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ABSTRACT In recent years, deep learning’s use in medical imaging has grown exponentially. However,
one of the biggest problems with training deep learning models is the unavailability of large amounts of
data, which leads to overfitting. Collecting large quantities of labelled medical images is expensive, time-
consuming, and depends on specialists’ availability. In this paper, we proposed a novel method namely
Oriented Combination MRI (OCMRI) for augmenting brain MRI dataset. The proposed method helps CNN
models overcome overfitting and address class imbalance issues by combining BrainMRI images to generate
new images. The image fusion is performed by selecting two images of the same tumor class if the Mean
Squared Error (MSE) between these two images is greater than threshold 1 and lower than threshold 2.
Both thresholds are adjustable, initially set by the user and automatically fine-tuned by the algorithm to
control the number of images produced for each class, thus helping to address the data imbalance problem.
The proposed approach was evaluated by training and testing the PRCnet model on four publicly available
datasets before and after applying the proposed method to the datasets. Where the classification accuracy
without data augmentation was 85.19% for dataset A, 90.12% for dataset B, 94.77% for dataset C, and 90%
for dataset D respectively. After adding the synthetic data; the accuracy improved to 92.7% for dataset A,
95.37% for dataset B, 96.51% for dataset C and 98% for dataset D respectively.

INDEX TERMS Data augmentation, brain tumor, medical imaging, deep learning, MRI, brain tumor
classification, convolutional neural network.

I. INTRODUCTION
In recent years, notable advancements have been witnessed
in disease diagnosis and treatment through the application of
computer models [1], [2]. Particularly, deep neural networks
have emerged as pivotal tools in the realm of medical
image processing, such as the segmentation of tumor or
classification of tumor type [3], [4], [5], [6]. Brain tumors
are directly responsible for cancer-related deaths, and are the
most common type of cancer in the world [7], [8]. Tumors are
formed due to abnormal or excessive growth of cells and brain
tumors are of two forms namely benign and malignant [9].
Benign tumors develop relatively slowly whereas malignant
tumors grow more rapidly and aggressively invade the
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surrounding cells, spread to other brain cells, and signifi-
cantly affect the neurological system [10], [11], [12], [13].
MRI is considered one of the best and most accurate tests for
detecting and identifying brain tumors because it produces
high-quality, multi-dimensional images [14], [15], [16]. MRI
detects changes in the structure of the brain Which enhances
the ability to detect tumor. The brain MRI can be imaged in
three planes axial, coronal, and sagittal as shown in Figure 1
[17], [18].

Early tumour detection increases the patient’s chance
of survival and plays an essential role in assessing the
condition and planning treatment. However, due to the
heterogeneous nature of cancer cells, manual tumor detec-
tion is complex, time-consuming, prone to errors and
depends on radiologist’s expertise. Therefore, develop-
ing a reliable and accurate system is crucial to assist
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FIGURE 1. MRI image planes.

radiologists [10], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28].

CNN performed exceptionally well on medical image
classification and disease detection tasks and, in some
cases, even outperformed human experts [29]. Recent studies
have reinforced the significant role of convolutional neural
networks (CNNs) in the analysis of brain tumors using MRI
data. Aamir et al. demonstrated the effectiveness of utilizing
segmentation and clustering techniques to identify high-
quality tumor regions, significantly improving classification
performance [30]. Guan et al. tackled the challenge of low-
quality MRI images by improving image quality through
contrast enhancement and non-linear stretching techniques
for tumour localization and refinement. EfficientNet is used
for feature extraction and data augmentation is incorporated
to address the issue of overfitting [31]. Despite significant
advancements, deep learning faces considerable challenges
when applied tomedical imaging, primarily due to the limited
availability of training data. Acquiring labeled medical data
is particularly difficult because of patient privacy concerns,
as well as the substantial costs and time required for
data collection and annotation. Furthermore, convolutional
neural network (CNN) models contain numerous parameters
that must be trained on large datasets to mitigate the
risk of overfitting [32], [33]. To tackle these challenges,
data augmentation techniques are frequently employed to
generate additional training data by applying modifications
to the existing data while maintaining their original labels.
This approach enhances the model’s generalizability and
ultimately improves its performance [34], [35], [36], [37].

Imbalanced medical image datasets pose a significant
challenge that can adversely impact the performance of deep
learning models. This issue arises when the distribution
of instances across various classes is uneven, a condition
referred to as ‘‘imbalanced data.’’ In such cases, certain
classes, often associated with rare diseases, have substantially
fewer examples compared to others, making it difficult to
collect a balanced dataset. This imbalance can lead machine
learning models to favor the majority class, introducing
bias that results in suboptimal performance, particularly
in accurately identifying and classifying instances from
minority classes. Although the model may achieve high
overall accuracy by predominantly predicting the majority
class, its performance in detecting minority classes – where

examples are scarce – tends to be inadequate. This disparity
underscores the importance of addressing data imbalance in
the development of robust and reliable deep learning systems
for medical image analysis [38], [39].

Although data augmentation techniques generally enhance
the performance of deep learning models, not all methods
are suitable or effective for medical datasets. The appro-
priate augmentation techniques must aligns with the unique
characteristics of the given dataset [40]. In this paper,
we proposed the state-of-the-art method called OCMRI for
brain MRI image data augmentation. The proposed method
helps to address the lack of data and data imbalance in
brain MRI datasets. The proposed method when evaluated on
the state-of-the-art brain tumour classification model namely
PRCnet [41] leads to overall improvement in the performance
on different dataset.

The main contributions of the OCMRI method are:
• A novel method called OCMRI for brain MRI image
augmentation.

• Contributes to addressing the lack of data and data
imbalance in brain MRI datasets.

• OCMRI customisable threshold values allow the user to
control the number of images produced for each class
which help in solving the imbalanced data problem.

• OCMRI is tested on four different databases, and the
results desmostrate the effectiveness its effect on the
efficiency of training the PRCnet model was tested.

II. LITERATURE REVIEW
Data augmentation is a technique used to expand training
datasets by synthetically generating image-label pairs from
existing data. This approach has gained significant attention
in deep learning applications, especially with the emergence
of deep convolutional neural networks (CNNs) [35]. In this
section, we review established data augmentation strategies
originally developed for general computer vision tasks,
as well as recent advancements specifically tailored for the
analysis of medical images using deep learning models.

A. BASIC AUGMENTATION TECHNIQUES
Basic augmentation techniques encompass a range of
methods, including applying various transformations to
input images, performing oversampling, or adjusting image
intensity values, to generate augmented versions of the
original images. Table 1 shows common techniques that are
used for basic data augmentation [35], [36], [42], [43], [44].

B. DEEP LEARNING AUGMENTATION METHOD
The methods of augmenting data based on deep learning
models to create realistic images can help address the
problem of overfitting during training. The process of
artificially producing images is referred to as image synthe-
sis [36]. The architecture of most deep learning networks
for data augmentation is based on the generative adversarial
network (GAN). Generative Adversarial Networks (GANs)
have garnered significant attention for their exceptional
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TABLE 1. The common basic augmentation techniques.

performance, particularly in the context of data augmentation.
These networks have the capacity to produce fresh training
data, which can enhance the performance of classification
models [48].

Bowles et al. [49] studied the feasibility of augmenting
training data using GAN in two brain segmentation tasks and
this leads to improvements between 1 and 5 percentage in the
Dice Similarity Coefficient (DSC).

Mukherkjee et al. [9] proposed AGGrGAN to generate
synthetic brain tumors MRI images by combining three base
GAN models namely Wasserstein GAN (WGAN) [50] and
two variants of Deep Convolutional Generative Adversarial
Network (DCGAN) [51]. AGGrGAN was evaluated on two
datasets namely the Multimodal Brain Tumor Segmentation
Challenge (BraTS) 2020 and the brain tumor and experimen-
tal results demonstrates that the proposed model can produce

fine-quality images with maximum Structural Similarity
Index Measure (SSIM) scores of 0.57 and 0.83 respectively.

Li et al. [52] proposed a novel model called TumorGAN to
generate images for brain tumor segmentation pairs based on
unpaired adversarial training and used BraTS 2017 dataset for
evaluation. The experimental results show that the synthetic
data pairs produced by TumorGAN improve the performance
of tumor segmentation.

Han et al. [53] utilized GANs to produce a comprehensive
and diverse dataset of brain Magnetic Resonance (MR)
images, aiming to address the challenges associated with
training Convolutional Neural Networks (CNNs) for brain
tumor detection. Specifically, Progressive Growing GANs
(PGGANs)were employed as an advanced generativemethod
to create full-scale 256 × 256 MR images, effectively mit-
igating the instability typically encountered with traditional
GANs. The findings demonstrate that data augmentation
using PGGANs leads to significant improvements in tumor
detection performance.

Frid-Adar et al. [54] employed GANs to produce synthetic
medical images of liver lesions. The dataset utilized in
this study comprised of 182 computed tomography (CT)
images of liver lesions. Before incorporating synthetic data
augmentation, the model achieved a sensitivity of 78.6% and
a specificity of 88.4%. With the addition of synthetic data
augmentation, these metrics improved to 85.7% sensitivity
and 92.4% respectively.

Konidaris et al. [55] introduced an innovative data augmen-
tation approach leveraging GANs to create realistic synthetic
images, specifically targeting the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset for the classification
of Alzheimer’s Disease and normal control subjects. The
integration of GAN-generated images notably enhances
model performance, achieving an 11.68% improvement in
accuracy compared to conventional methods.

Sharma and Sampath [56] proposed a data augmentation
strategy to improve brain tumor segmentation using the
MONAI framework, a specialized deep learning toolkit for
medical imaging. Leveraging MONAI’s comprehensive data
augmentation capabilities, including geometric transforma-
tions and intensity variations, the authors enriched MRI brain
tumor datasets to boost segmentation performance. Exper-
imental results demonstrate that this approach significantly
enhances model robustness by increasing the diversity of the
training dataset, thereby improving the accuracy of tumor
segmentation.

C. LIMITATIONS OF EXISTING AUGMENTATION
TECHNIQUES
Data augmentation techniques, including geometric trans-
formations (e.g. rotation, flipping, cropping, and scaling),
intensity-based modifications, and synthetic data genera-
tion, are extensively utilized in medical imaging. While
these methods have demonstrated significant potential in
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FIGURE 2. Flow of various steps including pre-processing, a new augmentation method, and evaluation matrix.

enhancing the performance of deep learning models, they
exhibit limitations in addressing key challenges, such as:

1- Data Insufficiency and Diversity: Traditional augmen-
tation techniques struggle to produce the diversity needed
for deep learning models to generalize effectively. They
often fail to replicate realistic variations within the data
distribution.

2- Class Imbalance: Standard augmentation approaches
apply transformations uniformly across all classes, which can
exacerbate class imbalance issues in medical datasets.

3- Context Preservation: Basic transformations may
introduce artifacts or distort critical elements of medical
images, compromising diagnostic accuracy and clinical
reliability.

The OCMRI Solution: Addressing Limitations with
Context-Aware Augmentation The proposed Optimized Con-
textual Medical Image Augmentation (OCMRI) technique
has been designed to address these limitations through
a novel, context-dependent approach. OCMRI introduces
several key innovations:

1- Automatic Augmentation Control: OCMRI employs
threshold values (Th1 and Th2) to automatically regulate
the number of augmented images generated for each class,
ensuring balanced representation across the dataset.

2- Realistic Data Synthesis: By integrating complemen-
tary features across multiple samples, OCMRI produces
augmented images that maintain anatomical realism while
significantly enhancing data diversity.

3- Focus onMinority Classes: The technique prioritizes the
augmentation of underrepresented classes, such as rare tumor
types, reducing class imbalance and improving the model’s
ability to accurately represent and diagnose less common
medical conditions.

Through these advancements, OCMRI offers a robust
solution to traditional augmentation challenges, enabling
the development of more accurate and generalizable deep
learning models in medical imaging.

III. PROPOSED METHODOLOGY
The proposed data augmentation technique, namely Opti-
mized Contextual Medical Image Augmentation (OCMRI)
is a novel technique for brain MRI augmentation. Figure 2
illustrates the five key stages of the proposed augmentation
approach. The initial stage involves data acquisition, whereby
four publicly available datasets are selected to assess the
efficacy of the proposed augmentationmethod. Subsequently,
the second stage encompasses data pre-processing, whereby
all images undergo resizing to align with the input dimen-
sions of the Convolutional Neural Network (CNN) model.
Additionally, each dataset is partitioned into three groups–
training, test, and validation groups, as outlined in Table 2.
Moving to the third stage, the proposed augmentation
method is applied to the training group of each dataset
for the generation of augmented samples. The fourth stage
involves the training and testing of the PRCnet model on
targeted datasets before applying the proposed augmentation
method, followed by re-training and testing after applying
the proposed augmentation method. Finally, the fifth stage
culminates in evaluating the PRCnet model’s performance
on the testing data of each dataset, both before and after the
application of the novel augmentation method.

These five stages collectively form a comprehensive
framework, wherein the proposed augmentation method
plays a pivotal role in enhancing the training efficiency of
the PRCnet model for brain MRI image classification. The
ensuing sections delve into the specific details of each stage,
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providing a deeper understanding of the intricacies involved
in the proposed methodology and its impact on the overall
performance of the CNN model.

A. DATASETS ACQUISITION
In this research, four public datasets were used (Brain
MRI [57], brain-tumor-dataset [58], Brain tumor dataset [59],
Brain MRI Images for Brain Tumor Detection [60]).
We referred to these four datasets as Dataset A, Dataset B,
Dataset C, and Dataset D, respectively.

1) DATASET A
This dataset includes 3264 labelled images of four types:
901 MRI images of pituitary tumors, 500 MRI images of no
tumor, 937MRI images of meningioma, and 926MRI images
of glioma [57].

2) DATASET B
This dataset consists of 4,292 slices grouped into four
categories: no tumor (681 slices), glioma (1038 slices),
meningioma (1318 slices), and pituitary (1,255 slices) [58].

3) DATASET C
This dataset comprises a total of 3064 brain MRI images
gathered from 233 patients. It contains three classes
based on the type of brain tumor. It includes 1426 MRI
images of glioma tumors, 708 MRI images of menin-
gioma tumors, and 930 MRI images of pituitary tumors
[59], [61].

4) DATASET D
This dataset consists of 253 MRI images classified into two
parts, 155 MRI images with a tumor and 98 MRI images
without tumor [60].
All images in all datasets were resized to 224 × 224 to fit

the PRCnet Model input layers.

TABLE 2. Distribution of the datasets.

B. THE PROPOSED AUGMENTATION METHOD
This paper introduces an innovative augmentation method
designed to address the challenges posed by limited data
in deep learning models and mitigate issues related to class
imbalance. The proposed methodology centers around the
fusion of brain MRI images to generate new, diverse images,
providing a solution to data scarcity. Figure 3 illustrates the
augmentation method in detail, with the process involving
the merging of two selected brain MRI images. The merging
operation is executed by extracting odd columns from the
first image and even columns from the second image as
demonstrated in Figure 4. The selection of the two images
involved in the merging process is not arbitrary; rather, it is
determined through a calculated Mean Squared Error (MSE)
between the two images. Specifically, the choice is made if
the MSE value is larger than the first threshold (Th1) and
less than the second threshold (Th2). Equation 1 shows how
the MSE is calculated [62]. The value of the Th1 and Th2
is variable and is entered by the user. Changing the values
of the two thresholds affects the number of images that are
produced. We initialize Th1 and Th2 based on the dataset
structure and the desired diversity of augmented images.

1) TH1 (LOW THRESHOLD)
Regulates the minimum similarity between two images,
enabling a meaningful fusion process. Reducing the Th1
value too much leads to redundancy. A higher Th1 value
increases diversity but may reduce the structural integrity of
the merged images.

2) TH2 (UPPER THRESHOLD)
Determines the maximum difference allowed. Too much Th2
value can produce noisy or blurry images.

The user sets the acceptable class imbalance ratio before
the augmentation method starts. During the augmentation
method process, the method dynamically adjusts the thresh-
olds based on the data distribution. The algorithm will cease
tuning Th2 once the number of images produced for all
classes has a balanced distribution and an acceptable error
margin.

MSE =
1
WH

W∑
i=0

H∑
j=0

[im1(i, j)− im2(i, j)]2 (1)

We use the MSE between two images to determine which
images to merge in our method due to the following reasons:

3) ENSURING IMAGE SIMILARITY
Merging twomedical images generates a new synthetic image
that preserves key features from both images. MSE measures
the pixel-wise differences between two images. By setting
upper and lower thresholds on theMSE values, we ensure that
the selected images are similar enough in structure but not so
identical that the new synthetic image lacks diversity. This
helps us create new images that still represent their class but
add enough variation to improve the model’s generalization.
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FIGURE 3. Flowchart for the new augmentation method.

FIGURE 4. The result of merge image 1 with image 2.

4) AVOIDING REDUNDANT DATA
By usingMSE thresholds, we can avoid selecting two images
that are too similar or different. Merging remarkably similar
images would result in synthetic images that provide little
new information to the model. On the other hand, merging
highly dissimilar images could produce unrealistic or noisy
data that confuses themodel. The controlled selection process
based on MSE ensures we generate useful and varied
synthetic data.

5) FLEXIBILITY OF MSE THRESHOLDS
Adjustable MSE thresholds provide control over the aug-
mentation process. By changing the threshold limits, we can
fine-tune the diversity of the generated images and ensure
that the process generates a balanced dataset, which is
particularly helpful in dealing with class imbalance. The
proposed augmentation method automates the control of the
Th1 and Th2. The user initiates the process by providing

values for these thresholds, and the method subsequently
generates images for the first class based on the user input
thresholds. Following this, the total number of images for
the first class is computed by combining the original images
with the newly generated ones. The process then advances
to the second class, where image generation ensues, and the
total number for the second class is calculated. This number
is then compared with the total images in the first class.
In the event of an unacceptable difference in the number of
images between classes, the value of the Th2 is dynamically
adjusted, either increased or decreased, until the difference
becomes acceptable. This iterative adjustment ensures a
balanced distribution of images across different classes,
thereby alleviating data imbalance concerns. The process
continues iteratively for subsequent classes, ensuring optimal
adjustment of Th2 to achieve balanced representation. This
adaptability is a key advantage over other methods that do
not allow for dynamic control over the selection process.
Algorithm 1 elucidates the intricacies of this adaptive
threshold control process, providing a detailed step-by-step
of the automated mechanism implemented by the proposed
augmentation method.

Note the acceptable difference percentage is determined by
the user.

Advantages of our method compared with other methods:
Many other data augmentation methods (e.g., random
transformations like flipping, rotation, and cropping) are
helpful. However, it does not consider the structure ofmedical
images. Such random augmentations may distort diagnostic
features, which is especially problematic in medical imaging,
where even subtle differences matter. In contrast, our method
ensures that the merged images preserve information related
to brain tumors. This results in more meaningful data
augmentation that enhances model performance.
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Algorithm 1 Steps to Change the Second Threshold Value
Input: Th2, min, max, accept error.
/* Th2: represents the second threshold

value. */
/* min, max: They are initially assigned

the value of the first and second
threshold. */

diff = (Total number of images in the current class) - (total
number of images in the first class)
if | Diff | < accept error then

Save the images generated from the current category.
go to the next category or stop if there are no other
categories.

else
if diff >0 then

max← ((Th2 - min) * 2) + min
min← Th2
Th2← max

else
Th2← ((Th2 - min) / 2) + min
max← Th2

end
end

IV. RESULT
In this section, we will present the evaluation metrics, and
the results of the proposed augmentation method on the four
datasets and the effect of the proposed augmentation method
on the accuracy of the PRCnet model.

Note: the training procedure, hyperparameters, and model
selection criteria for the PRCnet model were implemented as
described in the original PRCnet paper [41].

A. EVALUATION METRICS
Performance measures are essential metrics used to evaluate
the effectiveness and accuracy of deep learningmodels across
various tasks [63]. The choice of multiple metrics is pivotal,
as the results of any deep learning model may be good against
specific metrics and not be good or bad against other metrics.
Metrics contribute to a nuanced understanding of a model’s
strengths andweaknesses in addressing specific classification
challenges [64]. Common performance measures include
accuracy, precision, recall, and F1-score, each serving a
distinct role in capturing different aspects of classification
performance [65], [66].

1) Accuracy: Accuracy is a metric used to evaluate
the overall performance of deep learning models at
scale. It represents the number of instances of correct
predictions divided by the total number of instances.

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
(2)

2) Recall: Recall or sensitivity focuses on a model’s abil-
ity to identify positive cases among all

true positives correctly.

Recall =
TP

(TP+ FN )
(3)

3) Precision: The proportion of correctly predicted pos-
itives among all predicted positives. It is an important
metric inmedical applications where false positives can
have serious consequences.

Precision =
TP

(TP+ FP)
(4)

4) F1-Score: An F1 score is the harmonic mean of
precision and recall, providing a balanced metric that
considers false positives and false negatives. This
metric is particularly valuable in scenarios where there
is a need to balance precision and recall, as it provides
an overall measure of the model’s effectiveness.

F1Score = 2 ∗
(Precision ∗ Recall)
(Precision+ Recall)

(5)

5) Specificity:

Specificity =
TN

(TN + FP)
(6)

where,TN= True Negative, FN= False Negative, TP= True
Positive, and FP = False Positive.

The combination of accuracy, precision, recall, and
F1-score allows us to comprehensively evaluate our pro-
posed Oriented Combination MRI (OCMRI) method. While
accuracy gives a broad overview of the model’s correctness,
precision and recall provide insights into specific aspects of
performance related to false positives and false negatives. The
F1-score, being a harmonic mean, emphasizes the balance
between precision and recall, making it particularly useful
in medical image classification tasks where both aspects are
critical.

B. EXPERIMENT RESULTS
The proposed augmentation method was verified using four
different datasets. After the datasets were identified, each
dataset was divided into training, validation, and testing sets,
as shown in Table 2. Then, the OCMRI augmentation method
was applied to the training set for each dataset. The initial
value for Th1 chosen for all datasets was 500, while the
initial value for th2 was 1300 for datasets A and B and was
2000 and 1150 for datasets D and C, respectively. The initial
value for th2 was determined according to the number of
images that were produced. Table 3 shows the number of
images of the training set for each class before and after
applying the OCMRI augmentation method. It also shows the
th2 values for each class, where the algorithm changes them
depending on the number of images produced. Changing
the th2 values automatically for each class according to
the number of images produced contributes to solving the
problem of data imbalance in training. The Table 4 shows
the details of applying the OCMRI augmentation method to
dataset A and how the algorithm repeats the steps and changes
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the value of the second threshold to solve the data imbalance
problem. Table 5 summarizes the training group sizes for each
dataset before and after applying the OCMRI augmentation
method.

TABLE 3. Number of training images for each class before and after
applying the OCMRI augmentation method. B: Before applying
augmentation. A: After applying augmentation. R: The percentage
increase in images after augmentation.

TABLE 4. Details of iteration to produce images to Dataset A. N: Number
of image before augmentation. R: Number of image after augmentation.

TABLE 5. Training group sizes before and after applying the OCMRI
augmentation method. B: Before applying augmentation. A: After applying
augmentation. R: The percentage increase in images after augmentation.

To verify the effectiveness of the OCMRI augmentation
method, we trained and tested the PRCnet model on four

TABLE 6. Results for all Datasets before applying the OCMRI
augmentation method.

TABLE 7. Results for all Datasets after applying the OCMRI augmentation
method.

FIGURE 5. The accuracy obtained before and after applying OCMRI data
augmentation for all datasets.

datasets before and after applying the OCMRI augmentation
method. Table 6 shows the results achieved by the PRCnet
model before applying the OCMRI augmentation method,
while Table 7 shows the results after applying the OCMRI
augmentation method. We note that the results achieved
by the PRCnet model after applying the augmentation
method were better. For example, the accuracy on dataset A
achieved by the PRCnet model before applying the proposed
augmentation method was 85.19, and it became 92.7 after
applying the proposed augmentation method. The significant
improvement in the results is due to a large increase in the
training data and balancing the data between the classes.

Figure 5 demonstrates the difference between the accuracy
obtained by of the PRCnet model before and after applying
OCMRI data augmentation for all datasets.

Figure 6 shows the confusion matrix for all datasets
during the testing process before applying the OCMRI data
augmentation method. Contrastingly, figure 7 shows the
results after applying the proposed augmentation method.
The discernible shift in the confusion matrices indicates a
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FIGURE 6. Confusion matrix before applying our augmentation method. Confusion matrix for (a) Dataset A, (b) Dataset B, (c) Dataset C, and
(d) Dataset D.

FIGURE 7. Confusion matrix after applying our augmentation method. Confusion matrix for (a) Dataset A, (b) Dataset B, (c) Dataset C, and (d) Dataset D.

substantial improvement in the performance of the PRCnet
model after applying the OCMRI augmentation to the
datasets. This improvement can be seen by comparing the
results of Figure 6 with the results of Figure 7. For example,
in Figure 6 (d), the number of cases that the model predicted
as no tumor was 16 out of 19, and it predicted 29 cases as
yes tumor out of 31 cases. After applying the OCMRI data
augmentation approach, the number of cases predicted by
the model as no tumor became 19 out of 19, and 30 cases
predicted as yes tumor out of 31, as shown in Figure 7 (d).
Figure 8 shows losses and accuracy for the PRCnet model

during the training and validation process on all datasets
before and after applying the OCMRI augmentation method.
We notice that there is a noticeable improvement and better
stability after applying the OCMRI augmentation method.

In Figure 9, we showcase six illustrative examples of
brain imaging images generated by applying the OCMRI
augmentation method. The Figure 9 provides a visual
representation of the input images selected by the algorithm,
alongside the resulting merged image. As elucidated, the
merged image encapsulates essential information and details
from the two input images and this helps improve the training
of deep learning models.

C. IMPACT OF TH1 AND TH2 ON METHOD
PERFORMANCE
We did an ablation study where we changed the starting
values of Th1 and Th2 and watched how that affected
classification accuracy, precision, recall, F1 score, and

specificity. This helped us learn more about how thresholds
affect model performance. The goal was to determine the
sensitivity of the OCMRI augmentation method to different
threshold configurations.

Th1 variations: We tested three different values of Th1:
100, 500, and 1000. A lower Th1 value leads to merging
more similar images, which can lead to redundancy. Whereas
a higher Th1 value increases diversity but may reduce the
structural integrity of the merged images.

Th2 variations: We also tested three different values of
Th2: 1500, 2000, and 2500. A higher Th2 value allows for
merging more dissimilar images, which increases diversity
but leads to greater variance and produces unrealistic images.

Table 8 shows the results of the ablation study on dataset
D. The ablation study examined the impact of varying starting
values of the thresholds Th1 and Th2 on the performance of
the OCMRI augmentation method. When Th1 was set to a
lower value (e.g., 100), the resulting synthetic images were
too similar, causing redundancy and limiting the model’s
learning ability, which led to lower accuracy (90.00%) and
F1-score (90.11%). Conversely, a high Th1 value (e.g., 1000)
increased diversity but often resulted in unrealistic images,
reducing performance. The best balance was found with a
Th1 value of 500, which led to a significant improvement with
an accuracy of 98.00% and an F1-score of 98.01%.

Similarly, Th2 controls how dissimilar the merged images
can be. A low Th2 value (1500) produced less diverse
images, limiting the benefit of augmentation and obtaining
an accuracy of 92.00%. In contrast, a higher Th2 (2500)
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FIGURE 8. Losses and accuracy for the PRCnet model during the training and validation process on dataset A, dataset B, dataset C, and dataset D before
and after applying the OCMRI augmentation method.

introduced more variation but produced noisier images,
slightly decreasing accuracy (94.00%). The optimal Th2
value of 2000 generated the most effective balance between
diversity and structural coherence, leading to the highest
model performance, with an accuracy of 98.00%. Overall,
the ablation study highlights that selecting moderate values
for Th1 and Th2 (500 and 2000, respectively) leads to
the most effective augmentation, significantly improving
model performance. However, it is essential to note that
the optimal values of Th1 and Th2 are not fixed across all

datasets. The best-performing values can vary depending on
the characteristics of the dataset in use, such as the number of
classes, the complexity of the tumor features, and the overall
distribution of the images. Therefore, while Th1 = 500 and
Th2 = 2000 work best for Dataset D, they may need to be
adjusted for other datasets to achieve optimal results.

D. COMPARISON
In this section, we compare the performance of the proposed
OCMRI method with two other augmentation approaches:
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TABLE 8. Impact started value of Th1 and Th2 on method performance. B: Number of training images for each class Before applying augmentation.
A: Number of training images for each class After applying augmentation. R: The percentage increase in images after augmentation.

the Random Image Cropping and Patching (RICAP) method
and the Deep Convolutional Generative Adversarial Network
(DC-GAN) model.

The RICAP introduced by Takahashi et al. [46]. Diversify
training data and enhances the performance of CNN models.
RICAP involves randomly cropping and patching four
images to generate a new training image. Random cropping
involves extracting random regions from original images,
while patching combines random patches to create new
synthetic images. The goal is to improve the generalization
and robustness of deep CNN models by diversifying the
training data [46]. Similarly, DC-GANmodels are commonly
used to generate synthetic images. It has been widely
adopted in medical imaging tasks, particularly for generating
synthetic data to augment small datasets, such as MRI or CT
scans. Brain MRI image analysis, for example, can generate
additional synthetic images of tumors, helping to address the
common problem of data scarcity [67], [68].
Table 9 and figure 10 present a comparative analysis of

the accuracy, precision, recall, F1-score, and specificity for
the PRCnet model when augmented with OCMRI, RICAP,
and DC-GAN. The PRCnet model, enhanced with OCMRI,
consistently outperformed both RICAP and DC-GAN across
all datasets. Specifically, the OCMRI method achieved
accuracy improvements of 92.7% on Dataset A, 95.37% on
Dataset B, 96.51% on Dataset C, and 98% on Dataset D.
In contrast, RICAP achieved accuracy of 86.61%, 91.98%,
94.99%, and 90%. In comparison, DC-GAN achieved
83.37%, 85.49%, 91.94%, and 96% for Datasets A, B, C,
and D, respectively. The observed difference in results can
be attributed to the RICAP method’s reliance on cutting
and rearranging four images to create a new image. In the
context of medical images, this approach may generate
new images lacking tumour-related information. Similarly,
DC-GAN struggled with preserving fine details in tumour
regions, leading to lower classification accuracy. Conversely,
the OCMRI method creates new images by merging two
images, ensuring that the resulting image retains informa-
tion from both images, thus contributing to its superior
performance.

TABLE 9. The results of the OCMRI method comparison with the RICAP
approach.

V. DISCUSSION
In this paper, we proposed a new method for augmenting
brain MRI images called OCMRI. The proposed method
combines MRI images of the brain to create new images.
Every twoMR images of the same class are selected by taking
the odd columns from the first image and the even columns
from the second image to produce new pictures. The mean
squared error between the two images must also be greater
than the first threshold value and smaller than the second
threshold value. Controlling the value of the first and second
thresholds led to controlling the number of images to be
produced, as well as solving the problem of class imbalance.

Table 4 details applying the OCMRI augmentationmethod
to dataset A. We notice that as the value of the Th2 increases,
the number of images produced by the algorithm increases
due to an acceptable rise in the ratio of MSE between image 1
and image 2. We also note that repeatedly and auto-adjusting
the value of the Th2 to achieve a balance between the classes
contributed to solving the data imbalance problem.

We conducted experiments to evaluate the effectiveness
of the proposed Oriented Combination MRI (OCMRI)
augmentationmethod on four publicly available datasets. The
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FIGURE 9. Examples of brain imaging images produced by OCMRI
augmentation.

experimental results demonstrated a substantial improvement
in efficiency when the PRCnet model was trained and tested
before and after applying the OCMRI augmentation method.
The significant enhancement in results can be attributed to the
considerable expansion of the training data and the successful
mitigation of class imbalance issues, which, in turn,

Furthermore, the fusion of images through the OCMRI
method helped the model recognize and distinguish better.
The generated images, containing two tumors with distinct
locations and shapes, allowed themodel to better comprehend
and differentiate between intricate scenarios. A meticulous
analysis of the data pre- and post-application of the OCMRI
augmentation method revealed that all correctly predicted
images remained correctly predicted after augmentation.

FIGURE 10. The results of the OCMRI method comparison with the RICAP
approach.

Moreover, specific images that were initially mispredicted
were subsequently correctly classified following the OCMRI
augmentation.

However, The computational complexity of the proposed
methodology represents a notable limitation arising from
the iterative computation of the Mean Squared Error (MSE)
between each image and all other images within the dataset.
This iterative process involves exhaustive calculations of
MSE for each image in comparison with every other image
present in the dataset. Consequently, the method may incur
increased computational demands, potentially leading to
longer processing times and heightened resource utilization.

VI. CONCLUSION
The brain’s available MRI images are insufficient to train
deep learning models. For this reason, deep learning models
that need large amounts of data for classification or segmen-
tation may suffer from the problem of overfitting. To solve
this problem, data augmentation methods are used to produce
additional medical images to the original data. In this work,
we proposed a new method for augmenting brain MRI data
which we named Oriented Combination MRI (OCMRI). The
proposed method combines the two MRI images by taking
the odd columns from the first image and the even columns
from the second image to produce new images. The two
images are within the same class, and the mean squared error
between the two images is also required to be greater than the
value of the first threshold and smaller than the value of the
second threshold. The value of the first and second thresholds
is variable and is specified by the user at the beginning.
Adjusting the thresholds controls the number of generated
images. Therefore, the threshold value is controlled in a way
that controls the number of images produced for each class,
which contributes to solving the data imbalance problem.
Experiments were carried out on four datasets. The proposed
method proved its efficiency by improving the performance
of the PRCnet model. The accuracy of the PRCnet model
was 85.19% for dataset A, 90.12% for dataset B, 94.77% for
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dataset C, and 90% for dataset D. After adding synthetic data,
The accuracy increased to 92.7% for dataset A, 95.37% for
dataset B, 96.51% for dataset C, and 98% for dataset D.

One limitation of the proposed methodology lies in
its computational complexity, stemming from the iterative
process of computing the Mean Squared Error (MSE)
between each image and all other images within the dataset.
To address this issue in future research, efforts could be
directed towards optimizing the computational demands by
adopting selective pixel sampling strategies. For instance,
an approach involving the selection of pixels exclusively
from either even or odd column rows within the image
could be explored to alleviate the computational burden.
Additionally, to enhance the method’s overall performance,
an avenue for improvement involves incorporating user-
defined parameters. Specifically, allowing users to specify
the desired number of generated images would empower the
algorithm to dynamically adjust the first and second threshold
values, thereby optimizing the augmentation process based
on user input.
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