleration 
phase, but it also introduces large persistent oscillations in the response, and vice versa. 
A large value of 𝛼୫ୟ୶ makes the system more responsive to abrupt velocity changes, im-
proving tracking accuracy. However, it also leads to highly disruptive control action, in-
evitably introducing chattering in the response. A large value of 𝛿୫ୟ୶ improves the com-
pensator’s responsiveness during large error conditions (such as initial start-up or 
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disturbances). However, this improved sensitivity also introduces (decaying) oscillations 
in the response, and vice versa. 

6. Conclusions 
This study demonstrates the effectiveness of an optimal LQI tracking controller aug-

mented with a nonlinear adaptive integral compensator for precise and robust positioning 
of VTOL UAVs equipped with contra-rotating propellers. The proposed LQ-RVI control-
ler, built upon a baseline LQI tracker framework, accurately tracks the reference trajectory 
while effectively rejecting the bounded exogenous disturbances. The integration of a rate-
varying nonlinear scaling function, as well as the inclusion of braking acceleration with 
the baseline LQI controller, significantly enhances the system’s tracking accuracy, reduces 
overshoot, improves transient response, and minimizes control energy consumption, as 
evidenced by hardware-in-the-loop experiments on an aero-pendulum testbed. These re-
sults highlight the proposed LQ-RVI controller’s robustness and practical viability for 
UAV and drone applications operating under external disturbances. Future research can 
explore the application of the proposed controller to fully-actuated VTOL UAVs in three-
dimensional flight scenarios. Investigating its integration with adaptive and machine 
learning-based frameworks could further enhance its robustness and adaptability to var-
ying operational conditions. Additionally, experimental validation on actual UAV plat-
forms and its scalability to swarm coordination and autonomous navigation tasks under 
real-world uncertainties represent promising avenues for extending this research. 
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