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Abstract
Human-induced global warming, primarily attributed to the rise in atmospheric  CO2, poses a substantial risk to the survival 
of humanity. While most research focuses on predicting annual  CO2 emissions, which are crucial for setting long-term emis-
sion mitigation targets, the precise prediction of daily  CO2 emissions is equally vital for setting short-term targets. This study 
examines the performance of 14 models in predicting daily  CO2 emissions data from 1/1/2022 to 30/9/2023 across the top 
four polluting regions (China, India, the USA, and the EU27&UK). The 14 models used in the study include four statistical 
models (ARMA, ARIMA, SARMA, and SARIMA), three machine learning models (support vector machine (SVM), random 
forest (RF), and gradient boosting (GB)), and seven deep learning models (artificial neural network (ANN), recurrent neural 
network variations such as gated recurrent unit (GRU), long short-term memory (LSTM), bidirectional-LSTM (BILSTM), 
and three hybrid combinations of CNN-RNN). Performance evaluation employs four metrics (R2, MAE, RMSE, and MAPE). 
The results show that the machine learning (ML) and deep learning (DL) models, with higher R2 (0.714–0.932) and lower 
RMSE (0.480–0.247) values, respectively, outperformed the statistical model, which had R2 (− 0.060–0.719) and RMSE 
(1.695–0.537) values, in predicting daily  CO2 emissions across all four regions. The performance of the ML and DL models 
was further enhanced by differencing, a technique that improves accuracy by ensuring stationarity and creating additional 
features and patterns from which the model can learn. Additionally, applying ensemble techniques such as bagging and voting 
improved the performance of the ML models by approximately 9.6%, whereas hybrid combinations of CNN-RNN enhanced 
the performance of the RNN models. In summary, the performance of both the ML and DL models was relatively similar. 
However, due to the high computational requirements associated with DL models, the recommended models for daily  CO2 
emission prediction are ML models using the ensemble technique of voting and bagging. This model can assist in accurately 
forecasting daily emissions, aiding authorities in setting targets for  CO2 emission reduction.

Keywords Daily  CO2 emissions · Prediction and forecast · Machine learning model · Deep learning model · Statistical 
model

Introduction

Human-induced global warming presents a significant and 
urgent threat with widespread implications for the environ-
ment and society (Kong et al. 2022). This increase in the 
Earth’s average temperature, resulting from the emission of 
greenhouse gases (nitrous oxide-N2O, carbon dioxide-CO2, 
methane-CH4, ozone-O3, and chlorofluorocarbon-CFC), 
gives rise to severe consequences, including elevated sea 
levels, extreme weather events, reduced crop yields, water 
scarcity, and disturbances to ecosystems (Legg 2021). 
These outcomes, in turn, pose substantial risks to human 
well-being. Among the various greenhouse gases released, 
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 CO2 contributes to approximately 81% of total emissions 
(Amarpuri et al. 2019; Rehman et al. 2021).

The 2021 global carbon budget revealed that 33% of 
total  CO2 emissions over the past 70 years occurred after 
the turn of the millennium (Huang et al. 2023). This sub-
stantial release of  CO2 is a major contributor to the issue 
of global warming (Fakana 2020). The correlation between 
 CO2 and global warming is rooted in this gas’s ability to trap 
heat in the Earth’s atmosphere, resulting in a greenhouse 
effect that elevates the Earth’s temperature. The increase in 
atmospheric  CO2 levels is attributed primarily to the com-
bustion of fossil fuels, and China, the USA, the EU27&UK, 
and India account for most of the global emissions (Crippa 
et al. 2021).

To address the challenge of global warming, the Paris 
accord, established under the United Nations Framework 
Convention on Climate Change (UNFCCC), was adopted 
in 2015. The agreement aims to constrain global warming 
to either 2 or 1.5 °C by implementing policies that reduce 
emissions, ultimately achieving net-zero carbon by 2050 
(Azevedo et al. 2021). Additionally, in 2021, approximately 
200 countries signed the Glasgow Climate Pact (COP26), 
which aims to encourage governments to “accelerate 
the development, implementation, and dissemination of 

technologies, and the adoption of policies to shift towards a 
low-carbon emission energy system” (Lennan and Morgera 
2022). However, the development of effective policies for 
setting carbon emission mitigation targets requires the 
attainment of highly accurate prediction models, thus pre-
senting a new area of challenge. Consequently, there is 
growing significance in research dedicated to the prediction 
of  CO2 emissions.

Currently, most of the research is focused on predicting 
annual  CO2 emissions. While this approach is essential for 
establishing long-term emission mitigation targets, it has 
limitations. These limitations arise from its small sample 
size and its inability to capture daily and monthly fluctua-
tions, which are critical for setting actionable emission 
reduction policies. In contrast, adopting daily real-time 
carbon emission prediction allows monitoring of dynamic 
trends and fluctuations in  CO2 emissions. This approach 
proves valuable for establishing short-term emission tar-
gets, allowing time for effective countermeasures and better 
control over carbon emissions. Hence, the exploration of 
daily emission prediction is highly important. Furthermore, 
an initial exploratory analysis of global  CO2 emissions, as 
shown in Fig. 1, reveals that more than 61% of total global 
 CO2 emissions originate from four regions (China, India, the 

Fig. 1  Global  CO2 emissions between 1/1/2022 to 9/30/2023



2512 Environmental Science and Pollution Research (2025) 32:2510–2535

USA, and the EU27&UK), with China and India character-
ised by a net emission increase. Therefore, understanding 
these regions’ current and future daily carbon dioxide emis-
sion levels is crucial.

This study investigates the performance of four statistical 
models (ARMA, ARIMA, SARMA, and SARIMA), three 
machine learning models (SVM-support vector machine, 
RF-random forest, and GB-gradient boosting), and seven 
deep learning models (ANN-artificial neural network, and 
RNN-recurrent neural network variation of GRU-gated 
recurrent unit, LSTM-long short-term memory, BILSTM-
bidirectional-LSTM, and three Hybrid combinations of 
CNN-RNN) in predicting daily  CO2 emission across four 
regions (China, India, USA, and EU27&UK). The perfor-
mance of these models is evaluated via four metrics, and a 
comparative analysis is conducted to identify the best model 
for daily  CO2 emission prediction. The dataset used for this 
study comprises daily  CO2 emissions data from 1/1/2022 to 
9/30/2023 (638 data points), reflecting post-COVID-19 nor-
mal economic activities. This systematic approach ensures 
that the selected model delivers accurate predictions and 
demonstrates robustness and reliability. The possible innova-
tions and contributions of this paper are as follows:

(a) Bridging the Gap in Daily  CO2 emissions prediction: A 
key contribution of this research is its focus on address-
ing the critical gap in daily carbon dioxide emissions 
prediction, which is essential for policymakers in the 
timely adjustment of actionable short-term emission 
reduction strategies. Unlike most existing studies that 
focus on annual carbon dioxide emissions, this study 
concentrates on the often-overlooked aspect of daily 
emissions. Doing so fills a significant void in the field 
and provides valuable insights that can directly inform 
and enhance policy decision-making.

(b) Comprehensive model evaluation: This study conducts 
a thorough evaluation of various prediction models, 
including statistical, machine learning, and deep learn-
ing approaches. The analysis identifies the most effec-
tive models for daily  CO2 emission forecasting and pro-
vides insights into their strengths and limitations. This 
evaluation offers valuable guidance for future research 
in selecting the most appropriate predictive models for 
daily  CO2 emission forecasting.

(c) Expansion of geographical scope: Unlike previous 
studies, which focused primarily on daily emissions in 
China, this study extends the analysis to include four 
major polluting regions: China, India, the USA, and 
the EU27 & UK. By evaluating the performance of 
prediction models across these diverse regions, the 
study provides a more comprehensive perspective on 
the applicability and generalizability of the models, 
thus enhancing their relevance to a variety of datasets.

(d) Incorporation of data transformation techniques: This 
study applied data transformation methods, such as 
differencing, to improve the accuracy of daily  CO2 
emission predictions, particularly in machine learning 
models that do not rely on the assumption of stationar-
ity. This approach not only improves current predic-
tive capabilities but also offers a foundation for further 
advancements in the accuracy of carbon emission fore-
casting in future research.

This study presents new insights backed by empirical 
evidence, along with practical recommendations aimed at 
enhancing the accuracy of daily carbon dioxide emission 
predictions. As a comprehensive analysis, it serves as a valu-
able resource for researchers, facilitating the development 
of effective emission reduction strategies and supporting 
informed environmental policymaking.

The remainder of the paper is organized as follows: the 
“Literature review” section comprehensively reviews previ-
ous work on  CO2 emission forecasting and related studies, 
establishing the foundation for the present study. The “Meth-
odology” section introduces the data sources, proposed 
models, and evaluation criteria for assessing the prediction 
models. This section details the data selection and collec-
tion process, outlines the methodologies applied in the pre-
diction models, and describes the metrics used to evaluate 
model performance. The “Results and discussion” section 
then presents a detailed evaluation and comparison of each 
prediction model’s performance, examining the results to 
emphasise their strengths, limitations, and overall efficacy. 
This section also explores the implications of the findings 
and their relevance to the research objectives. Finally, the 
“Conclusion”, “Limitations and Future Work” sections sum-
marise the key findings, discusses policy implications, and 
outlines limitations and potential avenues for future research.

Literature review

Many scientific studies have aimed to increase the preci-
sion of  CO2 emission prediction. These studies can be 
broadly categorised into two groups on the basis of the 
input data: multivariate and univariate methods. The mul-
tivariate approach incorporates multiple factors influencing 
 CO2 emissions as model inputs. However, this method has 
a major disadvantage: obtaining complete data for all influ-
encing factors is often challenging in practical applications. 
As a result, missing data are frequently extrapolated, which 
may lead to inaccurate predictions or the generation of an 
erroneous model (Song et al. 2023). Additionally, assess-
ing the individual contribution of each influencing factor 
is complex. In multivariate models, interactions between 
variables are often intricate and interdependent, making it 
difficult to isolate and quantify the impact of specific factors. 
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Wang et al. (2019) reported that multicollinearity, where 
predictors are highly correlated, can distort model coeffi-
cient interpretations, complicating the identification of indi-
vidual factor impacts. Prakash and Singh (2024) addressed 
the missing data issue by employing linear interpolation and 
mean method techniques to replace missing values in their 
study on  CO2 emissions from coal power plants. While these 
techniques help address data gaps, they also introduce uncer-
tainty, potentially affecting model accuracy.

In contrast, the univariate approach relies on readily avail-
able historical data, reducing uncertainties in model assump-
tions and predictions (Ziel and Weron 2018). This method 
avoids the complexities and challenges associated with miss-
ing data in multivariate models, making it preferable when 
high-quality, comprehensive datasets are unavailable or dif-
ficult to obtain. Several recent studies (Giannelos et al. 2023; 
Kour 2023) have demonstrated that the univariate approach 
can yield robust predictions with simpler input structures, 
mitigating risks associated with incomplete or interpolated 
data. Existing studies on univariate  CO2 emission predic-
tion can be further divided based on the predictive models 
employed: traditional statistical models and artificial intel-
ligence (AI) models (Mason et al. 2018). Traditional sta-
tistical time series models, such as Holt-Winters, ARIMA, 
and SARIMAX, are commonly applied for short-term  CO2 
emission prediction. However, these statistical methods have 
two significant limitations: (1) they are effective for station-
ary time series data but struggle with nonlinear cases, and 
(2) they are not ideal for predicting large sample sizes (Ren 
et al. 2016; Kong et al. 2022). Despite these limitations, 
several studies have utilised these models for  CO2 emis-
sion prediction. For example, Kour (2023) and Kumari and 
Singh (2022) effectively applied statistical models to fore-
cast annual  CO2 emissions in South Africa (using ARIMA) 
and India (using SARIMAX), respectively. However, Li and 
Zhang (2023) reported that these models performed poorly 
when applied to daily  CO2 emission data.

Given that daily  CO2 emission data often display non-
linear fluctuations, the linearity assumption inherent in sta-
tistical models may lack validity (Peng et al. 2020). Conse-
quently, there has been a shift toward the use of traditional 
machine learning (ML) and deep learning (DL) models, 
which are better suited for large datasets and nonlinear 
data, as highlighted by Zhou et al. (2021). Numerous stud-
ies have since focused on predicting  CO2 emissions using 
traditional ML and DL techniques. These AI models include 
support vector machines (Adegboye et al. 2024), random 
forests (Zhang et al. 2023b), gradient boosting regressors 
(Romeiko et al. 2020), artificial neural networks (ANNs) 

(Ağbulut 2022), and recurrent neural networks (RNNs), such 
as LSTM (Huang et al. 2019) and BiLSTM (Aamir et al. 
2022), along with hybrid combinations of convolutional 
neural networks (CNNs) and RNNs (Amarpuri et al. 2019; 
Faruque et al. 2022). These models have been applied across 
various sectors, such as emissions from buildings (Giannelos 
et al. 2023),  CO2 emissions from transportation (Ağbulut 
2022), emissions from coal power plants (Prakash and Singh 
2024),  CO2 emissions in the industrial sector (Song et al. 
2023),  CO2 emissions from diverse fuel sources (Jeniffer 
et al. 2023), and energy consumption (Adegboye et al. 2024). 
A summary of recent studies using the univariate approach 
for  CO2 emissions prediction is provided in Table 1.

As shown in Table 1, most prior studies have focused 
primarily on annual  CO2 emissions. While annual predic-
tions are essential for setting long-term mitigation targets, 
they have limitations, including small sample sizes and an 
inability to capture daily or monthly fluctuations, which are 
crucial for actionable short-term policies. In contrast, daily 
real-time  CO2 predictions allow monitoring of dynamic 
trends and fluctuations, which is invaluable for setting short-
term targets and implementing timely interventions. Conse-
quently, daily emissions prediction represents a critical area 
for further exploration. Additionally, studies by Magazzino 
and Mele (2022) and Magazzino et al. (2023) illustrate the 
potential of combining neural networks with time series 
decomposition to capture emissions’ dynamic behaviour 
and improve accuracy. Although these studies applied mul-
tivariate approaches, they provide insights that complement 
our strategy of integrating data transformation techniques, 
such as differencing, to enhance the performance of ML and 
DL models.

Building on advancements in  CO2 emission prediction, 
this study introduces several key innovations to address 
existing gaps. Our research provides a comparative evalu-
ation of 14 models, highlighting variations in performance 
and identifying the best-performing model. This study 
broadens the geographical scope by assessing models across 
China, India, the USA, and the EU27&UK, enhancing the 
generalizability and applicability of predictive methods. 
Additionally, by applying data transformation techniques, 
such as differencing, we improve the accuracy of daily  CO2 
emission predictions, especially for the ML and DL mod-
els that benefit from stabilised data. By analysing recent 
daily data from January 2022 to September 2023, reflecting 
post-COVID-19 economic activity, this study offers empiri-
cal evidence and novel insights that meaningfully contrib-
ute to the body of literature on short-term  CO2 emission 
forecasting.
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Methodology

Dataset

The dataset consists of 638 daily real-time  CO2 emission 
data points from January 1, 2022, to September 30, 2023, 
sourced from the carbon monitoring project (https:// carbo 
nmoni tor. org) (Liu et al. 2022). This period was specifically 
chosen to reflect normal economic activities following the 
global recovery from the COVID-19 pandemic. The  CO2 
emissions, measured in  MtCO2/day (million tons of  CO2 
per day), were calculated as the total contributions from six 
sectors (domestic and international aviation, ground trans-
portation, power, industrial, and residential) for China, India, 
the USA, and EU27&UK.

The data for the four regions exhibit high nonlinearity 
and non-stationarity, as shown in Fig. 2. The descriptive 
statistics in Table 2 show that China has the highest vari-
ability in daily  CO2 emissions, followed by the USA and 
the EU27&UK, whereas India has the least variability, as 
indicated by its lower standard deviation. The median values 
are close to the mean across regions, suggesting relatively 
symmetrical distributions. However, kurtosis and skew-
ness reveal that China and the EU27&UK have lighter tails, 

indicating fewer extreme emission values. Despite India’s 
lower overall variability, its higher kurtosis and skewness 
suggest occasional spikes in emissions, similar to those in 
the USA. China had the highest emissions, with a mean of 
31  MtCO2/day, approximately double that of the USA (14 
 MtCO2/day), the second-highest emitter. The coefficient of 
variation (CV) was calculated to assess the relative variabil-
ity in daily  CO2 emissions. China, with the highest absolute 
emissions, shows stable emissions (CV = 8.03%), whereas 
the EU27&UK exhibit greater volatility (CV = 18.29%), 
indicating more significant fluctuations and clarifying the 
consistency of emissions patterns across regions.

Seasonal variations in  CO2 emissions can be attributed to 
several factors, including energy demand driven by weather. 
As shown in Fig. 2, peaks in  CO2 emissions around Decem-
ber and January across all datasets likely reflect increased 
energy consumption for heating during colder months, 
whereas warmer periods show higher emissions from air 
conditioning. Additionally, variations in economic activity, 
such as shifts in industrial production and transportation pat-
terns, may contribute to temporary spikes or drops in emis-
sions. Thus, the seasonality in  CO2 emissions arises from a 
combination of weather-related energy demands, economic 
cycles, and other temporal factors.

Table 1  Studies on univariate  CO2 emissions prediction in the past 5 years

Reference literature Technique Dataset Best model Metrics

Nyoni and Bonga (2019) ARIMA 1960–2017 (Annual) ARIMA (2,2,0) RMSE, MAE & MAPE
Kour (2023) ARIMA 1960–2016 (Annual) ARIMA (4,2,3) RMSE, MAE & MAPE
Giannelos et al. (2023) ARIMA, Linear Regression, 

Shallow & Deep Neural 
Network (NN)

1971–2014 (Annual) Deep NN MAPE

Kumari and Singh (2022) ARIMA, SARIMAX, Holt-
Winters, LR, RF, SVM, 
ANN and LSTM

1980–2019 (Annual) LSTM R2, MAE, MSE, RMSE, 
MAPE, MSLE, ME, & 
MedAE

Geevaretnam et al. (2022) ARIMA, RF, SVM, ANN 1991–2020 (Annual) SVM MAE, RMSE & MAPE
Amarpuri et al. (2019) CNN-LSTM, Exponential 

Smoothing
1960–2017 (Annual) CNN-LSTM R2, MAE, RMSE & MAPE

Huang et al. (2019) PCA + LSTM, BPNN, GPR 1990–2016 (Annual) PCA + LSTM MAPE
Song et al. (2023) EMD, Elman Neural 

Network, Univariate 
Polynomial Regression 
(TVF-EMD-ENN-UPR)

01/01/2019–31/05/2022 
(daily)

TVF-EMD-ENN-UPR R2, RMSE & MAPE

Kong et al. (2022) ICEEMDAN + Hybrid 
Prediction Model

01/01/2019–18/06/2021 
(daily)

ICEEMDAN -ISSA-ELM R2, RMSE & MAPE

Qiao et al. (2020) SVM Optimised with Lion 
Swarm Optimizer and 
Genetic Algorithm

1965–2017 (annual) SVM MAE

Li and Zhang (2023) GM, ARIMA, SARIMAX, 
ANN,

RF, LSTM

01/01/2020–30/09/2022
(daily)

LSTM R2, MAE, MSE, RMSE & 
MAPE,

https://carbonmonitor.org
https://carbonmonitor.org
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Data preprocessing

No imputation for missing data was necessary, as the dataset 
contained no missing values. The main data preprocessing 
steps are as follows:

Stationarity check

The Augmented Dickey-Fuller (ADF) test was utilised to 
assess the stationarity of the datasets, which is vital for 
ensuring a consistent mean and standard deviation over 
time. Stationarity is critical for accurate predictions, par-
ticularly in statistical models that rely on this assumption. 
Although machine learning (ML) and deep learning (DL) 
models can process non-stationary data, they generally 
perform better with stationary inputs (Zhou et al. 2021). 
The ADF test results include both a test statistic and a 
p-value. The test statistic is compared against critical 

values to determine whether the null hypothesis (that the 
data are non-stationary) can be rejected. A more nega-
tive test statistic provides stronger evidence against the 
null hypothesis, indicating that the series is stationary. 
The p-value, derived from this test statistic, quantifies 
the strength of this evidence, with a p-value below 0.05 
suggesting stationarity (Ajewole et al. 2020). As shown 
in Table 3, the China dataset was stationary without any 
transformation, as indicated by a highly negative test sta-
tistic of − 3.9787 and a p-value of 0.0015. In contrast, 
the USA, the EU27&UK, and India datasets were non-
stationary in their original form, as indicated by their 
less negative test statistics and p-values greater than 0.05. 
After applying first-order differencing, these datasets 
achieved stationarity, which was reflected in more nega-
tive test statistics and significantly lower p-values, well 
below the 0.05 threshold for rejecting the null hypothesis 
and assuming stationarity.

Fig. 2  Daily  CO2 emissions for the four regions

Table 2  Descriptive statistics 
of daily  CO2  (MtCO2/day) 
emissions

Country Count Mean Min Max Median Kurtosis Skewness Standard-
Deviation

CV/%

China 638 30.65 24.23 36.65 30.60 − 0.44 0.01 2.46 8.03
USA 638 13.83 9.90 18.91 13.77 0.45 0.15 1.30 9.40
EU27&UK 638 8.64 5.10 12.72 8.46 − 0.37 0.35 1.58 18.29
India 638 7.57 5.03 10.18 7.57 0.94 0.26 0.72 9.51
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Windowing technique

Windowing is a crucial process in transforming time 
series data into a supervised learning dataset, which is 
essential for machine learning (ML) and deep learning 
(DL) models. This technique involves partitioning the 
time series data into smaller, uniformly sized windows, 
often called lags. Each window contains a sequence of 
successive data points that capture the temporal depend-
encies within the dataset (Moroney 2019). By sliding a 
fixed-size window across the time series, we can generate 
input features and corresponding target labels for model 
training. This sequential iteration allows the model to 
learn from past values to predict future outcomes, effec-
tively enabling time series forecasting. In this study, a 
window size of 7 was used. Specifically:

• 

  Here,  Xi represents the data points at each time step, 
and the window size of 7 captures seven consecutive 
time points for generating the input features.

• 

Each input feature vector consists of seven consecutive 
time points, such as  [X1,  X2, …,  X7]. The corresponding 
label is the time point immediately following this win-
dow, for example,  X8. This process is repeated across the 
entire time series, producing input features and labels for 
all possible windows in the dataset. For the final window, 
which includes the last data point  Xn, the label is  Xn+1, 
which follows the last window. This windowing technique 
helps the model focus on short-term dependencies while 
allowing it to generalise across different time intervals 
within the dataset. It is widely used in various applica-
tions, including stock market prediction, weather fore-
casting, and other domains where temporal patterns are 
critical (Patel et al. 2015; Faruque et al. 2022).

(1)Input Features = [X1,X2,… , X7], [X2,X3,… , X8],… , [X
n−7, Xn−6,… , X

n
]

(2)Labels = [X8], [X9],… , [Xn+1]

Models

The study explored four statistical models, three machine 
learning models, and seven deep learning models to predict 
and forecast daily  CO2 emissions. The detailed components 
of each model are explained in the subsequent sections.

Statistical models

The ARIMA and ARMA models are widely used statistical 
models that combine autoregression (AR) and moving aver-
age (MA) techniques. In ARIMA, “I” signifies integration, 
indicating the differencing order required to make the time 
series stationary (Kumari and Singh 2022). The parameters 
for AR, I, and MA are represented as (p, d, q), where p rep-
resents past values for predictions, d is the order of differenc-
ing ensuring stationarity, and q is the lag number of predic-
tion errors used to enhance the current timestamp (Kour 
2023). An ARIMA model is derived when these parameters 
are greater than 0. When d equals 0, it corresponds to the 
ARMA model. The ARIMA model can be expressed math-
ematically as follows.

where �p = autoregressive coefficient; B = backshift opera-
tor; d = order of differencing; yt = original time series data; 
�q = moving average; and �t = white noise or error term 
(Cho et  al. 1995). The main advantage of ARIMA and 
ARMA models is their simplicity and effectiveness in cap-
turing linear patterns. However, these models have certain 
limitations. One drawback is that they require the original 
or differenced time series data to be stationary. Additionally, 
they may not perform well with nonlinear data, as they are 
more attuned to linear patterns (Li and Zhang 2023).

Introducing seasonality into the modelling process can 
enhance the model’s predictive performance when dealing 
with seasonal data (Kumari and Singh 2022). Unlike ARMA 

(3)�p(B)(1 − B)dyt = �q(B)�t

Table 3  ADF test results on the 
original and transformed data

P-value < 0.05 = Stationary

Dataset Data transformation Test statistics P-value Conclusion

China No transformation  − 3.9787 0.0015 Stationary
No transformation  − 2.7903 0.0597 Non-stationary

USA Differencing  − 2.9936 0.0350 Stationary
No transformation  − 2.7380 0.0677 Non-stationary

EU27&UK Differencing  − 5.5470 1.6524 *  10^−6 Stationary
No transformation  − 2.5694 0.0995 Non-stationary

India Differencing  − 5.8816 3.0687*  10^−7 Stationary
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and ARIMA, SARIMA incorporates additional parameters 
specifically tailored for capturing seasonal patterns. These 
parameters include the seasonal autoregressive parameter 
(AR) P, seasonal differencing D, and seasonal moving aver-
age (MA) Q, denoted as P, D, Q, and s, respectively. Col-
lectively, the SARIMA model integrates both seasonal and 
nonseasonal components, resulting in a total of p, d, q, P, D, 
Q, and s parameters, represented as SARIMA (p, d, q) × (P, 
D, Q, s). The mathematical expression of the SARIMA 
model is as follows:

where Bs = the seasonal reverse potential; Φp = the sea-
sonal AR coefficient; ΘQ = the seasonal MA coefficient; 
and (1 − Bs)

D = the seasonal differencing of the order D 
(Lee and Han 2020).

The model selection process for these statistical mod-
els typically begins with ensuring stationarity in the time 
series data by estimating the necessary differencing orders 
(d and D). Once stationarity is achieved, the appropriate 
model parameters (p, d, q for ARIMA/ARMA; P, D, Q, s 
for SARIMA) are identified via visual tools such as PACF 
and ACF plots (Sen et al. 2016). These parameters are then 
fine-tuned through hyperparameter tuning to obtain the opti-
mal configuration that minimises the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC), 
ensuring the most effective balance between model complex-
ity and goodness of fit. After fitting the model to the training 
data, residual analysis is performed to detect any systematic 
patterns or errors in the residuals, ensuring that the model’s 
errors are random and unbiased. Model validation is then 
conducted by comparing the model’s predictions against 
actual test data and assessing performance metrics such as 
the R-squared value. Once validated, the model is used to 
make predictions on new, unseen data, providing insights 
into future trends or patterns in the time series.

Machine learning models

This study employed support vector regressor (SVR), ensem-
ble methods such as random forest (RF), and gradient boost 
regressors (GB) because of their successful application in 
 CO2 emission prediction, as reported by several research-
ers (Kumari and Singh 2022; Ağbulut 2022; Romeiko et al. 
2020).

a) Support Vector Regressor (SVR)

SVR is based on statistical learning theory and works by 
mapping the input data into a higher-dimensional feature 

(4)Φp(B
s)�p(B)(1 − Bs)

D
(1 − B)dyt = ΘQ(B

s)�q(B)�t

space using kernel functions (Vapnik 1998). In this trans-
formed space, it finds the optimal hyperplane that separates 
the data while maximising the margin of tolerance or error, 
effectively balancing complexity and accuracy. This hyper-
plane acts as a predictive model, estimating the output for 
new data. The basic equation for the SVM can be expressed 
as:

where �i represents the model parameters (Lagrange mul-
tipliers), K

(

xi, x
)

 represents the kernel function that trans-
forms the data into higher dimensions, and b is the bias term 
(Mohammadi et al. 2015).

The most commonly used kernel functions are the linear, 
polynomial, and radial basis functions (RBF). The choice 
of the kernel function plays a critical role in capturing lin-
ear and nonlinear relationships in daily  CO2 emission pat-
terns. Linear and RBF kernels are used in this study because 
they are relatively simple to implement and involve tuning 
fewer parameters than more complex kernels while provid-
ing effective predictive performance (Zhang et al. 2021). 
The linear kernel works well with linearly separable data, 
whereas the RBF kernel captures nonlinear relationships 
efficiently.

The performance of the SVR is optimised by tuning three 
key parameters: the kernel function, epsilon (ϵ), and the reg-
ularisation parameter C. The epsilon value defines a margin 
of tolerance within which predictions are considered accu-
rate, which helps to ensure that the model generalises well to 
unseen data. The C parameter controls the trade-off between 
minimising errors on the training data and maintaining a 
smooth model; higher values of C lead to fewer errors but 
may risk overfitting, whereas lower values encourage a sim-
pler model that may tolerate some errors (Kleynhans et al. 
2017).

For  CO2 emission forecasting, SVR offers several advan-
tages. It can model complex and nonlinear patterns in the 
data, making it robust for handling real-world time series 
data that may exhibit irregularities and fluctuations. By 
adjusting the kernel, epsilon, and C parameters, SVR can 
effectively learn from historical emission data and make reli-
able future predictions, providing insights into long-term 
 CO2 emission trends (Wang et al. 2023).

b) Ensemble model

In addition to SVR, ensemble methods such as random 
forest regressor and gradient boosting regressor also provide 
significant advantages for  CO2 emission prediction (Wang 

(5)f (x) =

n
∑

i=i

�
i
K

(

x
i
, x

)

+ b
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et al. 2023; Zhang et al. 2023b). Ensemble learning lever-
ages the combined strength of multiple machine learning 
models trained on the same dataset. Consequently, compared 
with individual machine learning models, ensemble models 
can increase forecast accuracy.

Random forest (RF) The concept of random forests was intro-
duced by Breiman (2001). Random forest is an ensemble 
learning method that uses decision trees as its basic units and 
combines them with the bagging technique to enhance perfor-
mance. During training, the bootstrap resampling technique 
is applied to randomly select k samples from the original 
dataset, constructing k weak decision trees (Breiman 2001). 
Each decision tree grows independently, without constraints 
or pruning, and remains uncorrelated with the others. The 
model’s final output is determined by averaging the predic-
tions (for regression) or through majority voting (for classifi-
cation) (Tang and Zhang 2013). Averaging predictions across 
multiple models serves to reduce variance and enhance the 
stability of the trees’ predictive performance. Random forests 
excel in capturing complex nonlinear relationships between 
inputs and outputs, making them particularly effective for 
regression tasks (Fan 2017). The fundamental equation for 
ensemble prediction is as follows: for any given sample X 
with P sub-models, each sub-model will generate its own pre-
diction value. Let Yk represent the predicted value of the  kth 
sub-model; the overall model YE will produce the final result 
by averaging these predictions (Yoon 2021).

A major issue with the random forest model is overfit-
ting. This occurs when a model fits the training data almost 
perfectly (performs well on the training set) but struggles 
to generalise to new, unseen data. Fully developed trees 
can lead to overfitting by capturing noise in addition to the 
underlying patterns in the training data. To address this 
issue, several adjustments can be made to the random forest 
model. Pruning the trees by reducing the maximum depth 
or limiting the number of nodes can help prevent overfit-
ting. This study employed hyperparameter tuning to enhance 
the model’s performance. The key parameters considered 
included the maximum depth of the trees, the number of 
estimators, and the minimum number of samples required 
to split an internal node, as presented in Table 4.

(6)YE =
1

P

P
∑

k=1

Yk

Gradient boosting regressor (GB) In contrast, the gradient-
boosting regressor builds trees sequentially, with each sub-
sequent tree aiming to rectify the errors of its predecessors 
(Friedman 2001). The model begins by constructing the first 
regression tree and then iteratively builds subsequent trees, 
splitting the data into smaller groups at each step. After each 
tree is built, the model evaluates the errors and trains the 
next tree to address those mistakes. This process continues 
until either the specified number of trees is reached or no 
further improvement in fit is possible. To prevent overfit-
ting, gradient boosting uses a learning rate to scale the con-
tribution of each new tree (Yoon 2021). A lower learning 
rate improves the model's ability to generalise, reducing the 
likelihood of overfitting by controlling how much each tree 
contributes to the final model. The key parameters tuned to 
improve the gradient boosting model's performance include 
the trees' maximum depth, the number of estimators, and 
the learning rate.

Overall, the grid search method was used to select the 
optimal parameters needed to enhance the performance of the 
RF, GB, and SVR models, as outlined in Table 4. Addition-
ally, ensemble methods such as voting, bagging, and stacking 
were applied to further improve the models’ accuracy.

Deep learning models

(a) Artificial neural networks (ANN)

Artificial neural networks are well-suited for capturing 
the complexities of nonlinear data, and their application 
in modelling  CO2 emission data has been demonstrated by 
Ahmed et al. (2023). The strength of ANNs is their capac-
ity for self-learning, which makes them particularly useful 
for managing nonlinear datasets such as daily emission 
data (Tümer and Akkuş 2018). A typical ANN consists 
of three layers, namely, the input-hidden-output layers, as 
shown in Fig. 3 (Ağbulut 2022). The hidden layer func-
tions as the processing layer, enabling the model to learn 
patterns within the data. This layer consists of neurons 
(fundamental processing units) that receive input data 
from the input layer. The hidden layers adapt and learn 
based on the selected learning method for each processing 
layer, subsequently transmitting the acquired knowledge 

Table 4  Tested parameters for 
the machine learning models

SVR RF GB

C: {0.1,1,10} n-estimators: {50,100,200} n-estimators: {50,100,200}
Kernel: {linear, rbf} max-depth: {range (1,6)} Learning rate: {0.01, 0.1, 0.2}
Degree: {2,3,4} Min-samples-split: {2, 5,10} max-depth: {2,3,4}
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to the final layer, known as the output layer (Haider et al. 
2022). The model parameters used in this research are 
shown in Table 5, and the mathematical expression for an 
ANN is presented as follows (Guo et al. 2021):

Here, n represents the number of inputs, wj , and b cor-
respond to the weight and bias, respectively, and Ij rep-
resents the input and An denotes the output of the ANN.

(b) Recurrent neural network (RNN)

Traditional convolutional neural networks (CNNs) are not 
designed to handle temporal dynamics, as they lack mecha-
nisms for processing and propagating information across 
time steps. In contrast, recurrent neural networks (RNNs) 
are specifically designed to incorporate information from 
previous time steps into their current outputs (Ding et al. 
2022). For daily  CO2 emission prediction, recognising the 

(7)An =

n
∑

j=1

(wj.Ij) + b

time-dependent nature of the data is crucial, as it reveals a 
correlation between daily emission values over time. RNNs 
are particularly suitable for time-series modelling because of 
their loops in processing units, which facilitate the handling 
of sequential data. However, simple RNNs often struggle 
with capturing long-term dependencies, leading to issues 
such as vanishing and exploding gradient problems during 
training (Haider et al. 2022). This limitation can be miti-
gated by employing advanced RNN variants, such as gated 
recurrent units (GRUs), Long short-term memory (LSTM) 
networks, and bidirectional-LSTM (BILSTM) networks.

LSTM consists of a memory cell denoted by  Ct and three 
gates: an input gate, a forget gate, and an output, which help 
retain and discard information as needed, effectively capturing 
long-term relationships (Hochreiter and Schmidhuber 1997). 
The architectural structure of the LSTM is presented in Fig. 4a, 
where the input, output, and forget gates are typically repre-
sented by it , Ot , and ft respectively. The input gate receives 
daily  CO2 emission data, which the forget gate processes by 
merging with past hidden states. The forget gate determines 
which information from prior time steps should be retained 
or discarded. The concatenated input is passed through a non-
linear function, which stochastically updates values based on 
the current data. The output gate generates the predicted  CO2 
emissions, whereas a sigmoid layer, tanh layer, and pointwise 
operations such as summation and multiplication assist in the 
system's computations. The computing equation for an LSTM 
unit is presented as follows (Ding et al. 2022):

a) Input:

b) The Gate Status:

c) Memory Cell:

d) The output:

where W and b represent the weight and bias matrices, 
respectively. ht−1 represents the hidden state (unknown 
vectors) from the previous time step. xt denotes the input 
at the current time step. These components collectively 
manage the flow of information within the LSTM, 

(8)gt = tanh
(

Wigxt + big +Whcht−1 + bhg
)

(9)input gate
(

it
)

= σ
(

Wijxt + bii +Whiht−1 + bhi
)

(10)forget gate(ft) = σ
(

Wif xt + bif +Whf ht−1 + bhf
)

(11)
Output gate

(

Ot

)

= σ
(

Wioxt + bio +Whoht−1 + bho
)

(12)Ct = ft×Ct−1 + it × gt

(13)ht = Ot + tanh(Ct)

Table 5  Model parameters of the deep learning models

Na, not applicable

Parameters ANN GRU LSTM BILSTM CNN-RNN

Kernal size Na Na Na Na varied
Filter size Na Na Na Na varied
Conv1D Na Na Na Na 1
Drop out 0.2 0.2 Varied 0.2 Varied
Number layer 3 3 3 3 4
Learning rate 0.001 0.001 0.001 0.001 varied
Optimizer Adam Adam Adam Adam Adam
Batch size 32 32 32 32 32
No of Epochs 200 200 200 200 200
Error monitored MSE MSE MSE MSE MSE

Fig. 3  Schematic representation of the ANN model (modified after 
Ağbulut 2022)



2520 Environmental Science and Pollution Research (2025) 32:2510–2535

enabling it to capture relationships between various data 
points during prediction and retain critical information. 
As a result, LSTMs often produce more accurate results 
when handling time-series data predictions.

The GRU, a simpler variant of the RNN, is similar to 
the LSTM but uses two gates: the reset gate (combining 
the forget and input gates) and the update gate, which are 
typically denoted by rt and zt , respectively, as shown in 
Fig. 4b (Hochreiter and Schmidhuber 1997). Reducing the 
number of gates contributes to GRUs’ faster training times 
and lower computational complexity. The key equations in 
the GRU are as follows (Ding et al. 2022):

a) Update gate:

  The update gate provides adaptive regulation of 
information passing through the hidden unit, determin-
ing how much of the previous hidden state ht−1 should 

(14)zt = σ
(

Wzxt + Rzht−1 + bz
)

be retained and combined with the incoming data for 
information updates.

b) Reset gate:

  The reset gate controls how much of the past informa-
tion should be reset or discarded.

c) Candidate hidden state:

  The candidate’s hidden state ht′ is computed via the 
reset gate-modulated previous hidden state and the cur-
rent input xt

d) Final hidden state:

The final hidden state ht is a combination of the candi-
date’s hidden state ht′ and the previous hidden state ht−1 , 
weighted by the update gate zt.

(15)rt = σ
(

Wrxt + Rrht−1 + br
)

(16)ht� = tanh
(

Wuxt + Ru(rt × ht−1) + bu
)

(17)ht = zt × ht� +
(

1 − zt
)

× ht−1

Fig. 4  Schematic representation of the basin unit structure of the (a) LSTM and (b) GRU (c) BILSTM (modified after Ahem et al. 2023; Ding 
et al. 2022)
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Compared with LSTM networks, which have three gates 
(input, forget, and output) and a separate memory cell, the 
simpler structure of a GRU, with fewer gates, results in 
lower computational complexity. This simplicity allows 
GRUs to train faster while still maintaining effective per-
formance in capturing temporal dependencies, which can 
be beneficial for daily  CO2 emission forecasting.

Compared with the traditional unidirectional LSTM, the 
BILSTM developed by Schmidhuber (2015) consists of two 
LSTMs with outputs in opposite directions, capturing infor-
mation from both past and future time steps (seasonality), 
thereby improving the model's dependence and enhancing 
the model's overall forecasting accuracy. For BILSTM, the 
hidden layer ht consists of both forward ht→ and backward 
ht′

← LSTM units, which are expressed as follows:

where ⊕ denotes the element-wise summation of the forward 
and backward output components, and the BILSTM network 
structure is illustrated in Fig. 4c. Numerous researchers have 
used these three RNN variations for time series forecasting 
(Zhang et al. 2023a; Li and Zhang 2023; Huang et al. 2019).

Additionally, we explored a hybrid CNN-RNN model 
by incorporating a single convolutional layer into each 
RNN architecture. This integration allows the model 
to extract both spatial and temporal features simultane-
ously. The convolutional and pooling layers extract spa-
tial features, whereas the RNN layers capture the time 

(18)ht = ht
→ ⊕ ht�

←

series information. This approach has shown potential for 
improving the forecast accuracy of time series models, as 
reported by numerous researchers (Faruque et al. 2022; 
Amarpuri et al. 2019).

In the hybrid model, the input daily  CO2 emission data are 
first fed into the CNN layer, where a convolution operation 
is applied to extract the characteristics of the complex, non-
linear interactions in the input data. The new feature matrix 
generated after the convolution operation is then passed to 
the pooling layer, which reduces the dimensionality of the 
feature map and helps prevent overfitting. This feature map 
is used as the input for the RNN layer. Finally, a fully con-
nected layer is placed at the end to make the prediction, 
as shown in Fig. 5 below. The hybrid model uses a ReLU 
activation function for the input layers, whereas the output 
layer uses a linear activation function. The parameters of the 
deep learning models used in this study are listed in Table 5.

Research workflow

The research workflow is divided into three key phases: data 
preparation, model building, and model selection, as illus-
trated in Fig. 6.

(1) Data preparation:

Daily univariate  CO2 emission data for China, India, the 
USA, and the EU27&UK were collected. To make the data 

Fig. 5  Architecture of the 
hybrid CNN-RNN model 
(modified after Faruque et al. 
2022)
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suitable for time series models, differencing was applied 
to ensure stationarity, which is essential for models such 
as ARIMA and SARIMA, which require stationary input 
data. Windowing techniques were employed to prepare the 
data for the ML and DL models, ensuring that temporal 

dependencies were captured. The dataset was split into train-
ing (80%) and testing (20%) sets to ensure robust model 
evaluation. The entire data preparation process was carried 
out via Python’s Panda library.

Fig. 6  Research workflow
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(2) Model building:

The conceptual design of this study involves comparing var-
ious models to determine which best fits the  CO2 emission data 
across different regions. The choice of models was informed by 
their theoretical foundation and empirical success in previous 
 CO2 emission forecasting studies (Shabani et al. 2021; Kumari 
and Singh 2022; Faruque et al. 2022). Specifically:

• Statistical models: ARMA, ARIMA, SARMA, and 
SARIMA were selected on the basis of their success in 
capturing linear trends and seasonal patterns in stationary 
time series data. Studies such as those of Kour (2023) 
and Kumari and Singh (2022) have demonstrated the 
efficacy of these models in  CO2 emission forecasting.

• The machine learning models SVM, random forest (RF), and 
gradient boosting (GB) were chosen for their flexibility in han-
dling nonlinear relationships and high-dimensional data, as 
demonstrated by Adegboye et al. (2024), Zhang et al. (2023b), 
and Romeiko et al. (2020). These models do not rely on sta-
tionarity assumptions and can capture interactions between 
variables that traditional statistical models might overlook.

• The deep learning models ANN, GRU, LSTM, and BIL-
STM were used to model long-term dependencies in the 
data. These models have been shown in studies such as 
those of Shabani et al. (2021), Huang et al. (2019), and 
Aamir et al. (2022) to be effective at capturing nonlin-
ear, non-stationary patterns in  CO2 emission datasets. 
Hybrid models that combines CNN and RNN compo-
nents have also been explored to enhance the ability to 
capture complex temporal relationships, as Faruque et al. 
(2022) demonstrated. All modelling and analyses were 

performed using Python libraries such as scikit-learn (for 
the ML models), stats-models (for the statistical models), 
and TensorFlow/Keras (for the DL models). Hyperpa-
rameter tuning was conducted via a grid search to iden-
tify optimal model configurations.

(3) Model selection:

Model selection was based on a comprehensive evaluation 
using metrics such as the RMSE, MAE, MAPE, and R2, as 
recommended by Li and Zhang (2023). These metrics provide 
insights into both the scale and direction of prediction errors, 
offering a well-rounded assessment of model performance. 
Model comparison and visualisation were performed using 
Python’s matplotlib library. The final model selection was 
driven by both empirical performance and theoretical suit-
ability, with the selected model used to forecast  CO2 emis-
sions for 60 days across the four major regions. This approach 
balances traditional statistical theory with modern ML/DL 
techniques to ensure that the most appropriate model is chosen 
for accurate daily  CO2 emission forecasting.

Performance evaluation

Model performance was evaluated via metrics such as the 
coefficient of determination (R2) and error metrics such as the 
root mean square error (RMSE), mean absolute error (MAE), 
and mean absolute percentage error (MAPE). Smaller values 
of the error metrics and a higher R2 value indicate better 
model performance. Table 6 provides a concise overview of 
the various evaluation metrics employed in this study.

Table 6  Summary of the evaluation metrics used in this study

Metrics Equation Description

RMSE
=

�

n
∑

i=1

(xi−yi)
2

n

It is the root of the MSE and has the same unit as the target variable, making it more interpretable. The closer the 
result is to zero, the better the performance of the model (Ağbulut et al. 2021)

MAE
=

∑

n

i=1 (xi−yi)
n

It represents the sum of the absolute deviation of the prediction from the actual value, and a smaller value is 
desirable (Kumari and Singh 2022)

MAPE
=
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It indicates the model's average prediction accuracy, with a smaller value being desirable (Song et al. 2023)

R2
= 1 −

∑n

i=1(xi−yi)
2

∑n

i=1(yi−xi)
2

It varies from 0 to 1, denoting the level of correspondence between the predicted and actual values (Song et al. 
2023). The more the value approaches 1, the better the performance of the model

yi, xi = Actual and predicted values
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Results and discussion

Results

Statistical models

On the basis of the performance metrics presented in Table 7, 
it is evident that the ARMA model is the best statistical model, 
exhibiting lower MAE, RMSE, and MAPE values, along with 
a higher R2 value across regions. However, the incorporation 
of differencing using ARIMA and SARIMA models resulted 
in a decrease in the overall model performance. For example, 
the USA dataset’s R2 decreased from 0.412 to 0.205 (ARIMA) 
and 0.321 (SARIMA). Similar observations occurred across 
all the other regions. This observation aligns with the findings 
of Kumari and Singh (2022), who emphasise that while dif-
ferencing aids in achieving stationarity by removing trends and 
seasonality, it may also lead to a loss of valuable information, 
resulting in inaccurate predictions.

The poor performance of ARIMA and SARIMA models 
in datasets such as those from China and India, as reflected 
by negative R2 values, underscores the limitations of these 
models in capturing the high variability and nonlinear pat-
terns present in  CO2 emission data. While differencing helps 
achieve stationarity, it may inadvertently remove significant 
information, particularly in highly volatile datasets such as 

those from China. Li and Zhang (2023) similarly highlighted 
that traditional models such as ARIMA and SARIMA strug-
gle with nonlinear, volatile datasets.

In summary, while ARMA performed moderately well in 
regions such as the USA and the EU27&UK, with R2 values 
of 0.412 and 0.719 respectively, its overall performance was 
suboptimal for the China and India datasets, where the R2 
values were mostly negative (R2 ≤ 0.068), indicating that the 
predicted values significantly differ from the actual values, 
as illustrated in Fig. 7. These models’ limitations in handling 
nonlinearity and volatility make them less suitable for fore-
casting daily  CO2 emissions.

Machine learning models

As demonstrated in Table 8, the performance of the ML 
models significantly improved with differencing compared 
with that of the statistical models. For example, differenc-
ing increased the R2 values of the RF model from 0.899 to 
0.918, 0.585 to 0.804, 0.644 to 0.852, and 0.663 to 0.720 for 
China, the USA, the EU27&UK, and India datasets, respec-
tively. A similar improvement trend was observed for all the 
other evaluation metrics (MAE, RMSE, and MAPE) across 
the four regions. While ML models such as RF, SVM, and 
GB do not inherently require stationarity, they can be sensi-
tive to non-stationary data, leading to the model capturing 

Table 7  Statistical models performance evaluation

Region Model MAE RMSE R
2

MAPE

ARMA (1,0,1) 1.351 1.695 0.068 4.072

China ARIMA (2,1,1) 1.617 1.824 -0.079 5.074

SARIMA (4,1,2) 1.457 1.857 -0.119 4.377

SARMA (4,0,2) 1.601 2.001 -0.299 4.806

ARMA (9,0,9) 0.637 0.768 0.412 4.525

USA ARIMA (8,1,9) 0.695 0.893 0.205 5.057

SARIMA (1,1,1) 0.685 0.826 0.321 4.887

SARMA (3,0,7) 0.657 0.806 0.353 4.618

ARMA (7,0,6) 0.446 0.537 0.719 6.186

EU27 & UK ARIMA (7,1,7) 0.620 0.758 0.439 8.072

SARIMA (5,1,4) 0.546 0.650 0.586 7.386

SARMA (5,0,6) 0.492 0.601 0.647 6.747

ARMA (8,0,9) 0.506 0.602 -0.684 6.287

India ARIMA (7,1,9) 0.622 0.730 -1.469 7.723

SARIMA (2,1,3) 0.557 0.667 -1.064 6.917

SARMA (2,0,2) 0.625 0.736 -1.506 7.763

The red mark indicates the best models
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spurious relationships and yielding inaccurate predictions 
(Hyndman 2018). By applying differencing to stabilise the 
time series mean, the models can better assume a constant 
mean, thereby improving their predictive accuracy.

Seasonal patterns in daily  CO2 emissions significantly 
influence regional variations in model performance. In 
regions such as China and the USA, emissions peak during 
December and January due to increased energy consumption 
for heating during the winter months. These seasonal fluc-
tuations are more pronounced in China because of its larger 
industrial base and reliance on coal-powered energy sources 
(Zhang et al. 2019). Conversely, the EU27&UK region also 
displays clear seasonal peaks, although these tend to be less 
pronounced than those in China. This can be attributed to 
the more diversified energy sources and stringent emission 
regulations within the EU, which have helped curb emissions 
(European Environment Agency 2021). In contrast, India 
shows a comparatively less pronounced seasonal pattern, 
which may be due to lower variability in energy demand 
throughout the year, owing to its tropical climate and lower 
per capita energy consumption (Vishwanathan and Garg 
2020).

The seasonal patterns of daily  CO2 emissions intro-
duce significant nonlinearity and non-stationarity into the 
datasets, complicating the prediction task for the machine 
learning models. The Augmented Dickey-Fuller (ADF) 
test confirmed the initial non-stationarity of the USA, the 
EU27&UK, and India datasets, which required first-order 
differencing to achieve stationarity. By stabilising the time 
series through differencing, the models were able to better 
handle these seasonal effects, leading to improved predic-
tive performance. Moreover, ML models often benefit from 

feature engineering (Fan et al. 2019; Wang et al. 2022). 
While differencing may sometimes result in the loss of valu-
able information, it also creates new complex features and 
patterns that ML models can capture, thereby enhancing the 
model's performance.

Additionally, the model’s performance improved when 
ensemble techniques such as bagging and voting were 
applied, increasing the R2 value from a range of 0.677–0.906 
to 0.720–0.926 across the four regions. Overall, the ML 
model performed well in predicting daily emissions, as dem-
onstrated by the fitting curve of the best ML model across 
each region, as illustrated in Fig. 8. The best-performing 
ML models are the bagging model (China/India dataset) and 
the voting model (USA/EU27&UK dataset). These results 
highlight the importance of handling seasonality and non-
stationarity in time series forecasting to improve the accu-
racy of  CO2 emission predictions.

Deep learning models

Since differencing improves the performance of ML models, 
DL models (ANN LSTM, BILSTM, GRU, and hybrid mod-
els) were also applied to the differenced dataset. Notably, the 
hybrid combination of CNN-RNN slightly improved the per-
formance of the RNN models for all regions except for the 
Indian dataset, where the performance remained relatively 
unchanged. As discussed in the “Dataset” section, India’s 
dataset exhibits the least variability and seasonality com-
pared with other regions, as indicated by its lower standard 
deviation. This reduced variability limits the complexity 
that DL models, such as CNN-RNN hybrids, can leverage 
to capture intricate patterns. Additionally, while first-order 

Fig. 7  Plots of actual and predicted emissions for (a) China, (b) USA, (c) EU27&UK, and (d) India using the best statistical model
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differencing successfully addresses non-stationarity, the lack 
of rich seasonal and nonlinear patterns in India’s data may 
have restricted the models from achieving further perfor-
mance improvements. As detailed in Table 9, the R2 values 
of the CNN-GRU model improved from 0.905 to 0.923, 
0.755 to 0.803, and 0.841 to 0.878 for China, the USA, 
and the EU27&UK, respectively. According to Duan et al. 

(2022), this blend enables the model to acquire temporal and 
spatial characteristics from the data, enhancing overall per-
formance. Overall, the predictive accuracy of the DL model 
is closely aligned with the actual data, as shown in Fig. 9. 
The best-performing DL models were ANN (for the China 
and India datasets), CNN-BILSTM (for the USA dataset), 
and CNN-LSTM (for the EU27&UK datasets).

Table 8  Machine learning models performance evaluation

Region Model MAE RMSE R
2

MAPE

China

(No differencing)

RF 0.409 0.556 0.899 1.285

SVR 0.451 0.618 0.876 1.401

GB 0.419 0.562 0.898 1.314

Voting 0.399 0.538 0.906 1.252

Bagging 0.405 0.551 0.901 1.272

China 

(with differencing)

RF 0.372 0.503 0.918 1.172

SVR 0.352 0.486 0.923 1.109

GB 0.374 0.516 0.913 1.180

Voting 0.351 0.482 0.925 1.108

Bagging 0.349 0.477 0.926 1.101

USA

(No differencing)

RF 0.518 0.645 0.585 3.691

SVR 0.458 0.559 0.689 3.249

GB 0.525 0.671 0.551 3.739

Voting 0.458 0.559 0.688 3.251

Bagging 0.461 0.562 0.685 3.265

USA

(With differencing)

RF 0.323 0.444 0.804 2.279

SVR 0.358 0.474 0.776 2.517

GB 0.318 0.458 0.791 2.258

Voting 0.322 0.442 0.806 2.287

Bagging 0.325 0.447 0.801 2.297

EU27&UK

(No differencing)

RF 0.453 0.604 0.644 6.377

SVR 0.535 0.689 0.536 7.953

GB 0.468 0.606 0.641 6.606

Voting 0.444 0.579 0.672 6.250

Bagging 0.458 0.605 0.643 6.396

EU27&UK

(With differencing)

RF 0.319 0.389 0.852 4.427

SVR 0.322 0.391 0.850 4.389

GB 0.323 0.386 0.854 4.479

Voting 0.314 0.377 0.861 4.322

Bagging 0.318 0.387 0.854 4.337

India

(No differencing)

RF 0.220 0.269 0.663 2.878

SVR 0.215 0.264 0.678 2.801

GB 0.219 0.268 0.668 2.869

Voting 0.218 0.263 0.679 2.842

Bagging 0.215 0.264 0.677 2.805

India

(With differencing)

RF 0.205 0.248 0.714 2.659

SVR 0.209 0.256 0.696 2.715

GB 0.209 0.259 0.690 2.720

Voting 0.202 0.247 0.717 2.627

Bagging 0.201 0.246 0.720 2.605

The red mark indicates the best models
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Table 9  Machine learning models performance evaluation

Region Model MAE RMSE R
2

MAPE

China 

ANN 0.339 0.466 0.930 1.066

LSTM 0.363 0.497 0.920 1.141

BILSTM 0.379 0.513 0.915 1.191

GRU 0.398 0.543 0.905 1.255

CNN-LSTM 0.385 0.525 0.911 1.212

CNN-BILSTM 0.347 0.483 0.924 1.092

CNN-GRU 0.348 0.484 0.923 1.097

USA

ANN 0.355 0.480 0.772 2.506

LSTM 0.347 0.448 0.799 2.429

BILSTM 0.389 0.480 0.771 2.755

GRU 0.391 0.496 0.755 2.758

CNN-LSTM 0.346 0.447 0.801 2.436

CNN-BILSTM 0.349 0.443 0.804 2.468

CNN-GRU 0.352 0.444 0.803 2.494

EU27 & UK

ANN 0.311 0.374 0.863 4.304

LSTM 0.301 0.359 0.874 4.158

BILSTM 0.302 0.368 0.868 4.208

GRU 0.319 0.403 0.841 4.442

CNN-LSTM 0.289 0.349 0.881 3.999

CNN-BILSTM 0.303 0.356 0.876 4.253

CNN-GRU 0.284 0.353 0.878 3.972

India

ANN 0.183 0.235 0.743 2.373

LSTM 0.206 0.250 0.710 2.685

BILSTM 0.205 0.248 0.716 2.685

GRU 0.211 0.252 0.707 2.751

CNN-LSTM 0.199 0.248 0.715 2.597

CNN-BILSTM 0.212 2.551 0.696 2.752

CNN-GRU 0.211 0.256 0.696 2.761

The red mark indicates the best models

Fig. 8  Plots of actual and predicted emissions for (a) China, (b) USA, (c) EU27&UK, and (d) India using the best ML models
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Discussion

Comparative analysis of the performance of the best 
statistical, ML, and DL models

Figure 10 compares the best statistical, ML, and DL models 
across the four regions. The results show that both the ML 

and DL models consistently outperform traditional statistical 
models in predicting daily  CO2 emissions, with lower MAE 
and RMSE values and higher R2 scores. Statistical models, 
with R2 values ranging from − 0.060 to 0.719 and RMSE 
values between 1.695 and 0.537, struggled to capture the 
complex, nonlinear patterns present in the emissions data. 
In contrast, the ML and DL models achieved R2 values from 

Fig. 9  Plots of actual and predicted emissions for (a) China, (b) USA, (c) EU27&UK, and (d) India using the best DL models

Fig. 10  Comparative assessment of the best statistical, ML, and DL models across the four regions
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0.714 to 0.932 and RMSE values as low as 0.247, indicating 
more accurate and robust predictions. These findings align 
with the research of Li and Zhang (2023), who reported that 
ML and DL models are better equipped to model nonlinear 
datasets, as is the case with daily  CO2 emissions. This ability 
to handle nonlinearities likely explains the superior perfor-
mance of the ML and DL models in our study.

The statistical models struggled to capture the high vari-
ability and nonlinearity inherent in the emission datasets. 
These models rely on assumptions of stationarity, which are 
often violated in real-world  CO2 emissions data due to fluc-
tuating economic activities, weather conditions, and policy 
changes. The inability of statistical models to adequately 
handle these dynamic and nonlinear factors explains their 
lower performance in this study. Future work could explore 
hybrid approaches that combine statistical models with ML/
DL techniques to manage these complexities better, poten-
tially using statistical models for short-term forecasts and 
ML/DL models for long-term predictions. Such an approach 
would leverage the strengths of both methods, offering more 
flexibility in handling different data characteristics.

Model performance varies across regions, suggesting 
that the specific characteristics of each dataset influence the 
best-performing model. For example, the ANN model per-
formed best for the China and India datasets, while the ML-
voting model performed excellently for the USA dataset, 
and the CNN-LSTM model achieved the highest accuracy 
for the EU27&UK dataset. These variations can be attrib-
uted to differences in regional data characteristics, such as 
the degree of nonlinearity, variability, and seasonality. As 
noted by Oreski et al. (2017), model performance is highly 
dependent on the data attributes, reinforcing the need for 
region-specific modelling approaches.

Furthermore, the performances of the ML and DL models 
were relatively similar. For example, metrics for CNN-BIL-
STM (RMSE = 0.483, R2 = 0.924), ANN (RMSE = 0.466, 
R2 = 0.930), and ML-bagging (RMSE = 0.477, R2 = 0.926) 
were reported for the China dataset. This similarity may 
be attributed to the relatively small sample size (638 data 
points) used in this study. When trained on larger datasets, 
deep learning models typically show a clear advantage over 
ML models, as they can learn more complex patterns over 
time. Romeiko et al. (2020) reported that the performance 
gap between ML and DL models widens with increasing 
dataset size, suggesting that DL models would likely out-
perform ML models with larger datasets.

The computational complexity of deep learning (DL) 
models, which often require specialised hardware such as 
GPUs or TPUs, may limit their practical application in 
environments with limited resources. Following the prin-
ciple of Occam’s Razor, which suggests favouring simpler 

solutions when they achieve comparable results, machine 
learning (ML) models provide a compelling alternative. 
ML models, particularly ensemble techniques such as vot-
ing and bagging, offer a more computationally efficient 
approach while maintaining high predictive accuracy. This 
balance between performance and computational demand 
makes ML models more suitable for real-world applications 
where data or hardware resources are limited. As shown in 
Fig. 11, the ML models were used to forecast daily emis-
sions for the next 60 days across the four regions. The fore-
cast indicates a similar trend to that of the previous winter 
period, with a gradual increase in  CO2 emissions as regions 
progress deeper into winter. This increase in emissions is 
attributed to the heightened demand for heating, which leads 
to greater coal consumption and elevated  CO2 emissions. 
These insights are crucial for policymakers in anticipating 
seasonal spikes in emissions and implementing appropriate 
mitigation strategies.

Comparison with previous studies

Compared with our study, Li and Zhang (2023) reported an 
R2 of 0.96 when LSTM was used to forecast daily emissions 
from China during the COVID-19 period, requiring 3000 
epochs for training. In contrast, our study achieved an R2 of 
0.93 with only 200 epochs, demonstrating the computational 
efficiency of our approach. Additionally, our use of differ-
encing significantly improved model accuracy, a factor not 
considered in previous studies. This enhancement reduces 
computational demand while maintaining high predictive 
accuracy, making it suitable for real-time applications in 
policymaking.

Other studies have also applied machine learning and 
deep learning techniques to emission prediction, often with 
a narrower geographic focus or different timeframes. For 
example, Huang et al. (2019) focused on carbon emissions 
in China, whereas Song et al. (2023) examined emissions 
in South Korea. These studies used models on an annual or 
regional scale. In contrast, our study provides a broader and 
more dynamic assessment of daily emissions data across 
four major polluting regions: China, India, the USA, and 
the EU27&UK. This geographic breadth allows for a more 
comprehensive analysis, enabling policymakers to set both 
short- and long-term emission reduction targets.

Furthermore, the robust performance of our models on 
smaller datasets makes them suitable for less developed 
countries where data collection and availability are limited, 
allowing these regions to better participate in global climate 
change mitigation efforts. This scalability and adaptability 
set our study apart from others that focused on larger, more 
comprehensive datasets. Finally, unlike previous studies 
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Fig. 11  CO2 emissions forecast for the next 60 days across the four regions
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that focused predominantly on annual predictions, our use 
of daily emissions data provides timely insights into emis-
sions trends. This real-time capability is essential for govern-
ments aiming to make rapid policy adjustments, particularly 
during periods of economic recovery or energy transition, 
such as those faced by the major polluting regions analysed 
in this study.

Conclusion

The accurate prediction of daily real-time  CO2 emissions 
holds significant importance for governmental initiatives 
to mitigate global warming. This study conducted a com-
parative analysis of the performance of four statistical, three 
ML, and seven DL models in predicting daily  CO2 emis-
sions across four regions. The models were evaluated using 
four evaluation metrics, and the following conclusions were 
drawn from this study.

a) The ML and DL models, with higher R2 (0.714–0.932) 
and lower RMSE (0.480–0.247) values, respectively, 
outperformed the statistical model, which had R2 
(− 0.060–0.719) and RMSE (1.695–0.537) values, in 
predicting daily  CO2 emissions across all four regions.

b) The performance of the ML models significantly 
improved through a combination of differencing and 
the application of ensemble techniques (voting and bag-
ging), resulting in an average increase of 9.6% in R2, 
expanding the range from 0.677–0.906 to 0.720–0.926 
across all four regions.

c) The performance of the RNN models was enhanced by a 
hybrid combination of CNN-RNN, which improved the 
R2 values across all the regions and increased the range 
from 0.710–0.923 to 0.743–0.930.

Overall, the performances of both the ML and DL meth-
ods were relatively similar. However, owing to the high 
computational requirements associated with DL models, the 
recommended models for daily  CO2 emission prediction are 
ML models that use the ensemble technique of voting and 
bagging. These models are then employed to forecast the 
emission trends across the four regions for the next 60 days. 
This study contributes to the expanding body of research 
on carbon emission prediction, offering valuable insights 
into the effectiveness of short-term  CO2 emission forecasts. 
These findings have significant implications for policymak-
ers, enabling more dynamic adjustments to emission reduc-
tion strategies based on daily data and ultimately supporting 
more effective global warming mitigation efforts.

Policy implications

Using machine learning and deep learning models to pre-
dict daily  CO2 emissions can enable timely policy adjust-
ments and help prevent emission spikes, especially during 
economic recovery phases. As regions such as China, India, 
the USA, and the EU strive to meet carbon reduction targets, 
accurate daily emissions data will equip governments with 
tools to set short-term targets and make real-time interven-
tions, allowing them to adjust policies more frequently than 
annual predictions allow.

For example, as economies recover post-COVID-19, 
monitoring real-time emissions data can prevent emissions 
from rebounding to pre-crisis levels, ensuring progress 
toward carbon neutrality. Governments should use these data 
to implement targeted policies in high-emission sectors such 
as energy, transportation, and industry:

• Energy sector: Policies that encourage the expansion of 
renewable energy sources (such as solar, wind, and bio-
mass) are vital. Promoting the use of clean energy over 
fossil fuels will help lower emissions in energy-intensive 
countries such as China and the USA.

• Transportation sector: Investment in sustainable trans-
port infrastructure, the widespread adoption of electric 
vehicles, and green public transportation systems sig-
nificantly contribute to reducing emissions from ground 
transportation, a major source of  CO2 in regions such as 
the EU and the USA.

• Industrial sector: Adopting clean technology and 
energy-efficient practices in manufacturing and heavy 
industries can help curb emissions in countries with high 
industrial output, such as China and India.

Additionally, promoting low-carbon lifestyles and raising 
public awareness of energy conservation will further sup-
port emission reductions. This can be achieved through edu-
cational campaigns, financial incentives for energy-saving 
practices, and the integration of sustainability principles 
into everyday life. Governments must actively encourage 
the adoption of energy-efficient practices across all sectors 
by implementing supportive regulations and offering incen-
tives for innovation. These efforts will align policies with 
sustainable development goals, ultimately contributing to a 
greener, more resilient future.

Limitations and future work

Despite the advancements in daily  CO2 emissions prediction 
demonstrated in this study, reliance on univariate data is a 
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key limitation. Important exogenous factors were not consid-
ered, such as daily renewable energy consumption, popula-
tion data, GDP, and daily pump prices, which significantly 
influence  CO2 emissions. The exclusion of these factors may 
result in less comprehensive predictions. A major challenge 
is that many of these variables are only available as monthly 
or yearly data, making them difficult to incorporate into daily 
models.

Our future research will address this limitation by 
employing a multivariate approach, as Li and Zhang (2023) 
suggested, which would allow for incorporating these exog-
enous factors, thus potentially enhancing the models’ accu-
racy and robustness. This approach is particularly effective 
when hybrid machine learning and deep learning techniques 
are utilised, as Juliet et al. (2024) demonstrated. Further-
more, developing methods to integrate these diverse data 
types could result in a more precise and comprehensive 
model for predicting emissions. In addition, future work 
could explore hybrid approaches that combine statistical 
models with ML/DL techniques to better manage these 
complexities, potentially using statistical models for short-
term forecasts and ML/DL models for long-term predic-
tions. Such an approach would leverage the strengths of both 
methods, offering more flexibility in handling different data 
characteristics.

Additionally, while this study focuses on the overall  CO2 
emissions from China, India, the USA, and the EU27&UK, 
future work will aim to explore the sectoral contributions 
to daily emissions across these regions. Specifically, we 
will investigate how different sectors (aviation, ground 
transport, power, industrial, and residential) contribute to 
emission patterns and how these contributions vary across 
regions. Understanding these sectoral contributions will 
provide detailed insights that are essential for developing 
region-specific emission reduction strategies.

Moreover, the scope of our future studies will expand to a 
more global or continental level, exploring daily  CO2 emis-
sion trends on a broader scale. This would lay the groundwork 
for incorporating short-term  CO2 mitigation policies globally, 
providing critical insights into emission trends across different 
regions and facilitating the creation of more effective global 
policies. In summary, while ML and deep learning models 
have shown promise, future research should move beyond the 
limitations of univariate models and focus on multivariate 
approaches to improve accuracy and policy relevance.

Appendix

  Table 10

Table 10  Nomenclature list

Symbol Nomenclature

CO2 Carbon Dioxide
MtCO2/day Million Tons of  CO2 per Day
ML Machine Learning
DL Deep Learning
ARIMA Autoregressive Integrated moving average
SARIMA Seasonal Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
ANN Artificial Neural Network
SVM Support Vector Machine
RF Random Forest
GB Gradient Boosting
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
BILSTM Bidirectional Long Short-Term Memory
R2 Coefficient of Determination
RMSE Root Mean Square Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ADF Augmented Dickey-Fuller Test
PACF Partial Autocorrelation Function
ACF Autocorrelation Function
ft Forget Gate
it Input Gate
Ot Output Gate
rt Reset Gate
zt Update Gate
Ct Memory Cell
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