
Ballbot Simulation System: Modeling, Verification,
and Gym Environment Development

Abdelrahman Nashat, Abdelrahman Morsi, and Mohamed M. M. Hassan
Electrical Engineering Department

Assuit University
Assiut, Egypt

{abdelrahman.nashat, abdelrahman.morsi}@aun.edu.eg, mohamed.hassan4@eng.au.edu.eg

Mustafa Abdelrahman
School of Engineering

University of Hull
Hull, United Kingdom
murabeei@aun.edu.eg

Abstract—This paper introduces the development of a sophis-
ticated simulation model for the ball-balancing robot (ballbot),
implemented as a Gymnasium (Gym) environment in Python. The
main purpose of this environment is to facilitate the application
of Reinforcement Learning (RL) techniques to effectively control
the ballbot system. Initially, a standard ballbot model is created
using Solidworks, and a Unified Robot Description Format
(URDF) file is generated to precisely capture the dynamics of
the ballbot. To validate the model, simulations are performed
within MATLAB/Simulink, comparing the ballbot URDF model
against its nonlinear mathematical model with a simple PID
controller. The simulation results demonstrate that the URDF
model accurately represents the ballbot dynamics, exhibiting a
comparable response to the mathematical model. Subsequently,
the high-fidelity URDF model is integrated into the Gym envi-
ronment using the Pybullet simulator. The ongoing objective of
this research is to utilize the developed ballbot environment for
RL-based control design.

Keywords—ballbot system, modeling and simulation, control
applications, Gym environment, reinforcement learning

I. INTRODUCTION

Robots typically have more than three contacts with the
ground, including at least two independent driving wheels, to
be statically stable with a large base for support [1]. These
robots, while they can rotate at any point, cannot move freely
in every direction and rotate instantly. In crowded or narrow
areas, they will have trouble in avoiding obstacles.

A ball-balancing robot (ballbot) is a vertical robotic plat-
form mounted on top of a ball that rolls on the ground
thus moving the robot. Actuation is realized by a set of
omni-directional wheels (omniwheels) that sit on the ball and
are connected to the rest of the robot body. Compared to
the wheeled ground robots, previously mentioned, which are
inherently stable, the ballbot is inherently unstable. Therefore,
the ballbot system must operate under an active control to be
stabilized and be saved from falling. On the other hand, the
same instability confers much more agility (e.g., it can move
fast by tilting, and it can track any trajectory on the horizontal
surface) [2].

In literature, there were different designs of the ballbot. The
first design in [1] was based on inverse mouse-ball mechanism.
It used drive rollers to move the ball. In [3], the design was
based on inverted pendulum mechanism and used omniwheels

for the first time to move the ball. This new feature made the
yaw motion possible.

The ballbot dynamics are often modeled either as a simple
planar model, which will be referred to as 2D model [1], [4],
[5], [6] or as a coupled 3D model [7], [8], [4], [6]. This part
will be covered thoroughly in Section II.

Several control methods were applied to the ballbot to
control both balancing and tracking:

• Double loop controller which consists of a Linear
Quadratic Regulator (LQR) controller in the outer loop
and a Proportional-Integral (PI) controller in the inner
loop [1], [5].

• Proportional-Derivative (PD) controller with inverse dy-
namic [8].

• Fuzzy-based controller [9], [10].
• Sliding mode controller [4], [11].
• Reinforcement Learning (RL) controller [12].
The controller design and its performance, especially if

it depends on Artificial Intelligence (AI) as in RL, highly
depends on the accuracy of the model. RL [13] is a branch
of machine learning that focuses on enabling agents to learn
from their interactions with an environment to achieve specific
goals. RL algorithms can be used directly on the actual
physical ballbot. However, this could lead to many problems:
the ballbot’s motors could burn out if the torque is too high or
the mechanical parts could be damaged due to the constant
falls of the ballbot during training. These hazards can be
avoided by training using simulated ballbot rather than the
physical one.

The main goal of this work is twofold. First, is to design an
accurate simplified simulation system of the ballbot. Second
is to build a reliable Gymnaisum (Gym) environment for the
designed ballbot simulation system, which can ease the appli-
cation of RL-based control technique. To achieve that, a me-
chanical model of the ballbot system is built using Solidworks.
Then, a Unified Robot Description Format (URDF) file, which
can capture the dynamics of the ballbot system, is generated.
To verify the performance of the ballbot simulation system,
a simple Proportional-Integral-Derivative (PID) controller is
considered using MATLAB/Simulink.

The rest of the paper is organized as follows: Section II
discribes the mathematical and Solidworks modeling of the

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

ballbot. Verification of the models is discussed in Section III.
In Section IV, a reliable ballbot Gym environment is built.
Finally, the conclusions are given in Section V.

II. MODELING

In this section, a brief mathematical derivation of the ballbot
model will be presented as well as the description of the
Solidworks implementation.

A. Mathematical Model

Two different model types are presented to describe the
ballbot dynamics: the 2D model and the 3D model. Regarding
the 2D model, the robot dynamics are decoupled into three
2D models: xz-plane, yz-plane, and xy-plane, where each one
is described by two Degrees Of Freedom (DOF), one for the
translation of the ball and the other one for the rotation of the
bot. The three motors and omniwheels are modeled as three
virtual actuating wheels, one in each plane for driving the ball.
The coupling between the three 2D models is neglected, i.e.,
they are decoupled and hence the balancing controller consists
of three independent controllers, one for each plane, see Fig.
1a.

On the other hand, for the 3D model, the coupling between
the planes is considered. This makes the 3D model be de-
scribed by 5 DOFs, two of them are for the position of the ball,
and the other three are for the rotation of the bot. Therefore,
the model can capture all aspects of the ballbot dynamics
accurately and forms a more reliable basis for the controller
design which can handle fast and complex maneuvers, see Fig.
1b.

In spite of the high accuracy and reliability of the 3D model
of the ballbot, it is complex and needs more computations.
Therefore, in this paper, the 2D model is considered as it is
much simpler and can provide a sufficient approximation to
qualitatively understand the dynamics of the ballbot system
and to design balancing controllers.

The dynamic modeling of the ballbot is valid under the
following assumptions:

1) There is no slipping between the ball and the wheels or
between the ball and the ground.

2) The motion in the yz-plane and xz-plane are decoupled
and their equations of motion are symmetric.

3) The contacts between the wheels and the ball and
between the ball and the ground are point contacts.

4) Rigid body dynamics are considered with no deforma-
tion.

5) The floor is assumed to be flat.
6) Only viscous friction is considered.
The dynamic equations of the 2D model can be derived

using the Euler Lagrange approach by calculating the kinetic
and potential energies of each plane, the whole derivation can
be found in [4]. The equation of motion in the yz-plane is
written in matrix form as follows:

M(qx)q̈x + C(qx, q̇x)q̇x +D(q̇x) +G(qx) = Qxτx (1)

(a) 2D model [6].

(b) 3D model [8].

Fig. 1: 2D and 3D models of ballbot.

where qx =
[
yk θx

]T
with θx is the body tilt angle around

the x-axis, yk is the ball position on the floor in the y-axis,
and τx is the virtual torque delivered by the virtual wheel
acting on the ball around the x-axis. M(qx), C(qx, q̇x), G(qx),
D(q̇x), and Qx are the mass matrix, the Coriolis, the gravity,
the friction, and the input vectors, respectively, which are given
as follows:

M(qx) =

[Jk

r2k
+ Jw

r2w
+Mk +Mb Mbl cos θx − Jwrk

r2w

Mbl cos θx − Jwrk
r2w

Jb +Mbl
2 +

Jwr2k
r2w

]
(2)

C(qx, q̇x) =

[
0 −Mblθ̇x sin θx
0 0

]
(3)

G(qx) =

[
0

−Mbgl sin θx

]
(4)

D(q̇x) =

[
Bvkẏk

0

]
(5)

Qx =

[1
rw

− rk
rw

]
(6)

where the definitions of Jk, Jw, rk, rw, Mk, Mb, l, Jb, g, and
Bvk are given in Table I.

Following the assumptions given in Section II-A, the xz-
plane has identical dynamics to the yz-plane. Therefore, to
obtain the equation of motion in the xz-plane, θx, yk, and τx
in (1) are replaced by θy , xk, and τy , respectively, where θy
is the body tilt angle around the y-axis, xk is the ball position
on the floor in the x-axis, and τy is the virtual torque around
the y-axis.

On the other hand, the equation of motion in the xy-plane
is given as:

θ̈z =
Jkrkrw

JkJzr2w + 3(Jk + Jz)Jwr2k sin
2 α

τz (7)

where θz is the body tilt angle around the z-axis and τz is the
virtual torque around the z-axis, see Table I for the definitions
of Jz and α.

Regarding the step of designing a balancing controller, see
Section III-A, the motors’ torques are considered as the control
inputs. Therefore, the virtual torques, i.e., τx, τy , and τz , are
needed to be converted to the torques of the actual wheels as
follows:τ1τ2

τ3

 =

2rw

3rk cosα
−rw

3rk cosα
−rw

3rk cosα

0 rw√
3rk cosα

−rw√
3rk cosα

rw
3rk sinα

rw
3rk sinα

rw
3rk sinα

−1 τxτy

τz

 (8)

B. Solidworks Model

In this subsection, a simplified mechanical representation
of the ballbot, i.e., a Computer-Aided Design (CAD) file, is
designed using Solidworks [14]. The design consists of three
parts:

TABLE I: Description of planar model parameters.

Symbol Unit Description
Jk kg.m2 Inertia of the ball
Jw kg.m2 Inertia of the omniwheel
Jb kg.m2 Inertia of the bot
Jz kg.m2 Inertia of the bot around z-axis
rk m Radius of the ball
rw m Radius of the omniwheel
Mk kg Mass of the ball
Mb kg Mass of the bot
l m Distance from Center of Mass (CoM) of ball

to CoM of bot
g m/s2 Gravity
Bvk N/(m/s) Viscous friction of ball to ground
α ◦ Wheel zenith angle

1) The body of the ballbot including the three motors which
will be referred to as bot.

2) The omniwheels that apply the torque required to move
the ball.

3) The ball.

For simplification, the bot, in the designed CAD file, does
not include controllers nor batteries, as shown in Fig. 2. The
physical properties of the CAD ballbot are given in Table II.

(a) Top view. (b) Side view.

Fig. 2: Solidworks model of the ballbot.

The most important feature of this CAD representation is
to create a suitable URDF file for later use in building a full
ballbot simulation environment. This file is an XML (Extensi-
ble Markup Language) specification used to model multibody
systems such as robotic manipulator arms for manufacturing
assembly lines and animatronic robots. It simply divides the
whole robot into a series of links and joints that are responsible
for the motion of these links.

This exact file has been chosen for two reasons:

1) Ease of integration between Solidworks and URDF
exporter tool.

2) All available robotic simulators such as Pybullet,
Gazebo, Simscape, etc. are easily integrated to import
and simulate URDF files.

To fully capture the dynamics of the ballbot, two URDF
files, which are considered the basis for the full ballbot
simulation system, have been generated:

1) The bot file which contains four links: the bot and three
omniwheels. Each omniwheel is connected to the bot
via a rotating joint with three joints in total.

2) The ball file which consists of only one link, which is
the ball, with no joints.

TABLE II: CAD ballbot physical properties.

Parameter Value Parameter Value
Jk 0.0112 kg.m2 rw 0.05 m
Jw 0.000149 kg.m2 Mk 1.437 kg
Jb 0.0583 kg.m2 Mb 2.228 kg
Jz 0.0137 kg.m2 l 0.142 m
rk 0.112 m α 45◦

The reason for this separation, between the bot and ball files, is
that the ball cannot be considered as one of the links in the bot
file. This is due to the tree structure of the URDF file, which
means that if the bot is considered as the base link, it has
three child links (omniwheels) attached to it. However, each
omniwheel is attached to the ball, therefore, the ball should
be a child to all three omniwheels at the same time. This is
not applicable because it defies the tree structure of the URDF
file. Moreover, considering the ball as the base link is also not
applicable for the same reason.

III. CAD VERIFICATION

This section discusses the verification step of the CAD
ballbot representation created in Section II-B.

The ballbot simulation environment is meant to be used as a
tool for RL development. Therefore, it is better to perform the
verification in an RL-based simulator such as Pybullet [15] or
Gazebo [16]. To achieve that, a simple balancing controller,
e.g., PID controller, can be applied to stabilize the bot on the
ball without falling off it. However, using PID controllers in
the Pybullet and Gazebo simulators can be tricky to add or
develop. Moreover, failing to understand the dynamics of the
physics engine can be an extra problem.

To solve this issue, we use another reliable simulator, i.e.,
MATLAB [17], which has built-in controller designs with an
option to tune. Moreover, it has a library inside Simulink
for multibody robotics which is Simscape. This is where we
import the URDF files and build the environment.

In this work, a simple model based on the mathematical
equations is built, see Section II-A. Then, this model is used to
design a stable balancing controller for the CAD ballbot. Next,
we import the CAD ballbot to the Simulink environment and
apply the same controller to verify the model. In the sequel,
these steps will be discussed.

A. Nonlinear Mathematical-Based Simulation

Based on (1), a simple mathematical nonlinear simulation
is developed in Simulink. The choice of Bvk, see Table I,
is arbitrary, which depends on the material of both the ball
and the plane it contacts. From [2], we consider this value
Bvk = 49.849.

The obtained model is used to fine-tune the PID controller
using the built-in Matlab PID Tuner toolbox. The resultant
parameters of the considered PID controller are kp = 20.39,
ki = 56.57, kd = 1.34, and filter coefficient N = 327.

Two different simulation scenarios have been considered to
assess the performance of the PID controller. The first scenario
is applying a step of 57.3◦ on the tilt angle θx. Fig. 3 shows the
corresponding trajectories of θx, θ̇x, y, and ẏ. It is worthy to
mention that applying this step value (57.3◦) is for simulation
only and cannot be implemented practically. This is due to the
dynamics of the ballbot, as if the tilt angle is increased over
30◦, the ballbot falls immediately. The step analysis obtained
from the trajectory of θx in Fig. 3 are as follows:

• Settling time = 0.397s.
• Overshoot = 18%.

0 0.5 1
0

20

40

60

80

0 0.5 1

0

20

40

60

0 0.5 1

0

1

2

0 0.5 1
-10

-5

0

5

Fig. 3: Step-response of mathematical-based model.

In the second scenario, we test the balancing of the ballbot,
which is achieved by applying a reference of 0◦ tilt angle.
In this case, the PID controller achieves efficient balancing
results, as shown in Fig. 4. Based on that, this PID controller
can be used to validate the simulated CAD model of the
ballbot.

0 10 20
-5

0

5
10

-6

0 10 20

-1

0

1

10
-5

0 10 20
-5

0

5
10

-9

0 10 20
-5

0

5
10

-6

Fig. 4: Balancing trajectories of mathematical-based model.

B. CAD-Based Simulation

To construct a complete ballbot simulation system using
the Simscape library within Simulink, the process involves the
following steps, building upon the CAD ballbot model created
in Section II-B:

1) Preparing the Simscape environment inside Simulink
by specifying the world frame, configuration, solver
settings, and ground plane.

2) Importing the URDF file generated by Solidworks into
Simulink using the command smimport.

3) Testing each link and joint in the simulation to make
sure everything works correctly.

4) Adding a 6-DOF block to the ball and to the bot to make
them fall on the plane.

5) There is no physics engine inside Simscape library.
Therefore, contacts between any two objects inside the
model must be added manually. To achieve that, we add
spatial contact force blocks between ball and plane, bot
and plane, each omniwheel and ball, each omniwheel
and bot, each omniwheel and plane, and between bot and
ball. The parameters of these blocks are arbitrary and
dependent on the surface materials of each object as well
as the dynamics of the simulator itself. The parameters
chosen for this model are given in Table III.

6) Adding sensors to measure the tilt angles of the bot, the
angular velocities of the bot, and position of the ball.

After applying the previous steps, the ballbot simulation
system has been successfully integrated into Simulink, see Fig.
5.

To validate the ballbot system created in Simulink, we
test the balancing scenario. To achieve that, the same PID
controller, used with the nonlinear mathematical model, has
been applied onto both θx and θy .

Fig. 6a shows the trajectories of θx and θy during the
simulation. It demonstrates that the designed ballbot system
can efficiently balance within 3.16 s, which is an acceptable
duration. It is worthy to mention that, this duration 3.16 s
has been measured when the trajectories of θx and θy have
reached a small range of [±2◦].

The corresponding trajectories of xk and yk are shown in
Fig. 6b. It shows that the ballbot keeps moving in order to
achieve the balancing as there is no position control applied
on it.

TABLE III: Spatial contact forces parameters.

Parameter Unit Between Ball &
Omniwheel Other pairs

Stiffness N/m 106 40, 000
Damping N/(m/s) 108 4, 000
Transition Region
Width m 10−4 10−4

Static Friction Co-
efficient − 1.1 1.1

Dynamic Friction
Coefficient − 1.0 1.05

Critical Velocity m/s 0.1 0.1

Fig. 5: Ballbot simulation system in Simulink.

Fig. 6c shows the trajectories τ1, τ2, and τ3, which have
very realistic and reasonable performance. Note that these
trajectories continuously decrease over time to nearly ±5 N.m
as the ballbot reaches a stable state.

To further assess the performance of the ballbot simulation
system using the considered PID controller, different slight
inclines of 1◦, 2◦, and 3◦ in θx have been applied on the ballbot
initially, as shown in Fig. 7. The controller has been able
to stabilize the ballbot. Therefore, the designed Solidworks
model of the ballbot system can be considered as a high-
fidelity model which can be used to make a robust environment
for RL training.

IV. BALLBOT GYM ENVIRONMENT

In this section, a reliable environment for the designed
ballbot simulation system has been built. This environment
can be efficiently used for training an RL agent. The agent
is trained using Stable-Baselines3 (SB3) [18] Python library
which is a set of reliable implementations of RL algorithms in
PyTorch. Therefore, the ballbot must be wrapped in the Gym
[19] environment class to be integrated with SB3. Note that,
Gym is an application programming interface (API) standard
for RL.

The first step is to find a suitable simulator which can visu-
alize the ballbot and its dynamics. Note that, in Simulink, as
previously mentioned in Section III-B, there is no physics en-
gine. This lengthens the simulation time and makes Simulink
inefficient to train an RL agent.

Based on [20], the search has been narrowed down into
these simulators: Raisim, Nvidia Isaac, Webots, Pybullet,
Gazebo, and MujoCo. Some additional properties have been
added to choose the most suitable simulator among them. The
desired simulator properties are as follows:

• Accurate physics engine.
• Integration with Python language and RL.
• Stable in terms of errors and code bugs.
• Lightweight in terms of processing speed.
• User-friendly.

0 5 10 15 20 25

-10

-5

0

5

10

(a) Trajectories of θx and θy .

0 5 10 15 20 25

-1

0

1

2

3

4

5

(b) Trajectories of xk and yk.

0 5 10 15 20 25

-20

-10

0

10

20

(c) Trajectories of τ1, τ2, and τ3.

Fig. 6: Balancing trajectories of ballbot simulation system.

• Moderate graphics capabilities.
• Available documentation.

Following this criterion, the simulator Pybullet [15] has been
considered in this work.

The next step is to build a Python class to wrap the
Solidworks implementation. This class includes the required
functions which can be used for interfacing with the ball-

0 5 10 15

-10

-5

0

5

10

0 0.05 0.1
-1

0

1

2

(a) Initial 1◦ incline.

0 5 10 15

-15

-10

-5

0

5

10

0 0.05 0.1
-3

0

2

(b) Initial 2◦ incline.

0 5 10 15

-15

-10

-5

0

5

10

0 0.05 0.1
-6

0

3

(c) Initial 3◦ incline.

Fig. 7: Balancing trajectories of ballbot simulation system with
different initial inclines in θx.

bot system, e.g., sensing different parameters and sending
actuation commands, setting joint dynamics, and other basic
functions.

Finally, the Python class is built to wrap the previous class
into the Gym environment. This class provides the necessary
following Gym functions: reset(), step(), render(),

and close(), as well as the initialization of the environment
parameters and dynamics. The ballbot Gym environment is
well integrated with SB3 but no RL agent is trained yet. Fig.
8 shows a frame of the ballbot system using the Pybullet
simulator.

Fig. 8: Ballbot simulation system in Pybullet.

V. CONCLUSIONS

In this paper, a high-fidelity CAD model of the ballbot
system has been designed. The performance of this model has
been successfully validated in MATLAB/Simulink by applying
a standard PID controller which has also been used with
the nonlinear mathematical model of the ballbot system. The
simulation results have demonstrated that the CAD model can
efficiently represent the nonlinearity of the ballbot system and
fully capture its dynamics. Based on the designed CAD model
of the ballbot system, a reliable Gym environment has been
constructed to be used with the Pybullet simulator. As a next
step of this work, an RL-based control will be applied onto
the designed ballbot environment. Moreover, new different
scenarios will be considered in simulation and experimentally,
such as: reference tracking and disturbance rejection.

REFERENCES

[1] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically stable
single-wheeled mobile robot with inverse mouse-ball drive,” in 2006
IEEE International Conference on Robotics and Automation (ICRA),
2006, pp. 2884–2889.

[2] M. A. Alyousify, H. S. Abbas, M. M. M. Hassan, and M. H. Amin,
“Parameter identification and control of a ball balancing robot,” in 2022
8th International Conference on Mechatronics and Robotics Engineering
(ICMRE), 2022, pp. 91–97.

[3] M. Kumagai and T. Ochiai, “Development of a robot balancing on a
ball,” in 2008 International Conference on Control, Automation and
Systems, 2008, pp. 433–438.

[4] T. K. Jespersen, “Kugle-modelling and control of a ball-balancing robot,”
Master Thesis, Aalborg University, Aalborg, Denmark, 2019.

[5] D. B. Pham, H. Kim, J. Kim, and S.-G. Lee, “Balancing and transferring
control of a ball segway using a double-loop approach [applications of
control],” IEEE Control Systems Magazine, vol. 38, no. 2, pp. 15–37,
2018.

[6] P. Fankhauser and C. Gwerder, “Modeling and control of a ballbot,”
B.S. thesis, Eidgenössische Technische Hochschule Zürich, 2010.

[7] A. Bonci, “New dynamic model for a ballbot system,” in 2016 12th
IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications (MESA), 2016, pp. 1–6.

[8] A. N. Inal, Ö. Morgül, and U. Saranlı, “A 3d dynamic model of a
spherical wheeled self-balancing robot,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 5381–5386.

[9] C.-H. Chiu and W.-R. Tsai, “Design and implementation of an omni-
directional spherical mobile platform,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 3, pp. 1619–1628, 2015.

[10] Y. Yunong, H.-M. Ha, Y.-K. Kim, and J. myung Lee, “Balancing and
driving control of a ball robot using fuzzy control,” in 2015 12th In-
ternational Conference on Ubiquitous Robots and Ambient Intelligence
(URAI), 2015, pp. 492–494.

[11] D. B. Pham and S.-G. Lee, “Hierarchical sliding mode control for a two-
dimensional ball segway that is a class of a second-order underactuated
system,” Journal of Vibration and Control, vol. 25, no. 1, pp. 72–83,
2019. [Online]. Available: https://doi.org/10.1177/1077546318770089

[12] Y. Zhou, J. Lin, S. Wang, and C. Zhang, “Learning ball-balancing robot
through deep reinforcement learning,” in 2021 International Conference
on Computer, Control and Robotics (ICCCR), 2021, pp. 1–8.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[14] Dassault-Systèmes, “Solidworks premium 2021,” 1995. [Online].
Available: https://www.solidworks.com/

[15] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016. [Online].
Available: http://pybullet.org

[16] B. Gerkey, R. T. Vaughan, A. Howard et al., “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings of
the 11th international conference on advanced robotics, vol. 1, 2003,
pp. 317–323.

[17] MathWorks, “Statistics and machine learning toolbox,” Nat-
ick, Massachusetts, United States, 2023. [Online]. Available:
https://www.mathworks.com/help/stats/index.html

[18] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-
1364.html

[19] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d.
Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel,
R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

[20] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of physics
simulators for robotic applications,” IEEE Access, vol. 9, pp. 51 416–
51 431, 2021.

