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Abstract 30 

After cognitively demanding work, individuals tend to be less physically active. However, 31 

the psychological mechanisms underlying this effect have not been thoroughly tested. The 32 

aim of this paper was to experimentally investigate the impact of cognitive work demands on 33 

subsequent physical activity behavior. Across two preregistered experiments, participants 34 

were exposed to high or low levels of cognitive work demands, operationalized as workload 35 

in Experiment 1 and as working memory load in Experiment 2. In a subsequent choice task, 36 

participants made binary consequential choices between leisure non-physical activities (e.g., 37 

drawing) and effortful physical activities (e.g., cycling). Choice alternatives were matched on 38 

attractiveness rankings. Additionally, physical endurance performance was measured using a 39 

standardized cycling protocol in Experiment 1. In contast to the hypotheses, after performing 40 

work with high cognitive demands, participants were not more likely to choose non-physical 41 

over physical activities nor did they perform significantly worse on the physical endurance 42 

task. Exploratory analyses suggest that preexisting preferences for either physical or non-43 

physical activities explained physical activity behavior above and beyond exposure to 44 

cognitively demanding work. These experiments question the impact of cognitively 45 

demanding work on subsequent cognitive fatigue and physical activity behavior. Implications 46 

for theory, practice and future directions are discussed. 47 

Keywords: physical activity, cognitive demands, fatigue, motivation, decision making 48 

Public Significance Statement 49 

In two experimental studies, we found no consistent evidence for causal effects of cognitive 50 

work demands on subsequent cognitive fatigue and physical activity behavior. Our 51 

exploratory findings highlight the importance of personal preferences for physical activities, 52 

which extends contemporary understanding of the motivational processes that underly 53 

physical activity participation after work. 54 



The Impact of Cognitive Work Demands on Subsequent Physical Activity Behavior 55 

Participation in physical activities is important for health and well-being (Arem et al., 56 

2015; O’Donovan et al., 2017). Physical activity reduces the risk for cancer, Type 2 diabetes, 57 

depression, and early mortality (Health Council of the Netherlands, 2017). Global guidelines 58 

recommend people to be physically active for at least 150 minutes per week at moderate 59 

intensity or 75 minutes at vigorous intensity, or an equivalent combination of the two (World 60 

Health Organisation, 2018). However, large proportions of the global population are not 61 

sufficiently active (i.e., less than the recommended levels). In high-income western countries, 62 

levels of physical inactivity are even rising; from 30.9% in 2001 to 36.8% in 2016 (Guthold 63 

et al., 2018). In order to stop this physical inactivity pandemic, it is crucial to investigate 64 

barriers for participation in physical activity. 65 

Work has been identified to be an important barrier. In a large meta-analysis combining 66 

data of 170,000 participants, Fransson and colleagues (2012) found that unfavorable work-67 

characteristics are related to lower levels of physical activity during leisure time. Especially 68 

employees working in jobs with high cognitive work demands (e.g., high time-pressure and 69 

workload) and low work control (e.g., low autonomy over task-management) had trouble 70 

being sufficiently active during leisure time. Compared to low strain jobs (i.e., low demands, 71 

high control), employees in these high strain jobs were 26% more likely to be physically 72 

inactive and 21% more likely to become physically inactive in the following year. This 73 

implies that high strain work has an unfavorable carry-over-effect to physical (in)activity 74 

behavior during leisure time. 75 

Other recent studies have focused specifically on the impact of cognitive work demands 76 

(independent of work control) on physical activity behavior. Cognitive work demands are 77 

defined here as any type of work stressor that is not physical in nature. This can involve 78 

quantitative demands that require individuals to work hard (e.g., workload and time pressure; 79 



Häusser et al., 2010; Van der Doef & Maes, 1999) as well as qualitative demands requiring 80 

executive processes such as inhibition, updating or self-control (Brown et al., 2019). Two 81 

daily diary studies have shown that on days where cognitive work demands were high, levels 82 

of (intended) leisure time physical activity were lower than on days where these cognitive 83 

demands were low (Häusser et al., 2018; Payne et al., 2010). This implies that individuals 84 

find it difficult to be physically active after demanding days at work. Moreover, a growing 85 

body of experimental studies have investigated the impact of cognitively demanding work on 86 

subsequent physical performance (for overviews, see Brown et al., 2020; McMorris, 87 

Barwood, Hale, Dicks, & Corbett, 2018; van Cutsem et al., 2017) and on spontaneous 88 

exercise behavior (Abdel Hadi et al., 2020; Harris & Bray, 2019). While the magnitude and 89 

consistency of this effect depend on the study design (e.g., duration of manipulation, 90 

between- or within-subjects), physical performance tends to deteriorate after cognitively 91 

demanding work. Thus, both field and experimental studies suggest a negative impact of 92 

cognitively demanding work on physical activity behavior. 93 

To date, the precise psychological mechanisms underlying this effect remain unclear. 94 

Insight into these mechanisms is crucial for designing effective interventions for physical 95 

activity enhancement. An emerging approach to understand these mechanisms is behavioral 96 

economics, which combines principles from cognitive psychology, economy, decision 97 

making, and learning (Epstein, 1998). According to behavioral economics, the decision to 98 

engage in behavior is determined by internal cost-benefit analyses (Shenhave et al., 2017; 99 

Westbrook & Braver, 2015). Behaviors are only initiated or continued if the predicted 100 

benefits outweigh the expected costs in the cost-benefit analysis. Benefits might encompass 101 

personal value, enjoyment or monetary rewards while the effort that is required to obtain 102 

these rewards is perceived as a cost. In line with this reasoning, a well-documented finding is 103 



that individuals are less likely to initiate or continue behavior when the effort requirements 104 

increase (i.e., ‘law of least effort’; Hull, 1943; Westbrook, Kester, & Braver, 2013). 105 

Recent insights suggest that fatigue, a psychobiological state resulting from prolonged 106 

periods of demanding work (Hockey, 2011; van der Linden, 2011a), increases the weight 107 

assigned to effort-costs for subsequent behavior (Kanfer, 2011; Martin et al., 2018; Müller & 108 

Apps, 2019). While effort is always perceived as costly, these costs are expected to weigh 109 

more heavily in the cost-benefit analyses after having already undertaken demanding work 110 

(i.e., in a fatigued state). As a result, motivation for exerting effort is likely to be lower after 111 

longer time-periods of demanding work. This reduced motivation for effort is thought to 112 

cross domains, such that cognitive demands not only reduce motivation for subsequent 113 

cognitive effort, but also for physical effort and vice versa. In line with early 114 

conceptualizations of fatigue, one of its core characteristics seems to be an ‘intolerance of 115 

any effort’ (Thorndike, 1914). Support for this reasoning comes from neuroimaging studies 116 

showing altered activation in overlapping brain areas (i.e., anterior cingulate cortex, anterior 117 

insula and dorsolateral prefrontal cortex) after cognitively as well as physically demanding 118 

work. Importantly, these areas have repeatedly been linked to effort-based decision-making 119 

(Müller & Apps, 2019). 120 

Only two experiments have explicitly addressed the impact of demanding work (and 121 

fatigue) on subsequent decision-making regarding physical activity. Iodice and colleagues 122 

(2017) investigated the impact of physical fatigue (induced by 40 minutes intense cycling) on 123 

subsequent physical effort-based decision-making. Following the fatigue and control 124 

condition, participants made 360 choices between obtaining a small reward for no effort (i.e., 125 

€10 for no cycling), or a varying higher reward for varying levels of effort (i.e., €15-€40 for 126 

10-40 minutes of cycling). In line with predictions from behavioral economics, participants127 

were less likely to choose high effort options as the effort requirement of these options 128 



increased (i.e., longer durations of subsequent cycling tasks). Importantly, this effect was 129 

more pronounced when participants were physically fatigued. 130 

Similar findings have been reported by Harris and Bray (2019), who tested the impact of 131 

a cognitively demanding task on the subsequent choice to engage in a 22-minutes cycling task 132 

or not. Additionally, the researchers assessed cognitive fatigue and cost-benefit scores 133 

regarding physical activity using self-report. The findings indicated that cognitive demands 134 

had an indirect, negative impact on the subsequent choice to be physically active, through 135 

cognitive fatigue and cost/benefit scores. Thus, both experimental studies suggest that 136 

engaging in demanding work affects subsequent decision-making for physical effort by 137 

increasing the weight assigned to effort-costs when fatigued. 138 

While these studies provide insight into the impact of demanding work on subsequent 139 

physical activity choices, a major caveat is that they both operationalize physical activity 140 

exclusively as cycling. This limits the external validity of the reported findings as individuals 141 

can choose from a great variety of physical activities in real-life. This variety of activities to 142 

choose from could drastically change the pattern of findings. Individuals might still be 143 

willing to engage in one type of physical activity after cognitively demanding work, but not 144 

in another due to their personal preferences. Support for this reasoning comes from decades 145 

of research on physical activity motivation, which has shown that long-term engagement in 146 

physical activity is strongly predicted by intrinsic motivation or enjoyment of the activity (for 147 

an overview, see Teixeira, Carraça, Markland, Silva, & Ryan, 2012). Depending on personal 148 

preferences, the perceived benefits (i.e., enjoyment) of some activities might still outweigh 149 

their more heavily weighted effort-costs after demanding work. To obtain more ecologically 150 

valid insight into the association between cognitively demanding work and subsequent 151 

physical activity decisions, participants should be provided with a range of physical activities 152 

to choose from while taking personal enjoyment of these activities into account. This will 153 



allow for a more comprehensive exploration of the cost-benefit analysis underlying the 154 

decision to engage in physical activities after cognitively demanding work. 155 

In the current study, we therefore investigated the impact of cognitively demanding work 156 

on subsequent activity choices. We employed a paradigm in which participants made 157 

personalized consequential choices between a variety of physical and non-physical activities. 158 

The activities from which participants could choose were always matched on personal liking 159 

of those activities (i.e., the best liked physical activity was matched to the best liked non-160 

physical activity, the same for the second best, and so forth). Therefore, findings from this 161 

study will provide a more ecologically valid test of the impact of cognitive demands on 162 

subsequent physical activity choices. Based on recent experimental studies (Harris & Bray, 163 

2019; Iodice et al., 2017), field studies (Fransson, Heikkilä, et al., 2012; Häusser et al., 2018; 164 

Payne et al., 2010), as well as neurocognitive insights (Müller & Apps, 2019), we expected 165 

participants to choose physical activities less often after working on more cognitively 166 

demanding tasks (i.e., inducing cognitive fatigue). This hypothesis was tested in two 167 

experiments in which cognitive work demands were induced by workload (Experiment 1) or 168 

working-memory load (Experiment 2). 169 

Experiment 1 170 

In addition to the overarching goal of this study (testing the impact of cognitively 171 

demanding work on subsequent activity choices), Experiment 1 aimed to bridge the 172 

discrepancy in the operationalization of cognitive job demands. Within the field of 173 

occupational health psychology, cognitive work demands are frequently operationalized as 174 

cognitive workload (i.e., work quantity; see Fransson, Nyberg, et al., 2012; Häusser et al., 175 

2011, 2014; Hockey & Earle, 2006), which is the amount of work to finish within a limited 176 

timeframe (Fransson et al., 2012). Experimental studies from exercise psychology tend to 177 

rely on manipulations of task complexity, requiring demanding executive processes such as 178 



inhibition, switching, updating, working memory or self-control (Brown et al., 2019; Martin 179 

et al., 2018). In the current experiment, we therefore operationalized cognitive work demands 180 

as cognitive workload (in line with studies from occupational health psychology) and 181 

investigated its impact on physical activity choices as well as on physical performance (in 182 

line with studies from exercise psychology). In this way, the current study provided an 183 

experimental test of the relationship between cognitive work demands and physical activity 184 

as observed in field studies from occupational health psychology (e.g., Fransson, Heikkilä, et 185 

al., 2012; Häusser et al., 2018; Payne et al., 2010). Moreover, it extended experimental 186 

studies from exercise psychology that showed a detrimental (indirect) effect of cognitive 187 

work demands on physical activity choices and physical performance (Brown et al., 2019; 188 

Harris & Bray, 2019). We expected cognitive workload to have a negative impact on 189 

subsequent physical activity choices (hypothesis 1: Fransson, Heikkilä, et al., 2012; Harris & 190 

Bray, 2019; Häusser et al., 2018; Iodice et al., 2017; Müller & Apps, 2019; Payne et al., 191 

2010) and cycling performance (hypothesis 2: Brown et al., 2020).  192 

Method 193 

Participants 194 

Students from the University of Hull were recruited via the University research 195 

participation system and through adverts displayed on social media and on campus. We 196 

determined our sample size based on previous research using a highly similar methodology to 197 

manipulate workload (Hockey & Earle, 2006), which reported a large effect (f = 0.26) of 198 

workload on subsequent effortful sedentary task persistence. The a-priori power analysis in 199 

G*power (Faul et al., 2007) indicated that 24 participants would be the minimum sample size 200 

for detecting a similar effect using an Ancova with main effects and interactions (α = .05, 1-β 201 

= .80, f = 0.62). Since we investigated different follow-up behavior than in Hockey and 202 

Earle's study (2006) and to cover for attrition as well as to enable us to perform exploratory 203 



analyses, we preregistered to test 40 to 80 participants and to terminate testing when 80 204 

participants were tested or when the end-date of testing was reached (June 21, 2018: see 205 

https://osf.io/uh4wm). Prior to participation, participants filled in a questionnaire to assess 206 

demographic information (e.g., age, gender, BMI and exercise habits) and to identify and 207 

exclude at-risk individuals (e.g., asthmatic, heart complaints or with current injuries). In total, 208 

47 participants were eligible for participation and were invited to the lab. All participants 209 

were instructed to refrain from alcohol on the night before each session, from caffeine in the 210 

six hours before each session and from vigorous exercise on the day before each session. 211 

Moreover, participants were instructed to wear sports clothes to the lab and to eat sufficiently 212 

(but not within 1 hour before session 1) to prevent themselves from getting hungry 213 

throughout the tests. Seven participants were excluded because they did not attend (n = 4) or 214 

dropped out after session one (n = 3). The final sample of 40 healthy participants (21 females: 215 

52.5%) had an average age of 22.1 (SD = 4.0). Their average BMI was 22.9 (SD = 4.4; 216 

healthy range: 18.5 – 24.9), and they exercised at vigorous intensity on average 2.9 times per 217 

week (SD = 2.3, range: 0-10) and at moderate intensity 3.2 times per week (SD = 3.6, range = 218 

0-20). Participation was reimbursed with a fixed reward of £20 or course credits and a chance219 

of winning monetary prizes (£50, £75 or £100). 220 

Procedure and Materials 221 

An overview of the procedure is presented in Figure 1. Participants visited the lab on 222 

two occasions, separated by a 48-hour interval to recover. After providing informed consent 223 

in the first visit, participants’ maximal cycling output was assessed during an incremental 224 

exercise test. Next, their natural working pace was determined in a baseline office session. 225 

Also, their baseline endurance performance was assessed in a first time to exhaustion test 226 

(TTE1). 227 

https://osf.io/uh4wm


In the second visit, participants initially performed a ranking task to assess their liking 228 

of different physical and non-physical activities. Next, they worked on simulated office tasks 229 

with either a high or low workload for 1.5 hours. Immediately thereafter, participants made 230 

120 rank-matched activity-choices to assess their activity choice behavior. Then, they 231 

performed the second time till exhaustion test (TTE2) to assess physical endurance 232 

performance. Finally, participants performed one of the activities they chose during the 233 

choice-task for ten minutes after which they were debriefed and reimbursed.  234 

All cycling tasks were conducted in a temperature-controlled room with only the 235 

experimenter present. The computerized tasks (i.e., ranking, choices and office-work) were 236 

performed in a simulated office, consisting of two individual work-stations that were 237 

separated by an office divider screen. The testing experimenter sat behind the participant 238 

during the simulated office work to record their strategy and to check for adherence to the 239 

instructions. Throughout both visits, participants wore a chest-strapped heart rate monitor 240 

(Polar H7). These procedures have been reviewed and approved by the ethics committee of 241 

the Faculty of Health Sciences at Hull University (REF FHS10). Moreover, the study was 242 

pre-registered on the Open Science Framework (https://osf.io/uh4wm). 243 

Workload Manipulation. Workload was manipulated using simulated office-work 244 

(Hockey & Earle, 2006). Participants were asked to complete five copy-typing tasks in which 245 

they had to type information from one document into another. The documents consisted of 246 

fake student addresses, timetables, reference lists, meeting minutes and student testimonials. 247 

During a 30-minute baseline session, participants were trained to work on each of the 248 

copy-typing tasks. Participants received written instructions for each subtask and could ask 249 

for clarifications before working on the subtask for five minutes. Participants were instructed 250 

to work at a comfortable pace, as quickly as possible but without feeling rushed. After five 251 

https://osf.io/uh4wm


minutes, an alarm would indicate the end of a training session for a subtask after which the 252 

following subtask was explained and performed.  253 

In the actual work-session, participants worked for 1.5 hours in total on the same tasks 254 

as in the previous session, and had 18 minutes to complete each of the five subtasks. 255 

Importantly, the amount of work was adapted in such a way that participants would have to 256 

work at 120% (high workload) or 80% (low workload) of their own natural pace. These 257 

levels of workload were identical to a similar previous study which successfully manipulated 258 

workload and evoked fatigue effects on persistence in a voluntary post-work task (Hockey & 259 

Earle, 2006). Based on participants’ performance during the baseline session, the amount of 260 

content each participant had to copy-type varied to represent either high or low workload. To 261 

strengthen the manipulation-effect, participants were instructed to work as quickly and 262 

accurately as possible. Moreover, participants were informed that their chance to win 50, 75 263 

or 100 pounds depended on the amount of work they had accurately finished. A timer was set 264 

at 18 minutes at the start of each subtask and participants were instructed to switch to the next 265 

task if the timer had ended. If participants were finished before the timer had ended, they 266 

waited for the remaining time. 267 

Choice Task. In the first step, right before the workload manipulation, participants’ 268 

liking of 60 selected activities was assessed with a ranking task. In a random order, 269 

participants indicated for 30 physical activities (e.g., weightlifting, doing push-ups or 270 

juggling) and 30 non-physical activities (e.g., gaming, puzzling or listening to music) to what 271 

extent they would like to do the activity at that moment. They indicated their liking on a 272 

computerized 100-point VAS scale with only the anchor-points not at all and very much 273 

displayed at each end. Instructions were provided on screen and participants received 8 274 

practice trials to get used to the procedure and to ask for clarifications from the experimenter. 275 

For each participant, all physical and non-physical activities were automatically rank-ordered 276 



from 1 (liked most) to 30 (liked least). 277 

Two types of trials were constructed based on these rankings. The first type consisted 278 

of 30 between-category pairs, which were always made up of one physical- and one non-279 

physical activities. Importantly, the activities that made up a between-category pair were 280 

always rank-matched. For example, the physical and non-physical activities that a participant 281 

liked most (i.e., rank 1) were presented together, as were all subsequent activity pairs (i.e., 282 

rank 2 till rank 30). This way, preferences for activity categories (physical or non-physical) 283 

could be assessed, while taking personal liking of these specific activities into account. 284 

The second type of trials consisted of 30 within-category pairs. These pairs were 285 

always made up of two activities from the same category (i.e., physical or non-physical), but 286 

with either high (i.e., top 15) or low (i.e., lowest 15) rankings. These pairs served to assess 287 

the validity of participants’ choice behavior. Valid choice behavior is present if people on 288 

average prefer high ranked over low ranked activities. 289 

Directly after the workload manipulation, a computerized choice task was used to 290 

assess participants’ actual choice-behavior. Participants were presented with the 60 291 

personalized pairs of activities. All 60 unique pairs were presented twice, with the position of 292 

the activities (left or right) counterbalanced to prevent any positioning bias. These 120 trials 293 

were divided over two blocks with a short break in between. 294 

Participants were instructed to choose the activity they preferred to do in the last ten 295 

minutes of the experiment, and were informed that a selection of the activities was actually 296 

present and that their choices were thus consequential. On each trial, participants indicated 297 

their choice for the preferred activity by pressing ‘z’ (left activity) or ‘m’ (right activity) on a 298 

qwerty-keyboard. Participants had 30 seconds to indicate their choice and missed trials were 299 

repeated at the end of each block. A yellow rectangle appeared around the selected activity 300 

for 500 milliseconds to confirm their choice. Prior to the task, participants received 301 



instructions on screen and performed 4 practice trials. After completing all test trials, 302 

participants performed 4 additional trials of which one was randomly selected to represent the 303 

true choice (i.e., the activity that was chosen on that trial actually had to be performed). 304 

Physical Endurance Performance. Two types of cycling tasks were performed to 305 

establish i) participants’ peak power output and ii) their (baseline) endurance performance. In 306 

the first visit, participants’ peak power output was determined in a graded exercise test. After 307 

3-minutes of getting used to the bike (20 Watts, 50 revelations per minute (RPM)) and a 3-308 

minutes warmup session (50 Watts, 60-70 RPM), the graded exercise test started. Participants 309 

were instructed to keep cycling at 60-70 RPM for as long as possible while the resistance of 310 

the bike automatically increased with 25 Watts every 30 seconds. When participants gave up 311 

or when pedaling pace was below 60 RPM for more than 5 seconds, the test was terminated. 312 

The maximal resistance (Wmax) at termination represented the peak power output of a 313 

participant. 314 

In a second cycling task that was performed in both visit 1 and 2, physical endurance 315 

performance was assessed during a time to exhaustion (TTE) test. After 3 minutes of warmup 316 

cycling at 75 Watts, the resistance of the bike was set at 70% of the participants’ Wmax. 317 

Again, participants were instructed to keep cycling at 60-70 RPM up to the point where they 318 

felt they could not go any further. TTE represented the time in seconds from the moment at 319 

which the resistance was increased until the participant gave up or pedaling pace was below 320 

60 RPM for more than 5 seconds. Following the tests, resistance was set at 75 Watts and 321 

participants were instructed to keep cycling until their breathing returned to a normal pace. 322 

Self-report Measures. 323 

Perceived Workload. Following the simulated office work of 1.5 hours, perceived 324 

workload was assessed with a four-item Likert scale (e.g., ‘I had to work very fast’; 1 = 325 

Strongly disagree, 7 = Strongly agree). A similar scale has been used in previous work-326 



simulation research (Häusser et al., 2011), and reliability in the current study was very good 327 

(Cronbach’s α = .816). 328 

Subjective Fatigue. Before and after work simulation, fatigue was assessed using the 329 

four fatigue items of the Brunel Mood Scale (BRUMS; Terry, Lane, Lane, & Keohane, 330 

1999). Participants indicated to what extent each of the depicted feelings described how they 331 

felt at that moment (e.g., ‘tired’ or ‘worn out’; 1 = Not at all, 5 = Extremely). Reliability of 332 

the scale was very good to excellent (Cronbach’s α = .908 before and .873 after the 333 

manipulation). 334 

Exercise Behavior. Habitual exercise behavior was assessed in the general 335 

questionnaire with the Godin Leisure-Time Exercise Questionnaire (Godin & Shephard, 336 

1985). Participants reported how often they engaged in mild (i.e., minimal effort), moderate 337 

(i.e., not exhausting) and strenuous intensity (i.e., heart beats rapidly) exercise bouts of at 338 

least 15 minutes per week. The scale has proven to be a valid measure of exercise behavior 339 

(Amireault & Godin, 2015; Godin & Shephard, 1985). 340 

Validity Checks 341 

To test the effectiveness of the workload manipulation, we ran an independent t-test 342 

with condition (high versus low workload) as the independent variable and experienced 343 

workload as the continuous dependent variable. 344 

In order to test the validity of choice-behavior, we ran an intercept-only Generalized 345 

Linear Mixed Model (GLMM; Breslow & Clayton, 1993) predicting within-category activity 346 

choices (binary: top versus bottom ranking) using the ‘glmer’ function in the lme4 package 347 

(Bates et al., 2015). Valid choice-behavior was indicated by a significant intercept, which 348 

meant that top-ranked activities were selected significantly more often than 50%. 349 

Main Analyses 350 

To investigate the impact of workload on activity choices (binary outcome: physical 351 



or non-physical), another GLMM was tested. We included a fixed effect for the between-352 

subject factor workload (low = -1, high = +1) as well as fixed effects for the control variables 353 

fatigue at T1 (before the manipulation) and general exercise behavior. The model also 354 

included a per-participant random adjustment to the fixed intercept (random intercept). 355 

Robust p-values were obtained with 200 parametric bootstrap simulations using the ‘mixed’ 356 

function from the package afex (Singmann et al., 2015). Confidence intervals were obtained 357 

using the ‘confint’ function of lme4 (Bates et al., 2015). 358 

We investigated the impact of workload on physical endurance performance (TTE2) 359 

with an ANCOVA, including workload as categorical independent variable and the pre-360 

measure of fatigue as covariate1. The fatigue variable was log-transformed to normalize its 361 

positive within-group skew. As homogeneity of variance and linearity were violated, a robust 362 

ANCOVA with 2000 bootstrap simulations was performed using the ‘ancboot’ function of 363 

the WRS package (Wilcox & Schönbrodt, 2019). 364 

Exploratory Analyses 365 

In addition to our preregistered analyses, several exploratory analyses were performed 366 

in order to better understand the main findings. Following up on our main analysis for choice 367 

behavior, we tested whether participants within each experimental group showed a preference 368 

for either physical or non-physical activities in the actual choice task. We ran an intercept-369 

only GLMM predicting activity choices (binary: physical versus non-physical). A significant 370 

intercept indicated a preference for either physical activities (positive intercept) or non-371 

physical activities (negative intercept). 372 

A Pearson’s correlation test was performed to investigate to what extent initial 373 

preferences for physical activities (i.e., liking scores of physical activities minus liking scores 374 

1 Originally, TTE1 was included as covariate. As the assumption of independence of covariate and treatment 
was violated for TTE1, this variable was not included as covariate in the final analysis.  



of non-physical activities) were related to the proportion of physical activities chosen. 375 

As fatigue was expected to underlie the possible impact of workload on subsequent 376 

physical activity behavior, we tested whether self-reported fatigue increased more strongly in 377 

the high workload condition compared to the low workload condition. We ran an LMM with 378 

fixed effects for workload, time (pre vs. post) and a Workload x Time interaction. As the 379 

maximal models did not converge, we followed the advice of Barr, Levy, Scheepers, and Tily 380 

(2013) to simplify our models. The final model included a per-participant random adjustment 381 

to the intercept in addition to the fixed effects. 382 

Results 383 

Validity Checks 384 

The independent t-test with workload as outcome variable showed that participants in 385 

the high workload condition indeed experienced the simulated office work to be more 386 

demanding (M = 4.96, SD = 1.07) than people in the low workload condition (M = 2.99, SD = 387 

1.17; t(36.72) = 5.57, p < .001). 388 

The intercept-only GLMM for within-category choices showed that participants chose 389 

top ranked activities more often than bottom ranked activities (on 86% of within-category 390 

trials, participants selected the high-ranked activity; 95% CI [84.59, 89.32]). This supports 391 

the validity of the task. For a detailed overview of choice behavior with respect to liking-392 

scores, see Appendix Table A1. 393 

Main Analyses 394 

In contrast to hypothesis 1, the likelihood to choose physical over non-physical 395 

activities was higher in the high workload condition compared to the low workload condition 396 

(OR = 1.58, 95% CI [1.09, 2.32], p = .03). Participants in the high workload condition chose 397 

physical activities more often (M = 0.53, SD = 0.27) than participants in the low workload 398 

condition (M = 0.35, SD = 0.22; see Appendix, Table A2 and Figure A1 for within-group 399 



details). Neither fatigue (p = .748) nor exercise behavior (p = .501) significantly predicted 400 

activity choices. 401 

The ANCOVA showed that the high workload condition did not significantly 402 

influence TTE2 (F(1, 37) = 0.90, p = .349) and neither did the covariate fatigue (F(1, 37) = 403 

0.93, p = .341). These findings were confirmed in the robust ANCOVA, which is in contrast 404 

with our second hypothesis. 405 

Exploratory Analyses 406 

Our manipulation check showed that participants experienced the high workload 407 

condition to be more demanding than the low workload condition. Given the important role 408 

of fatigue within the cost-benefit analysis for physical activity, we additionally tested whether 409 

the high workload condition resulted in stronger increases in fatigue. In the exploratory LMM 410 

with fatigue as outcome variable, a significant effect for time was found (b = -0.169, SE = 411 

0.06, t(40) = -2.841, p = .007). Participants reported to be more fatigued after simulated 412 

office work (M = 2.29, SD = 0.98) than before (M = 1.95, SD = 0.937). No main effect of 413 

workload condition was found (p = .947) and also the interaction term of Time x Workload 414 

was not significant (p = .398). Fatigue did not increase significantly more in the high 415 

workload condition compared to the low workload condition. 416 

To better understand the unexpected direction in the difference in activity preferences 417 

between the two experimental groups, we conducted an exploratory intercept-only GLMM on 418 

the activity choices within each group. The analysis indicated no significant preferences for 419 

either physical or non-physical activities in the high workload condition (52.68% physical 420 

activities chosen, 95% CI [40.06, 65.76]) while participants in the low workload condition 421 

showed a significant preference for non-physical activities (34.56% physical activities 422 

chosen, 95% CI [22.15, 42.77]). Thus, the significant difference in choice behavior as found 423 



in our main analysis seems to stem from a preference for non-physical activities in the low 424 

workload condition. 425 

Close inspection of choice behavior (see Appendix, Figure A2) suggested that within 426 

both experimental groups, there were participants with preferences for either physical or non-427 

physical activities. To investigate the origin of this within-group variation, we conducted an 428 

exploratory Pearson’s correlation test investigating the overall relation between preexisting 429 

preferences for physical activities as measured in the ranking task (i.e., individual liking-430 

scores of physical activities minus individual liking-scores of non-physical activities) and the 431 

number of physical activities participants chose after the experimental manipulations. The 432 

analysis showed that the preexisting preferences strongly correlated with the number of 433 

physical activities chosen on the choice task (r = .70, 95%, CI [.50, .83]). Thus, participants 434 

who assigned relatively higher liking scores to physical activities compared to non-physical 435 

activities on the ranking task were also more likely to choose physical activities more often in 436 

the choice task. This shows that initial preferences for physical activities explained a great 437 

deal of variation in choice behavior after the experimental manipulations.  438 

Several additional exploratory analyses were performed to further investigate physical 439 

performance and choice behavior after the workload manipulations. See supplemental 440 

material for detailed descriptions of these analyses and results. 441 

Discussion 442 

Experiment 1 does not provide evidence for the hypothesized negative impact of high 443 

workload on subsequent physical activity behavior (hypothesis 1 not supported). In fact, our 444 

findings show that the likelihood to choose for participation in physical activities was smaller 445 

in the low-workload condition compared to the high workload condition. On average, 446 

participants in the low workload condition preferred non-physical activities while those in the 447 

high workload condition did not show any preference. The expected negative effect of 448 



workload on physical performance was also not observed (hypothesis 2 not supported). 449 

Participants’ endurance performance was not significantly better or worse in the high or low 450 

workload condition. These findings do not converge with outcomes of previous experimental 451 

studies in which cognitive demands had an (indirect) negative impact on the decision to 452 

exercise (Harris & Bray, 2019) and on physical performance (Brown et al., 2019).  453 

  Importantly, several elements of the current experimental approach may have 454 

contributed to these unexpected findings. First, the small sample size in combination with the 455 

between-subjects design may have introduced randomization issues. Although we controlled 456 

for idiosyncratic differences in liking of the different activities, it seems plausible that 457 

(unmeasured) differences between participants in the two experimental groups underlie the 458 

current pattern of findings (e.g., preexisting activity preferences). A within-subject design 459 

would decrease error variance and increase statistical power for testing the effect of cognitive 460 

demands (Francis et al., 2018).  461 

  In addition, the manipulation of workload did not result in a stronger increase in 462 

cognitive fatigue in the high workload condition and our exploratory correlational test 463 

showed that activity-category preferences (i.e., physical or non-physical) before and after the 464 

experimental manipulation were very similar (r = .70). Both findings imply that the 465 

manipulation did not elicit an effect of cognitive work demands on subsequent physical 466 

activity behavior. On top of that, the unexpected preference for non-physical activities in the 467 

low-demands condition may have resulted from under-arousal evoking feelings of boredom, 468 

with similar motivational consequences (i.e., increased impulsivity) as cognitive fatigue 469 

(Milyavskaya et al., 2019). However, this assumption could not be empirically tested as 470 

boredom was not measured in this experiment.  471 

  The current operationalization of cognitive work demands as cognitive workload was 472 

selected to bridge the gap in its oprerationalization between field studies of occupational 473 



health psychology and experimental studies of exercise psychology. Possibly, the effects of 474 

workload on cognitive fatigue and physical activity behavior only occur after much longer 475 

exposure periods, similar to those in field studies (i.e., an entire working day). To test 476 

potential short-term effects of cognitive work demands on subsequent cognitive fatigue and 477 

physical activity behavior, it could be more effective to operationalize cognitive work 478 

demands as task complexity instead of task quantity, similar to experimental studies from 479 

exercise psychology (Brown et al., 2019; McMorris et al., 2018). 480 

In addition to these general design issues, the choice task was limited in two ways. 481 

First, the task did not assess predicted effort levels per activity, which is important for 482 

obtaining precise insight into effort-allocation following cognitively demanding work. 483 

Second, face validity of the task was limited. While the activities were carefully selected, for 484 

some activities it was less credible that participants could actually perform these in or around 485 

the lab (e.g., taking penalty shots or distance jumping). Therefore, we conducted a replication 486 

experiment addressing these issues. 487 

Experiment 2 488 

In Experiment 2, we directly addressed the potential methodological issues that were 489 

identified in Experiment 1 (i.e., the small sample size, between-subjects design, manipulation 490 

of cognitive demands and choicetask limitations). First, we increased the sample size and 491 

employed a within-subjects design to improve statistical power and prevent randomization 492 

issues. This improvement also ruled out the impact of several potential confounding factors 493 

such as already existing preferences for physical activities and idiosyncratic variation in 494 

sensitivity to the experimental manipulations. 495 

In addition, we manipulated working memory load (WML) instead of quantitative 496 

cognitive workload to more effectively evoke possible effects of cognitive demands on 497 

subsequent physical behavior. For manipulating WML, we used the n-back task (Kirchner, 498 



1958), which has been used to induce cognitive fatigue in previous experimental research 499 

(Hopstaken et al., 2015; Massar et al., 2010). In this way, task complexity instead of task 500 

quantity (i.e., workload in Experiment 1) was manipulated. 501 

Finally, the choice task was improved in several ways. The task now included a 502 

measure of predicted effort per activity to better understand effort allocation after cognitively 503 

demanding work. To enhance face validity of the choice task, eight activities were replaced 504 

with activities that were deemed more realistic to be performed on campus. For that same 505 

reason, we increased the number of trials from which the computer would select a true 506 

choice. As a consequence of these improvements, we expected to obtain more accurate 507 

insight into the impact of cognitive work demands on activity choices. Based on converging 508 

evidence from experimental studies (Harris & Bray, 2019; Iodice et al., 2017), field studies 509 

(Fransson, Heikkilä, et al., 2012; Häusser et al., 2018) and insights from neurocognitive 510 

research (Müller & Apps, 2019), we expected individuals to choose physical activities less 511 

often after working on a task with high compared to low WML (hypothesis 3). 512 

Method 513 

Participants 514 

The research participation system of Radboud University was used to recruit 515 

participants. We performed an a-priori power simulation in the R package simR (Green & 516 

Macleod, 2016) to determine our required sample size. Based on the data of experiment 1, we 517 

simulated a similar dataset in which the proportion of physical activities chosen differed on 518 

average by 10% (SDwithin-group = 25) between the two experimental conditions, which was just 519 

above half of the observed difference in experiment 1. We deliberately chose to be 520 

conservative for the estimated effect as we switched to a within-subject design and still 521 

expected demands to negatively affect activity choices (Hockey & Earle, 2006). Our 522 

simulation analysis indicated that 47 participants would be sufficient for detecting our effect 523 



of interest (1 - β = .90, α = .05). To cover for exclusion due to testing errors, we preregistered 524 

to terminate data collection at 60 full participants (i.e., completing both sessions). 525 

Participants had to be 18 years old or above and have at least moderate understanding of 526 

English. Participants were instructed to wear sports clothes to the lab, to refrain from alcohol 527 

in the 24 hours before testing, from caffeine on the day of testing, and to keep exercise levels 528 

(i.e., duration and intensity) on the days before each visit similar. In total, 63 students 529 

participated in the study of which 60 took part in both sessions. The sample consisted of 44 530 

women (69.84%), with an average age of 24.08 years (SD = 6.89, range = 18-62). 531 

Participation was rewarded with a chance of winning monetary prizes (€50, €75 or €100) and 532 

all participants received €30 or course credits for participation. 533 

Procedure and Materials 534 

Figure 2 provides an overview of the experimental procedure. Participants visited the 535 

lab on two occasions, separated by a 48-hours interval in between. Upon arrival on day 1, the 536 

experimenter showed participants an activity room, where materials for several physical and 537 

non-physical activities were displayed (e.g., stationary bike, weights, juggling balls, puzzles 538 

and magazines). Then, the experimenter brought participants to the testing cubicle, where 539 

participants received more detailed information on the study and provided informed consent. 540 

Following, participants performed the ranking task to assess their liking of different physical 541 

and non-physical activities. Moreover, they indicated for each activity how effortful they 542 

expected it to be. Then, participants performed either a 2-back or a 0-back task for 45 543 

minutes to manipulate WML. Immediately thereafter, participants made 120 rank-matched 544 

activity-choices to assess their activity choice behavior. Finally, participants performed one 545 

of the activities they chose during the choice-task for ten minutes and briefly reported their 546 

experiences during the task. 547 



In the second visit, participants immediately started with the WML task (i.e., either 2-548 

back or 0-back, counterbalanced) and then followed the exact same steps as in the first visit. 549 

Eventually, participants were debriefed and reimbursed. 550 

All computerized tasks were performed in individual testing cubicles. In a larger, 551 

neutral room, participants individually performed the selected activity. The experimental 552 

procedure has been reviewed and approved by the ethics committee of the Faculty of Social 553 

Sciences of Radboud University (ECSW2017-1303-48). In addition, the hypotheses and 554 

planned analyses were preregistered on the Open Science Framework (osf.io/thj8q). 555 

WML Manipulation. The n-back task was used to manipulate WML. In the n-back 556 

task, individual letters appear on screen and participants indicate whether the presented letter 557 

is the same as the letter n trials before. By increasing n, working-memory is more heavily 558 

taxed (i.e., more information needs to be remembered), which should lead to stronger 559 

increases in fatigue than a lower n. In the current experiment, the 2-back task (i.e., indicate 560 

match with two letters before the current letter) served as high WML condition, and the 0-561 

back (i.e., indicate match with target letter ‘X’) as low WML condition. In both versions, 562 

letters were presented on screen for 500ms, followed by a 1500ms black screen. All letters 563 

(‘B’, ‘C’, ‘D’, ‘E’, ‘G’, ‘J’, ‘P’, ‘T’, ‘V’, and ‘W’) were presented in white, capitalized Times 564 

New Roman. The task consisted of 1320 trials (target rate of 25%) divided over three blocks 565 

of 15 minutes. Before and after each block, participants reported their experienced levels of 566 

fatigue, boredom and stress on a computerized VAS-scale (i.e., ‘How fatigued/bored/stressed 567 

do you currently feel’), with only the anchor-points not at all and very much displayed. 568 

Perceived effort during the task was assessed after each block with the single item ‘How 569 

effortful do you find this task’ (not at all to extremely). Participants had 30 seconds to answer 570 

each item to prevent participants from taking long breaks. Similar to previous studies using 571 

the N-back to induce fatigue (Hopstaken et al., 2015), performance on the N-back task was 572 

https://osf.io/thj8q/


operationalized as accuracy, which was calculated as d prime (d’) per 15-minutes block 573 

(Macmillan & Creelman, 1990). 574 

Choice Task. The ranking- and choice-task of Experiment 1 were slightly adapted for 575 

the current experiment to increase credibility of the task. Seven physical activities and one 576 

non-physical activity were replaced and the trials from which the true choice was drawn was 577 

increased from 4 to 8. In addition, a predicted effort-assessment was added directly after the 578 

ranking task to obtain more insight into the allocation of predicted effort. This assessment 579 

was similar to the ranking task, but now participants indicated for all 30 physical and non-580 

physical activities how effortful they expected the activity to be on a 100-point VAS-scale 581 

(from not effortful at all to very effortful). 582 

Validity Checks 583 

To test whether participants perceived the 2-back task to be more effortful than the 0-584 

back, we tested a Linear Mixed-effects Model (LMM). The model included a fixed intercept 585 

and a fixed effect of working memory load (low = -1, high = +1). In addition, a random 586 

intercept and a random slope for working memory load were included in the model. Finally, 587 

all correlations between random effects were included in the model. 588 

In another LMM, we additionally tested the impact of working memory load on the 589 

increase in self-reported fatigue. The model included a fixed intercept and fixed effects for 590 

WML (low = -1, high = +1), time (pre = -1, post = +1) and the WML x Time interaction 591 

term. Moreover, we included a random intercept as well as random slopes for working 592 

memory load, time and the WML x Time interaction term. Again, all correlations between 593 

random effects were included in the model. 594 

In a similar model, we explored the impact of working memory load on the increase 595 

in self-reported boredom. The model was set up identically to that of self-reported fatigue 596 

with only the dependent variable being changed to boredom. 597 



In addition, we performed the same validity check of choice behavior as in 598 

Experiment 1. We ran an intercept-only Generalized Linear Mixed Model predicting activity 599 

choices (binary: top versus bottom ranking). A significant intercept indicated valid choice 600 

behavior, which meant that top-ranked activities were selected significantly more often than 601 

50%. 602 

 In an exploratory validation check, we tested whether participants expected the 603 

physical activities to be more effortful than the non-physical activities using a LMM. The 604 

model included a fixed intercept as well as a fixed effect for activity-category. In addition, we 605 

included a random intercept as well as a per-participant random adjustment (i.e., ‘random 606 

slope’) to the activity-category slope. For all validity checks, we used the same functions and 607 

R-packages as in previous analyses.608 

Main Analysis 609 

Similar to Experiment 1, we used a GLMM to test the impact of working memory 610 

load on physical activity choices. The model included a fixed intercept and a fixed effect for 611 

the within-subject factor working memory load (low = -1, high = +1). In addition, we 612 

included a per-participant random adjustment to the fixed intercept (‘random intercept’) as 613 

well as a per-participant random adjustment the fixed slope of working memory load 614 

(‘random slope’). All correlations between the random effects were included. The same R-615 

packages and functions were used as in the analyses for Experiment 1. 616 

To account for potential order effects of the experimental manipulations, we repeated 617 

the main analysis while adding session order (high cognitive demand first = -1, low cognitive 618 

demand first = +1) and its interaction with working memory load to the original model. In 619 

addition to the fixed slopes of working memory load, session order and the interaction term 620 

Working Memory Load x Session order, we included the per-participant random adjustments 621 

to these slopes (‘random slopes’) as well as all correlations between the random effects. 622 



Exploratory Analyses 623 

Similar to Experiment 1, we ran an intercept-only GLMM predicting activity choices 624 

(binary: physical versus non-physical) within each condition. A significant intercept indicated 625 

a preference for either physical activities or non-physical activities. 626 

Finally, we investigated to what extent initial preferences for physical activities (i.e., 627 

liking scores of physical activities minus liking scores of non-physical activities) related to 628 

the proportion of physical activities chosen using a Pearson’s correlation test. 629 

Results 630 

Validity Checks 631 

The LMM testing the effect of WML on experienced effort showed a significant 632 

effect of WML (b = -19.01, SE = 2.37, t(60.89) = -8.02, p = .001). In line with our 633 

expectation, participants experienced the high WML condition to be more effortful (M = 634 

75.51, SD = 27.50) than the low WML condition (M = 37.28, SD = 29.28). 635 

The LMM testing the effect of WML and time on experienced fatigue showed a 636 

significant effect of time (b = -18.09, SE = 1.71, t(59.09) = -10.56, p < .001). Participants 637 

reported to be more fatigued after the manipulation (M = 72.51, SD = 25.74) than before (M = 638 

36.16, SD = 25.55). However, neither the effect of WML nor the interaction between WML 639 

and time-on-task were significant (p = 0.069 and p = .152 respectively). Fatigue did not 640 

increase significantly more in the high WML condition compared to the low WML condition. 641 

Interestingly, the exploratory LMM testing the effect of WML and time on boredom 642 

showed significant effects of time (b = -18.68, SE = 1.53, t(61.33) = -12.18 , p = .001), WML 643 

(b = 3.24, SE = 1.22, t(59.56) = 2.67, p  = .006) and also the interaction term Time x WML 644 

was significant (b = -2.11, SE = 0.99, t(60.27) = -2.13, p = .042).  The increase in boredom in 645 

the low WML-condition was stronger (Mpre = 36.65, SD = 23.43; Mpost = 78.59, SD = 22.99) 646 

than in the high WML-condition (Mpre = 33.86, SD = 24.25; Mpost = 67.10, SD = 30.67). 647 



Thus, the low WML-condition evoked stronger feelings of boredom than the high WML-648 

condition. 649 

Our intercept-only GLMM of choice behavior on within category choices indicated 650 

valid choice behavior. Participants chose high ranking activities significantly more often than 651 

low ranking activities (on 84.53% of the within-category trials, participants chose the top-652 

ranking activity; 95% CI [83.30, 87.52]). For a detailed overview of choice-behavior with 653 

respect to liking-scores, see Appendix Table A1. 654 

To investigate whether participants expected physical activities to be more effortful 655 

than non-physical activities, another LMM testing the impact of activity category on 656 

predicted effort was performed. This analysis showed a significant effect of activity category 657 

(b = 18.53, SE = 0.93, t(62) = 19.84, p = .001). Participants expected physical activities to be 658 

much more effortful (M = 68.58, SD = 21.66) than non-physical activities (M = 32.51, SD = 659 

29.25). 660 

Main Analysis 661 

In contrast to our hypothesis, no significant differences in activity choices were found 662 

between the two conditions (OR = 1.08, 95% CI [0.98, 1.20], p = .170). Participants were not 663 

significantly more likely to choose physical activities in the low WML condition compared to 664 

the high WML condition. See Appendix Table A2 and Figure A2 for more details about 665 

choice behavior within the two experimental conditions. 666 

Interestingly, our follow-up analysis in which the interaction between session order 667 

and working memory load was added to the original analysis, showed a significant 668 

interaction effect (OR = 1.18, 95% CI[1.06, 1.31], p = .004). Post-hoc analyses revealed that, 669 

only if participants went through the high WML condition in the first session, participants 670 

were more likely to choose physical activities in the high workload condition (M = 0.35, SD 671 

= 0.24) than in the low workload condition (M = 0.25, SD = 0.21; p = .002). No significant 672 



differences in choice behavior emerged between the two experimental conditions if 673 

participants went through the low WML condition first (Mhigh WML = 0.28, SD = 0.21; Mlow 674 

WML = 0.29, SD = 0.22, p = .526).While the means suggest a trend in which participants are 675 

less likely to choose physical activities in the low workload condition and in session 2, none 676 

of the other cells significantly differed from one another (p-values > .05). 677 

Exploratory Analyses 678 

To better understand choice behavior within the two conditions, we performed an 679 

exploratory GLMM on within-group preferences. The analysis indicated a significant 680 

preference for non-physical activities in the high workload condition (on 31.6% of between-681 

category trials, physical activities were chosen, 95% CI [19.44, 33.32]) and in the low 682 

workload condition (on 27.1% of between-category trials, physical activities were chosen, 683 

95% CI [16.79, 27.56]). Thus, in both conditions, participants preferred non-physical over 684 

physical activities. 685 

To investigate the origin of within-condition variation in choice-behavior (see 686 

Appendix, Figure A2), we conducted an exploratory Pearson’s correlation test which showed 687 

that initial preferences for physical activities (i.e., liking of physical activities minus liking of 688 

non-physical activities) strongly correlated with the number of physical activities chosen (r = 689 

.72, 95%, CI [.50, .85]).  690 

Several additional exploratory analyses were performed to further investigate choice 691 

behavior as well as n-back performance. See supplemental material for detailed descriptions 692 

of these analyses and results. 693 

Discussion 694 

In Experiment 2, participants experienced the high demanding WML condition as 695 

more effortful than the low demanding WML condition. Participants also indicated that they 696 

expected physical activities to be more effortful than the non-physical activities, and they 697 

Commented [SvA1]: Hier ook even de means noemen



again showed valid choice behavior (i.e., participants preferred high-ranked activities). 698 

However, in contrast to our hypothesis, participants were not significantly less or more likely 699 

to choose physical activities after performing a task with high WML compared to low WML. 700 

Exploratory analyses showed that participants in both conditions preferred non-physical 701 

activities over physical activities.  702 

  These unexpected findings could be explained by several unanticipated effects of our 703 

experimental manipulations. While we aimed to specifically induce fatigue in the high WML 704 

condition, we actually induced fatigue and boredom in both conditions and even evoked 705 

slightly stronger feelings of boredom in the low WML condition than in the high WML 706 

condition. Similar findings have been reported in previous research and it seems that 707 

prolonged periods of vigilance on a repetitive task (e.g., the n-back task) evoke feelings of 708 

both fatigue and boredom (Milyavskaya et al., 2019; Pattyn et al., 2008). Given the 709 

overlapping motivational consequences of fatigue and boredom, this could explain why 710 

participants in both conditions preferred not to be physically active after either of the 711 

experimental conditions.  712 

  A different but related issue is the moderating effect of session order we found. Only 713 

participants who underwent the high WML condition first were significantly less likely to 714 

select physical activities after the low WML condition. While the session order was 715 

counterbalanced and several precautions were taken to prevent any carry-over effects (e.g., a 716 

48-hour interval between two sessions), the order of sessions mattered for the experimental 717 

effect. One possibility is that familiarity with the experimental procedure caused this 718 

moderating effect of session order.  719 

  In this light, it is interesting that participants’ initial preferences for physical or non-720 

physical activities strongly related to the proportion of physical activities they chose after the 721 

experimental manipulations. It seems that, irrespective of the subjective experiences of 722 



fatigue and boredom that were evoked by the manipulations, participants chose in line with 723 

their already existing preference for either physical or non-physical activities. This suggests 724 

that personal preferences for physical or non-physical activities are robust and relatively 725 

unaffected by aversive subjective states such as fatigue and boredom.  726 

General Discussion 727 

In two experiments, we investigated the impact of cognitive work demands on 728 

subsequent physical activity behavior. Cognitive work demands were operationalized as 729 

workload (i.e., quantity) in Experiment 1 and as working memory load (i.e., task complexity) 730 

in Experiment 2. While it was hypothesized that cognitive work demands would negatively 731 

affect physical activity choices and physical performance, this was not found in either of the 732 

experiments. Therefore, it seems best to conclude that neither Experiment 1 nor Experiment 2 733 

provide evidence for a negative impact of cognitive work demands on subsequent physical 734 

activity behavior.  735 

 Our findings appear in contrast to a previous study reporting a negative indirect effect 736 

of a cognitively demanding task on subsequent activity choices (Harris & Bray, 2019) and a 737 

previous meta-analysis reporting a negative effect on physical performance (Brown et al., 738 

2019). A possible explanation for this discrepancy might be that while participants in the 739 

current study experienced the conditions with high cognitive demands to be more demanding, 740 

this did not result in the assumed elevated increases in subjective fatigue (van der Linden, 741 

2011b). While fatigue increased in both conditions, this increase was not stronger in the more 742 

demanding conditions. It is important to note that also Harris and Bray (2019) found no direct 743 

effect of cognitive demands on the subsequent decision to exercise but only report an indirect 744 

effect through cognitive fatigue and cost-benefit scores. Moreover, while Brown and 745 

colleagues (2020) focused on the direct impact of cognitive demands on physical 746 

performance, 42 of the 73 included studies measured subjective cognitive fatigue and in 30 of 747 



these studies, significant increases in cognitive fatigue were reported. The absence of an 748 

effective fatigue manipulation in the present study could therefore explain why the expected 749 

impairing effect of cognitive work demands on physical activity behavior was not observed. 750 

Within the cost-benefit analyses for engaging in activities, fatigue is thought to increase the 751 

weight assigned to effort-costs, resulting in a reduced likelihood to engage in (physically) 752 

effortful activities (Müller & Apps, 2019). As fatigue was not effectively manipulated in our 753 

experiments, we can neither accept nor reject this cost-benefit assumption. In the absence of 754 

different increases in fatigue, our results do not show that individuals prefer less effortful, 755 

non-physical activities, over more effortful physical activities, after performing an effortful 756 

cognitive task. Rather, they simply choose the activities they like best. This result is 757 

noteworthy for several reasons.   758 

First, these findings provide support for the conclusion of Harris and Bray (2019) that 759 

the individual experiences of cognitive fatigue, rather than the demanding characteristics of 760 

the cognitive task, influence subsequent physical behavior. Similar to Harris and Bray (2019), 761 

we found no evidence for a direct effect of cognitive demands on subsequent activity choice 762 

behavior while manipulating different types of cognitive demands (i.e., workload and WML 763 

instead of inhibition) and while using a more thorough activity choice task (i.e., 60 paired 764 

choices instead of one). These insights provide a critical perspective to the conclusions of 765 

Brown and colleagues (2020), who stated that cognitive exertion leads to reductions in 766 

physical performance. Our findings, together with those of Harris and Bray (2019), suggest it 767 

to be more realistic that the studies included in their meta-analysis evoked cognitive fatigue, 768 

which then resulted in the reductions in physical performance. While this assumption cannot 769 

be tested (only 42 of the 73 studies measured cognitive fatigue), our findings highlight the 770 

importance to disentangle the effect of cognitive demands from that of cognitive fatigue on 771 

subsequent physical behavior.  772 



Importantly, our study reveals limitations in the conceptualization of cognitive 773 

fatigue. Within our experiments, two types of cognitive demands (i.e., workload and WML) 774 

were successfully manipulated. However, this did not result in stronger increases of cognitive 775 

fatigue in the more demanding conditions. It is hard to pin-point the exact origin of this 776 

ineffective fatigue manipulation. The relatively long duration of the manipulations (i.e., 45-777 

90 minutes) could have caused the low demanding condition to be fatiguing as well. At the 778 

same time, exploratory analyses suggest that under-arousal in the low demanding condition 779 

elicited feelings of boredom, which experiential properties and motivational consequences 780 

strongly overlap with those of cognitive fatigue (Milyavskaya et al., 2019). Importantly, this 781 

is not the only study where a manipulation in cognitive demands does not elicit the expected 782 

changes in self-reported cognitive fatigue (see for example Brown et al., 2019; Massar et al., 783 

2010). This underscores the importance to further refine the current conceptualization of 784 

cognitive fatigue as a state resulting from prolonged cognitive effort exertion (Müller & 785 

Apps, 2019). The current conceptualization does not describe the precise circumstances under 786 

which cognitive effort expenditure results in cognitive fatigue, boredom or a neutral state. 787 

Moreover, the definition is not clear with regard to the precise type, duration, and intensity of 788 

cognitively demanding tasks that elicit cognitive fatigue. Our findings therefore provide an 789 

empirical call for a clearer and more testable conceptualization of cognitive fatigue. This will 790 

be crucial for advancing our understanding of the possible carry-over effects of cognitive 791 

work demands and cognitive fatigue on subsequent physical behavior.  792 

  Second, our findings shed new light on the psychology of physical activity behavior. 793 

Our study highlights the importance to consider personal liking of the activities on offer. Our 794 

exploratory analyses indicated that liking of activities predicts physical activity behavior 795 

above and beyond exposure to cognitively demanding work. Evidently, liking of activities 796 

weighs heavily in the cost-benefit analysis underlying the decision to engage in physical 797 



activity. This could explain why intrinsic exercise motivation is a strong predictor of physical 798 

activity participation in field studies (Teixeira et al., 2012). The experiential properties of 799 

engaging in physical activities out of intrinsic reasons (e.g., enjoyment and fun) seem to 800 

outweigh many possible costs. This mechanistic account of motivation for physical activity 801 

(i.e., cost-benefit) has a strong potential for application in physical activity promotion. It 802 

suggests that personal barriers (e.g., effort) and facilitators (e.g., enjoyment) of physical 803 

activity should never be considered in isolation but always relative to each other.  804 

 Strengths of the present work are the controlled experimental procedures including 805 

several validation checks. Moreover, the combination of two experiments allowed us to both 806 

identify and address potential shortcomings such as the quality of the manipulation. At the 807 

same time, several limitations provide interesting opportunities for future research. First of 808 

all, our study has shown that more cognitively demanding work does not necessarily lead to 809 

stronger increases in subjective cognitive fatigue. Manipulating cognitive fatigue will be 810 

important for better understanding the impact of cognitive fatigue on subsequent physical 811 

activity behavior. To successfully do so, the fatigue inducing effects of the experimental and 812 

control condition should differentiate more strongly. This may be obtained by selecting more 813 

fatiguing tasks for the experimental condition (for examples, see Lin, Saunders, Friese, 814 

Evans, & Inzlicht, 2020; O’Keeffe, Hodder, & Lloyd, 2020; Smith, Chai, Nguyen, Marcora, 815 

& Coutts, 2019), by limiting the fatiguing effects of the control condition (e.g., performing 816 

leisure activities such as watching a documentary), or by a combination of the two. Such 817 

study designs will enable researchers to disentangle the impact of cognitively demanding 818 

work from the impact of cognitive fatigue on physical activity behavior. Second, insight into 819 

activity choice behavior could be advanced by matching activities based on their absolute 820 

liking instead of their within-category rankings. Moreover, the (predicted) effort levels of 821 

each activity (i.e., costs) should be incorporated in the choice task. The current choice 822 



paradigm was a step forward towards valid activity-choice assessment since it was the first to 823 

explicitly take personal liking of activities into account. However, our findings imply that for 824 

accurately capturing activity category preferences (i.e., physical or non-physical) from a cost-825 

benefit perspective, the activities to choose from should be matched on their absolute liking 826 

scores while controlling for the effort requirements of each activity. Combining an improved 827 

fatigue manipulation with an improved choice-task will advance our understanding of the 828 

cost-benefit analyses underlying physical activity choice behavior. Specifically, it will allow 829 

researchers to unravel the possible interactions between fatigue, effort and liking of activities 830 

as well as the way they feed into the cost-benefit analyses.  831 

  To conclude, this study improves our understanding of physical activity behavior. Our 832 

study questions the effect of cognitively demanding tasks on subsequent feelings of cognitive 833 

fatigue and physical behavior. Furthermore, findings from exploratory analyses highlight the 834 

robustness of individuals’ preferences for activities, even after periods of cognitively 835 

demanding work. This stresses the importance of taking personal liking of activities into 836 

account when investigating and promoting physical activities. Importantly, these latter 837 

findings need to be replicated in future studies. Theoretically, the cost-benefit approach has 838 

high potential to improve our understanding of the motivation for physical activity. While its 839 

predictions with respect to physical activity behavior demand further testing, the mechanistic 840 

approach towards physical activity motivation is promising. The approach requires specificity 841 

in prediction and precision in measurement, which will be crucial for advancing our 842 

understanding of physical activity motivation. In this respect, researchers and healthcare 843 

providers are advised to disentangle how exactly liking, effort requirements and fatigue feed 844 

into the decision to engage in physical activities. Such insights will be crucial for improving 845 

the effectiveness of global physical activity promotion.  846 

  847 
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Appendix 1031 

Table A1.  1032 

Choice behavior and liking scores of activities per group and per activity-category. 1033 

Note. WML = Working Memory Load 1034 
aTheoretical range for all variables was 0-100. bAll tests of significance were performed using (parametric) bootstrapping.  1035 
*p < .05, **p < .01 1036 

  1037 

  Experiment 1 (N = 40)  Experiment 2 (N = 63) 

Variablea  High workload Low workload Significanceb  High WML Low WML Significanceb 

% Physical activities chosen  52.86 (26.76) 34.56 (22.04) *  31.58 (46.49) 27.12 (44.47) n.s. 

% High ranked activities chosen  86.03 (8.30) 86.14 (6.33) n.s.  84.84 (7.09) 84.22 (7.77) n.s. 

Liking of physical activities  50.62 (27.12) 46.23 (30.59) n.s.  44.55 (27.92) 
** Liking of non-physical activities  49.96 (28.87) 49.09 (31.87) n.s.  52.96 (30.97) 
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Table A2. 1038 

Liking Difference Scores per Condition and per Chosen Category. 1039 
 1040 
 1041 
 1042 
 1043 
 1044 
 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 
 1058 

Note.  Liking difference scores were calculated as: VAS liking score of chosen activity – VAS liking score of unchosen  1059 

activity. Scores that are closer to zero represent a stronger match on absolute liking-scores. Moreover, a positive score  1060 

indicates that participants chose activities they liked better while a negative score indicates the opposite. 1061 

  Experiment 1  Experiment 2 

Trialtype       

Between-category Chosen activity High Workload Low Workload  High WML Low WML 

 Physical activity      
  Mean(SD) 9.17(18.54) 6.86(17.94)  3.93(19.71) 4.63(19.94) 
  Range -47.48 – 49.91 -71.96 – 49.22  -57.47 – 73.27 -81.25 – 73.27 
 Non-physical activity      
  Mean(SD) 8.87(17.73) 8.00(21.34)  12.55(20.48) 10.77(21.38) 
  Range -43.75 – 48.96 -49.22 – 80.12  -74.83 – 65.97 -74.83 – 85.42 
Within-category       

 Physical activity      
  Mean(SD) 21.71(28.51) 29.76(32.50)  27.57(30.96) 25.36(32.24) 
  Range -83.77 – 87.68 -78.65 – 99.91  -79.34 – 100  -93.14 – 100  
 Non-physical activity      
  Mean(SD) 33.42(32.55) 37.23(35.78)  34.91(35.87) 34.92(36.27) 
  Range -74.39 - 100 -80.99 – 92.97  -100 – 100  -100 – 100  


