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Abstract: Coughing is a symptom of many respiratory diseases. An increased amount
of coughs may signal an (upcoming) health issue, while a decreasing amount of coughs
may indicate an improved health status. The presence of a cough can be identified by a
cough classifier. The cough density fluctuates considerably over the course of a day with
a pattern that is highly subject-dependent. This paper provides a case study of cough
patterns from Chronic Obstructive Pulmonary Disease (COPD) patients as determined
by a stationary semi-automated cough monitor. It clearly demonstrates the variability of
cough density over the observation time, its patient specificity and dependence on health
status. Furthermore, an earlier established empirical finding of a linear relation between
mean and standard deviation of a session’s cough count is validated. An alert mechanism
incorporating these findings is described.
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1. Introduction
Cough is an important symptom occurring in many respiratory diseases and is associ-

ated with exacerbations, lung function decline and risk of death [1–3]. Increased cough is
common during the acute exacerbation of COPD (AE-COPD), and a prodrome of increasing
symptoms including cough can be seen for up to 2 weeks before AE-COPD. Thus, question-
naires for monitoring the status of asthma (ACT: Asthma Control Test) and COPD (CAT:
COPD Assessment Test) include an assessment on cough. Calverley et al. [4] considered
questionnaire-reported symptoms like cough, breathlessness, chest tightness and nighttime
wakening and found a mean increase in symptom score of around 1 unit (scale: 0–4) at
the time of exacerbation. This change in magnitude was found at a population level; in an
individual patient, it is unlikely to prove clinically useful.

The reasons as to why questionnaire symptoms do not perform as hoped are various.
One reason is the coarse quantisation of the response. Increasing the level of detail (like a
visual analogue scale: VAS) is uncommon as the required introspection will likely become
an issue; thus, posing questions that are hard to answer will typically come at the cost of
decreased adherence. The interpretation of the labels associated with the questions are
usually left to the user and this results in subjectivity. Furthermore, the moment that a
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patient tends to report a significant increase in the burden of a symptom (1-point on the
questionnaire scale) is also likely the moment to seek advice, meaning that no additional
lead time would exist even if the questionnaire scale is apt.

Out of the questions from the CAT (regarding cough, sputum, chest tightness and
nighttime awakening), cough is the symptom with the highest concordance with AE-
COPD, independent of COPD severity [4]. Cough is also a symptom that can be detected
in an automated way, as shown in many technical studies on prototype cough detection
systems. For reviews, see [5,6]. An automated system would mitigate issues associated with
subjectivity, introspection and reporting. Sensors that are typically used are sound pressure
sensors and/or accelerometers attached to the chest. Various systems are currently available
such as wearable recorders [7], wearable sensors [8–10] and bedside systems [11,12].

For patient comfort and adherence, an unobtrusive and hassle-free system is preferred.
Since day- and nighttime coughing are correlated, it would suffice to measure either.
Measuring nighttime coughing has several advantages. It can be performed completely
hassle-free by a stationary system in the home of a patient. Also, the nighttime is a period
of identical behaviour (sleeping) while the daytime is agenda-driven and may involve all
kinds of activities inducing unexplained day-to-day variability or requiring extra channels
to collect relevant contextual information. Finally, using a microphone as a sensor in the
sleeping quarters of a patient yields an off-body system, and the nighttime is also usually
the most quiet period of the day, making sensing and detection more accurate.

For these reasons, the development of an unobtrusive stationary off-body microphone-
based monitoring system was pioneered and has been reported in [13–15]. It holds the
promise of constituting an element in an exacerbation prediction tool (for severe patients
using non-invasive ventilation, the ventilator itself may provide the relevant information
for tracking a deteriorating health status [16]). Further validation of this system was
undertaken in a double-blind clinical study. This paper addresses a part of the outcomes of
the study. It focuses on aspects of the cough monitor and cough behaviour (patient-specific
patterns) such as the variability of the cough density over the course of a monitoring session
and the validation of an earlier reported empirical relation between mean and standard
deviation in case of a stable chronic coughing patient.

The outline of this paper is standard. Firstly, the clinical study set-up is discussed,
its devices are then detailed and the data processing is described. Section 3 describes the
findings and is followed by a discussion (Section 4).

2. Methods and Materials
2.1. Data Collection

We conducted a prospective longitudinal double-blind study of continual cough
monitoring in COPD patients. To provide a reasonable chance of detecting AE-COPD,
participants were studied for 12 weeks using domiciliary cough monitoring and asked
to complete daily questionnaires each morning. If no exacerbation occurred in the first
12 weeks, the participants were asked to continue for at most another 3 months.

This study is double blind in the sense that (i) cough data were analysed without
any knowledge of the patient status or condition and (ii) moderate and severe COPD
exacerbations were identified retrospectively without access to the cough monitor data.
The primary aim of the trial was to validate a (causal) alert mechanism for exacerbations
based on cough trend data [14].

The current paper addresses the secondary aims of the study: to better understand
cough behaviour and any associated potential improvements of the alert mechanism.
The main contributions of this paper are twofold. First, we demonstrate patient variability
in nighttime cough patterns in the form of a case study and show its dependence on
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health status. Second, we validate the empirical relation between mean cough count
and cough count variation [14]. Both have been performed using only the data of the
cough monitor, i.e., without access to the medical data, questionnaire data and identified
COPD exacerbations.

This study was reviewed and approved by the North East-York Research Ethics
Committee (REC Ref.: 21/YH/0203), the United Kingdom Health Research Authority and
the Internal Committee Biomedical Experiments of Philips Research. Informed consent
was obtained from all participants involved in the study. The patient target was set at
n = 40 and 2 patients failed to finish the trial. One withdrew almost immediately and the
other one moved houses, leaving equipment behind. The data collection process ran from
August 2022 to June 2024. Several issues delayed a speedy progress, including COVID-19,
political changes affecting equipment, and organisational changes at Philips.

2.2. Cough Monitor

The used cough monitor is a stationary system placed in the sleeping quarters of
the participant. It is a successor to systems used in earlier studies [13,15], targeting the
unobtrusive and hassle-free monitoring of cough. The prototype consisted of a single-board
computer (ASUS Tinker Board 2G, ASUSTeK Computer Inc., Taipei, Taiwan) with a USB
measurement microphone (Dayton IMM6, Dayton Audio, Springboro, Ohio) and a cellular
dongle (Huawei E5330, Huawei, Shenzhen, China) (see Figure 1). Feature extraction and
type of cough classifier were as in earlier trials [13,15]. The cough monitor was placed in
the bedroom with a preference for the bedside table closest to the participant’s bed. No
absolute control over positioning was possible as participant preferences and available
power sockets influenced the decision.

Figure 1. Bedside cough monitor: left: adapter; mid: single-board computer and microphone; and
right: dongle.

To prevent issues with power outage, the system was created such that it would start
up automatically. At the installation step, the system had a start and stop time that were
set to 9 p.m. and 9 a.m., respectively. It was assumed that this covered the period of time
that all patients spent in bed, and such a monitoring period is called a session. To generate
timestamps and to start and stop monitoring at the correct moments, timing information
was required. This information was drawn from the cloud. In view of the long period over
which the monitor was intended to operate in a stand-alone mode, the system was shut
down and booted every day, which is an effective means to prevent memory leakage. In
case of failure to establish a connection to the cloud, the timing information is not available
and the monitor will not start a session.
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For the first 8 participants, the dongle contained an IoT SIM card (TruPhone) operating
over a 2G network. Later participants used a 5G SIM card (Vodafone, UK). Data were
transferred to the cloud (AWS) from where data were downloaded to a proprietary system
for analysis. To ensure privacy, only timestamps and audio features were transmitted at
moments where the soundscape changed. We refer to this as acoustic events or transients.
For a limited number of these events, a one-second audio snippet was also recorded and
transmitted. The limited use of short snippets prevented anyone from listening in to any
conversation while enabling checking for audio issues with the devices or its set-up (e.g.,
a ticking clock next to the monitor can be detrimental) and creating a personalised classifier.

At the server side, the data were collected and a classifier was trained based on the
first few days of monitoring, as described in [14]. In these previous trials, solid personalised
classifiers were attained when trained with around 200 coughs. With such a target in mind,
the number of days that require annotation (based on the snippet–feature combination) is
variable because the number of acoustic events is highly dependent on the patient [17].

A high-level schematic overview of the processing is given in Figure 2. On the left-
hand side, the image shows the audio processing in the patient’s home. It consists of the
audio processing based on an audio processing library denoted as A. The audio processing
step captures the audio and extracts features and snippets. This part is a mature software
component and has been deployed successfully in several trials. The audio processor
is embedded in a scheduler with an interface and the communication part, including
encryption. This has been developed for experimental purposes only. On the right-hand
side, there is a data-receiving and development unit D, where data are received, decrypted
and stored. Furthermore, there is an annotation and classifier training system to develop
the personalised classifier based on the snippets and the associated subset of audio features.

-

B

A

D

C

Figure 2. System overview: software components. (A) Audio processing in the patient’s home.
(B) Scheduler and data transmission unit. (C) Cough classifier and alert mechanism. (D) Central data
receiver and decryption unit.

The data processing units A and C are further detailed. In Figure 3, the system A
residing in the patient’s home is shown. A digital audio signal is the input, and system A
creates a series of timestamps accompanied with sound features and, for a limited num-
ber of events, a sound snippet. The system contains a transition detector that triggers
feature extraction and snippet generation. At the central side, the data processing unit C
receives the timestamps and the features for each event i (see Figure 4). The trained per-
sonalised classifier creates a probability pi that the features stem from a cough sound.
The timestamps ti and probabilities pi enter an accumulation unit. Here, events exceeding
a threshold probability PT are counted over a monitoring session m, creating the session’s
cough count C(m). This series is the input to the alert mechanism.
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Figure 3. Data processing in the patient’s home. The audio data are input into a transition detector
(TD). Transitions in the audio generate a timestamp in a timestamp generator (TG) and trigger the
extraction of features in the feature extractor (FE). A snippet generator (SG) creates a sound snippet
for a limited number of transitions.
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Figure 4. Data processing in system C. The features are input into a trained personalised classifier
(TPC) generating the probability pi. An accumulation unit (Acc) generates the number of coughs per
session C(m) using the threshold probability PT .

2.3. Cough Classifier

The cough monitor is closely tied to the operation of the human hearing system
as this defines the ground-truth of what a cough is. This starts with the features that
are extracted from the audio in the home of the patients. These incorporate a variant of
Mel frequency cepstral coefficients (MFCCs). More precisely, band filters are used with
equidistant spacing on an equivalent rectangular bandwidth (ERB) scale [18]. The filters are
3 ERB wide with 50% overlap. Next to these spectral features, energy levels before and after
the acoustic event and the (local) density of events are extracted. The deployed classifier is
a personalised classifier. A generic cough classifier would essentially require a one-class
classifier, i.e., only using information on the sound of a cough without considering the
environment in which the cough is being uttered. The neglect of using environmental
information presumably leads to worse detection performance and is certainly not in line
with our knowledge on human perceptual processing, which actively uses contextual
information [19].

For annotation, an audio–visual interface was used. The audio is essential to annotate
if the features belong to a cough, and not to an environmental sound or a vocal sound
of the patient that is not a cough (like throat clearance, sigh, moan, sneeze, burp, speech,
laughter). The signal waveform is provided, where a typical cough consists of three
phases: an explosive part, an intermediate stage and a voiced phase. Not only is the
visualisation helpful because of this specific pattern, but it is also instrumental to obtain a
single identification of the cough over time and not multiple. The explosive phase of the
cough is defined as the target as this is the acoustic response to the opening of the vocal
chords after pressure build-up: a requirement for a cough by definition. It is also the most
easily identified part of the cough: the intermediate and voiced phase are not always clearly
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present in sound and visuals. To obtain a unique signature for a cough, the position of the
feature extraction is shown in the graph and the annotator checks if this corresponds to the
explosive phase in case the sound resembles a cough.

For each patient, a classifier was trained using an extreme gradient boosted decision
tree classifier (XGBoost 2.1.1 with binary:logistic classifier, python implementation)
where the parameters [20] were left at their default values, except for max_depth = 8,
and num_boost_rounds = 100, similar to what we had previously used in a general cough
classifier that was trained on the data of many patients. We did not attempt to optimise
each model’s performance by further tuning its parameters. After training the classifier, it
is executed on the entire feature set using a relatively high threshold PT = 0.9. The outcome
is a list of timestamps of detected coughs. To create a profile of the cough density over the
monitoring periods, the following procedure was used. One-hour periods were selected
and shifted over the monitoring period with a fifteen-minute update. The detected coughs
in that period were counted. Data from the same time interval in all sessions were collected
and treated as a random variable: mean, standard deviation, median and quartiles were
calculated. Also, the α-trimmed mean was calculated with α = 0.25.

Note that we prefer to use the term cough densities rather than cough frequencies. Fre-
quency is a term connected to regularly occurring events, periodicity and quasi-stationarity.
Since the number of coughs within a given timespan is far from periodic or equally spaced
over time, the term cough density is preferred.

2.4. Alert Mechanism

The alert mechanism defined in [14] is shown in Figure 5. The cough count C(m) is
mapped to the B-scale by B(m) = α log(1 + βC(m)). Its output B(m) is smoothed using
a first-order IIR filter and the smoothed signal is input to a detector where an alert is
raised if this signal exceeds a threshold twice in three consecutive days. The threshold T
is defined using a baseline search over the days, excluding exacerbation days (AE-COPD
input), where the baseline is defined as the minimum of the means over the cough counts
of nine consecutive days. This method is not useable in the present situation due to the
double-blind character of this study nor is it compatible with a real-time system.

C - M - F - Det - alert

?

6
T

BaselineAE-COPD -

B

Figure 5. The original alert system where the cough counts C are mapped (M), smoothed (filter F)
and fed to a detector unit (Det). The threshold level T in the detector is derived from a baseline search
using mean filtered cough counts B excluding exacerbation days.

To solve this, an adaptive threshold was developed, which is also more appealing for
long-term use in real life to allow for, e.g., ageing and seasonal effects. The method works
as follows. The time series is mapped to the B-scale to be able to work with an identical
outlier setting for all patients [14]. Data of the latest L sessions are input to determine a
baseline. The oldest L − D sessions are used to define the current threshold; D is the delay
or dead zone. Finally, the median is taken over the L − D observations and this median is
input to a first-order IIR filter with pole pt and z-transform H(z) with

H(z) =
1 − pt

1 − ptz−1 . (1)
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An offset O is added to the output of the filter defining the dynamic threshold level T(m).
An alert is raised based on the smoothed cough counts on the B-scale using a first-order

IIR filter with pole p. If this smoothed cough count exceeds the threshold T at least twice
in the latest three sessions, an alert is raised. The settings for the mechanism are given in
Table 1. We note that the parameter α, β, L − D and p correspond exactly to those in [14].
The parameters associated with the adaptive mechanism (D, pt and O) were set based on
the cough data only, i.e., without knowledge of diagnosed exacerbations. For example,
taking a small pole pt (0 < pt < 0.3) gave less smoothing and alerts, which were considered
as accidental. A large setting of the pole (0.6 < pt < 1) gave increased smoothing with
slow adaptation to decreasing cough counts. For simplicity, the pole was set to pt = 0.5
without extensive optimisation. Fine-tuning has to follow with the knowledge of the actual
exacerbations and may even require more patient data.

Table 1. Alert mechanism settings. Parameters for mapping, smoothing and creating a dynamic
threshold level.

Parameter Setting Units

Mapping to B-scale α 3.45 B
β 0.04

Smoothing of data p 0.75

Baseline creation

L 14 days
D 5 days
pt 0.5
O 0.35 B

To illustrate the behaviour of the alert mechanism, Figure 6 shows three examples
of cough count (B-scale), smoothed cough count and constructed dynamic threshold T.
All three examples show alert days as indicated by the red circles. The red circles are on
the black smoothed line, as this is the input to the alert mechanism. Clinical aspects of
the study and validation of this particular alert mechanism will be covered elsewhere.
In the remainder, we will concentrate on the more general aspects of cough counting:
cough density profiles and validation of the earlier proposed cough scale (B-scale used in
Figure 6). The alert settings do not influence the later discussed cough counts and cough
density profiles.

Figure 6. Examples of the cough count (blue asterisks), smoothed data (black line), dynamic threshold
level (green line) and alerts (red circles).

3. Results
3.1. Patient Characteristics

From the forty enrolled patients, one withdrew and another did not finish the trial.
The characteristics of the remaining 38 patients are given in Table 2. Compared to our
earlier studies [13,15], less-severe patients were involved in this trial.



Sensors 2025, 25, 404 8 of 22

Table 2. Baseline demographics for study participants. Values are expressed as median and range (in
brackets). BMI: Body mass index; FEV1: forced expiratory volume in 1 s; CAT: COPD assessment
test; VAS: visual analogue scale for cough; and HARQ: Hull airway reflux questionnaire. Not all data
reflect the full cohort indicated by ∗, N = 33, and o, N = 13.

Characteristic N = 38

Gender: Male/Female 24/14
Age (years) 72 [57–84]
Weight (kg) 79 [44–173]
Height (cm) 168 [152–198]
BMI (kg/m2) 27.7 [16.2–41.3]
Smoking status
• Current/ex 7/31
• Pack years 46 [10.5–212]
FEV1 (L) 1.13 [0.61–2.81]
% predicted FEV1 43 [20–106]
CAT score
• begin 27 [5–37]
• end ∗ 25 [12–36]
VAS 30 [0.5–85]
HARQ 40 [8–70 ]
Exacerbations o (1/yr) 3 [1–7]
Admissions o (1/yr) 0 [0–2]

Not all patients provided useable cough data. This is a consequence of the set-up of
the study (retrospective without interventional mechanism), the behaviour of the patients
(absence (e.g., holidays), moving) and any system issues (disconnected power, interrupted
data connection). From the 38 patients, 4 were immediately excluded from further analysis.
There were three patients (P035, P038 and P039) with severe connectivity issues, and patient
P012 had connectivity and RF interference issues. It made the data too scarce to run the
alert mechanism and, in most cases, there were even too few data to train a classifier.

In Figure 7, the distribution of the duration of the monitoring (number of days from
first to last received data), the number of days within the period that data were received
and the number of missing days (i.e., the difference between duration and monitoring
sessions) is shown in a boxplot. The median of missing days is about 10, on a median of
84 days. Although the patient could have turned off the power, it is presumed that the
main cause for missing days is that the system was unable to schedule its daily monitoring
session due to an unguaranteed mobile connection.

Figure 7. Boxplot of duration, sessions and unmonitored days. The red line identifies the median, the
blue box gives the quartile range, the whiskers provide the full range except for outliers (red crosses).
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3.2. Annotation and Classifier Performance

For each patient, a trained classifier was created by annotating the snippets that
were transmitted. During annotation, it was found that the monitor had issues with RF
interference, which appeared in the audio as spike trains. Next to patient P012 (already
ruled out because of connectivity issues), this interference made the audio snippets (and
audio features) for P020 questionable. With other patients, RF interference occurred much
more rarely and is expected to have no or little impact on the results.

It was also observed that for one patient (P018), the dominant respiratory acoustic
event was not a cough but what sounded like a combination of a cough with a throat
clearance. The sound and waveform patterns observed in annotation thus did not match
this case as the annotator was instructed to identify the explosive part in a normal three-
stage acoustic event exhibiting intermediate and voiced phases after the explosive phase.
No attempt was made to define an annotation process suited to this singular case. The data
of this patient were excluded from further analysis. For more details on the annotation, see
Appendix A.

Setting P018 and P020 aside, the number of patients with cough data became 32.
From these patients, 12 had partners each and 20 did not. From the twelve partners, four
were reported as coughers, four were not, and for the other four cases, this is unknown.

The experience from earlier experiments indicated that solid classifiers were obtained
when around 200 coughs were used in the training. The number of snippets that were
annotated as coughs ranged from 178 to 278 over the patients. The number of annotated
non-coughs ranged from 256 to 8779, clearly marking the huge range of cough prevalence
in the annotated snippet set.

Another observation that was made during data screening and annotation was that it
is questionable whether patient P027 was actually occupying the sleeping quarters; after an
initial period of about 8 weeks, both acoustic events and coughs dropped dramatically for
almost all days. With other patients, there are also questions around presence as there were
days with abnormally low numbers of acoustic events and coughs. No mechanism was
constructed to rule out these days.

Figure 8 gives the boxplots representing the sensitivity, specificity, accuracy and posi-
tive predictive value as determined in the training with a threshold setting of PT = 0.9 for
cough classification. The fraction of acoustic events classified as coughs (positive rate: PR)
on the entire data set is also included. These statistics highlight our basic notions on the
design of an alert mechanism: a high PPV is essential if the cough counts are to act as
its substrate. In view of the low cough prevalence [17] and robustness for exposure to
untrained acoustic events, a high threshold (PT = 0.9) was set for the cough classifier.
This ensures a high PPV by favouring specificity over sensitivity. The sensitivity ranged
from 0.26 to 0.85, the specificity was high (all except two above 0.975), the full PPV range
stretched from 0.8 to 0.98 and the accuracy was in the range from 0.86 to 0.98 (except for
two patients).

In Figure 9, the prevalence of coughs as determined during annotation is compared
to the positive rate. We note that the positive rate (detected coughs) is low for 75% of
the patients below 10% of the acoustic events. There is one clear outlier where a quiet
acoustic environment is combined with a large amount of coughs, resulting in a positive
rate of nearly 0.4. The positive rate is smaller than the annotation prevalence; the median
is 6% while the median cough annotation prevalence is 13%. This is mostly due to a low
sensitivity induced by the preferred high threshold setting (median: 0.54). Other factors
that contribute to the difference include the fact that prevalence, which is determined from
annotation, covers only a small part of the full data, while the positive rate is determined
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over all acoustic events, and that the snippet selection is biased slightly towards the louder
events in order to facilitate annotation.

Figure 8. Boxplot of performance metrics of the cough classifier (sens.: sensivity; spec.: specificity;
PPV: positive predicted value; acc: accuracy) and rate of the detected coughs (PR: positive rate) for
the 32 patients. The red line identifies the median, the blue box gives the quartile range, the whiskers
provide the full range except for outliers (red crosses) and extreme outliers (red circles).

Figure 9. Boxplot of the prevalence of coughs as determined during annotation and positive rate
(fraction of acoustic events classified as coughs for a threshold setting of 0.9). The red line identifies
the median, the blue box gives the quartile range, the whiskers provide the full range except for
outliers (red crosses) and extreme outliers (red circles).

3.3. Cough Counts

Each detected cough carries a timestamp. This enables statistics of these cough counts
where we consider the mean and variance of the counts over a monitor session and cough
density profiles over the monitoring period (9 p.m. to 9 a.m.). The amount of coughing
depends heavily on the participant.

For each patient, it was checked if an alert was raised by our prototype alert mech-
anism, in which case the cough count would be unstable over the days. As the start of
the alert track is delayed because the system needs time to collect baseline characteristics,
the trend plots may reveal considerable variation in the beginning without an alert being
generated. Therefore, a visual inspection of the data was undertaken (by the first author)
to verify if the first part of the cough data did not have an upward or downward trend.
In case of an absence of alert and absence of trend, the patient cough data are labelled as
stable. An exception to this rule was P021 showing an enormous spread in cough counts
in the middle of the observation period, and this was labelled as unstable as well. Only 6
out of the 32 cough trends were labelled as stable, and about half (17 out of 32) had at least
1 alert. An overview of this data is displayed in Appendix B.
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In case of stable cough counts over the days, the averaging over the day creates a
cough density profile presumed to be characteristic for that particular patient during normal
respiratory condition. Figure 10 shows the profiles of participants with a stable cough
count. In the cough density plots, the median density profiles are provided (expressed in
coughs per hour) together with the quartile ranges and the α-trimmed mean with α = 0.25.
We observe that these curves are not uniform but exhibit peaks at different time instances.
Some graphs have peaks in the morning hours, while some in the evening, with the latter
presumably corresponding to the time the patient goes to sleep. Some patients hardly
cough at all in the sleeping hours, yet some have a steady plateau in their cough density
plots. The diversity of patterns agrees well with the observations in [14]. For completeness,
the set of all cough density patterns is provided in Appendix B.

Figure 10. Cough density profiles over the monitoring period (9 p.m. to 9 a.m.) for participants with
stable cough counts over the monitoring sessions. Black asterisk: median count; red line: trimmed
mean; and dashed lines: quartiles.

In [14], a linear relation was found between mean and standard deviation of cough
counts of patients that had no medical issues during the monitoring period. To validate
this empirical relation for the present cough data, the current data and the earlier found
model are jointly plotted in Figure 11. The data of the assumed stable patients follow the
earlier reported linear trend, while the data of the other patients are located dominantly
above this line.
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Figure 11. Standard deviation versus mean of the cough count per patient. Each asterisk represents
a trial participant. Data from patients with stable cough counts are indicated by a black circle
surrounding the asterisk. The dotted line represents the empirical relation from [14].

The linear relationship suggested a scale transformation into a cough count scale
(called the B-scale), where a unit step has the same meaning anywhere on the scale [14]. To
show the effect of the scale, we provide the cough count quartile ranges as a function of the
median in Figure 12. The dashed line, representing the median increased by fixed offset,
runs congruent with the third quartile, especially for the patients with a stable cough count.
For the non-stable patients, the bars occasionally extend above the line, and sometimes
agree with it. This is assumed to be caused by the use of robust statistics, implying that if
the data are mostly stable, the used metrics will follow that of the stable patients. Note that
there were two patients (P017 and P027) with low median cough count and bars below the
blue line. This may have been caused by a prolonged absence of the patient.

Figure 12. Quartile range as a function of the median cough count on the B-scale. Each bar represents
the Q1–Q3 range for a patient. The patients with a stable cough count are represented by blue bars,
else a black line is used. The dashed blue line indicates the median shifted vertically by 0.33 B.

As previously mentioned, creating profiles by averaging over days for patients having
respiratory issues during the observation period may not provide a meaningful density
profile. To test this hypothesis, the data of each patient were split into two equal parts:
sessions with the highest and lowest counts. Profiles were created for these two data
sets. To compare these profiles visually, they were normalised such that the mean density
equalled 1 cough/h. In Figure 13, the profiles are shown for patients having stable cough
counts. Our interpretation is that the density profile of a stable patient is only slightly
dependent on the overall session cough count. In contrast, four profiles of patients with an
unstable cough trend were selected and are shown in Figure 14. Here, we observe that clear
shifts in the densities occur. The top-right graph reveals that for days with a high cough
count, an additional peak occurs around midnight. The bottom-right shows a heightened
peak in the morning hours. The bottom-left completely changes its character from coughing
dominantly in the evening (at around 10 p.m.) to coughing all night long. The top-left
graph has a change in timing; the evening peak occurs earlier and shows an even clearer



Sensors 2025, 25, 404 13 of 22

shift in the two peaks in the morning. This would be compatible with a patient going to bed
earlier and sleeping for less hours in case of increased cough count and thus a presumed
respiratory issue.

Figure 13. Normalised cough density profiles over the monitoring period (9 p.m. to 9 a.m.) for partic-
ipants with stable cough count with data split according to sessions with low and high cough counts.

Figure 14. Normalised cough density profiles over the monitoring period (9 p.m. to 9 a.m.) with data
split according to sessions with low and high cough counts. Four examples from patients having an
unstable cough count over the trial period are shown.
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4. Discussion
For COPD patients with an appreciable nighttime cough count, a cough density profile

can be constructed. These density functions tend to be rather uniform (flat), have one
peak (morning or evening cough) or are double-peaked (morning and evening cough).
The results confirm the patterns shown in an earlier study [14] and demonstrate a large
variation over the population.

The deployed method of creating density profiles uses averaging over all days. To pre-
vent bias, we considered only patients with data where the alert mechanism was not
triggered and visual inspection did not contradict the assumption of similar behaviour at
different days. Results from all other patients are presented in Appendix B. Even though
robust statistical measures were used, they may be biased and therefore should preferably
not be used as a description of the patient’s normal cough density. Nevertheless, these
curves also show pronounced patient-specific peaks.

Note that for some patients, the density profile is relatively large or even maximum at
or near the start or stop of the monitoring period. This is an undesired monitoring setting
as it means that the count can be largely influenced by slight changes in habits of the patient.
It may be associated with acoustically open spaces or deviant sleeping hours.

For stable patients, an empirical relation has been proposed between mean and stan-
dard deviation of the nighttime cough count [14] (for unstable patients, this is not meaning-
ful; mean and standard deviation estimates are rather sensitive to outliers). This relation
was verified by considering data from cough counts where the cough count trends were
identified as stable.

The earlier introduced B-scale for cough count was applied to the present data. It
confirms that this scale enables defining a patient-independent offset which, when added
to a robust statistic for the baseline level, defines a cut-off for identifying outliers. In [21,22],
the relation between standard deviation and mean was also reported. In the paper, the
slope was found in the range from 0.37 to 0.40, while here, we consider 0.29. The main
causes attributing to this difference are assumed to have been the following:

• Our approach considers only data from stable epochs, obviously leading to a lower
slope; see Figure 11. The choice for stable epochs is relevant in view of the non-robust
nature of mean and standard deviation statistics.

• The monitor is tuned to a high specificity as a consequence of personalisation and
using a high classification threshold. This means that contributions of environmental
sound variability (seeping in via false positives) are suppressed to a high degree.

• The considered data are restricted to COPD patients and nighttime monitoring.

We considered the dependence of the cough count per night on the density. This
confirmed that the shapes of the density profiles were only slightly dependent on the
strength for stable patients. For unstable patients, the shape of the density profiles may
vary considerably with the total amount of coughs per night, and thus presumably with
the patient’s respiratory health.

We note that the reported findings on profiles are restricted to COPD patients. We also
note that the proposed monitoring system differs from other cough monitors (e.g., [8–12,21])
in that it is not only capable of providing information on the amount of coughs to the user or
caregiver but has the additional functionality of an alert mechanism for AE-COPD. Further
explorations with this system should mitigate the observed RF interference, include a more
stable mechanism for connectivity, and address the fine-tuning of parameters.

5. Conclusions
We analysed data from COPD patients (N = 32) obtained by a stationary nighttime

cough monitor. Cough density profiles were created, demonstrating a large degree of varia-
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tion in cough behaviour across patients. The empirical relation between mean and standard
deviation of the nighttime cough count was confirmed. The effect of mapping the cough
scale for uniform outlier detection was illustrated. These findings deepen our insights and
may serve as guidelines in the design for clinical applications like alert mechanisms for
chronic coughers. The data also suggest that not only the intensity (amount of coughs in a
day or night) but also the shape of cough density profiles may vary substantially with the
patient’s respiratory state. Validation of the alert mechanism incorporating these insights
will be our next step.
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Appendix A. Cough Waveforms
In this appendix, we consider in more detail the annotation of cough and the usage

of the cough waveform. Cough should basically be considered as a three-phase mo-
tor act featuring inhalation, pressure build-up and an expiratory airflow. An example
of a sound waveform that illustrates this is given in Figure A1. It shows the inhala-
tion effort (interval 0.05–0.15 s), the pressure build-up (0.15–0.25 s) and the expiratory
airflow (0.25–0.75 s).

Figure A1. Cough sound waveform with recognizable 3-phase motor act.
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However, in many audio recordings, the inhalation phase is not visible nor audible.
In the waveform of the expiratory motor phase, three distinctive parts are often discernible
and they are defined as the explosive part, the intermediate part and the voiced part.
In Figure A2, these parts are shown in the intervals 0.15–0.25, 0.25–0.40 and 0.40–0.60 s,
respectively. We note that these three parts are also recognizable in Figure A1, though the
transition from intermediate to voiced is harder to pinpoint here. We also note that the
cough shown in Figure A2 is actually the start of cough bout; a second explosive phase is
visible around 0.95 s.

Figure A2. Prototypical waveform of a cough consisting of three distinctive parts in the air-
flow expulsion.

The third phase is not always present, as shown in Figure A3. Here, the explosive part
is followed by a decaying intermediate phase, but the voiced phase is not (clearly) visible in
the waveform. Coughs having only an explosive part and a very short intermediate phase
occur as well. Therefore, the annotation focused on audible coughs with a clear explosive
part, i.e., associated with a release after the pressure build-up.

Figure A3. Prototypical waveform of a cough sound where the voiced phase in the airflow expulsion
appears absent.

For Patient P018, cough waveforms like those illustrated in the figures so far were
scarce. Instead, the dominant pattern of audible cough-like respiratory activity is shown
in Figure A4. It combines throat clearance starting at 0.15 s with a cough. Possibly,
the explosive part occurred at 0.35 s but it is integrated in the rising clearing sound.
The intermediate and voiced parts are visible at 0.4 to 0.6 s and 0.6 to 0.7 s.



Sensors 2025, 25, 404 17 of 22

Figure A4. Dominant waveform of acoustic adverse respiratory events for P018.

Appendix B. Cough Density Plots
In this appendix, data are provided, underlying the validation of the B-scale, and

cough density profiles of all patients are presented.
Table A1 gives the basic data concerning B-scale validation for all 32 patients, and the

figure number containing the profile. The first column gives the patient ID and the second
one shows the number of monitoring sessions. For B-scale validation, mean and standard
deviation were measured and are shown in the last two columns. Furthermore, there are
two columns concerning stationarity. The column Alert identifies if the alert mechanism
flagged an exacerbation. The column Stable identifies if the cough data are stationary; it
is said to be stationary if no alert was raised and a visual inspection of the cough graphs
confirmed this. This visual inspection was undertaken since the alert mechanism is not
functional in the initial period and downward trends may exist, making the cough count
non-stationary but without raising an alert. In case of the absence of alert and the absence
of a trend, the patient cough data are labelled as stable. An exception to this rule was P021
showing an enormous spread in cough counts in the middle of the observation period and
this was labelled as unstable as well. Only 6 out of the 32 cough trends were labelled as
stable, and about half (17 out of 32) had at least 1 alert.

Figures A5–A10 contain the cough density profile for all patients. These are organised
in six plots with increasing cough severity. Table A1 provides the information of the
association between patient and plot. In the cough density plots, the median density
profiles (expressed in coughs per hour) are provided together with the quartile ranges and
the α-trimmed mean. Figure A5 shows the profiles of participants with a third quartile
staying below 1 cough/h. Essentially, these are not chronic coughers.

Figure A6 shows the profiles of participants with the maximum of the third quartile
between 1 and 4 coughs/h. The median indicates that three participants tend to cough
more around 0 a.m. (when going to bed) with one of these three also having an increased
count in the morning.

Figure A7 shows the profiles of participants with the maximum of the third quartile
between 4 and 10 coughs/h. Here, the picture is rather diverse, with participants hav-
ing higher counts in the morning or evening, or a more uniform distribution over the
sleep period.
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Table A1. Specification of number of sessions, figure containing density plot, presence of alert,
stability of cough trend, mean (µ) and standard deviation (σ) of the session cough count per patient.
Processed data based on classifier probability threshold PT = 0.90. Y and N indicate Yes and
No, respectively.

Patient Sessions Figure Alert Stable
Mean Spread

µ σ

001 83 Figure A8 Y N 85.6 59.2
002 48 Figure A6 N N 23.3 40.2
003 78 Figure A9 Y N 99.0 47.8
004 86 Figure A7 Y N 43.9 32.5
006 61 Figure A8 N N 33.5 30.8
007 76 Figure A7 N N 40.2 28.6
008 50 Figure A7 N N 16.7 16.3
009 133 Figure A6 Y N 13.7 19.1
010 134 Figure A7 Y N 23.1 18.9
011 81 Figure A6 Y N 12.0 8.8
014 79 Figure A8 N N 50.7 17.9
015 43 Figure A9 N Y 160.7 58.1
016 136 Figure A6 Y N 11.8 9.7
017 120 Figure A5 Y N 6.3 14.7
019 54 Figure A7 Y N 26.4 16.7
021 71 Figure A10 Y N 165.5 157.5
022 59 Figure A8 N Y 49.6 29.0
023 93 Figure A10 Y N 311.7 139.3
024 86 Figure A6 N N 13.7 16.9
025 138 Figure A7 N Y 22.5 17.8
026 81 Figure A6 Y N 11.0 12.3
027 78 Figure A5 Y N 4.0 12.0
028 73 Figure A8 N Y 48.8 13.9
029 115 Figure A6 N N 10.2 11.3
030 118 Figure A9 N N 78.4 33.2
031 38 Figure A9 Y N 111.8 96.0
032 76 Figure A7 Y N 27.6 31.2
033 53 Figure A5 Y N 18.7 31.9
034 82 Figure A7 N Y 11.9 7.3
036 72 Figure A8 Y N 85.4 74.8
037 81 Figure A8 N N 21.0 13.1
040 81 Figure A7 N Y 22.5 14.9

The graphs of the medians in Figures A5–A7 are mainly on the 0-line. This is in
part due to the method; median filtering obviously leads to a quantisation of the density
axis. However, the α-trimmed mean, intended to mitigate the quantisation issue, does not
provide profiles clearly distinct from the zero line either. The figures with participants
having higher cough densities (Figures A8–A10) start to become more distinct with clear
peaks in the density in the morning or evening.

Figure A5. Cough density profiles over the monitoring period (9 p.m. to 9 a.m.). Participants with the
lowest density. Black asterisk: median count; red line: trimmed mean; and dashed lines: quartiles.
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Figure A6. Cough density profiles over the monitoring period (9 p.m. to 9 a.m.). Participants with
low density. Black asterisk: median count; red line: trimmed mean; and dashed lines: quartiles.

Figure A7. Cough density profiles over the monitoring period (9 p.m. to 9 a.m.). Participants with
medium density. Black asterisk: median count; red line: trimmed mean; and dashed lines: quartiles.
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Figure A8. Cough density profiles over the monitoring period (9 p.m. to 9 a.m.). Participants with
high density. Black asterisk: median count; red line: trimmed mean; and dashed lines: quartiles.
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Figure A9. Cough density profiles over the monitoring period (9 p.m. to 9 a.m.). Participants with
very high density. Black asterisk: median count; red line: trimmed mean; and dashed lines: quartiles.

Figure A10. Cough density profiles over the monitoring period (9 p.m. to 9 a.m.). Participants with the
highest density. Black asterisk: median count; red line: trimmed mean; and dashed lines: quartiles.
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