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Abstract The unique behaviour of colloids at liquid interfaces provides exciting opportunities for engineering
the assembly of colloidal particles into functional materials. In particular, the deformable nature of liquid
interfaces means that we can use interfacial curvature, in addition to particle properties, to direct self-assembly.
In this paper, we use a finite element method to study the self-assembly of rod-shaped particles adsorbed at a
curved interface formed by a sessile drop with cylindrical geometry, where the lateral width of the cylindrical
drop is much greater than the length of the rods, and the height of the drop is comparable to or smaller
than the radius of the rods, i.e. the system is in the so-called immersion regime. Specifically, we study the
configuration of single and multiple rods as a function of drop height, particle shape (ellipsoid, cylinder,
spherocylinder) and contact angle. We find that for low enough drop heights, regardless of the shape or contact
angle of the particles, all rods orientate themselves parallel to the long axis of the cylindrical interface and are
strongly confined laterally to be at the centreline of the cylindrical drop. The rods also experience long-range
immersion capillary forceswhich assemble the rods tip-to-tip at larger drop heights and, in the case of ellipsoids
and spherocylinders, side-to-side at smaller drop heights. We note that the capillary forces that drive particle
ordering are very strong in the immersion regime, even for rods on the nanoscale, allowing us to control the
configuration of nanorods using near micron-scale droplets. Our capillary assembly method therefore provides
a facile method for creating functional nanoclusters. Our study also provides insights into how the structure
of such clusters evolves during the drying of the droplet.

1 Introduction

Colloidal particles adsorbed at liquid interfaces are of great importance for a wide range of applications
including emulsification [1, 2], encapsulation [3], food and pharmaceuticals [4], reconfigurable biomimetic
systems [5] and surface patterning [6, 7]. They also provide an ideal system for studying self-assembly due to
a number of attractive features. For example, due to the very high detachment energies for typical particles [8],
adsorbed colloids are highly confined to liquid interfaces, allowing us to study self-assembly in two dimensions
[9, 10]. In addition, since liquid interfaces are soft, they are easily deformed by the adsorbed particles due to
gravity, particle shape and protrusion of particles at a substrate, generating strong and long-ranged capillary
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interactions between the particles [11–15]. These interactions provide a powerful handle with which to control
and study self-assembly.

At a flat interface, when the height of the fluid subphase below the particle is greater than the size of the
particle, we are in the so-called flotation regime [11, 12]. In the flotation regime, the solid substrate below
the fluid subphase plays no role in determining the meniscus deformation around the adsorbed particle. In
this case, for spherical particles with homogeneous surface chemistry, meniscus deformations can only arise
due to gravity and the resultant meniscus deformations are circularly isotropic [16]. Exploiting the beautiful
mathematical analogy between capillary forces and electrostatics, where positive and negative deformations of
the interface are analogous to positive and negative ‘charges’, respectively, the capillary interactions between
heavy spherical particles are therefore essentially monopolar in nature [11]. Such gravity-induced monopolar
capillary interactions are generally only significant for large particles with sizes above 10μm [2]. However, for
particles with homogeneous surface chemistry but anisotropic shape such as ellipsoids or cylinders, capillary
interactions can still be significant below this size. This is because to minimise interfacial energy, the liquid
interface is required to meet the particle surface at a specific angle (known as the contact angle), and this
constant contact angle requirement leads to quadrupolar meniscus deformations around the particle consisting
of two rises and two falls in the contact line [17–19]. These undulations lead to orientationally dependent
quadrupolar capillary interactions [18–20], driving ellipsoidal particles to assemble side-to-side [20–22] and
cylindrical particles to assemble tip-to-tip [19, 22]. On the other hand, when the height of the fluid subphase
is smaller than the size of the particle, we are in the so-called immersion regime [11, 12]. In this case, the
height of the three-phase contact line on the particle is greater than the interface height, causing the particle
to protrude above the fluid subphase, leading to strong monopolar deformations of the fluid interface [23].
These deformations lead to long-range monopolar interactions between particles that are significant down to
the nanoscale [11, 15].

In the case of non-planar fluid interfaces,we can also use the curvature of the interface as an effective external
field to direct self-assembly. For example, for spherical particles at a curved liquid interface, the deviatoric
curvature of the interface induces quadrupolar capillary interactions between the particles and causes them
to organise into regular square lattices [24]. Furthermore, if the spheres are adsorbed at a curved interface
with non-uniform deviatoric curvature (e.g. a catenoid), they migrate to regions of high curvature to minimise
the distortion to the interface [25, 26]. Not surprisingly, the effect of curvature is stronger for anisotropic
rod-shaped particles which possess an intrinsic ‘capillary quadrupole’ due to undulations in their contact line.
When such rods are adsorbed at a curved interface, the rods will rotate until their quadrupolar rise axis is
aligned with the principal axis of curvature of the host interface where the interface is concave up [27, 28].
Indeed, Lewandowski et al. demonstrated that it is possible to suppress tip-to-tip assembly for two cylindrical
particles in favour of side-to-side assembly when the cylinders are adsorbed at a curved interface where the
energy penalty for the cylinders to reorientate to achieve the tip-to-tip configuration becomes prohibitive [28].
In addition, when rod-shaped particles are adsorbed at a liquid interface with non-uniform curvature, the
particles will migrate towards regions of high deviatoric curvature and simultaneously align themselves along
the principal axis of curvature of the host interface [29]. Interestingly, this physical phenomenon can be found
in nature as some insects exploit this property for propulsion by deforming their bodies to create a capillary
quadrupole that interacts with the curved menisci at the edge of a water surface [30, 31].

In a previous study, we explored the self-assembly of anisotropic rod-like particles at a curved interface
formed by a cylindrical sessile drop, where the width of the drop was much larger than the length of the rods,
and the height of the drop was much greater than the radius of the rods so that we are in the flotation regime
[32]. The advantage of using a cylindrical drop is that the geometry of the curved interface is very simple
(constant finite curvature transverse to the cylinder, zero curvature along the cylinder), allowing us to elucidate
the interplay between interfacial curvature and particle properties in determining the behaviour of single and
multiple rods. Using this curved geometry, we showed that it was possible to control the rods to align parallel,
perpendicular or obliquely with respect to the long axis of the sessile drop by tuning the contact angle and
particle shape. We also showed that the orientational confinement of the rods in the flotation regime was strong
(e.g. orientational confining potential of 100 s of kBT for nanoscale rods). However, we also found that the
spatial confinement of the rods transverse to the long axis of the cylindrical drop and the capillary interaction
between rods was much weaker compared to the orientational confinement (e.g. spatial confining potential
and capillary interaction of 10 s of kBT for nanoscale rods), limiting the degree to which we could align and
assemble neighbouring particles into defined cluster structures in this regime.

To overcome these limitations, in this paper we study the self-assembly of rod-shaped particles at a cylin-
drical sessile drop in the immersion regime, i.e. where the height of the drop is comparable to or smaller
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than the radius of the rods. Specifically, we use the finite element method Surface Evolver [33] to study the
self-assembly of single and multiple rods as a function of drop height, particle shape (ellipsoid, cylinder, sphe-
rocylinder) and particle contact angle. As we will see later in the paper, although working in the immersion
regime leads to slightly weaker orientational confinement of the rods due to a decrease in the curvature of
the cylindrical interface, we can still achieve strong orientational confinement even for rods on the nanoscale.
More importantly, we show that it is now possible to achieve very strong spatial confinement of the rods lateral
to the cylindrical drop because the confining potential is a strong function of drop height in the immersion
regime and drop height varies with lateral position. We also show that the capillary interactions between the
rods in the immersion regime are much stronger and longer ranged because they are monopolar rather than
quadrupolar in nature. Working in the immersion regime thus gives us good control over the orientation,
position and self-assembly of rod-like particles adsorbed on a cylindrical drop, providing a facile method for
creating to functional nanoclusters.

The rest of the paper is organised as follows. In Sect. 2, we describe the geometry and thermodynamics of
the system as well as the finite element method (Surface Evolver) we use to study the system. In Sect. 3, we
present and discuss results for the orientation and spatial confinement of single rods and the self-assembly of
two rods at a cylindrical liquid drop as a function of drop height, particle shape and contact angle. Finally in
Sect. 4, we present our conclusions.

2 Theoretical model

In this section, we discuss the geometry and thermodynamics of the system, which consists of rod-like particles
adsorbed at a sessile cylindrical drop, as well as the Surface Evolver method we use to study this system
theoretically.

For the rod-like particles, we consider particles with homogeneous surface chemistry with three particle
shapes, i.e. ellipsoids, cylinders and spherocylinders (Fig. 1a). Note that for non-neutrally wetting rods (i.e.
contact angle not equal to 90◦) adsorbed at a flat interface, the constant contact angle requirement can be satisfied
by a flat interface for spherocylinders but leads to quadrupolar meniscus deformations around ellipsoids
and cylinders [17–19]. Ellipsoids and cylinders therefore possess an intrinsic capillary quadrupole, while
spherocylinders do not [32]. For ellipsoids and cylinders, we use the super-ellipsoid equation [22, 34].
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to define the particle shape, where x ′, y′, z′ are the Cartesian coordinates in the particle reference frame (see
later in this section), a, b are the semi-major and semi-minor length of the rod, respectively, and η is a sharpness
parameter that controls the sharpness of the super-ellipsoid edge. We use η � 1for ellipsoids and η � 4 for
cylinders (i.e. we consider cylinders with rounded edges, see Fig. 1a). For spherocylinders, we use
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For all the particle shapes above, we consider rods with aspect ratio a/b � 2.5.
For the cylindrical sessile drop, we consider a drop with a rectangular base with width W � 20b (i.e. 4

times the length of the rods) and length L � 2a + 25b (i.e. 6 times the length of the rods). For convenience,
we refer to the top and bottom fluid phases as oil and water, respectively (i.e. the fluid making up the drop
is water), though our model is in fact general and applies to any fluid–fluid interface. Assuming the origin of
the laboratory frame in Cartesian coordinates to be at the centre of the base with z perpendicular to the base
and x , y parallel and perpendicular to the long axis of the cylinder, respectively, we assume that the contact
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Fig. 1 a Geometry of the rod-like particles studied in our simulations. All particles have aspect ratio a/b � 2.5. b–d Geometry
of an ellipsoidal particle adsorbed to the simulation interface with views from the b side, c end and d top

lines of the cylindrical drop are pinned at y � ±W/2 and apply reflecting boundary conditions at the ends of
the cylindrical drop at x � ±L/2 (Fig. 1b, d). We chose L to be as large as possible to minimise finite size
effects due to the reflecting boundaries at the cylindrical drop ends while still being computationally feasible.
To validate that finite size effects are negligible for our choice of L , for selected cases, we increased L by 50%
and found that this led to a change in our calculated results of less than 3% (see Figure S1 in Supplementary
Information).

We control the curvature of the sessile drop by applying a Laplace pressure of γow/R across the interface
in our simulations, where R is the radius of curvature of the cylindrical interface in absence of any adsorbed
particles, and γow is the oil–water interfacial tension. Although the behaviour of adsorbed rods is controlled by
the curvature of the cylindrical drop, it is easier to control and measure the height of the drop experimentally.
For convenience, we therefore parameterise the curvature of the drop using the drop height in the absence of
adsorbed particles, h (Fig. 1c), which is related to R and W according to R � h/2 +W 2/8h.

In this paper, we focus on the immersion regime and it is therefore important to calculate ht , the value of
h where an adsorbed rod in its equilibrium configuration just touches the solid substrate, since ht demarcates
the boundary between the immersion and flotation regimes. Specifically, if we denote �r as the equilibrium
height of the rod centre above h in the absence of a solid substrate, then from Fig. 1c, ht is the value of h that
satisfies the condition h +�r � b (noting that�r is a function of h). In Fig. S4 of Supplementary Information,
we use this method to calculate ht for the different particle shapes and contact angles studied in this paper and
the results are listed in Table 1. Note that as expected, the value of ht for any given particle shape decreases as
we go from hydrophilic to neutral to hydrophobic particles. The immersion regime is defined as the case where
h < ht . For rod-like particles in the immersion regime, the rods sit on the solid substrate with their long axis
parallel to the solid substrate and their centre heights fixed to be z p � b. To specify the position of the rods on
the substrate, we use the position of the rod centre parallel and perpendicular to the long axis of the cylindrical
drop which we denote as xp and yp, respectively (Fig. 2a, xp not shown). To specify the orientation of the
adsorbed rods, we use the angle of their long axis to the long axis of the cylindrical drop which we denote as
the bond angle θb (Fig. 2b). Note that we only need one angle to specify orientation since all the rod shapes
we consider in this paper are axisymmetric. Later on we also perform some simulations of particles in the
flotation regime (h > ht ), and when doing so, we also allow the height of the particle relative to the interface
to be equilibrated for a given particle configuration. We define the particle reference frame x ′, y′, z′ such that
its origin coincides with the centre of the rod, x ′ lies along the semi-major axis of the rod, while y′ and z′ lie
along the semi-minor axes of the rod with z′ parallel to substrate normal. The particle frame coordinates x ′, y′,
z′ are readily related to the laboratory frame coordinates (x , y, z) using appropriate rotation transformations.
[32]
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Table 1 Values for ht , the flotation to immersion transition height, for the particle shapes and contact angles studied in this paper

Contact angle/shape Ellipsoid Cylinder Spherocylinder

70◦
1.1b 1.2b 1.2b

90◦
1.0b 1.0b 1.0b

110◦
0.75b 0.7b 0.7b

Fig. 2 Coordinates characterising single- and two-particle configurations: a lateral displacement, b bond angle, c tip-to-tip
separation, d roll-over angle

When studying the capillary interaction and self-assembly of two rods later, we will primarily focus on rods
in the tip-to-tip configuration (with yp � 0) and we specify the separation of the two rods in this case by their
surface-to-surface separation d (Fig. 2c). Aswe shall see later in the paper, in some regions of system parameter
space, the immersion capillary forces are so strong that they drive two rods in the tip-to-tip configuration to first
come into tip-to-tip contact, then ‘roll-over’ into side-to-side contact [18, 22]. To study this roll-over transition,
we define the roll-over angle θr , which is the angle that two mirror-symmetric rods make to the long axis of
the cylindrical drop as shown in Fig. 2d. Note that the two particles are in contact with yp � 0 throughout the
transition.

The energy of the adsorbed rod system is primarily due to the interfacial energy and is given by [34, 35].

Eint � γowAow + γpoApo + γpwApw (5)

where γow, γpo and γpw are the interfacial tensions and Aow, Apo and Apw are the areas of the oil–water,
particle–oil and particle–water interfaces, respectively. We have neglected line tension contributions in Eq. (5)
because these are sub-dominant compared to interfacial tensions for the particle sizes we are considering where
a, b ≥ 10 nm [36].We can simplify Eq. (5) by eliminating one of the interfaces from the problem. For example,
using Apw � A − Apo (where A is the total area of the particle), Young’s equation γowcosθw � γpo − γpw
(where θw is the contact angle) and dropping irrelevant constant terms, we find

Eint � γ
(
Aow + cos θwApo

)
(6)

i.e. we have eliminated the particle–water interface and can model the system by just simulating the oil–water
interface (with interfacial tension γ ) and the particle-oil interface (with effective interfacial tension γ cosθw)
and we use γ to denote the oil–water interfacial tension in what follows for simplicity.

For a given particle configuration, the interfacial energy of the system given by Eq. (6) (or its equivalent
obtained from eliminating the particle-oil interface) is calculated using Surface Evolver [33]. This is a finite
element software that minimises the energy of the system subject to constraints like boundary conditions of
the simulation box, particle geometry and the Laplace pressure [33–35, 37]. The minimisation is performed
by representing the surface as a mesh of triangles and adjusting the position of vertices using a steepest
descent method. The constant contact angle requirement around the particle is automatically satisfied within
this scheme since Young’s equation arises from the minimisation of the total interfacial energy. Note that
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since we are using an energy minimising scheme, we are calculating the equilibrium state of the system.
Non-equilibrium phenomena such as contact line pinning [38, 39], friction with the substrate (relevant in the
immersion regime) and evaporative fluxes when we dry the droplet will affect the dynamics of how the system
approaches equilibrium, and in some cases may even cause the system to be trapped in metastable states
and prevent the system from reaching equilibrium. These forces may be important in specific experimental
realisations of our system, but the inclusion of these effects lies beyond the scope of our study.

In the simulations, we work with length and energy units such that b � 1, γ � 1 and use a variable
triangular mesh edge length between 0.04b and 0.2b and quadratic edges to capture the shape of the liquid
interface and three-phase contact line more accurately. To validate that our results are not significantly affected
by our choice ofmesh size, for selected cases, we reduced themesh edge length to between 0.03b and 0.15b (i.e.
doubling the number of mesh points) and found that this led to a change in the calculated interfacial energy
of less than 1% (see Fig. S2 in Supplementary Information). Finally, when assessing whether a confining
potential is strong or weak in this paper, we compare the potential to the thermal energy kBT , the energy
scale of background thermal fluctuations which become important on the nanoscale. This comparison allows
us to determine whether the confinement or assembly of the particles due to the potential is stable against the
randomising effect of thermal fluctuations under quiescent conditions.

3 Results and discussion

3.1 Orientational transition of single rods

In this section, we consider the impact of particle shape, contact angle and cylindrical drop height on the
orientation of single adsorbed rods in the immersion regime, as specified by the bond angle θb (Fig. 2a). As we
shall see later in Sect. 3.2, adsorbed rods are strongly confined to lie along the centreline of the cylindrical drop
in the immersion regime and we therefore set yp � 0 in our simulations. In addition, since we are interested
in studying the behaviour of isolated adsorbed rods in this section, we set xp � 0, i.e. the particles are situated
at the centre of simulation box to minimise the impact of the reflecting boundary conditions at the cylindrical
drop ends. We then calculate the energy of the system as a function of bond angle from θb � 0◦ to 90◦ in
increments of 1◦, noting that the energy only needs to be calculated for this range due to the symmetry of the
energy with respect to θb.

In Fig. 3 we plot the orientational energy curves, i.e. interfacial energy (relative to the minimum energy
state) as a function of bond angle θb, for ellipsoids, cylinders and spherocylinders (first, second and third row,
respectively), drop heights h � ht , 0.75ht , 0.5ht (first, second and third column, respectively) and contact
angles θw � 70◦, 90◦, 110◦ (i.e. hydrophilic, neutral and hydrophobic rods, respectively), with the value of
ht for the different cases given in Table 1.

We first consider the orientation of the rods at the transition height h � ht , i.e. first column of Fig. 3.
We see that in this case, the equilibrium orientation of the different rod shapes (i.e. θb corresponding to the
energy minimum) can be engineered to lie either parallel (θb � 0◦) or perpendicular (θb � 90◦) to the long
axis of the cylindrical drop by tuning the contact angle. In particular, we see that hydrophilic ellipsoids lie
perpendicular, while neutral and hydrophobic ellipsoids lie parallel to the cylindrical drop (Fig. 3a); on the
other hand, hydrophilic cylinders lie parallel, while neutral and hydrophobic cylinders lie perpendicular to the
cylindrical drop (Fig. 3b). These results are similar to those reported for ellipsoids and cylinders in the flotation
regime (h > ht ) [32]. This fact is not surprising since for h � ht , we expect the monopolar deformation of
the liquid meniscus due to the protrusion of the rod above the cylindrical drop to be relatively weak so that
the orientational behaviour of the rods is determined by the quadrupolar deformation of the liquid meniscus,
similar to the flotation case (see later in Fig. 4). Specifically, the capillary quadrupole will align its rise axis
with the principle axis of curvature of the cylindrical interface (where the interface is concave up) in order to
minimise the distortion to the host interface [27–29]. This is why hydrophilic ellipsoids align perpendicular
since they have a rise axis at their sides, while hydrophobic ellipsoids align parallel since they have their rise
axis at their tips. The trend is reversed for cylinders since the curvature of their capillary quadrupole is opposite
to that of ellipsoids for a given contact angle. [32]

Interestingly, the dependence of particle orientation on contact angle for spherocylinders is different at
h � ht (Fig. 3c) compared to the behaviour in the flotation regime. Specifically, spherocylinders are always
aligned parallel regardless of contact angle in the flotation regime [32], while at h � ht , hydrophilic and
neutral spherocylinders are aligned parallel, while hydrophobic spherocylinders are aligned perpendicular.
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Fig. 3 Interfacial energy (relative to the minimum energy state) as a function of bond angle θb for different particle shapes, drop
heights and contact angle θw

Fig. 4 aMeniscus deformation around an ellipsoidal particle with contact angle θw � 70◦ adsorbed at a cylindrical drop for drop
heights of a 2ht (flotation regime), b ht (transition height), c 0.5ht (immersion regime). The long axis of the cylindrical drop is
in the x direction, and the ellipsoid is in its equilibrium orientation at each height

This difference is not surprising since spherocylinders do not possess an intrinsic capillary quadrupole, so the
dependence of particle orientation on contact angle is more subtle and harder to predict a priori. The absence
of an intrinsic capillary quadrupole in spherocylinders is also evidenced by the fact that the energy scales in
the orientational energy curves for spherocylinders (Fig. 3g) are significantly smaller than that for ellipsoids
and cylinders (Fig. 3a, d).

In addition to the curvature of the capillary quadrupole, another important factor determining the orientation
of rods at a cylindrical interface is particle anisotropy. For h ≥ ht , the effect of particle anisotropy arises from
the fact that, because of the curvature of the cylindrical interface, a rod-like particle removes a larger area of the
energetically unfavourable oil–water interface when it is parallel rather than perpendicular to the cylindrical
drop. Particle anisotropy therefore favours the parallel orientation compared to the perpendicular orientation.
This effect explains why for non-neutrally wetting rods in Fig. 3a, d, g, the potential energy well depth for
the parallel orientation is significantly greater than for the perpendicular orientation. Specifically, for non-
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Fig. 5 a Interfacial energy (relative to minimum energy state) as a function of bond angle for adsorbed ellipsoids with contact
angle θw � 70◦ for different cylindrical drop heights around the orientational transition. b Equilibrium bond angle as a function
of cylindrical drop height for ellipsoids with θw � 70◦, cylinders with θw � 110◦ and spherocylinders with θw � 110◦

neutrally wetting rods in the parallel orientation, both contact line curvature and particle anisotropy favour
parallel alignment, i.e. the two effects are synergetic. On the other hand, for non-neutrally wetting rods in
the perpendicular orientation, contact line curvature favours perpendicular alignment, but particle anisotropy
favours parallel alignment, i.e. the two effects are antagonistic.

We next consider the effect of decreasing cylindrical drop height below ht on the orientation of the rods,
starting with the case of ellipsoids and spherocylinders (first and third row in Fig. 3). We see that as we
decrease drop height to h � 0.75ht and 0.5ht , ellipsoids and spherocylinders align parallel to the cylindrical
drop regardless of contact angle. The parallel alignment of these rods comes from the fact that as we decrease
h, there is now significant monopolar deformation of the liquid meniscus so that the orientation of the rods is
now controlled by monopolar deformations rather than by the capillary quadrupole of the rods. Specifically,
the shape anisotropy of the rods means that they create larger monopolar deformations when they are in the
perpendicular orientation compared to the parallel orientation since their ends protrude above the cylindrical
interface more in the perpendicular orientation, making the parallel orientation more energetically favourable.
Not surprisingly, this effect becomes stronger as we decrease h, as can be seen from the fact that the potential
energy well depth for the parallel orientation increases for both ellipsoids and spherocylinders as we go from
h � 0.75ht to h � 0.5ht .

While particle anisotropy plays the dominant role in determining particle orientation in the immersion
regime, the effect of contact line curvature is still significant. This can be seen from the fact that for h �
0.75ht , 0.5ht , the potential energy well depth for parallel orientation is largest for hydrophobic ellipsoids
and hydrophilic spherocylinders, i.e. where contact line curvature and particle anisotropy both favour the
parallel orientation so that the two effects are synergetic. On the other hand, the potential energy well depth is
smallest for hydrophilic ellipsoids and hydrophobic spherocylinders, i.e. where contact line curvature favours
the perpendicular orientation, but particle anisotropy favours the parallel orientation so that the two effects are
antagonistic.

We next consider the case of cylinders (second row in Fig. 3). As we decrease the drop height to h � 0.75ht
and 0.5ht , we see that particle anisotropy again drives the rods towards the parallel orientation, so that both
hydrophilic and neutral cylinders now have parallel orientation, while the potential energy well depth for
perpendicular orientation for hydrophobic cylinders is significantly reduced. However, hydrophobic cylinders
are still in the perpendicular orientation even at h � 0.5ht , and we have to decrease h below 0.4ht before this
system transitions to the parallel orientation (see later in Fig. 5b). We believe that the much lower values of h
required to drive hydrophobic cylinders into the parallel orientation arise from the fact that for cylinders that
are in the perpendicular orientation, their flat ends allow them to accommodate different interfacial heights
more readily compared to particles with rounded ends such as ellipsoids and spherocylinders. This means that
we need to go to much lower values of h before the system can generate large enough monopolar deformations
to drive cylinders into the parallel orientation.

In the preceding discussion, we have assumed that the orientation of the adsorbed rods is primarily deter-
mined by quadrupole deformations of the liquid meniscus for h � ht and by monopolar deformations of the
liquid meniscus for h < ht . To confirm that this is indeed the case, we analyse in more detail how the multi-
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polar character of the liquid meniscus changes as we change the drop height across ht . In Fig. 4a, b, c, we plot
the deformation of the liquid interface (relative to the unperturbed cylindrical interface) around an adsorbed
hydrophilic ellipsoid (contact angle θw � 90◦) for h � 2ht , ht , 0.5ht , respectively; note that this ellipsoid has
a perpendicular orientation for h � 2ht , ht and a parallel orientation for h � 0.5ht (see Fig. 3). From Fig. 4,
we see that the interfacial deformation is quadrupolar for h � 2ht (Fig. 4a), monopolar for h � 0.5ht (Fig. 4c)
and a combination between the two for h � ht , specifically quadrupolar in the near-field but monopolar in the
far-field (Fig. 4b). These results confirm that quadrupolar deformations are only significant for h ≥ ht , while
monopolar deformations become dominant for h < ht . To help visualise the meniscus deformations in Fig. 4
more clearly, in Fig. S7 in Supplementary Information, we also show 3D plots of the meniscus deformation
for h � 2ht and h � 0.5ht .

In Fig. 3, we saw that as we decrease h, rods that were initially in the perpendicular orientation at h � ht
undergo a transition to the parallel orientation due tomonopolar interfacial deformations becoming increasingly
dominant over quadrupolar deformations. We now study this transition in more detail. In Fig. 5a, we plot the
orientational energy curves from θb � 0◦ to 90◦ for ellipsoids with contact angle θw � 70◦ at the different
drop heights over which the orientational transition occurs (around 0.9ht ). Note that the energy scales of
orientational energy curves become quite small close to an orientational transition and the energy curves can
therefore be quite noisy due to the reduced signal-to-noise ratio. To obtain smooth energy curves so that we
can identify minima and maxima accurately, we therefore filter the simulated energy curves before analysing
them. Details of the filtering procedure can be found in Supplementary Information (see Fig. S5, S6,) and the
curves shown in Fig. 5 are based on the filtered energy curves.

From Fig. 5a, we see that each orientational energy curve only has one minimum and the position of this
minimum decreases continuously from θb � 90◦ (perpendicular orientation) to θb � 0◦ (parallel orienta-
tion) as h is decreased. We therefore conclude that the orientational transition for hydrophilic ellipsoids is a
second-order (or continuous) transition. In Fig. S6 in Supplementary Information, we show the correspond-
ing orientational energy curves for hydrophobic cylinders and hydrophobic spherocylinders and we see that
the orientational transition for these rods is also continuous transitions. The results for all three orientational
transitions are summarised in Fig. 5b where we plot the equilibrium bond angle as a function of cylindrical
drop height for each of the three rods. As expected, as we decrease h, the equilibrium bond angle decreases
continuously from the perpendicular orientation to the parallel orientation for all three rods. Interestingly, the
transition for cylinders occurs at significantly lower drop heights compared to ellipsoids or spherocylinders. As
discussed earlier, we believe that this difference is due to the fact that when the rods are in the perpendicular
orientation, the flat ends of the cylinder allow it to accommodate different interfacial heights more readily
compared to particles with rounded ends such as ellipsoids and spherocylinders. This means that we need to
go to much lower values of h before the energy penalty from the monopolar deformations is large enough to
drive cylinders into the parallel orientation.

The results in Figs. 3, 4 and 5 show that for low enough cylindrical drop heights, all adsorbed rods will
orientate themselves parallel to the long axis of the cylindrical drop, regardless of the shape or contact angle
of the rods. Working with adsorbed rods in the immersion regime thus provides a robust method for preparing
rods in the parallel orientation.

3.2 Orientational and spatial confinement of single rods

In the previous section, we studied how we can control the orientation of adsorbed rods in the immersion
regime by changing particle shape, contact angle and cylindrical drop height. In this section, we study how
the strength of the orientational confinement and spatial confinement of the adsorbed rods changes as we go
from the flotation regime (h > ht ) to the immersion regime (h < ht ). To simplify our discussion, we focus
on the case where the adsorbed rods are aligned parallel to the cylindrical drop as this is the most favourable
alignment for achieving the tip-to-tip assembly considered in the next section. Specifically, we consider the
behaviour of ellipsoids with θw � 110◦, cylinders with θw � 70◦, and spherocylinders with θw � 70◦ in this
section.

In Fig. 6a–c we plot the orientational energy curves from θb � 0◦ to 90◦ for hydrophobic ellipsoids,
hydrophilic cylinders and hydrophilic spherocylinders, respectively, for drop heights of h � 2ht , ht and 0.5ht .
Note that for the results in Fig. 6, we set xp, yp � 0 as in the previous section, and the equilibrium orientation
is the parallel orientation θb � 0◦ in all cases. For ellipsoids and cylinders (Fig. 6a, b), we see that the well
depth for the orientational energy curves is greater for h � 2ht compared to h � 0.5ht , i.e. the orientational
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Fig. 6 Interfacial energy (relative to energy at θb � 0◦) as a function of bond angle θb for different cylindrical drop heights for:
a ellipsoids with θw � 110◦, b cylinders with θw � 70◦, c spherocylinders with θw � 70◦

confinement of the rods is stronger in the flotation regime compared to in the immersion regime. This is
not surprising since the confining potential due to interfacial curvature is proportional to the product of the
deviatoric curvature of the host interface and the capillary quadrupole of the adsorbed particle [28, 29, 32] and
the deviatoric curvature of the cylindrical drop decreases as we reduce h.

From Fig. 6a, b, we note that there is a slight increase in the orientational confinement of ellipsoids and
cylinders when we reduce the drop height from h � ht to h � 0.5ht . As discussed in the previous section,
this increase comes from the fact that in the immersion regime, particle orientation is determined not only by
interfacial curvature, but also by monopolar deformations of the interface. Specifically, since larger monopolar
deformations are generated in the perpendicular orientation compared to in the parallel orientation, monopolar
forces drive the rods into the parallel orientation, and this effect becomes stronger as we reduce h. Once again,
the increase in the confining potential is smaller for cylinders compared to ellipsoids because the flat ends of
the cylinder allow it to accommodate different interfacial heights more readily when it is in the perpendicular
orientation compared to ellipsoids, thus reducing the monopolar driving force for the parallel orientation.

Interestingly, from Fig. 6c, we see that for hydrophilic spherocylinders, the orientational confinement is
stronger for h � 0.5ht (immersion regime) compared to for h � 2ht (flotation regime). This result can
be understood from the fact that spherocylinders do not have an intrinsic capillary quadrupole so that the
orientational confinement due to interfacial curvature is weak, as evidenced by the fact that the confining
potential at h � 2ht is significantly smaller for spherocylinders compared to ellipsoids and cylinders. This
means that the dominant contribution to orientational confinement for spherocylinders comes from monopolar
immersion forces, which increase as we decrease h.

It is important to emphasise that although the orientational confinement of the rods is weaker in the
immersion regime for some rod shapes, the confinement is still significant for all the rods studied above.
Specifically, the well depth of the confining potential at h � 0.5ht is ≈ 0.02γ b2 for the ellipsoid, ≈ 0.05γ b2

for the cylinder and ≈ 0.03γ b2 for the spherocylinder. For nanoscale rods with b � 10 nm adsorbed at an
oil–water interface with γ � 30 × 10−3 N/m, this translates to well depths of ≈ 15kBT , ≈ 40kBT and
≈ 20kBT , respectively. This means that the orientational confinement is significant in the immersion regime
even for nanorods.

In order to study the spatial confinement of the rods lateral to the cylindrical drop, in Fig. 7a–c we plot
interfacial energy (relative to the value at yp � 0) as a function of lateral displacement yp for hydrophobic
ellipsoids, hydrophilic cylinders and hydrophilic spherocylinders, respectively, for drop heights of h � 2ht ,
ht and 0.5ht . For the results in Fig. 7, we set θb � 0◦ since all rods have a parallel equilibrium orientation,
and we set xp � 0 to minimise the impact of the reflecting boundary conditions at the cylindrical drop ends
in our simulations. We see that for all the rods, the spatial confinement of the adsorbed rods to the centreline
of the cylindrical drop (yp � 0) in the flotation regime (i.e. for h � 2ht , ht ) is very weak compared to in the
immersion regime (i.e. for h � 0.5ht ). As discussed in ref.32, the veryweak spatial confinement in the flotation
regime is due to the fact that cylindrical drops have no curvature gradients which we can use to control particle
position, and the spatial confinement comes only from the capillary repulsion between the capillary quadrupole
of the rods and the pinned contact lines of the sessile drop which is weak and short ranged [40, 41]. In contrast,
the spatial confinement is very strong in the immersion regime because the confinement is due to monopolar
deformations of the liquid interface that come from the mismatch in the height of the rod three-phase contact
line compared to the local height of the cylindrical drop, and this mismatch becomes greater for larger lateral
displacements of the rod.
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Fig. 7 Interfacial energy (relative to value at yp � 0) as a function of lateral displacement yp for different cylindrical drop heights
for a ellipsoids with θw � 110◦, b cylinders with θw � 70◦, c spherocylinders with θw � 70◦. Note that the h � 2ht line in
(a) cannot be seen as it lies underneath the h � ht line

Interestingly, from Fig. 7 we see that confining potential for both cylinders and spherocylinders (Fig. 7b,
c) is significantly greater compared to ellipsoids (Fig. 7a). We believe that this difference is due to the tips
of the ellipsoid being much more rounded compared to cylinders and spherocylinders. This means that for
ellipsoids, themonopolar deformations of interface only occur along themiddle portion of the rod as the bottom
surface of the tips lies above the cylindrical interface, while for cylinders and spherocylinders, the monopolar
deformations essentially occur along the whole length of the rod. Notwithstanding this difference, the spatial
confinement for all the different rod shapes in Fig. 7 is very strong in the immersion regime. Specifically, for
h � 0.5ht the well depth of the spatial confining potential (i.e. the potential at yp � 9b, the largest value of yp
that we could access numerically, compared to at yp � 0) is 0.25γ b2, 1.3γ b2 and 1.2γ b2, respectively, for the
ellipsoids, cylinders and spherocylinders, which translates to 180kBT , 920kBT and 860kBT for b � 10 nm
and γ ≈ 30×10−3 N/m. In summary, byworking in the immersion regime, we can achieve strong orientational
and spatial confinement of the adsorbed rods, even in the case of nanorods.

3.3 Capillary interaction and self-assembly for two rods

Having considered both the orientational and lateral confinement of single particles at a cylindrical interface in
the previous section, in this section we consider the interaction and self-assembly of two rods at the cylindrical
interface in the immersion regime. To simplify our discussion, we focus on the tip-to-tip interaction and
assembly of adsorbed rods and therefore we restrict our analysis to rods with parallel alignment, specifically
ellipsoids with θw � 110◦, cylinders with θw � 70◦ and spherocylinders with θw � 70◦. Since our focus is
on two-particle configurations that are mirror symmetric (see Fig. 2c, d), we can simplify our calculations by
exploiting the fact that the energy of the two-particle system where both rods are approaching each other is
equal to twice the energy of one rod approaching the reflecting boundary of cylindrical drop end. We therefore
calculate the energy of the two-rod system by considering a one-rod simulation where we vary the distance of
the rod from the reflecting boundary. Since, as we saw in the previous section, the adsorbed rods are strongly
confined to the centreline of the cylindrical drop in the immersion regime, we set yp � 0 in our simulations.

We first consider the capillary interactions between two rods in the tip-to-tip configuration (see Fig. 2c),
i.e. we set θb � 0◦ in our simulations. In Fig. 8a–c, we plot the tip-to-tip capillary interaction energy (i.e.
energy relative to the energy of the two rods at maximum separation) as a function of the surface-to-surface
separation between the rods d for the ellipsoid, cylinder and spherocylinder, respectively, for h � 2ht , ht and
0.5ht . We see that in all cases, the strength and range of the capillary interaction increase dramatically as we
go from h � 2ht (flotation regime) to h � 0.5ht (immersion regime). This is not surprising since particle
interactions in the flotation regime are quadrupolar and therefore weak and short ranged (negligible beyond
one rod length away) [32], while those in the immersion regime are monopolar and therefore strong and long
ranged (significant up to 4–5 rod lengths away) [11, 15].

Interestingly, we see from Fig. 8 that the strength of the capillary interactions in the immersion regime
decreases as we go from cylinders to spherocylinders to ellipsoids. We believe that this trend is due to the
increasingly rounded nature of the particle tips for this sequence of particle shapes which means that the
monopolar deformations near the tips occur over a smaller and smaller effective cross-sectional area. Notwith-
standing this fact, the capillary bond energy at contact is very large for all the particles in the immersion regime.
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Fig. 8 Capillary interaction energy between two particles in the tip-to-tip configuration as a function of surface-to-surface sepa-
ration d for different drop heights for: a ellipsoids with θw � 110◦, b cylinders with θw � 70◦, c spherocylinders with θw � 70◦.
Note that the curve for h � 2ht in (a) cannot be seen as it lies beneath the curve for h � ht

Specifically, for h � 0.5ht , the capillary bond energy is 0.11γ b2, 0.52γ b2 and 0.38γ b2, respectively, for the
ellipsoids, cylinders and spherocylinders, which translates to 78kBT , 380kBT and 270kBT for b � 10 nm and
γ ≈ 30 × 10−3 N/m.

For parallel rods in the immersion regime, the strong spatial confinement transverse to the cylindrical drop
and tip-to-tip capillary interactions between the rods provide a strong driving force for them to form tip-to-tip
clusters. However, from the preceding discussion, we see that as we decrease the cylindrical drop height h in the
immersion regime, the capillary interaction increases dramatically (Fig. 8), but the orientational confinement
does change significantly (Fig. 6). We therefore anticipate that if we decrease h too much, we may destabilise
the tip-to-tip clusters that are formed since the system can lower its energy by undergoing a roll-over transition
to the side-to-side configuration which has a smaller centre-to-centre separation between the rods at contact;
note that this transition is also seen for ellipsoids at a flat interface [18, 22]. In what follows, we consider the
mechanical stability of tip-to-tip clusters in our system against the roll-over transition as we change h in the
immersion regime.

We note that the roll-over transition occurs when the two rods in the cluster pivot about their contacting
tips in a mirror-symmetric configuration as shown in Fig. 2d, where the configuration of the cluster during the
transition is characterised by the roll-over angle θr . Our first task is therefore to calculate the perpendicular
distance of each rod centre from themirror plane rc as a function of θr . For spherocylinders, rc can be calculated
from simple geometry to be rc � (a − b)cosθr + b. For superellipsoids given by Eqs. (1) and (2), rc can be
calculated as follows. We first set z′ � 0 in Eqs. (1) and (2) since the contact point lies in the z′ � 0 plane. We
next note that the surface normal vector for the rod is given by ∇ f , where f (x ′, y′, z′) is given by Eq. (2) and
∇ is the 3D grad vector in the laboratory frame. Since the surface normal vector points in the x direction at
the contact point by symmetry, the contact point coordinate satisfies ∂ f/∂y � 0. This equation, together with
Eqs. (1) and (2), gives us two simultaneous equations which we can solve to find the contact point coordinate
(xc, yc) and rc is then given by rc � xc − xp. In the case of ellipsoids (η � 1), we can obtain an analytical
expression for rc as a function of θr using this procedure [37]. In the case of cylinders (η � 4), we can calculate
rc as a function of θr numerically using this procedure. Having found rc for the different rod shapes, we fix
xp such that the rod centre is a distance rc + � away from the reflecting boundary, where we include a thin
exclusion zone of thickness � � 0.05b around each rod to avoid the numerical issues that occur when the
rod is in contact with the reflecting boundary. To validate that our results are not significantly affected by our
choice of �, for selected cases we used � � 0.075b and found that this led to a shift in the roll-over transition
heights of less than 4% (see Fig. S3 in Supplementary Information).

In Fig. 9a, we plot the interfacial energy (relative to the value at θr � 0◦) as a function of θr for hydrophilic
ellipsoids for different drop heights h around the roll-over transition. Note that the energy curves in Fig. 9 have
been filtered in the same way as in Fig. 5 to reduce noise and allow us to identify the minima and maxima
points more accurately (see Supplementary Information). From Fig. 9a, we see that at large h (e.g. the blue
curve), there is a single minimum at θr � 0◦ corresponding to the tip-to-tip configuration, but as we decrease
h below a critical value, the energy curve develops a local minimum at θr � 90◦ corresponding to the side-
to-side configuration, which is separated from the primary minimum at θr � 0◦ by an energy barrier. As h is
decreased further to hb � 0.36b (green curve), the energy of the side-to-side configuration becomes equal to
that of the tip-to-tip configuration. At this point, the primary minimum switches from θr � 0◦ to θr � 90◦,
and the system in principle undergoes a first-order (i.e. discontinuous) transition from the tip-to-tip state to the
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Fig. 9 a, c, e Interfacial energy curves for two particles in contact as a function of the roll-over angle θr (relative to the energy
at θr � 0◦) for different drop heights around the roll-over transition for a ellipsoids with θw � 110◦, c cylinders with θw � 70◦,
e spherocylinders with θw � 70◦. The filled black circles represent the maxima for each curve. b, d, f Locally stable values of θr
as a function of h (red curve) and the value of θr corresponding to the energy barrier maxima as a function of h (black curve) for
b ellipsoids with θw � 110◦, d cylinders with θw � 70◦, f spherocylinders with θw � 70◦. The vertical dashed curve denotes the
thermodynamic roll-over transition at the binodal point h � hb, while the vertical arrows pointing up or down denote the actual
roll-over transitions that occur at the spinodal points h � hs1, hs2

side-to-side state. The height hb therefore corresponds to the binodal point of the roll-over transition. However,
in practice, because the energy barrier between the two minima is typically much larger that kBT , even for
rods on the nanoscale, there is significant hysteresis in the roll-over transition. Specifically, for decreasing
h, the system only undergoes an irreversible transition from the tip-to-tip state to the side-to-side state when
h � hs1 � 0.27b (purple curve), where the maxima of the energy barrier shift to θr � 0◦ and the local
minimum at θr � 0◦ disappear. On the other hand, for increasing h, the system only undergoes an irreversible
transition from the side-to-side state to the tip-to-tip state when h � hs2 � 0.45b (blue curve), where the
maxima of the energy barrier shift to θr � 90◦ and the local minimum at θr � 90◦ disappears. The heights
hs1, hs2 therefore correspond to the spinodal points of the roll-over transition.

The key features of the roll-over transition for hydrophobic ellipsoids are summarised in Fig. 9b where we
plot the locally stable values of θr as a function of h (red curve) and the value of θr corresponding to the energy
barriermaxima as a function of h (black curve).We see that at large h, the system is initially in the tip-to-tip state
θr � 0◦. As we decrease h to the binodal point hb, thermodynamically the system will undergo a first-order
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transition from the tip-to-tip state to the side-to-side state (dashed vertical line). However, as discussed earlier,
in practice, it is only when we decrease h to the spinodal point hs1 that the system undergoes an irreversible
transition from the tip-to-tip state to the side-to-side state (solid vertical line pointing up). Similarly, when
the system is initially in the side-to-side state θr � 90◦ at low values of h, it is only when we increase h to
the spinodal point hs2 that the system undergoes an irreversible transition from the side-to-side state to the
tip-to-tip state (solid vertical line pointing down). Note that the spinodal points hs1 and hs2 are the values of
h where the energy maxima curve (black curve) first meet θr � 0◦ and θr � 90◦, respectively. Note also that
points to the right of the binodal point on the bottom branch of the red curve and to the left of the binodal point
on the top branch of the red curve are equilibrium states, while all other points on the red curve are metastable
states.

In Fig. 9c, we plot the interfacial energy (relative to the value at θr � 0◦) as a function of θr for hydrophilic
cylinders for different drop heights h. Once again, we see that at large h (e.g. the blue curve), there is a single
minimum corresponding to the tip-to-tip configuration, but as we decrease h, the energy curve develops a local
minimum at θr � 90◦ which is separated from the primary minimum at θr � 0◦ by an energy barrier. As h is
decreased further to the binodal point hb � 0.42b (green curve), the energy of the side-to-side configuration
becomes equal to that of the tip-to-tip configuration and thermodynamically, the system should undergo a
first-order transition from the tip-to-tip state to the side-to-side state at this point. However, this transition does
not occur in practice because the energy barrier between the two minima is generally too large. Interestingly,
for cylinders, the local minima at θr � 0◦ do not disappear, or equivalently the maximum of the energy
barrier does not shift to θr � 0◦, even at the lowest drop height we studied at h � 0.1ht (red curve). This
means that cylinders effectively do not have a lower spinodal point hs1 so that they do not undergo a roll-over
transition from the tip-to-tip state to the side-to-side state even for small h. Interestingly, cylinders adsorbed
at flat interfaces also do not undergo a roll-over transition because they are prevented from doing so by the
capillary ‘hinges’ between contacting cylinders created by the sharp edges of the cylinders [22]. The significant
and persistent energy barrier we see in Fig. 9c is presumably due to the same effect. The key features of the
roll-over transition for hydrophilic cylinders discussed above are summarised in Fig. 9d where all the lines
have the same meaning as in Fig. 9b.

Finally, in Fig. 9e we plot the interfacial energy (relative to the value at θr � 0◦) as a function of θr for
hydrophilic spherocylinders for different drop heights h. Interestingly, we see that even at h � ht (blue curve),
while the primary minimum is at θr � 0◦, there is already a local minimum at θr � 90◦, suggesting that
spherocylinders do not have an upper spinodal point hs2. As h is decreased to the binodal point hb � 0.85b
(orange curve), the energy of the side-to-side configuration becomes equal to that of the tip-to-tip configuration.
Thermodynamically, the system undergoes a first-order transition from the tip-to-tip state to the side-to-side
state at this point, but in practice this transition only occurs when we decrease h further to the lower spinodal
point hs1 � 0.62b, where the maxima of the energy barrier shift to θr � 0◦ and the local minimum at θr � 0◦
disappears. The key features of the roll-over transition for hydrophilic spherocylinders discussed above are
summarised in Fig. 9f where all lines have the same meaning as in Fig. 9b.

We note that the effective roll-over transition height hs1 is significantly greater for spherocylinders (hs1 ≈
0.62ht ) compared to ellipsoids (hs1 ≈ 0.27ht ) and cylinders (hs1 ≈ 0). Since the strong lateral spatial
confinement needed to align the rods into the tip-to-tip configuration requires us to work in the immersion
regime h < ht , this means that it is easier to use our capillary assembly method to prepare tip-to-tip assemblies
of ellipsoids and cylinders compared to spherocylinders because the drop height window over which we can
prepare tip-to-tip assemblies (hs1 < h < ht ) is much wider for the former compared to the latter. Finally,
we note that the results in this section provide insights into how the structure of clusters of rods adsorbed at
cylindrical drops evolves during the drying of the droplet.

4 Conclusions

Wehave used the finite element method Surface Evolver to study the capillary assembly of rod-shaped particles
adsorbed at a sessile liquid drop with cylindrical geometry. Specifically, we considered the immersion regime
where the drop height is less than the radius of the rods and the lateral width of the cylindrical drop is much
greater than the length of the rods, and we studied the configuration of single and multiple rods as a function
of drop height, particle shape (ellipsoid, cylinder, spherocylinder) and contact angle.

We found that for low enough drop heights, regardless of the shape or contact angle of the rods, all rods
orientate themselves parallel to the long axis of the cylindrical drop and are strongly confined laterally to be at
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the centreline of the cylindrical drop. We also found that the rods experience strong and long-range immersion
capillary forces which assemble the rods tip-to-tip at larger drop heights and, in the case of ellipsoids and
spherocylinders, side-to-side when we reduce the drop height, for example through drying. We note that the
capillary forces discussed above are very strong, allowing us to order rods even on the nanoscale.

The fact that we can control the self-assembly of rods using cylindrical drops whose lateral dimensions
are much greater than the length of the rods allows us, for example, to control the configuration of nanorods
using near micron-scale droplets, greatly simplifying the task of fabricating the liquid templates required to
realise this assembly method. Our capillary assembly method therefore provides a facile method for organising
micro- and nanoscale objects into complex cluster structures and we hope that our study will stimulate future
experiments in this direction.
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