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Abstract

Hedgerows are a key component of the UK landscape that form boundaries,

borders and limits of land whilst providing vital landscape-scale ecological con-

nectivity for a range of organisms. They are diverse habitats in the agricultural

landscape providing a range of ecosystem services. Poorly managed hedgerows

often present with gaps, reducing their ecological connectivity, resulting in frag-

mented habitats. However, hedgerow gap frequency and spatial distributions

are often unquantified at the landscape-scale. Here we present a novel method-

ology based on deep learning (DL) that is coupled with high-resolution aerial

imagery. We demonstrate how this provides a route towards a rapid, adaptable,

accurate assessment of hedgerow and gap abundance at such scales, with mini-

mal training data. We present the training and development of a DL model

using the U-Net architecture to automatically identify hedgerows across the

East Riding of Yorkshire (ERY) in the UK and demonstrate the ability of the

model to estimate hedgerow gap types, lengths and their locations. Our method

was both time efficient and accurate, processing an area of 2479 km2 in 32 h

with an overall accuracy of 92.4%. The substantive results allow us to estimate

that in the ERY alone, there were 3982� 302 km of hedgerows and

2865� 217 km of hedgerow gaps (with 339 km classified as for access). Our

approach and study show that hedgerows and gaps can be extracted from true

colour aerial imagery without the requirement of elevation data and can pro-

duce meaningful results that lead to the identification of prioritisation areas for

hedgerow gap infilling, replanting and restoration. Such replanting could signif-

icantly contribute towards national tree planting goals and meeting net zero

targets in a changing climate.

Introduction

The UK alone produced an estimated 339.5 million

tonnes of CO2e in 2021 (BEIS, 2023), and aims to

become carbon net neutral by 2050 (IPCC, 2023). As part

of the roadmap to net zero, the UK plans to increase for-

est stock by 30 000 ha annually by 2025, increasing wood-

land cover from 13% to up to 20% by 2050 (Ares

et al., 2021), whilst also extending hedgerows by 40%

(Climate Change Committee, 2020). Hedgerows are

defined as linear woody features that are composed of

shrubs that can contain trees, with a degree of manage-

ment and are often over 20 m long and less than 5 m

wide (Baudry et al., 2000; Staley et al., 2020). Hedgerows

are nationally distributed features with approximately

477 000 km of total length estimated in 2007 (Carey

et al., 2007), which is notably reduced from the

800 000 km estimated in the 1950s, driven by rising

demand for food production and expansion of land use

(O’Connell et al., 2015) and, crucially lack of suitable

management, resulting in hedgerows degrading or turning

into tree lines (Carey et al., 2007). Well-managed hedge-

rows offer numerous benefits to biodiversity and are a

key semi-natural habitat in agricultural regions (Staley

et al., 2016); they can also benefit agricultural activities by

creating habitats for essential insects, including pollinators
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and natural enemies of pests (Morandin et al., 2014), thus

providing a range of ecosystem services. As one of the

most abundant linear features at the landscape scale,

hedgerows represent an important habitat for the dis-

persal of individual organisms (Coulthard et al., 2016).

Hedgerow structure and structural diversity can greatly

influence their functionality (Hinsley & Bellamy, 2019).

Hedgerow gaps can damage their utility as connected eco-

logical corridors and may even lead to hedgerows func-

tioning as ecological sinks for species dispersing along

them (Alderman et al., 2011). Often gaps are defined as

the space between the hedgerow that is \20 m, but this

measurement is included in the total length measurement

of the hedgerow itself, and areas [ 20 m are not classed

as hedgerow, nor gap, potentially omitting hedgerow

planting potential (Department for Environment, Food

and Rural Affairs, 2007). Here we define a gap in the

hedgerow as any length along a boundary that contains a

hedgerow, with a maximum unit length of 30 m. Hedge-

row gaps can be found nationwide, whether for access to

adjacent land parcels, or due to over trimming, disease

and poor management (Amy et al., 2015; Croxton &

Sparks, 2002). Gaps reduce the connectivity of the land-

scape for migrating species, as well as reduce the amount

of available habitat and food sources for wildlife (Graham

et al., 2018; Staley et al., 2015). Hedgerow planting at the

landscape scale could increase the agroecosystem’s ability

to biosequester CO2, but empirical data that robustly

quantifies this potential is currently lacking, and seques-

tration is highly dependent on soil type and seasonality

(Axe et al., 2017; Biffi et al., 2022; Ford et al., 2021). Nev-

ertheless, increased hedgerow planting could stabilise the

soil and aid in its conservation (Baudry et al., 2000), thus

benefiting carbon retention. Hedgerow can also increase

soil permeability compared to adjacent fields resulting in

increased water storage during storm events (Herbst

et al., 2006; Holden et al., 2019). Contour hedgerow (i.e.,

hedgerow planted along the landscape contour) can also

interrupt surface flow pathways, reducing hydrological

surface connectivity and thus flood risk during rainfall

events (Wallace et al., 2021).

The advent of readily available high-resolution satellite

and aerial imagery has enabled desk-based classification

of hedgerows using geographic information systems

(GIS). Identifying hedgerows remotely has the advantage

of being able to cover more land efficiently compared to

manual, field-based surveys, with automatic landcover

classification of multiband imagery over large areas com-

monly used in remote sensing applications (Graham

et al., 2019; Scholefield et al., 2016; Thornton et al., 2007;

Tong et al., 2020). However, the resolution of the imagery

and size of the feature of interest can limit classification

effectiveness (Blaschke, 2010; Woodcock & Strahler, 1987).

As hedgerows are often less than 15 m in width, pixel res-

olution of available data must be high enough to discern

between the field margin and the hedgerow (Lechner

et al., 2009; Neumann et al., 2016; Vannier & Hubert-

Moy, 2014). In addition, linear features including hedge-

row can appear spectrally similar to other features such as

tree lines, ditches, fences and walls, resulting in complica-

tions when identifying and classifying features of interest

(Broughton et al., 2024; Scholefield et al., 2016). In the

absence of available high-resolution data, Thornton

et al. (2007) deployed sub-pixel mapping combined with

fuzzy classifiers to identify hedgerows, while others have

favoured active (emits its own light source and measures

the return of that wavelength) remote sensing such as

LiDAR (light detection and ranging)-derived digital eleva-

tion models (DEMs) over imagery, using the height dif-

ferential from the surrounding area to classify hedgerows,

trees and woodland habitats (Broughton et al., 2024; Lus-

combe et al., 2023). DEMs and underpinning LiDAR data

often have relatively fine resolutions (1 m2 pixel resolu-

tion with four guaranteed LiDAR returns, for example),

but require a sensor capable of receiving multiple returns

from the vegetation surface and from the bare ground to

build a canopy height model. Additionally, as LiDAR

requires a surface to reflect off to capture a measurement,

the absence of leaves in winter reduces the surface area

that is present to intercept the laser, and may result in

the underrepresentation of hedgerow and other

leaf-bearing features. Structure-from-motion may also be

used to evaluate woody structure (e.g., Broughton, Bull-

ock, et al., 2021) in addition to capturing rich detail such

as flowering abundance (Smigaj et al., 2021), yet is

impractical to deliver across the landscape-scale.

Unlike active sensing such as LiDAR, passive sensing

such as satellite and aerial imagery reduce the aforemen-

tioned potential for data loss as they do not require a

light source to be emitted, however fine resolution imag-

ery can quickly become impractical to manage particu-

larly when needing to manually classify features, especially

at the landscape-scale. However, passively captured imag-

ery can contain multiple bands that represent 100s of

wavelengths of light that can lead to new insights, and

often has greater spatial coverage and availability than

actively sensed data. Automated image analysis is com-

mon in remote sensing (e.g., Kaushik et al., 2022; LaRue

et al., 2024; Robson et al., 2020), with a recent shift

towards deep learning (DL). DL is often used in remote

sensing alongside other forms of artificial intelligence to

perform land use land cover assessments, alongside object

detection, classification and image segmentation (Blas-

chke, 2010; Li et al., 2018; Ma et al., 2019; Zhang

et al., 2016). DL has started to gain interest for hedgerow

identification owing to its ability to identify high-level,
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abstract patterns at both landscape and plot-scales, with

the ability to extract the boundary of hedgerows through

object identification or pixel classification (Ahlswede

et al., 2021). DL lends itself to scalability in terms of spa-

tial extent, resolution and ability to leverage computing

power, which is especially important when considering

the landscape and national scales. Often, object-based

image analysis approaches are used for hedgerow remote

sensing, with Tansey et al. (2009) identifying hedgerows

and field margin cover from multispectral, very

high-resolution airborne imagery, in combination with

Digital Terrain and Digital Surface Models. Similarly,

Broughton, Bullock, et al. (2021) and Broughton, Chet-

cuti, et al. (2021) utilised LiDAR data to generate a can-

opy height model to identify woody linear boundaries,

while Ahlswede et al. (2021) implemented DL on approx-

imately 1 m resolution IKONOS satellite imagery to iden-

tify hedgerow boundaries and evaluate temporal change

in a 984 km2 area in Bavaria, Germany. However, the

IKONOS data only ranges up to 2008, and critically the

authors did not quantify gap sizes.

Despite the presence of hedgerow gaps in the agroeco-

system and understanding of the importance of gaps,

there is a distinct lack of effective gap identification at the

landscape scale. Identifying hedgerow gaps and their loca-

tions can support prioritisation activities and help with

detecting suitable planting locations on unutilized land,

contributing towards carbon net neutrality, increasing

habitat connectivity, improving soil health and for surface

water management. Moreover, planting hedgerows into

gaps would help meet planting targets while not

encroaching on valuable agricultural land. Herein, we pre-

sent the training and application of a DL model to per-

form high-resolution image segmentation and pixel

classification of rural hedgerows, combined with auto-

mated processing steps to differentiate between access and

unutilized gaps. We additionally highlight some

ground-truthing activities to demonstrate the skill of the

DL and show how the model can be used to extract fea-

ture lengths and locations across the East Riding of York-

shire (ERY) local authority district in the UK.

Materials and Methods

Study area and training data

The ERY covers 2479 km2 of Northern England (Fig. 1)

with a mixture of Jurassic and Cretaceous chalk geology

overlain to the east by a last glacial maximum-derived

deposit of boulder clay. As such, the area is generally flat

and low-lying away from the west with rolling chalk hills

to the west. The ERY has a median elevation of 13 m a.s.l

(above sea level) and maximum of 246 m a.s.l with

\10% of elevations being greater than 118 m a.s.l (Ord-

nance Survey, 2024). Over 2000 km2 (81%) of this area is

dedicated for agriculture, including arable (68%) and per-

manent pasture (13%), as of June 2021 (Department for

Environment Food & Rural Affairs, 2023). The region has

one of the lowest forest covers in the UK (3.85%), sub-

stantially lower than the national average of 10.16%, yet

has a large proportion of agricultural land with hedge-

rows, presenting potential opportunities for planting and

gapping up. The ERY was considered by Rackham (1986)

as ‘planned’ countryside rather than ancient. Planned

countryside was shaped during the Enclosure Act (18th

century) and represented a strong tradition of open fields

and little woodland (Rackham, 1986), suggesting that the

hedgerows present in ERY are relatively young

(\200 years old). Furthermore, previous studies have

shown that hedgerow density in the ERY has a moderate

density of 1.64–5.44 km km�2 (Carey et al., 2007; Schole-

field et al., 2016) with lower densities to the east of the

region (the Holderness Plain) and to the north and west

(Vale of Pickering), both of which are low-lying, flat

landscapes. The Vale of Pickering has been identified spe-

cifically as a priority area for hedgerow replanting and

management action (Simonson et al., 2024). Hedgerows

in Yorkshire have a distinctive regional style: a very thin,

layered hedge used in sheep/arable rotation, cut close to

the ground (National Hedgelaying Society, n.d..).

The ability to differentiate features in remotely sensed

data is largely a function of the resolution of the image

and the size of the feature of interest, i.e., the minimum

mapping unit required, as well as its spectral properties

and those of neighbouring pixels. As hedgerows in the

ERY are often less than 2 m wide and can be 100 s of

metres long, this requires a high-resolution dataset for

training and inference. As such, we utilised one of the

highest resolution national imagery datasets available in

Great Britain: 0.25 m pixel resolution orthorectified aerial

imagery captured in July and October 2018 (Getmap-

ping, 2018). Images were available in 1 km2 tiles

(� 10MB in size each) and were mosaicked in ArcGIS

Pro with a 50 m overlap either side of the tile boundary

to ensure contiguous surface representation (� 560 GB

total size, upscaled to 16-bit depth from the original

depth of eight). These data are both commercially avail-

able and through existing UK Government and academic

agreements.

Hedgerows were identified manually in ArcGIS Pro and

extracted by tracing a polygon around the feature. Nine

4 km2 areas were selected for training (six tiles; 24 km2)

and validation (three tiles; 12 km2; Fig. 1) that were dis-

tributed within the study area. These areas were chosen

using a semi-random, pragmatic approach to ensure even

distribution throughout the ERY. Within each tile,
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hedgerow were manually identified by determining spec-

tral differences between the hedgerow and the landscape

through interpreting shadows, supported by a canopy

height model (the difference between a DEM and a digital

terrain model) for the area derived from 2m LiDAR pro-

vided by the Ordnance Survey to reduce misclassifica-

tions. A total of 5770 individual features were identified,

of which 3884 were classified as hedgerow (85 km) and

1789 as gap (9.2 km) that was further divided into for

access (584 features, 2.8 km) or unutilised (1302 features,

6.4 km) as described below. 2137 (48.3 km) unique hedge

features were used for training and 1747 (36.7 km) for

validation (67%:33% split by area).

Model architecture

The U-Net architecture (Ronneberger et al., 2015) was uti-

lised for semantic segmentation of aerial imagery with a

preconfigured neural network that was 34 layers deep

(ResNet-34) to increase the efficiency of the model. U-Net

was initially developed for biomedical applications, such as

identifying microscopic structures automatically. It was

deployed herein for its speed, ability to localise classifica-

tions in pixel space and its high performance working with

limited training data resulting in reduced training require-

ments (Ronneberger et al., 2015). U-Net is a fully convolu-

tional neural network that is split into two phases, each

with successive layers of differing resolutions: an encoding

phase and a decoding phase. The encoding phase down-

samples (i.e., reduces the resolution of) input data to gather

classification context, whilst the decoding phase localises

that context, enabling the output classification to be the

same resolution as that of the input (Stoian et al., 2019).

The DL model used herein had four pooling layers that

reduced the spatial dimensions by half (i.e., an input image

of 256 px became 128 px), resulting in a maximum resolu-

tion of 4 m. The decoder of the U-Net performed the

inverse operation to return the image to its original resolu-

tion. This ultimately enables the model to ‘learn’ at differ-

ent resolutions, recognising relationships at multiple levels,

an important requirement when considering small features

across a large landscape. To compensate for the reduction

in resolution.

The DL model was trained on a high-specification

desktop computer (Intel Core i7-9700, 64 GB RAM) with

an NVIDIA GeForce RTX 2080 to leverage the GPU’s

ability to perform parallel processing. A batch size of

eight was used to balance efficiency with required com-

puter power and the model was trained for a maximum

of 20 epochs. Training stopped when the model ceased to

improve, and did not progress beyond 20 epochs. A total

of 9214 training ‘chips’ (i.e., images with associated classi-

fication labels) that were 256 × 256 pixels in size (repre-

senting 64 × 64 m on the ground) were used as training

data built from the manually classified hedgerow, as

described above. Step size (the distance between training

Figure 1. Outline of the East Riding of Yorkshire (ERY), UK area of interest with training and validation sites highlighted. Each site was randomly

selected and equitably distributed throughout the area of interest.

4 ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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chips) was chosen to be 128 pixels in the X and Y direc-

tions to ensure at least a 50% overlap between training

chips, resulting in approximately 22 000 unique features

(instances of hedgerow) across all training chips. The

model was trained across 17 500 batches in approximately

120 min of processing time.

Evaluation metrics

The DL model was evaluated statistically by comparing

manually classified data to the validation sites. Four met-

rics were calculated for the dataset. The proportion of

correctly classified hedgerows (precision) and the ratio of

correctly identified hedgerows to the total number of

actual hedgerows (recall) were calculated by randomly

distributing 1500 sample points equally throughout each

class (i.e., hedgerow or not hedgerow). Random spatial

distribution within each class reduced potential bias

resulting from unequal class sizes. The F1 score (har-

monic mean of the model’s precision and recall) was cal-

culated to provide a meaningful representation of the two

metrics rather than each in isolation (Dice, 1945; Vasila-

kos et al., 2020). When F1= 1, the model has perfectly

predicted all classes correctly. Second, the Jaccard index

(commonly referred to as the intersection over union and

herein IoU) was calculated for each hedgerow, comparing

the total overlap between the model and ground truth

data to the total area classified (Jaccard, 1912). For per-

fect predictions, IoU= 1, with lower IoU-values indicat-

ing less accurate predictions. The mean IoU (mIoU) was

calculated to quantify overlap across the three validation

areas. Finally, Cohen’s kappa coefficient, κ, was calculated
for each class (hedgerow or not hedgerow) in the dataset

(Cohen, 1960). κ measures observed accuracy against ran-

dom chance when considering data in multiple classes

that are unbalanced and the classified data may be biased.

Extraction and differentiation of
hedgerow gaps

The process for extracting and differentiating hedgerow

gaps is shown in Figure 2 and described here in detail.

Hedgerows identified by the DL model were converted

from the raster format produced by the model to unique

polygons following the removal of erroneous pixels and

misclassified areas using the ‘Boundary Clean’ tool in

ArcGIS Pro. Polygons were chosen to integrate with vec-

tor data that formed the linear framework for gap identi-

fication, the Ordnance Survey MasterMap (OSMM)

Topography boundary layer (Ordnance Survey, 2017).

OSMM is a polyline dataset that contains over 500 million

real world objects for Great Britain, each with their own

unique topographic identifier, including field boundaries.

OSMM contains many classifications irrelevant to this

study (including archaeological boundaries, overhead

lines, slopes, cliffs, etc.) that were removed, retaining only

the ‘land’ and ‘roads, tracks and paths’ themes, and those

that do not reference water. Additionally, as the study

does not consider urban hedgerows, urban areas were

removed using the ‘built up areas’ classification from the

Sentinel-derived land use layer (Karra et al., 2021). These

steps reduced the OSMM ERY dataset from 2.3 million

unique features to 420 000, substantially reducing compu-

tational expense during gap extraction.

Filtered OSMM data were divided into equal 30m sec-

tions, reducing processing time and the maximum hedgerow

gap size to 30m. However, since the OSMM provides a

unique identifier, when gaps were extracted the total length

of hedge along each boundary line was extracted and lines re-

joined. Gaps were extracted by first selecting all 30m seg-

ments that intersected a hedge polygon. Where these lines

intersected the polygon boundary, a point was placed, and

the 30m lines were further split at these points. Finally, all

lines that were completely within the hedge polygon were

classified as hedgerows and their inverse as hedgerow gaps.

Gaps were further classified into those for access (i.e., those

required to access a field), and ‘unutilized’ gaps. The spatial

relationship of the gap to the field corner was used, with the

assumption that most access gaps are close to a field corner

or where two OSMM lines with different unique topographic

identifiers intersect, corroborated by validation data from the

training sites in Figure 1 and shown in Figure 3. Points were

automatically placed at the boundary intersect and then eval-

uated against the hedgerow layer; a point was removed if it

was not within 10m of a classified feature to ensure only field

corners near hedgerows or gaps were preserved. Remaining

points had a 7.5 m buffer applied, enabling identification of

access gaps of up to 15m (chosen as larger gaps are unlikely

to be for field access), at which point the location where the

buffer intersected the classified line data was extracted.

Finally, the classified data was split at these points to extract

hedgerow gaps.

Results

Model performance

Processing and classification of the ERY study area took

32 h and produced a 357 GB raster layer. Following bound-

ary cleaning as described above, the data was then binar-

ized (not hedge/ hedge), resulting in a final 10 GB

classified raster. The model had an F1 score of 0.924, indi-

cating that it was very effective at identifying hedgerow as

shown in the confusion matrix (Table 1). There was excel-

lent agreement between validation and inferred data with a

κ of 0.85. Despite these positive metrics, mIoU was 0.481

ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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(where 1 is perfect overlap), a moderate result suggesting

that the actual size of the hedgerow was systematically

underestimated, However, upon manual comparisons of

the classified data to the aerial imagery it was clear that

hedgerow width was overestimated due to difficulties dif-

ferentiating between the hedgerow and shadows, but length

was unaffected. Comparisons between aerial imagery and

classified hedgerow and gaps are shown in Figure 3.

Spatial distribution of identified hedgerow
and gaps

61 822 unique features with a total length of 6847 km

were identified as boundaries that contain hedgerows

across the ERY region. 3982� 302 km (58%) were

classified as hedgerows and 2865� 217 km (42%) as gaps

within hedgerows. Features with lengths less than 0.25 m

were removed since this was lower than the imagery

resolution.

Individual features were aggregated into a 1 km2 tessel-

lated hexagonal grid (Fig. 4A,B). Hedgerow density was

greatest to the east of the north–south central belt of the

region—the Yorkshire Wolds—where the elevation is

higher than the surrounding region (Fig. 4C). Land here

was dominated by cereal and leguminous crops in 2018

(Fig. 4D), and the area is generally dominated by chalk

deposits and is free of drift (glacial deposits) resulting in

land dominated by barley, turnips and sheep farming in

the 20th century (Sheppard, 1961), having transitioned

from sheep dominated practices in the early 19th century

Figure 2. Process diagram for generating the DL model and detailing the extraction of hedgerow gaps from the OSMM dataset.

6 ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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(Adams, 1977). The density of each feature also varies,

with hedgerows often having a density greater than

2.4 km km�2 (Fig. 4A). In contrast, the density of all gaps

was more evenly distributed, with a maximum density of

3 km km�2 (Fig. 4B). The proportion of hedgerow to gaps

varied less across the region, however generally lower gap

densities were present in the lowlands of the south and

east (Fig. 4B) closer to the Humber estuary where drains

and ditches dominate (Bankoff, 2024).

The mean aggregated hedgerow density was

1.5 km km�2 (std 0.105), while mean aggregated gap den-

sity was 0.56 km km�2 (std 0.053) as shown in Figure 5A.

Over 60% of aggregated gap densities were less than

0.5 km km�2. In contrast, aggregated hedgerow ranged up

to 7.7 km km�2 but have a flatter distribution across the

histogram than gaps (Fig. 5A). The length of individual

hedgerow segments ranged up to 1800 m and fewer than

1% of features were larger than 500 m. Similarly, total

gap size was up to 1000 m. However, fewer than 1% of

features were larger than 260 m. Mean hedgerow length

was 67 m (standard deviation, herein SD= 104 m) along a

single unique boundary, and gap size was slightly lower,

with a mean of 48 m (SD= 53 m; Fig. 5B).

Gap differentiation

Within the training and validation dataset there were 1789

individual gap features (i.e., a gap between two hedgerows),

with 81.1% (6367m) categorised as unutilized and 18.9%

(2771m) for access. The ratio varied across the survey sites,

with unutilized gaps being as high as 91% in the southeast

and as low as 63% in the northeast. Applying our method to

the study region resulted in 2526 km of unutilized gaps

(88%) and 339 km of access gaps (12%). The proportion of

gaps for access is shown in Figure 6, where there was a rela-

tively even spatial distribution across the study area. Further-

more, when considering the aggregate gap densities, there

was no more than 0.60 km km�2 of access gap in any indi-

vidual aggregate hexagon grid, with a mean of 0.13 km km�2

(SD= 0.1; Fig. 7A). In contrast, the density of unutilized

gaps was much larger, with a maximum of 3 km km�2

(SD= 0.59). Individual boundaries shown in Figure 7B also

highlight this, with access gaps of 10m or less contributing

to 77% of the gap population, while larger, unutilized gaps

were more common (mean of 48m, SD= 4.7).

Discussion

This study has shown that hedgerows and hedgerow gaps

can be efficiently mapped at the landscape scale with high

Figure 3. Examples of classified aerial imagery before (A–D) and after (E–H) hedgerow identification. Hedgerow boundaries were classified in

30m segments to reduce processing time. Contains imagery provided by Getmapping (2018).

Table 1. Confusion matrix for hedgerow or not hedgerow predictions

in the study area. The confusion matrix shows the precision and recall

ability based on 1500 equitably distributed points in the three valida-

tion zones.

Hedgerow Not Hedgerow Total Recall

Hedgerow 637 52 689 0.925

Not Hedgerow 62 749 811 0.924

Total 699 801 1500

Precision 0.911 0.935 0.924.

Bold values indicates the sum values of the row and column.
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Figure 4. 1 km hexagon aggregate of (A) hedgerow density; (B) gap density; (C) mean 50m resolution elevation (Ordnance Survey, 2024) and

(D) dominant land use description from the Crop Map of England 2018 (Rural Payments Agency, 2018) for the ERY region.

Figure 5. (A) Aggregated hexagon grid hedgerow and gap densities and (B) unique identifier lengths < 500m. Less than 1% of values were

>500m and are not visualised here to retain clarity.

8 ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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accuracy using high-resolution aerial imagery and DL.

This discussion: (1) compares the performance of our

method against previous approaches that have employed

satellite and high-resolution imagery; (2) discusses the

cause of underestimated hedgerow widths and potential

alternative solutions; (3) highlights the novel outcomes of

the present research (i.e., the identification of ‘access’ and

‘unutilized’ hedgerow gaps based on the presumed prox-

imity to the field corner); and (4) highlights the

implications of these results in the context of hedgerow

restoration, net-zero targets and incentives to encourage

sustainable land management practices.

The use of high-resolution imagery in this study was

essential for training the DL model and ultimately the

identification and determination of the area and spatial

locations of hedgerow gaps across the ERY. Previous

remote sensing studies of hedgerows have commonly used

satellite imagery, but this can lead to underrepresentation

Figure 6. Hedgerow gaps are classified for access as a percentage of the total gap length in the area.

Figure 7. Hedgerow gap differentiation for (A) aggregate hexagons and (B) individual boundaries.
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of hedgerows (especially thin hedgerows that are often the

most important class to identify for restoration) due to

coarser resolutions, especially those [ 10 m. Accuracy at

such resolutions can be as low as 28% (IRS; 23 m) or

70% (Aster, 15 m) compared to 74–88% for Orthophotos

(0.5 m) and the SPOT satellite system (5–10 m) respec-

tively (Vannier et al., 2011) and 92.4% herein. Leveraging

high-resolution aerial imagery enabled the confident

detection of smaller hedgerow sections and gaps \5 m,

producing a useful overview of both hedgerow and gap

density at the landscape scale. Scholefield et al. (2016)

used a satellite-derived 25 m land cover map and achieved

a poor to fair agreement with Countryside Survey (2007)

observations, with a mean κ value of 0.016–0.053 across

the ERY (vs 0.85 herein) but a 58–66% agreement across

the entirety of Great Britain (vs 91.1–93.5% herein for

the ERY). In contrast, O’Connell et al. (2015) used 0.5 m

resolution colour infrared aerial photography to perform

object-based image analysis of small-scale features in the

agroecosystem and produced similar results to those pre-

sented here (κ= 0.794–0.920), but their approach pro-

duced lower precision/recall values than our method

(77.14% vs. 91.1–93.5% herein; F1 score 0.924). Since the

aim of this study was specifically on hedgerows, the

binary model was able to focus purely on hedgerow infer-

ence, resulting in a more accurate output dataset without

the requirement of multispectral data.

Our method is generous in its estimation of hedgerow

width compared to validation data upon manual visual

inspection. The complexity of the hedgerow canopy pro-

duces a shadowing effect, resulting in the classifier either

not identifying areas of shadow as hedgerow within and

beyond the hedgerow, an issue also experienced by others

(Aksoy et al., 2010; Fauvel et al., 2013; Vannier

et al., 2011). The pixel segmentation model overrepre-

sented hedgerow width and intrusion into the gap,

highlighted by the relatively low mIoU (0.481), but this

issue did not impact hedgerow length estimates. LiDAR

or SAR could be used to mitigate this issue since they do

not rely on the visual spectrum of light, as well as to

extract width and height (e.g., Luscombe et al., 2023;

Broughton, Bullock, et al., 2021; Broughton, Chetcuti,

et al., 2021; Broughton et al., 2024), but these data often

have coarser resolutions when used at the landscape-scale

(≥ 1 m; 1.5–2.2 m, respectively) that may omit hedgerow

sections depending on the swath angle and point density

relative to the hedgerow. Despite the resolution discrep-

ancy, such data if collected at a similar time could be

used in future studies integrated with the DL model

herein, alongside multi- or hyperspectral imagery, to miti-

gate the influence of shadowing and more effectively con-

strain the hedgerow. Luscombe et al. (2023) achieved a

similar high accuracy and κ coefficient to this study for

both mature and managed hedgerow (91 and 94% respec-

tively, κ = 0.94 and 0.97) yet did not differentiate between

canopy gaps. Broughton et al. (2024) also achieved a rea-

sonably high accuracy (76� 15% SD) overall by evaluating

identified woody linear features against 38 countryside

survey squares, however their total feature length had a

96% agreement across the same squares. Furthermore,

high-resolution LiDAR that provides a terrain and surface

elevation model is less common than equivalent, or

greater resolution, aerial imagery, to which the method

could be adapted. Indeed, in the UK aerial imagery is

updated at least every three years, while LiDAR is updated

less frequently. However, UK-based LiDAR (both surface

and terrain products) are currently freely available to use

including commercial use (Environment Agency, 2024)

whereas most high-resolution (\10 m) aerial and satellite

imagery is not. For example, a single 1 km2 imagery tile

used in this study is priced at £51.60 at the time of writ-

ing (Getmapping, 2024). The timing of the data captured

will also likely influence the model herein (and would

also influence other approaches including LiDAR) due to

leaf cover and fluctuating spectral properties (i.e., it is

likely that the hedgerow will be greener in summer). The

influence of leaf cover was mitigated by using data from

2months in the image capture year, however, including

data collected at different times in the year would likely

strengthen the model classification and expand its capa-

bility and robustness.

Hedgerow gaps are important for agroecosystems since

they reduce landscape connectivity and the available habi-

tat for small mammals and food supply for nesting birds

(Graham et al., 2018) but the location, size and quantity

of hedgerow gaps are often omitted from remotely sensed

products due to difficulty differentiating between field

margins, scrubland and hedgerows. Herein, hedgerow

gaps were extracted and classified into ‘access’ and ‘unuti-

lized’ by coupling the outcome of convolutional neural

network processing with existing unique boundary vector

information. The methodology is reliable and rapid. It

revealed 2865� 217 km of hedgerow gaps across the study

region, with a mean total gap length of 48 m per bound-

ary. By differentiating between gaps for access and unuti-

lized gaps, our method presents an opportunity to

determine priority locations for hedgerow restoration,

reducing bias from access gaps that are vital for agricul-

ture or informing ecological connectivity studies. Further

work is required however to more robustly differentiate

between gap types, especially within the hedgerow and

not at field boundaries. The method could easily be

adapted to smaller areas of interest or to ultra-high reso-

lution uncrewed aerial vehicle-derived datasets, perhaps

with some additional training to increase reliability if the

landscape mosaic is substantially different spectrally. Of
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potentially greater significance, it could be applied nation-

ally through the use of a high-performance computing

cluster to leverage parallel processing. Previous studies

(Broughton et al., 2024; Scholefield et al., 2016)

highlighted difficulties when differentiating hedgerow

from other features with elevation such as drystone walls

and banks due to their similar elevations and spectral

properties. Although we do not statistically evaluate this,

upon visual inspection dykes that are common in the east

of the ERY are rarely misclassified as hedgerow, likely due

to the exclusion of all non-hedgerow areas in the training

data described above. Combining available LiDAR and

multi- or hyperspectral remote sensing with

high-resolution imagery may be a route forward to reduce

misclassifications of similar features.

In the ERY alone, 10–15 million new hedgerow plants

(whips) could be added to the 2526 km (�7.6%) of gaps,

assuming that every 1 m hedgerow gap can accommodate

four to six plants (Gregg et al., 2021), thus significantly

contributing to the UK Government’s net zero strategy

(HM Government, 2023). This could equate to annual

carbon sequestration of up to 0.75 t, or 1% of the current

estimated hedgerow carbon stock, not including soil

organic carbon (Crossland, 2015). Since the study area is

1% of the total UK area, gap infilling would thus meet

the ERY targets for tree planting without needing to

remove land from agricultural production. Furthermore,

the financial contribution of the UK Government to

hedgerow infilling is £17.22 per metre, whereas newly

planted hedgerow is over 20 m long (BN7; Natural

England, 2023). The analysis herein therefore highlights

that the financial incentive for landowners to infill and

restore hedgerows across the ERY amounts to £43.5 mil-

lion. In addition, gap infilling provides additional ecosys-

tem services and biodiversity net gain, including

improved functionality as a windbreak, a more structur-

ally diverse hedgerow and increased species richness (Tre-

sise et al., 2023; Weninger et al., 2021).

Despite the clear opportunity for hedgerow gapping up

and planting in the ERY, hedgerows often become gappy

in the first instance due to a lack of appropriate manage-

ment. For example, agricultural intensification (Staley

et al., 2013) and the increased use of chemicals has

resulted in some degradation of hedgerow conditions

(Graham et al., 2018). Additionally, the management of

hedgerow is often viewed as a source of lost productivity

(Mills et al., 2013; Staley et al., 2023), and large mammals

such as deer can further damage the hedgerow through

grazing, leading to increased gaps (Vanhinsbergh

et al., 2003). The availability of hedgerow sapling stock in

the UK may also pose a barrier to increased hedgerow

planting, especially when considering ambitious planting

targets required to contribute towards net-zero targets

(Biffi et al., 2022).

In conclusion, the approach presented herein provides

a rapid and scalable solution for identifying hedgerows

and hedgerow gaps at the landscape scale and provides an

accurate assessment of their distribution. Tools, such as

our method, help further current understanding of the

hedgerow network, its influence on landscape connectiv-

ity, and potential for gap infilling to contribute towards

net zero in an evolving climate. With the advent of repeat

high-resolution aerial imagery and ultra-high resolution

satellite missions, such as the Planet Labs’ 0.5 m resolu-

tion SkyDoves and hyperspectral Tanager-1 system

(Planet Labs, 2024a, 2024b), the method presented herein

could form the basis of a monitoring framework for

hedgerows and gaps, both in the UK and globally.
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