Respiratory adverse effects of opioids for breathlessness: a systematic review and meta-analysis

Corresponding author: C.A. Verberk. c.vandenberg@maastrichtuniversity.nl; P.O. Box 616 6200 MD Maastricht; +3143-38 81571

Take home message
There is no evidence for clinically relevant respiratory adverse effects of opioids for chronic breathlessness.

This is an author-submitted, peer-reviewed version of a manuscript that has been accepted for publication in the European Respiratory Journal, prior to copy-editing, formatting and typesetting. This version of the manuscript may not be duplicated or reproduced without prior permission from the copyright owner, the European Respiratory Society. The publisher is not responsible or liable for any errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final, copy-edited, published article, which is the version of record, is available without a subscription 18 months after the date of issue publication.
Abstract

Background: Previous studies have shown that opioids can reduce chronic breathlessness in advanced disease. However, physicians remain reluctant to prescribe opioids for these patients, commonly due to fear of respiratory adverse effects.

Aim: To systematically review reported respiratory adverse effects of opioids in patients with advanced disease and chronic breathlessness.

Methods: Pubmed, Embase, Cochrane central register of controlled trials, CINAHL, ClinicalTrials.gov and the reference lists of relevant systematic reviews were searched. Two independent researchers screened against predefined inclusion criteria and extracted data. Meta-analysis was conducted where possible.

Results: We included 63 out of 1990 articles, describing 67 studies. Meta-analysis showed an increase in partial pressure of carbon dioxide (0.27 kPa; 95% CI 0.08 to 0.45) and no significant change in partial pressure of oxygen and oxygen saturation (both p>0.05). Non-serious respiratory depression (definition variable/not stated) was described in 4/1064 patients. One cancer patient pre-treated with morphine for pain needed temporary respiratory support following nebulized morphine for breathlessness (single case study).

Conclusions: We found no evidence of significant or clinically relevant respiratory adverse effects of opioids for chronic breathlessness. Heterogeneity of design and study population, and low study quality are limitations. Larger studies designed to detect respiratory adverse effects are needed.
Introduction

Breathlessness is defined as “a subjective experience of breathing discomfort that consists of qualitatively distinct sensations that vary in intensity” [1]. Breathlessness is one of the most uncomfortable symptoms in patients with advanced disease [1]. In cancer, 50 to 70% of patients suffer from breathlessness, while in chronic obstructive pulmonary disease (COPD) this prevalence is as much as 56 to 98% [2, 3].

Opioids can reduce chronic breathlessness (breathlessness that persists despite optimal treatment of the underlying pathophysiology and results in disability [4]) in patients with advanced diseases [5-8]. However, while physicians are mostly willing to prescribe opioids for breathlessness in the last days or weeks of life, they are often reluctant to prescribe opioids to those earlier in their disease trajectory [9]. Their main concerns are fear of respiratory adverse effects and lack of evidence-based guidelines [10-12]. Data about respiratory adverse effects of opioids are limited and conflicting.

Systematic reviews on effects of opioids on chronic breathlessness in adults with advanced life limiting disease showed no evidence for the following outcomes: respiratory depression, increase in partial pressure of arterial carbon dioxide (PaCO₂), increase in partial pressure of end-tidal carbon dioxide (PetCO₂), decrease in partial pressure of arterial oxygen (PaO₂) or decrease in arterial oxygen saturation (SaO₂) [5-8]. However, meta-analyses on these outcomes have not been conducted before.

Conversely, observational studies have reported one or more cases of severe respiratory depressions in patients using opioids for breathlessness [13-16]. Most guidelines in palliative care recommend the use of opioids for chronic breathlessness [17-19]. However, guidelines in respiratory medicine, for example the recent Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines [20], are more circumspect because of possible serious adverse events and limited effectiveness. To date there is little evidence whether and to what extent opioids lead to respiratory adverse effects in patients with chronic breathlessness.

The aim of this systematic review and meta-analysis was to study the occurrence of respiratory adverse effects (in particular increase of PaCO₂ and PetCO₂, decrease of PaO₂ and SaO₂, decrease in respiratory rate (RR), and occurrence of respiratory depression) in patients with advanced disease and chronic breathlessness who are treated with opioids. Respiratory adverse effects are examined in experimental studies, observational studies as well as case reports. However none of the previous reported reviews included all these study types. Therefore, to generate a full overview of the current knowledge, we included experimental studies, observational studies and case reports.
Methods
A systematic review and meta-analysis was performed according to the Cochrane methodology [21]. Results are reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [22]. The protocol is registered in the International Prospective Register of Systematic Reviews (PROSPERO; CRD42016033691).

Search strategy
The following databases were searched: PubMed, Embase on Ovid, Cochrane central register of controlled trials and CINAHL on EBSCO (inception date to March 31, 2016). Search terms comprised (dyspnoea OR synonyms) AND (opioid OR synonyms) and included both terms of controlled vocabulary and free search in title and abstract (table S1a-S1d). Furthermore, ClinicalTrials.gov was searched for ongoing or completed studies using the same search terms (May 29, 2017; table S1e). Following de-duplication, we included all original research articles such as randomized controlled trials (RCTs), non-randomized trials, case-control studies, cohort studies, chart reviews, case reports and case studies. Reference lists of three relevant systematic reviews [6-8] were searched by hand and experts in the field were contacted. We included articles in the English, Dutch, German, French and Spanish languages. When a full text article was not accessible, this was requested from the authors.

Study selection
For study screening, we used Endnote X7 (Thomson Reuters, Philadelphia, PA). The titles and abstracts were screened independently by two researchers (CV and either DJ, MvdB or SD) and selected based on the description of treatment for chronic breathlessness using opioids. The remaining full text articles were screened by two researchers (CV and either SD (English), DJ (German or Dutch) or LV (French or Spanish)) against all eligibility criteria: (1) participants included patients, regardless of their primary condition; (2) any opioid as intervention prescribed for breathlessness, regardless of dose or route of prescription; and (3) primary or secondary outcomes included PaCO₂, PaO₂, SaO₂, or RR. During the screening process, we decided to also include PetCO₂, occurrence of respiratory depression and breathlessness as outcomes. Any type of control group was considered. We excluded studies including only healthy subjects or studies that used an opioid in combination with other treatments and the effect of the opioid could not be distinguished. Consensus was reached by discussion. The study designs of included articles were categorised as follows: RCTs, non-randomized trials (NRTs), prospective observational studies (POSs), retrospective observational studies (ROSs), and case reports (CRs).
Risk of bias

Two researchers independently assessed the risk of bias on the study level (CV and either SD (English), DJ (German) or LV (French)). For the RCTs, we assessed this risk of bias regarding random sequence generation, allocation concealment, blinding, incomplete outcome data, and selective reporting using the Cochrane Risk of Bias tool [21]. The Cochrane Risk of Bias tool was also used to assess the risk of bias in NRTs. Since no control condition was included in these studies, selection bias, performance bias and detection bias were estimated as high risk of bias in all NRTs. For POSs, we assessed the risk of bias regarding selection, comparability and exposure/outcome using the Newcastle-Ottawa Quality Assessment Scale [23]. Consensus was reached by discussion. The risk of bias in ROSs and CRs was not assessed.

Data collection

Data were extracted by two researchers (CV and either SD (English), DJ (German) or LV (French)) using a predefined extraction form in Microsoft Excel, including data on study characteristics (design, duration, setting, in- and exclusion criteria); type of intervention (intervention, comparison, dose, mode and timing of administration); study population (sample size, age, gender, diagnosis, disease severity and use of oxygen); and outcomes (breathlessness; respiratory outcomes: PaCO₂, PetCO₂, PaO₂, SaO₂, RR and occurrence of respiratory depression; mode of assessment, missing data). When two articles appeared to describe overlapping research questions and study populations, we contacted the authors to provide more information. We recorded the baseline values and change from baseline or post-treatment scores of the respiratory outcomes. When only a description of the change from baseline was given, this was taken into account. The form was piloted on two articles of each study type and adapted as needed.

Data synthesis

Change from baseline measurement scores or post-treatment measurement scores, whichever was reported, were collected for the PaCO₂, PetCO₂, PaO₂, SaO₂ and RR. For the RCTs, these results were compared between the intervention and control group. For the NRTs, POSs, ROSs and CRs, the change from baseline was examined. Meta-analyses were performed using the results of RCTs; however RCTs without a placebo comparator group were not included. When both a change from baseline and a post-treatment score were reported, the post-treatment score was used in the meta-analyses. Furthermore, the highest dose or latest measurement was included in the meta-analyses if multiple doses of the same opioid or repeated measurements were reported. When an RCT compared more than one opioid with placebo, the morphine group was included in the meta-analysis. For measurements on exertion, the submaximal measures at a fixed time point were
included. To verify if the included RCTs showed a pooled effect of improving breathlessness, meta-
analysis on the effect of opioids on breathlessness was performed. These results were presented as
standardized mean difference (SMD) + 95% confidence interval (CI), since different scales to measure
breathlessness were used. Results of the meta-analyses on PaCO₂, PetCO₂, PaO₂, SaO₂ and RR were
presented as mean difference (MD) + 95% CI, as the same scales to measure comparable outcomes
were used. In all meta-analyses a random effects model was used, since the study designs were
heterogeneous [21]. Results of PaO₂ and PaCO₂ that were reported in mmHg were converted to kPa
(1 mmHg = 0.133 kPa).

Some RCTs contributed more than one contrast between the opioid and control group for the same
outcome (i.e. subjects were measured multiple times under comparable conditions). To account for
this clustering of multiple contrasts within one study sample, we used a multilevel meta-analysis
approach to determine if any within-study clustering was present. If there was evidence of within-
study clustering, quantified by the intraclass correlation coefficient, the results of the multilevel
approach were preferred over the standard approach [24]. To examine the impact of the context of
assessment (at rest or on exertion), the number of doses (single dose or multiple doses) or the route
of administration (nebulized or systemic), a mixed-effects meta-regression was performed. Subgroup
analyses were performed for variables which appeared to be of impact. When no impact appeared,
all outcomes were analysed together.

When a study assessed the occurrence of respiratory depression, the frequency of occurrence and
the definition used was reported. Analysis of this outcome was descriptive.

Analyses were performed using Review Manager version 5.3 (The Northern Cochrane Centre 2014,
Copenhagen, Denmark) and R version 3.2.3 (R Foundation for Statistical Computing, Vienna, Austria).
GRADEPro Guideline Development Tool (GDT) software was used to construct the Summary of
Findings table. Results are shown per category of respiratory adverse effect. P-values of 0.05 or lower
were considered statistically significant.
Results

Study characteristics

The search identified 1990 articles, of which 63 met the inclusion criteria (figure 1). The 63 included articles reported on 67 studies: 35 RCTs (table 1), 17 NRTs (table 1), four POSs (table S2), five ROSs (table S2) and six CRs (table S3). Six ongoing studies, four RCTs and two NRTs were identified (table S4). PaCO2, PaO2 and PetCO2 are examined in one study, SaO2 is examined in four studies and RR is examined in three studies. In one study, it is not clear which blood gases are examined. In one study the respiratory adverse effects are a primary outcome and in five studies the respiratory adverse effects are secondary outcomes.

Nineteen RCTs were included in the meta-analysis on the effect of opioid treatment on breathlessness [25-42]. Eight RCTs used a visual analogue scale to examine breathlessness [25, 26, 29, 35, 36, 38, 40], six RCTs used the Borg scale [27, 30-34], three RCTs used a numeric rating scale [28, 39, 41], one RCT used the dyspnoea domain of the Chronic Respiratory Questionnaire [42] and one RCT used an oxygen cost diagram [37]. The RCTs that reported post treatment scores showed effectivity of opioids in relieving breathlessness (SMD -0.42; 95% CI -0.62 to -0.21; I^2 27%; Figure S1). The RCTs that reported changes from baseline were not able to show effectivity of opioids in relieving breathlessness (SMD -0.09; 95% CI -0.78 to 0.60; I^2 62%; Figure S1).

- insert figure 1 about here -
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N (% men)</th>
<th>Population (n)</th>
<th>Mean age (SD) (yr)</th>
<th>Opioid</th>
<th>Dose</th>
<th>Administration</th>
<th>Comparison</th>
<th>Duration</th>
<th>Patient setting</th>
<th>Included outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abernethy, 2003 [25]</td>
<td>Cross-over</td>
<td>48 (73)</td>
<td>COPD (42) Cancer (3) MND (1) RLD (2)</td>
<td>76 (5)</td>
<td>Morphine SR</td>
<td>20 mg/day</td>
<td>Oral</td>
<td>Placebo</td>
<td>4 days</td>
<td>Outpatient</td>
<td>SaO₂, RR, RD</td>
</tr>
<tr>
<td>Allard, 1999 [43]</td>
<td>Parallel</td>
<td>33 (42)</td>
<td>Cancer (33)</td>
<td>63.3</td>
<td>Based on current treatment¹</td>
<td>50% of current dose¹</td>
<td>Oral or parenteral</td>
<td>Placebo</td>
<td>25% of current dose¹</td>
<td>Single dose</td>
<td>Inpatient</td>
</tr>
<tr>
<td>Beauford, 1993 [44]</td>
<td>Cross-over</td>
<td>8 (88)</td>
<td>COPD (8)</td>
<td>60.8 (9.1)</td>
<td>Morphine 1, 4 or 10 mg</td>
<td>Nebulized</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>PetCO₂</td>
<td></td>
</tr>
<tr>
<td>Bruera, 1993 (part 1) [26]</td>
<td>Cross-over</td>
<td>10 (-)</td>
<td>Cancer (10)</td>
<td>No data</td>
<td>Morphine Target: 150% of current dose (34±12 mg)</td>
<td>Parenteral Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>SaO₂, RR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles, 2008 [38]</td>
<td>Cross-over</td>
<td>20 (55)</td>
<td>Cancer (20)</td>
<td>69 (range 48-83)</td>
<td>Hydromorphine¹,²</td>
<td>5 mg</td>
<td>Nebulized</td>
<td>Placebo²</td>
<td>Single dose</td>
<td>Inpatient/ outpatient</td>
<td>SaO₂, RR</td>
</tr>
<tr>
<td>Chua, 1997 [27]</td>
<td>Cross-over</td>
<td>12 (100)</td>
<td>CHF (12)</td>
<td>65.5 (1.5)</td>
<td>Dihydrocodeine</td>
<td>1 mg/kg body weight (77.4 ± 3.1 kg)</td>
<td>Oral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Unclear</td>
<td>PetCO₂, SaO₂, RR</td>
</tr>
<tr>
<td>Cuervo Pinna, 2015 [28]</td>
<td>Cross-over</td>
<td>13 (85)</td>
<td>Cancer (13)</td>
<td>65.2 (10.4)</td>
<td>Fentanyl</td>
<td>Opioid-naïve: 200 µg Pre-treated: 400 µg</td>
<td>Oral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Unclear</td>
<td>SaO₂, RR</td>
</tr>
<tr>
<td>Eiser, 1991 (part 1) [29]</td>
<td>Cross-over</td>
<td>14 (57)</td>
<td>COPD (14)</td>
<td>65 (range 49-79)</td>
<td>Diamorphine</td>
<td>10 or 20 mg/day</td>
<td>Oral</td>
<td>Placebo</td>
<td>2 weeks</td>
<td>Outpatient</td>
<td>PaCO₂, PetCO₂, PaO₂, SaO₂</td>
</tr>
<tr>
<td>Eiser, 1991 (part 2) [29]</td>
<td>Cross-over</td>
<td>10 (60)</td>
<td>COPD (10)</td>
<td>65 (range 49-79)</td>
<td>Diamorphine</td>
<td>15 mg/day</td>
<td>Oral</td>
<td>Placebo</td>
<td>1 day</td>
<td>Outpatient</td>
<td>PaCO₂, PaO₂</td>
</tr>
<tr>
<td>Gamborg, 2013 [45]</td>
<td>Parallel</td>
<td>20 (10)</td>
<td>Cancer (20)</td>
<td>Median 69 (range 42-84)</td>
<td>Morphine</td>
<td>Target: 1/12 of total daily dose with a maximum of 24 mg (median 8.2%)</td>
<td>Oral</td>
<td>Subcutaneous morphine; 60% of 1/12 of total daily dose with a maximum of 14.4 mg</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>SaO₂, RR, RD</td>
</tr>
<tr>
<td>Grimbert,</td>
<td>Cross-over</td>
<td>12 (92)</td>
<td>Cancer (12)</td>
<td>63 (range 44-</td>
<td>Morphine</td>
<td>120 mg/day</td>
<td>Nebulized</td>
<td>Placebo</td>
<td>2 days</td>
<td>Inpatient</td>
<td>SaO₂, RR</td>
</tr>
</tbody>
</table>

Table 1. Patient characteristics, study design and included outcomes of included randomized controlled trials and non-randomized trials.
Table 1. Patient characteristics, study design and included outcomes of included randomized controlled trials and non-randomized trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N (% men)</th>
<th>Population (n)</th>
<th>Mean age (SD) (yr)</th>
<th>Opioid</th>
<th>Dose</th>
<th>Administration</th>
<th>Comparison</th>
<th>Duration</th>
<th>Patient setting</th>
<th>Included outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004 [46]</td>
<td>Cross-over</td>
<td>82</td>
<td>ILD (6)</td>
<td>49 (16)</td>
<td>Morphine</td>
<td>Target: 2.5 mg (mean 1.9 mg) or 5 mg (mean 3.7 mg)</td>
<td>Nebulized</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Outpatient</td>
<td>PetCO₂, SaO₂</td>
</tr>
<tr>
<td>Harris-Eze,</td>
<td>Parallel</td>
<td>20 (45)</td>
<td>Cancer (20)</td>
<td>55 (range 27-75)</td>
<td>Fentanyl³</td>
<td>30-350 µg³</td>
<td>Parenteral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Outpatient</td>
<td>SaO₂, RR</td>
</tr>
<tr>
<td>1995 [30]</td>
<td>Cross-over</td>
<td>16 (69)</td>
<td>COPD (16)</td>
<td>69 (range 61-85)</td>
<td>Morphine</td>
<td>20 or 40 mg</td>
<td>Nebulized</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>SaO₂</td>
</tr>
<tr>
<td>Jankelson,</td>
<td>Cross-over</td>
<td>16 (58)</td>
<td>COPD (16)</td>
<td>70.5 (2.3)</td>
<td>Fentanyl</td>
<td>50 µg</td>
<td>Nebulized</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Unclear</td>
<td>PetCO₂, SaO₂, RR, RD</td>
</tr>
<tr>
<td>1997 [31]</td>
<td>Cross-over</td>
<td>10 (100)</td>
<td>CHF (10)</td>
<td>67 (range 45-85)</td>
<td>Morphine</td>
<td>10-20 mg/day</td>
<td>Oral</td>
<td>Placebo</td>
<td>4 days</td>
<td>Inpatient</td>
<td>PaCO₂, PaO₂, SaO₂, SaO₂</td>
</tr>
<tr>
<td>Jensen, 2012</td>
<td>Parallel</td>
<td>10 (40)</td>
<td>Cancer (10)</td>
<td>55.5 (range 39-73)</td>
<td>Morphine</td>
<td>5 mg</td>
<td>Nebulized</td>
<td>2 types of nebulization</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>PaCO₂, PaO₂, SaO₂, SaO₂</td>
</tr>
<tr>
<td>Johnson, 2002</td>
<td>Cross-over</td>
<td>13 (100)</td>
<td>COPD (13)</td>
<td>65.9 (range 58-70)</td>
<td>Morphine</td>
<td>0.8 mg/kg</td>
<td>Oral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Unclear</td>
<td>PaCO₂, PaO₂, SaO₂</td>
</tr>
<tr>
<td>Light, 1996</td>
<td>Cross-over</td>
<td>7 (100)</td>
<td>COPD (7)</td>
<td>66.4 (3.3)</td>
<td>Morphine</td>
<td>30 mg</td>
<td>Oral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Unclear</td>
<td>PetCO₂</td>
</tr>
<tr>
<td>Light, 1989</td>
<td>Cross-over</td>
<td>12 (100)</td>
<td>COPD (12)</td>
<td>66.3 (7.0)</td>
<td>Morphine</td>
<td>N: 10 and 25 mg P: 1 and 2.5 mg</td>
<td>Nebulized and parenteral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>SaO₂, RR, RR, RD</td>
</tr>
<tr>
<td>Masood, 1995</td>
<td>Cross-over</td>
<td>9 (66)</td>
<td>Cancer (9)</td>
<td>73 (range 66-83)</td>
<td>Morphine</td>
<td>5 mg (or 150% of pre-treatment dose)</td>
<td>Parenteral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>SaO₂, RR, RR, RD</td>
</tr>
<tr>
<td>Mazzocato,</td>
<td>Cross-over</td>
<td>21 (-)</td>
<td>COPD (21)</td>
<td>Median 67 (range 50-78)</td>
<td>Codeine</td>
<td>60 mg/day</td>
<td>Oral</td>
<td>1 gram paracetamol</td>
<td>7 days</td>
<td>Inpatient</td>
<td>PaCO₂, PaO₂, SaO₂, SaO₂</td>
</tr>
<tr>
<td>1999 [40]</td>
<td>Cross-over</td>
<td>13 (43)</td>
<td>Trauma (3)</td>
<td>Median 78 (IQR 73-82)</td>
<td>Remifentanly</td>
<td>0.05 µg/kg/min</td>
<td>Parenteral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>PaCO₂, PaO₂, SaO₂</td>
</tr>
<tr>
<td>Munck, 1990</td>
<td>Cross-over</td>
<td></td>
<td>COPD (3)</td>
<td>Pneumonia (3)</td>
<td>Stroke (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(part 2) [50]</td>
<td>Cross-over</td>
<td></td>
<td>Median 78</td>
<td>(IQR 73-82)</td>
<td>Remifentanly</td>
<td>0.05 µg/kg/min</td>
<td>Parenteral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>PaCO₂, PaO₂, SaO₂</td>
</tr>
<tr>
<td>Natalini, 2011</td>
<td>Cross-over</td>
<td></td>
<td>Trauma (3)</td>
<td>COPD (3)</td>
<td>Pneumonia (3)</td>
<td>Stroke (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Patient characteristics, study design and included outcomes of included randomized controlled trials and non-randomized trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N (% men)</th>
<th>Population (n)</th>
<th>Mean age (SD) (yr)</th>
<th>Opioid</th>
<th>Dose</th>
<th>Administration</th>
<th>Comparison</th>
<th>Duration</th>
<th>Patient setting</th>
<th>Included outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigante, 2010 [52]</td>
<td>Parallel</td>
<td>63 (-)</td>
<td>Cancer (31)</td>
<td>Median 55 (range 30-80)</td>
<td>Morphine(^1)</td>
<td>22.5 (4.12) mg</td>
<td>Oral</td>
<td>Midazolam</td>
<td>5 days</td>
<td>Outpatient</td>
<td>SaO(_2)</td>
</tr>
<tr>
<td>Noseeda, 1997 [35]</td>
<td>Cross-over</td>
<td>17 (76)</td>
<td>COPD (12)</td>
<td>69 (11)</td>
<td>Morphine</td>
<td>10 or 20 mg</td>
<td>Nebulized</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>SaO(_2), RR</td>
</tr>
<tr>
<td>Otulana, 2004 (phase 3) [53]</td>
<td>Cross-over</td>
<td>19 (-)</td>
<td>Asthma (19)</td>
<td>Range 19-64</td>
<td>Morphine</td>
<td>2.2, 4.4 or 8.8 mg</td>
<td>Nebulized</td>
<td>3 doses</td>
<td>Single dose</td>
<td>Unclear</td>
<td>RR</td>
</tr>
<tr>
<td>Oxberry, 2011 [41]</td>
<td>Cross-over</td>
<td>35 (86)</td>
<td>CHF (35)</td>
<td>70.2 (11.1)</td>
<td>Morphine Oxycodone</td>
<td>20 mg/day/ 10 mg/day</td>
<td>Oral</td>
<td>Placebo</td>
<td>4 days</td>
<td>Outpatient</td>
<td>SaO(_2), RR</td>
</tr>
<tr>
<td>Poole, 1998 [42]</td>
<td>Cross-over</td>
<td>16 (69)</td>
<td>COPD (16)</td>
<td>70.7 (6.4)</td>
<td>Morphine SR</td>
<td>Target: 40 mg (mean 25 mg)</td>
<td>Oral</td>
<td>Placebo</td>
<td>6 weeks</td>
<td>Outpatient</td>
<td>SaO(_2)</td>
</tr>
<tr>
<td>Rice, 1987 [54]</td>
<td>Cross-over</td>
<td>11 (100)</td>
<td>COPD (11)</td>
<td>Range 59-79</td>
<td>Codeine</td>
<td>120 mg</td>
<td>Oral</td>
<td>Promethazine</td>
<td>1 month</td>
<td>Unclear</td>
<td>PaCO(_2), PaO(_2)</td>
</tr>
<tr>
<td>Robin, 1986 [55]</td>
<td>Cross-over</td>
<td>1 (0)</td>
<td>OLD (1)</td>
<td>63</td>
<td>Hydro-morphine</td>
<td>12 mg/day</td>
<td>Rectal</td>
<td>Placebo</td>
<td>24 hours</td>
<td>Outpatient</td>
<td>PaCO(_2), PaO(_2)</td>
</tr>
<tr>
<td>Schonhofer, 1998 [56]</td>
<td>Cross-over</td>
<td>20 (55)</td>
<td>Lung emphysema (20)</td>
<td>68.5 (6.8)</td>
<td>Morphine SR</td>
<td>Target: 90 mg (mean 49 mg)</td>
<td>Oral</td>
<td>Usual care</td>
<td>10 days</td>
<td>Inpatient</td>
<td>PaCO(_2), PaO(_2), RD</td>
</tr>
<tr>
<td>Shohrati, 2012 [36]</td>
<td>Parallel</td>
<td>40 (100)</td>
<td>COPD (40)</td>
<td>No data</td>
<td>Morphine</td>
<td>1 mg/day</td>
<td>Nebulized</td>
<td>Placebo</td>
<td>5 days</td>
<td>Inpatient</td>
<td>RR</td>
</tr>
<tr>
<td>Smith, 2009 [57]</td>
<td>Cross-over</td>
<td>2 (0)</td>
<td>Cancer (1)</td>
<td>Unclear (1)</td>
<td>Fentanyl</td>
<td>25 µg</td>
<td>Nebulized</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Inpatient</td>
<td>SaO(_2), RR</td>
</tr>
<tr>
<td>Williams, 2003 [58]</td>
<td>Cross-over</td>
<td>16 (94)</td>
<td>CHF (16)</td>
<td>61 (8.8)</td>
<td>Diamorphine</td>
<td>1 or 2 mg</td>
<td>Parenteral</td>
<td>Placebo</td>
<td>Single dose</td>
<td>Unclear</td>
<td>PetCO(_2), RR</td>
</tr>
<tr>
<td>Woodcock, 1982 [37]</td>
<td>Cross-over</td>
<td>16 (-)</td>
<td>COPD (16)</td>
<td>No data</td>
<td>Dihydro-codeine</td>
<td>90 or 180 mg/day</td>
<td>Oral</td>
<td>Placebo</td>
<td>2 weeks</td>
<td>Outpatient</td>
<td>PaCO(_2), PaO(_2)</td>
</tr>
<tr>
<td>Allcroft, 2013 [59]</td>
<td>Non-randomized</td>
<td>13 (62)</td>
<td>COPD (13)</td>
<td>Median 78 (range 68-89)</td>
<td>Morphine</td>
<td>10 mg/day</td>
<td>Oral</td>
<td>-</td>
<td>4 days</td>
<td>Inpatient/outpatient</td>
<td>PetCO(_2), SaO(_2), RR, RD</td>
</tr>
</tbody>
</table>

The published version of this article is available at https://doi.org/10.1183/13993003.01153-2017
Table 1. Patient characteristics, study design and included outcomes of included randomized controlled trials and non-randomized trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N (% men)</th>
<th>Population (n)</th>
<th>Mean age (SD) (yr)</th>
<th>Opioid</th>
<th>Dose</th>
<th>Administration</th>
<th>Comparison</th>
<th>Duration</th>
<th>Patient setting</th>
<th>Included outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyd, 1997 [60]</td>
<td>Non-randomized</td>
<td>15 (47)</td>
<td>Cancer (15)</td>
<td>73 (range 62-85)</td>
<td>Morphine</td>
<td>20 mg/day or 130% of pre-treatment dose</td>
<td>Oral</td>
<td></td>
<td>7-10 days</td>
<td>Inpatient/outpatient</td>
<td>RR</td>
</tr>
<tr>
<td>Bruera, 1990 [61]</td>
<td>Non-randomized</td>
<td>20 (55)</td>
<td>Cancer (20)</td>
<td>64 (17)</td>
<td>Morphine</td>
<td>5 mg or 2.5 times pre-treatment dose</td>
<td>Parenteral</td>
<td></td>
<td></td>
<td>Inpatient</td>
<td>PetCO₂, SaO₂, RR</td>
</tr>
<tr>
<td>Bruera, 1993 (part 2) [26]</td>
<td>Non-randomized</td>
<td>45 (-)</td>
<td>Cancer (45)</td>
<td>No data</td>
<td>Morphine³</td>
<td>Same dose as for pain treatment</td>
<td>Parenteral</td>
<td></td>
<td></td>
<td>Total of 312 doses</td>
<td>Unclear</td>
</tr>
<tr>
<td>Clemens, 2007 [62]</td>
<td>Non-randomized</td>
<td>25 (44)</td>
<td>Cancer (25)</td>
<td>65.5 (15.1)</td>
<td>Morphine⁶</td>
<td>8.2 (7.5) mg MED 19.5 (1.8) mg MED</td>
<td>No data</td>
<td></td>
<td></td>
<td>Single dose</td>
<td>Inpatient</td>
</tr>
<tr>
<td>Clemens, 2008.1 [63]</td>
<td>Non-randomized</td>
<td>6 (67)</td>
<td>ALS (6)</td>
<td>57.0 (6.9)</td>
<td>Morphine⁴</td>
<td>6.3 (7.0) mg</td>
<td>Oral</td>
<td></td>
<td></td>
<td>Inpatient</td>
<td>SaO₂, RR, RD</td>
</tr>
<tr>
<td>Clemens, 2008.2 [64]</td>
<td>Non-randomized</td>
<td>14 (57)</td>
<td>Cancer (14)</td>
<td>Median 67 (range 40-84)</td>
<td>Hydro- morphone⁴</td>
<td>2.5 (1.8) mg</td>
<td>Oral</td>
<td></td>
<td></td>
<td>Single dose</td>
<td>Inpatient</td>
</tr>
<tr>
<td>Clemens, 2008.3 [65]</td>
<td>Non-randomized</td>
<td>27 (48)</td>
<td>Cancer (25)</td>
<td>Range 40-90</td>
<td>Morphine⁴⁶</td>
<td>2.5-20.0 mg 0.5-6.0 mg</td>
<td>Oral</td>
<td></td>
<td></td>
<td>Single dose</td>
<td>Inpatient</td>
</tr>
<tr>
<td>Clemens, 2009 [66]</td>
<td>Non-randomized</td>
<td>46 (54)</td>
<td>Cancer (46)</td>
<td>Range 40-90</td>
<td>Morphine⁴⁶</td>
<td>2.5-20 mg 1-6 mg</td>
<td>Oral</td>
<td></td>
<td></td>
<td>Single dose</td>
<td>Inpatient</td>
</tr>
<tr>
<td>Clemens, 2011 [67]</td>
<td>Non-randomized</td>
<td>26 (54)</td>
<td>Cancer (26)</td>
<td>66.0 (13.6)</td>
<td>Morphine⁴</td>
<td>8.4 (7.2) mg 4 (4.7) mg</td>
<td>Oral</td>
<td></td>
<td></td>
<td>Single dose</td>
<td>Inpatient</td>
</tr>
<tr>
<td>Cohen, 1991 [68]</td>
<td>Non-randomized</td>
<td>8 (-)</td>
<td>Cancer (8)</td>
<td>61.9 (range 50-79)</td>
<td>Morphine⁴</td>
<td>120 mg/day</td>
<td>Parenteral</td>
<td></td>
<td></td>
<td></td>
<td>Unclear</td>
</tr>
<tr>
<td>Coyne, 2002 [69]</td>
<td>Non-randomized</td>
<td>35 (43)</td>
<td>Cancer (33)</td>
<td>Pulmonary embolism (1), AIDS (1)</td>
<td>Fentanyl</td>
<td>25 µg</td>
<td>Nebulized</td>
<td></td>
<td></td>
<td></td>
<td>Inpatient</td>
</tr>
<tr>
<td>Currow,</td>
<td>Non-randomized</td>
<td>83 (64)</td>
<td>COPD (45)</td>
<td>74.6 (9.1)</td>
<td>Morphine</td>
<td>Target: 10-30 mg</td>
<td>Oral</td>
<td></td>
<td></td>
<td>Target 3</td>
<td>Outpatient</td>
</tr>
</tbody>
</table>
The published version of this article is available at https://doi.org/10.1183/13993003.01153-2017

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>N (% men)</th>
<th>Population (n)</th>
<th>Mean age (SD) (yr)</th>
<th>Opioid</th>
<th>Dose</th>
<th>Administration</th>
<th>Comparison</th>
<th>Duration</th>
<th>Patient setting</th>
<th>Included outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 [70]</td>
<td>randomized</td>
<td></td>
<td>Cancer (24)</td>
<td>16.5 (8) mg</td>
<td>Phase II: 16.5 (8) mg Phase IV: 14.0 (6.3)</td>
<td>Oral</td>
<td>-</td>
<td>months</td>
<td>Inpatient</td>
<td>SaO₂, RR</td>
<td></td>
</tr>
<tr>
<td>Gauna, 2008 [71]</td>
<td>Non-randomized</td>
<td>4 (50)</td>
<td>COPD and PF (2) Cancer (2)</td>
<td>200-400 µg</td>
<td>Oral</td>
<td>-</td>
<td>Single dose</td>
<td>-</td>
<td>Unclear</td>
<td>SaO₂, RR</td>
<td>PaCO₂, PaO₂, SaO₂, RR, RD</td>
</tr>
<tr>
<td>Munck, 1990 (part 1) [50]</td>
<td>Non-randomized</td>
<td>21 (-)</td>
<td>COPD (21)</td>
<td>60 and 120 mg</td>
<td>Oral</td>
<td>-</td>
<td>Single dose</td>
<td>-</td>
<td>Unclear</td>
<td>SaO₂, RR</td>
<td>PaCO₂, PaO₂, SaO₂, RR, RD</td>
</tr>
<tr>
<td>Otulana, 2004 (phase 4) [53]</td>
<td>Non-randomized</td>
<td>6 (-)</td>
<td>Asthma (6)</td>
<td>17.6 mg</td>
<td>Nebulized</td>
<td>-</td>
<td>Single dose</td>
<td>-</td>
<td>Unclear</td>
<td>SaO₂, RR</td>
<td>RR</td>
</tr>
<tr>
<td>Tanaka, 1999 [72]</td>
<td>Non-randomized</td>
<td>15 (53)</td>
<td>Cancer (15)</td>
<td>20 mg</td>
<td>Nebulized</td>
<td>-</td>
<td>Single dose</td>
<td>-</td>
<td>Unclear</td>
<td>SaO₂, RR</td>
<td>RR</td>
</tr>
</tbody>
</table>

ALS: amyotrophic lateral sclerosis; CHF = congestive heart failure; COPD: chronic obstructive pulmonary disease; ILD: interstitial lung disease; IPF: idiopathic pulmonary fibrosis; IQR = interquartile range; MND: motor neuron disease; OLD = obstructive lung disease; PaCO₂: partial pressure of arterial carbon dioxide; PaO₂: partial pressure of arterial oxygen; PetCO₂: partial pressure of end-tidal carbon dioxide; PF: pulmonary fibrosis; RD: respiratory depressions; RLD: restrictive lung disease; RR: respiratory rate; SaO₂: arterial oxygen saturation; SD = standard deviation

1 application of opioid for breakthrough breathlessness possible
2 application of placebo for breakthrough breathlessness possible
3 intervention prescribed for breakthrough breathlessness
4 based on dose of current opioids for breakthrough breathlessness
5 This study is a single-patient RCT, which was terminated after the run in phase and the placebo arm. Data are therefore based on the run-in arm.
6 choice of dose or type of opioid depended on general condition of the patient
Risk of bias

As shown in table S5, the risk of bias of the RCTs was estimated as low risk or unclear risk in most studies. Other sources of bias were assessed as high in 43% of the studies, mainly because of the absence of a wash-out period in cross-over trials. Table S6 shows the risk of bias of the NRTs. Selection bias, performance bias and detection bias were estimated as high risk of bias, as no control condition was included in these studies. In the other categories, the risk of bias was assessed as low in most studies. The POSs were graded with three to six out of eight stars due to comparability and representativeness of cohorts (table S7).

Effect on outcomes of respiratory adverse effects

The effect of opioid treatment on outcomes of respiratory adverse effects is shown in tables S2, S3, S8 and S9. A summary of the effects of the RCTs included in the meta-analyses is presented in the Summary of Findings table (table 2). Since none of the intraclass correlation coefficients of comparisons within RCTs were significantly different from 0 and therefore the effect of clustering on the outcomes was negligible for RCTs that contributed more than one contrast for a single outcome measure, the results are analysed using regular meta-analyses instead of three-level meta-analyses. Most of the included RCTs were cross-over trials and we included both parallel and cross-over trials in the meta-analyses together. Results of 12 RCTs could not be included in the meta-analyses because they compared opioid treatment to other than placebo (treatment with another substance [50, 52, 54], another dose or route of administration [43, 45, 48, 53], or usual care [56] [Table S8]). Results of 7 RCTs could not be included in the meta-analyses because they reported their outcomes as median scores [51], did not report the outcomes per treatment arm [46, 49], or reported the outcome only in qualitative wording [30, 44, 55, 57] (Table S8).

Effect on PaCO2

The effect of opioid treatment on PaCO2 was assessed in nine RCTs [29, 33, 37, 50, 51, 54-56], five of which could be included in the meta-analysis [29, 33, 37, 51]. The meta-analysis showed that treatment with opioids increased PaCO2 (MD 0.27; 95% CI 0.08 to 0.45; I² 0%, see figure 2a). The meta-regression revealed no influence from the context of assessment (p=0.437; however there was only one RCT during exercise) or the number of doses (p=0.507) on the PaCO2. Route of administration was not taken into account, since all RCTs administered the opioid systemically. One RCT examined the effect of opioids on PaCO2 during exercise [33]. The difference between the intervention and control group after administration of morphine was statistically significant at maximal exercise (5.8 and 5.1 kPa respectively, p<0.001). The effect on PaCO2 was also assessed in seven NRTs [50, 63-68]. One NRT found a significant increase in PaCO2 [68]. Finally, the effect on
PaCO₂ was assessed in one ROS [73] and one CR describing two cases [74]. In both studies the opioids were nebulized. The opioids were prescribed as single dose or up to 15 days. In all studies, PaCO₂ was measured at rest. None of these studies showed a significant effect of opioid treatment on PaCO₂.

Effect on PetCO₂

The effect of opioid treatment on PetCO₂ was assessed in seven RCTs [27, 29, 30, 32, 34, 44, 58], five of which could be included in the meta-analysis [27, 29, 32, 34, 58]. The meta-analysis showed a non-significant increase of the PetCO₂ (MD 0.13; 95% CI -0.02 to 0.27; I² 0%, see figure 2b). The RCT by Light et al. [34] had a low variance compared to the other studies and consequently a high weight in the analysis. Therefore, the meta-analysis was repeated, but with weighing based on the sample size. The effect on PetCO₂ was still not significant (MD 0.13; 95% CI -0.11 to 0.37; I² 0%). The meta-regression revealed no influence from the context of assessment (p=0.375), the number of doses (p=0.679) or the route of administration (p=0.473) on the PetCO₂.

The effect on PetCO₂ was also assessed in two NRTs [59, 61]. These studies reported no significant change in PetCO₂ [59, 61].

Effect on PaO₂

The effect of opioid treatment on PaO₂ was assessed in nine RCTs [29, 33, 37, 50, 51, 54-56], four of which could be included in the meta-analysis [29, 33, 37]. The meta-analysis showed a non-significant decrease of the PaO₂ (MD -0.26; 95% CI -0.68 to 0.15; I² 0%, see figure 3a). The meta-regression revealed no influence from the context of assessment (p=0.420; however only one RCT during exercise) or the number of doses (p=0.815) on the PaO₂. Route of administration was not taken into account, since all RCTs administered the opioid systemically.

One RCT examined the effect of opioids on PaO₂ during exercise [33]. The difference between the intervention and control group after administration of morphine was statistically significant at maximal exercise (8.8 and 9.6 kPa respectively, p<0.05). The effect on PaO₂ was also assessed in two NRTs [50, 68]. One NRT found a significant decrease in PaO₂ [68]. Finally, the effect on PaO₂ was assessed in one CR describing two cases [74]. In this study the opioids were nebulized for up to 15 days. PaO₂ was measured in rest. This study showed no significant effect of opioid treatment on PaO₂.

Effect on SaO₂
The effect of opioid treatment on \(\text{SaO}_2 \) was assessed in 24 RCTs [25-33, 35, 38-42, 44-46, 48-50, 52, 53, 57], 14 of which could be included in the meta-analysis [26-33, 35, 38-42]. The meta-analysis showed that \(\text{SaO}_2 \) decreased after opioid use (MD -0.41; 95% CI -0.73 to -0.08; I² 0%, see figure 3b). The RCT by Chua et al. [27] was the only RCT showing a significant difference in \(\text{SaO}_2 \) between the intervention and control group at rest (99.3% and 100% respectively, \(P=0.03 \)). This RCT reported a variance of 0 in the control group in rest and consequently had a high weight in the analysis. Therefore, as a sensitivity analysis the meta-analysis was repeated, but with weighing based on the sample size. The effect on \(\text{SaO}_2 \) was no longer significant (MD -0.31; 95% CI -1.06 to 0.45; I² 0%). The meta-regression revealed no influence from the context of assessment (\(p=0.730 \)), the number of doses (\(p=0.165 \)) or the route of administration (\(p=0.538 \)) on the \(\text{SaO}_2 \).

Furthermore, the effect of opioids on \(\text{SaO}_2 \) was assessed in 12 NRTs [50, 59, 61-67, 69, 71, 72]. One NRT showed a significant decrease in \(\text{SaO}_2 \) from 93 to 92% [50] after a single dose of 120 mg codeine. However, this decrease was temporary and not clinically relevant. Finally, the effect of opioids on \(\text{SaO}_2 \) was assessed in two POSs [75, 76], two ROSs [73, 77] and three CRs describing seven cases [74, 78, 79]. In these studies the opioids were administered systemically (\(n=3 \)), nebulized (\(n=2 \)) or via unknown route (\(n=1 \)). The opioids were prescribed as single dose or as repeated doses up to three months. In all studies, \(\text{SaO}_2 \) was measured at rest. None of these studies showed a significant effect of opioid treatment on \(\text{SaO}_2 \). In two RCTs [25, 44] and one NRT [59] \(\text{SaO}_2 \) was measured, but no outcome data were reported.

Effect on RR

The effect of opioid treatment on RR was assessed in 23 RCTs [25-28, 30, 32, 33, 35, 36, 38-41, 43, 45-47, 49-51, 53, 57, 58], 13 of which could be included in the meta-analysis [25, 26, 30, 32, 33, 35, 36, 38-41, 47, 58]. The meta-analysis showed that treatment with opioids significantly decreased the RR (MD -1.10; 95% CI -1.49 to -0.71; I² 0%, see figure 3c). The RCT by Shohrati et al. [36] was the only RCT showing a significant difference in change in RR between the intervention and control group (-1.5 and -0.1 respectively, \(P<0.001 \)). This RCT had a low variance compared to the other studies and consequently a high weight in the analysis. Therefore, the meta-analysis was repeated, but with weighing based on the sample size. The effect on RR was no longer significant (MD -0.58; 95% CI -1.72 to 0.56; I² 0%). The heterogeneity among the RCTs describing post-treatment scores was 0%. The meta-regression revealed no influence from the context of assessment (\(p=0.496 \)), the number of doses (\(p=0.904 \)) or the route of administration (\(p=0.139 \)) on the RR.

The effect on RR was also assessed in 15 NRTs [50, 53, 59-69, 71, 72]. These studies also showed that opioids caused no significant change in RR. Finally, the effect on RR was assessed in three POSs [75, 76, 80], two ROSs [73, 77] and four CRs describing ten cases [74, 78, 79, 81]. In these studies the
opioids were administered systemically (n=4), nebulized (n=4) or via unknown route (n=1). The opioids were prescribed as single dose or as repeated doses up to three months. In all studies, SaO2 was measured at rest. These studies also showed that opioids caused no significant change in RR. In two RCTs [28, 50] and one NRT [50], RR was measured, but no outcome data were reported.

The occurrence of respiratory depressions was reported in five RCTs [25, 32, 40, 45, 56], eleven NRTs [26, 50, 59, 62-67, 70, 72], two POSs [14, 75], three ROSs [15, 82, 83] and four CRs describing ten cases [13, 74, 79, 84]. Of these 25 studies, eleven studies defined respiratory depression [13, 14, 40, 63-67, 72, 75, 84]. Definitions were based on an increase in PaCO2 of >0.5 kPa or to more than 6.0 kPa, a decrease in RR of >10% or to less than 10 breaths/minute and a decrease in SaO2 of >5% or to less than 90%. Hu et al. [14] observed a case of respiratory depression (defined as decrease in RR to <10 breaths/minute) in one patient with terminal cancer both at the beginning of the POS and two days prior to death. Kawabata et al. [15] reported three patients experiencing a respiratory depression (no definition given), which were not serious. It was not stated if these patients were treated for pain or breathlessness. Lang and Jedeikin [13] described a case of respiratory depression (defined as RR of 4-5 breaths/minute, very poor respiratory effort and minimal wheezing over both lung fields) after administration of 4 mg nebulized morphine and 4 mg dexamethasone for breakthrough breathlessness in a patient already using 10 mg oral slow-release morphine three times per day and 10 mg oral immediate release morphine when required for cancer-related pain.

Quality of the evidence
The quality of the evidence was assessed as very low to moderate for the different outcomes (table 2). Only RCTs were included in this assessment. For all outcomes, the majority of the RCTs were small with insufficient power to assess respiratory adverse events and the quality was therefore downgraded. Furthermore, limitations in the design and implementation were observed. In several RCTs, patients who were pre-treated with opioids were included, which had a negative effect on the quality of the evidence. Finally, only a small number of RCTs included assessment of PaCO2 and PaO2.

Table 2. Summary of findings

| Opioids compared to placebo for patients with chronic breathlessness due to advanced disease |
Patient or population: patients with chronic breathlessness due to advanced disease
Setting: inpatient and outpatient setting
Intervention: opioids
Comparison: placebo

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaCO₂</td>
<td>The mean PaCO₂ in the intervention group was 0.27 kPa higher (0.08 kPa higher to 0.45 kPa higher)</td>
<td>-</td>
<td>146 (5 RCTs)</td>
<td>☐ ☐ ☐ ☐ ☐</td>
<td>VERY LOW a,b,c</td>
</tr>
<tr>
<td>PetCO₂: PTS</td>
<td>The mean PetCO₂: PTS in the intervention group was 0.10 kPa higher (0.13 kPa lower to 0.34 kPa higher)</td>
<td>-</td>
<td>156 (4 RCTs)</td>
<td>☐ ☐ ☐ ☐</td>
<td>VERY LOW a,b,c</td>
</tr>
<tr>
<td>PetCO₂: CFB</td>
<td>The mean PetCO₂: CFB in the intervention group was 0.14 kPa higher (0.05 kPa lower to 0.33 kPa higher)</td>
<td>-</td>
<td>14 (1 RCT)</td>
<td>☐ ☐ ☐ ☐</td>
<td>LOW a,b,c</td>
</tr>
<tr>
<td>PaO₂</td>
<td>The mean PaO₂ in the intervention group was 0.26 kPa lower (0.68 kPa lower to 0.15 kPa higher)</td>
<td>-</td>
<td>118 (4 RCTs)</td>
<td>☐ ☐ ☐ ☐</td>
<td>VERY LOW a,b,c</td>
</tr>
<tr>
<td>SaO₂: PTS</td>
<td>The mean SaO₂: PTS in the intervention group was 0.47 % lower (0.87% lower to 0.07% lower)</td>
<td>-</td>
<td>312 (10 RCTs)</td>
<td>☐ ☐ ☐ ☐</td>
<td>VERY LOW a,b,d</td>
</tr>
<tr>
<td>SaO₂: CFB</td>
<td>The mean SaO₂: CFB in the intervention group was 0.29 % lower (0.85% lower to 0.26% higher)</td>
<td>-</td>
<td>196 (4 RCTs)</td>
<td>☐ ☐ ☐ ☐</td>
<td>LOW a,b,c</td>
</tr>
<tr>
<td>RR: PTS</td>
<td>The mean RR: PTS in the intervention group was 0.86 lower (1.71 lower to 0.02 lower)</td>
<td>-</td>
<td>328 (9 RCTs)</td>
<td>☐ ☐ ☐ ☐</td>
<td>VERY LOW a,b,d</td>
</tr>
<tr>
<td>RR: CFB</td>
<td>The mean RR: CFB in the intervention group was 0.80 lower (1.83 lower to 0.24 higher)</td>
<td>-</td>
<td>208 (4 RCTs)</td>
<td>☐ ☐ ☐ ☐</td>
<td>VERY LOW a,b,c</td>
</tr>
</tbody>
</table>

The mean PaCO₂ ranged from 4.4 to 5.9 kPa.

*PaCO₂ was converted to mmHg (1 kPa = 7.5 mmHg).
Table 2. Summary of findings

Opioids compared to placebo for patients with chronic breathlessness due to advanced disease

Patient or population: patients with chronic breathlessness due to advanced disease
Setting: inpatient and outpatient setting
Intervention: opioids
Comparison: placebo

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with placebo</td>
<td>Risk with opioids</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CFB: change from baseline; CI: Confidence interval; MD: Mean difference; PTS: post-treatment scores

GRADE Working Group grades of evidence

High quality: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

a. There were limitations in design and implementation, which suggest a risk of bias
b. The majority of studies were not powered to detect changes in this outcome
c. A small amount of studies included
d. Patients who were pre-treated with opioids were included
Discussion

Main findings

This systematic review on occurrence of respiratory adverse effects following opioid treatment for breathlessness shows a great heterogeneity of treatment regimens and patient populations. Given this heterogeneity, we found no evidence that clinically relevant respiratory adverse effects are to be expected in patients with breathlessness who are treated with opioids, while included studies confirmed previous reports of opioid-related benefit for breathlessness. This suggests that clinicians’ fears of respiratory obtundation with the use of low dose opioids seem to be unfounded.

The meta-analysis showed an increase in PaCO₂ of 0.27 kPa (0.09 to 0.46). Although this increase is statistically significant, it is not considered to be clinically relevant [85]. Indeed, the pooled mean (SD) PaCO₂ was 5.35 (1.08) kPa, so the mean difference in PaCO₂ was only 25% of the SD. However, few RCTs reported on PaCO₂ and the quality of this evidence is assessed as very low. One NRT reported a significant deterioration of blood gases, but the participants received 120 mg parenteral morphine per day [68]. Given that 20% to 40% of oral morphine is bioavailable, this represents a much higher dose than the oral morphine doses required in the dose titration study (10-30 mg oral morphine per day) [70] or the oral morphine repeat dose trials (20 mg oral morphine per day) [25, 41, 47]. The meta-analyses showed a significant decrease in SaO₂ of 0.41% (0.73 to 0.08) and RR of 1.10 times/minute (1.49 to 0.71). However, in both analyses one study had a high weighting due to a small variance. The statistical significance disappeared when the analyses were repeated weighted on sample size. In four cases, a diagnosis of respiratory depression was made during the study, but the definition was poorly stated. In three occasions the indication and dose were not clear [15]. In the fourth case, respiratory depression occurred in a patient with advanced metastatic cancer pre-treated with opioids. The additive effect of both treatments, leading to a high dose of morphine, may have led to respiratory depression [13]. It is notable that no cases of respiratory depression were noted in the context of RCTs, with their close monitoring. Neither the meta-analyses of PetCO₂, PaO₂, SaO₂ and RR nor the studies that were not included in the meta-analyses showed a significant deterioration of these outcomes. The meta-regression did not provide a significant effect for the context of assessment (at rest or on exertion), the number of doses (single dose or multiple doses) or the route of administration (nebulized or systemic), which is surprising especially for the route of administration. Previous reviews have reported a different effect of opioids on breathlessness when administered systemically or nebulized [5, 6]. The results of this meta-regression might be related to small effects within the included studies and the fact that only six studies included in the meta-analysis used nebulized opioid.
Six ongoing studies were identified. Three of them only examine a single or double dose of opioids and are therefore not able to say anything about the long-term effect. Of the three other studies, two have respiratory adverse effects as a secondary outcome and the sample size calculation will therefore probably not be based on this outcome. Only the MORDYC study primary focusses on respiratory adverse effects and based the sample size calculation on the PaCO₂ [85]. This study will add valuable information about the occurrence of respiratory adverse effects.

Our findings are consistent with other reviews on opioids for chronic breathlessness [5, 6, 86] and episodic breathlessness [87]. These reviews included RCTs [5, 6, 86, 87], NRTs [6, 86] and CRs [87]. The authors of these reviews also found no clinically relevant effect on blood gases or oxygen saturation, or respiratory depression after treatment with different types of opioids in patients with advanced disease. In hypoxic patients with cancer, an improvement of SaO₂ was reported [6]. However, these reviews only included 39 studies and meta-analyses could not be performed due to limited results on respiratory adverse effects. Furthermore, the focus of these reviews was on the effect of opioid treatment on breathlessness and search terms for respiratory adverse effects were not included.

Limitations of the included studies

First, the risk of bias of the included studies was often difficult to estimate. The outcomes of interest in the current review were secondary outcomes in the majority of the included studies and therefore the method of outcome assessment was often not described. The method of randomization or allocation concealment was inadequately described in most studies. Since it was difficult to score the risk of bias and to set a cut-off point, we did not include a sensitivity analysis including only the studies with a low risk of bias. Second, there was great heterogeneity in the dosing regimens and comparators used. The prescribed doses ranged between the studies, with eight studies prescribing high doses of opioids. In 34 experimental studies, one observational study and seven cases, only a single dose of opioids was prescribed, so the long-term effect was not assessed. Seven RCTs did not include a placebo group, but used different doses, other medication or usual care as comparator. Third, the patient populations were heterogeneous. In some studies patients had to be opioid-naïve, but not in others – where patients could continue opioids for pain or where the dose of the study medication was based on current analgesic treatment. Fourth, the included studies had a small sample size. The experimental studies included one to 83 participants with only six studies including a sample size of 30 or more participants per treatment group. These studies included outcomes of respiratory adverse effects, but were underpowered to properly assess a change in these outcomes. The observational studies used larger sample sizes, but only a proportion of these patients received opioids for breathlessness. In some studies, the results accounted for the entire group, making it.
impossible to draw conclusions for the subgroup of our interest. Fifth, the definition of respiratory depression differed between studies. The most reliable assessment of respiratory depression is based on the PaO2 and PaCO2. Measurement of SaO2 is less reliable [88]. Some authors included RR as a measure of respiratory depression, because this is easier to estimate. Only eleven studies defined respiratory depression and eight used a decrease in SaO2 as part of the definition. Only four also included an increase of PaCO2. Finally, five studies mentioned the assessment of respiratory outcomes in their method section, but didn’t include the results (n=3) or only reported the baseline data (n=2). Furthermore, 25 studies reported on the occurrence of respiratory depression but only nine of them mentioned the assessment of respiratory depression in their methods section. Therefore, it is not known if a respiratory depression occurred in one of the remaining 42 studies.

Strengths and limitations of the current review

Our study has several strengths. We included several study types; although RCTs yield the most reliable evidence, observational studies and CRs are closer to daily clinical practice. Furthermore, we included studies that were published in five languages. Because of the large number of included studies, we were able to present the current knowledge of six different outcomes of respiratory adverse effects and were able to perform meta-analyses on five. This provides an overall estimate of the effect of opioid treatment on these outcomes.

Our review also has several limitations. First, we only searched four databases. Due to publication bias, we might have failed to identify negative results. However, we also searched one trial register, sought expert opinions and hand-searched the reference lists of important reviews in the field of opioid treatment for chronic breathlessness. We identified a large number of studies, decreasing the chance that we missed important studies. Second, several RCTs could not be included in the meta-analyses because of reasons as discussed before. Third, we combined results from studies with different contexts of assessment, different number of doses and different route of administration; however, this was done only after the meta-regression which did not yield evidence that these moderators had an effect on the outcome. The number of studies used for this analysis was in some cases very low, making the power to detect effects questionable. However, due to the robustness of the results (i.e. no single moderator was significant in any of the analyses), we combined all measures to be pooled. Fourth, the patient populations were too diverse to specify the results for different populations. We primarily expect that patients with COPD and chronic respiratory failure are more at risk for respiratory adverse effects than for example patients with cancer or heart failure. Most of the studies included patients with a specified primary diagnosis (n=54), of which 16 studies only included patients with COPD. However, from these populations it is not known which patients experienced chronic respiratory failure. Fifth, we used the Cochrane Risk of Bias tool to assess the
risk of bias in RCTs and NRTs. This tool is designed to use in RCTs, but there was no appropriate alternative to use in NRTs. After assessment of the risk of bias was completed, the Risk Of Bias In Non-randomised Studies – of Interventions (ROBINS-I) tool was published [89]. This might have been a better tool to assess the risk of bias in NRTs and can be used in future studies. Finally, we included both cross-over trials and parallel trials in the meta-analysis together and analysed the cross-over trials as if they were parallel trials. This might result in a unit of analysis error, leading to an underweighting of the cross-over trials. Since only two studies included in the meta-analyses of SaO2 and RR were parallel trials and the remaining studies were cross-over trials, we assume this influence to be negligible.

Implications for clinical practice and future research

Patients are willing to consider opioid treatment for chronic breathlessness, despite the occurrence of adverse effects, and report improvement of quality of life and relief of breathlessness as their main reasons [12]. However, physicians remain reluctant to prescribe opioids for chronic breathlessness, among other things because of fear of adverse clinical outcomes [9-12]. A recent large observational study of older adults with COPD by Vozoris et al. [90] showed an association between new prescription of opioid and a small, but statistically significant increase in 30 day mortality and emergency visits. However, palliative care patients (and thus those who form the main group for whom opioids would be prescribed for breathlessness) were excluded and other differences between patients with and without opioid use might explain these findings. In contrast, a registry study of people with advanced COPD on long-term oxygen therapy, with four years follow up, found no association with either hospital admission or survival in people taking 30 mg or less of oral morphine per day [91].

This review has shown that the current evidence on respiratory adverse effects of opioid treatment in chronic breathlessness is inconsistent and heterogenic. Only one serious episode of respiratory depression is described, and that in the context of high dose opioids. Based on the evidence included in this review, low dose opioids can be considered as safe treatment for chronic breathlessness in the context of good clinical care and appropriate monitoring. However, the studies that have been conducted are mostly of low quality, short duration and not designed to assess the effect of low dose opioids on respiratory adverse effects. A long term, well-powered randomized controlled trial, like the MORDYC study, is needed. Moreover, including a common respiratory outcome set in all trials of opioids for breathlessness, so that a more robust synthesis could be conducted, is recommended.

Acknowledgements
We would like to thank Lowie E.W.G. Vanfleteren from Centre of Expertise for Chronic Organ Failure (CIRO) and Maastricht University Medical Centre (MUMC+) for contributing to the screening of and data-extraction from the articles in the French and Spanish language.

This project was funded by The Netherlands Organisation for Health Research and Development (ZonMW), The Hague, The Netherlands (Grant number 836031012).
References

34. Light RW, Stansbury DW, Webster JS. Effect of 30 mg of morphine alone or with promethazine or prochlorperazine on the exercise capacity of patients with COPD. Chest 1996; 109: 975-981.

52. Navigante AH, Castro MA, Cerchietti LC. Morphine versus midazolam as upfront therapy to control dyspnea perception in cancer patients while its underlying cause is sought or treated. *Journal of pain and symptom management* 2010; 39: 820-830.

76. Oxberry SG, Bland JM, Clark AL, Cleland JG, Johnson MJ. Repeat dose opioids may be effective for breathlessness in chronic heart failure if given for long enough. Journal of palliative medicine 2013; 16: 250-255.
84. Sitte T. Nasal application of fentanyl citrate as symptom control against breathlessness in palliative care--overview and case report. Wiener medizinische Wochenschrift (1946) 2009; 159: 566-570.
