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Abstract
Recent studies suggest per‐ and polyfluoroalkyl substances (PFAS) are ubiquitous
in rivers worldwide. In the Asia‐Pacific region, the frequency of PFAS detection
in rivers is increasing. However, the overwhelming majority of studies and data
represent high population and urbanized river catchments. In this study, we
investigate PFAS occurrence in major Philippines river systems characterized by
both high and low population densities. In the Pasig Laguna de Bay River, which
drains a major urban conurbation, we detected PFAS at concentrations typical of
global rivers. Unexpectedly, we did not detect PFAS in river water or sediments in
low population density river catchments, despite our instrument detection limits
being lower than the vast majority of river concentrations reported worldwide.
We hypothesize that septic tanks, as the dominant wastewater treatment practice
in Philippines catchments, may control the release of PFAS into groundwater and
rivers in the Philippines. However, no groundwater PFAS data currently exist to
validate this supposition. More broadly, our findings highlight the need for more
representative PFAS sampling and analysis in rivers to more accurately represent
regional and global detection frequencies and trends.
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1 | INTRODUCTION

Per‐ and poly‐fluoroalkyl substances (PFAS), commonly
termed “forever chemicals,” are a group of more than
14,000 chemicals (U.S. EPA, 2022) first manufactured in
the 1940s and now detected in environments, wildlife, and
humans worldwide (Evich et al., 2022; Ng et al., 2021). The
oil‐ and water‐repellent characteristics of PFAS, as well as
their high thermal stability, have led to widespread appli-
cations in industry (e.g., polymer manufacture, surfactants,
electronics) and in everyday consumer products (e.g.,
cookware, food packaging, personal care products, and
textiles) (Glüge et al., 2020). The critical concern with
PFAS is toxicity to humans and wildlife (Cathey
et al., 2023; Grandjean et al., 2023; Pitter et al., 2020;
Sheng et al., 2018; van Gerwen et al., 2023; Zhang
et al., 2021), which is exacerbated by their extreme per-
sistence (100 s to 1000 s of years) and long‐range transport
in the environment (Cousins et al., 2022).

Much research has focused on PFAS occurrence in
rivers given their importance as sources of water (drinking
and irrigation) and food (fish, shellfish, and plants), and

because rivers and their catchment drainage processes
control the transport of chemical compounds including
PFAS from source areas to sensitive receptors, and ulti-
mately to the oceans (Byrne et al., 2024). A recent synthesis
of global surface and groundwater data (n=>45,900
samples) published in the journal Nature Geoscience
(Ackerman Grunfeld et al., 2024) concluded that PFAS are
pervasive in surface water and groundwater worldwide.
However, almost all of these samples represent urbanized
and densely populated river catchments, and postindustrial
and agricultural landscapes in the Global North. In the
Asia‐Pacific region, PFAS detection in environmental
matrices (air, soil, sediment, water) is reported to be
increasing (Baluyot et al., 2021; Kurwadkar et al., 2022;
UNEP, 2017). However, sample points are typically fo-
cused on rivers with high population densities, leading to
poor data coverage, especially in tropical river catchments
with low population densities.

The Philippines (Figure 1) exemplifies many Asia‐
Pacific nations experiencing rapid urbanization and
population growth. In the Second Global Monitoring
Report on Persistent Organic Pollutants (UNEP, 2017), the

FIGURE 1 Map of study catchments in the Philippines, showing the location of the Philippines (a) (Global Administrative Areas (2022)), the location
of the study catchments on the island of Luzon (b) (ESRI (2024) and Boothroyd et al., 2023), the annual rainfall in 2021 in the study catchments
(c) (Huffman et al., 2014), land cover in the study catchments (d) (NAMRIA, 2021), and the population density of the study catchments (e) (River Basin
Control Authority (2014) and Philippine Statistics Authority (2023)).
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Stockholm Convention reported widespread PFAS con-
tamination in rivers in the Asia‐Pacific region
(UNEP, 2017). However, in the Philippines, PFAS data are
limited to one surface water body supplying drinking water
to an urban conurbation (Metro Manila) (Guardian
et al., 2020; Sevilla‐Nastor et al., 2022). There exists no
data on PFAS occurrence in any other Philippines surface
waters, including rivers. Yet, representative sampling of
PFAS occurrence in Philippines rivers is critically impor-
tant as approximately 36% of rivers are utilized for public
water supply (The World Bank Group, 2003). In this
Perspective, we present preliminary findings and interpre-
tations from the first regional‐scale assessment of PFAS
occurrence in major Philippines rivers.

2 | METHODOLOGY

2.1 | Study location

Our investigation focussed on five of the 18 major Philippines
catchments classified by the National Water Resources
Council based on their size (i.e., catchments with a land area
greater than 1400 km2) and importance for water supply and
biodiversity (Figure 1; Tabios, 2020). The study catchments
are located in the island of Luzon, namely: the Abra River
Basin, Agno River Basin, Apayao‐Abulug River Basin,
Cagayan River Basin, and Pasig‐Laguna de Bay River Basin.
Catchment areas range from 4000 to 27,500 km2 and the
Pasig‐Laguna de Bay catchment has a large urban extent
(22.2%) and high population density (3295/km2) (Table 1),
compared to the other four catchments (urban extent: 1.1%
to 4.3%; population density: 136 to 235/km2).

2.2 | Sampling methods

A summary of samples collected and catchment character-
istics is presented in Table 1. In each catchment, two river
water samples (replicates) were collected near the catchment
outlet using 250mL high‐density polyethylene (HDPE) bot-
tles, as recommended by U.S. EPAMethod 1633 to minimize
potential contamination from sample bottles (U.S.
EPA, 2024). Sampling was conducted just below the water
surface, in the thalweg, and upstream of each tidal limit. In
the Agno catchment, three sediment samples were also col-
lected. One sample was collected from sediment deposited on
the floodplain and interpreted to be from a recent high flow
event. A second sample was collected from the surface of a
geomorphologically active bar (1 cm depth), and a third
sample was collected from the subsurface beneath the bar
(20 cm depth). Five subsamples were retrieved from each
sample location using a stainless‐steel trowel. PFAS‐free de‐
ionized water field blanks were also collected in each catch-
ment to ensure that collection procedures and sample storage
did not contaminate the samples. All samples were stored in
fridges (at 4°C) and transported in cool boxes before analysis
in the United Kingdom (UK).

2.3 | Sample extraction and analysis

A detailed description of laboratory analytical procedures
is provided in the supporting information. Briefly, water
and sediment samples were extracted in a commercial
laboratory (ALS Laboratories (UK) Ltd) using accredited
methods TM337 (ALS Laboratories Ltd, 2022a) and
TM338 (ALS Laboratories Ltd, 2022b) for water and
sediment samples, respectively. Samples were spiked with
isotopically labeled standards and then extracted by solid‐
phase extraction (SPE). Samples were then analyzed for 50
and 22 PFAS compounds in water and sediment (Table S1
and Table S2), respectively, using isotope dilution high
performance liquid chromatography‐tandem mass spec-
trometry (HPLC‐MS/MS). The limits of detection (LOD)
ranged from 0.65 ng L−1 PFOA to 10 ng L−1 EtFOSE in
river water and 1 ng g−1 PFOA to 20 ng g−1 5:3 FTCA in
river sediment. No contamination of field or laboratory
blanks was detected.

3 | ANALYSIS

Eight PFAS out of the 50 targeted compounds were
detected in river water in the Pasig‐Laguna de Bay River
which flows through Metro Manila. The compounds
detected (range = 1.49 to 9.28 ng L−1) were 6:2‐
fluorotelomer sulfonic acid (6:2 FTS), perfluorohexanoic
acid (PFHxA), perfluoroheptanoic acid (PFHpA), per-
fluorooctane sulfonic acid (PFOS), perfluorooctanoic acid
(PFOA), perfluorohexanesulfonic acid (PFHxS), per-
fluorobutanoic acid (PFBA), and perfluorobutane sulfonic
acid (PFBS) (Table S1). To aid interpretation, we draw a
comparison of four PFAS (PFBA, PBFS, PFOA, PFOS)
detected in the Pasig Laguna de Bay River with data from
the River Mersey, UK (Byrne et al., 2024), which has a
similar catchment area (4680 km2) and high population
density (1068/km2), and a synthesis of global surface water
data presented by Calore et al. (2023). Concentrations
observed in the Pasig Laguna de Bay River (Figure 2,
Table S3) are broadly similar to median concentrations
from the global (Calore et al., 2023) and high population
density (Byrne et al., 2024) datasets. The range of con-
centrations in the global data set is considerable and
demonstrates large variability in surface water concentra-
tions in rivers worldwide.

Unexpectedly, PFAS were not detected (LODs = 0.65
to 2 ng L−1) in river water in the Abra, Apayao‐Abulog,
Agno, and Cagayan catchments, and no PFAS were
detected in the sediments of the Agno (LODs = 1 to
20 ng g−1). Importantly, LODs in the present study are
lower than 84% (PFBS) to 97% (PFOA) of the surface
water concentrations reported by Calore et al. (2023)
(Table S3), indicating PFAS are either not present in these
rivers or at undetectable concentrations. This apparent
absence of PFAS in major Philippine rivers (water and
sediments) outside of Metro Manila is surprising given the
well‐documented global spread of these compounds
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(Ackerman Grunfeld et al., 2024; Cousins et al., 2022) and
the increased detection of PFAS in environmental matrices
in the Asia‐Pacific Region (Kurwadkar et al., 2022). We
offer three hypotheses to explore our findings.

3.1 | PFAS transport in the Philippines
catchments is constrained by connectivity and
wastewater management practices

Effluents (treated and untreated) from sewage treatment
plants (STPs) are one of the main sources of PFAS to
rivers worldwide and an efficient transport pathway for
PFAS source areas to rivers (Calore et al., 2023; Comber
et al., 2020). In our study, we identified 55 STPs in the
Pasig Laguna De Bay catchment but there are no STPs in
the Agno, Abra, Cagayan, and Apayao‐Abulog catch-
ments as far as we are aware (NEDA (2021); Table S4).
Although the population density of these four catchments
is low, they still have large total populations (Table 1)
served primarily by septic tanks (more than 70% of
households in the Philippines are served by septic tanks)
(World Bank and Australian Aid, 2013). Septic tanks are
an important source of PFAS to groundwater and the
unsaturated (vadose) zone between soils and groundwater
can accumulate large stores of PFAS from septic tanks
(Schaider et al., 2016; Silver et al., 2023). Release of this
PFAS into groundwater might not occur for decades to

centuries, with the hydraulic time scale of transport to
rivers depending on the transmissivity of the aquifer
(Ascott et al., 2017). In theory, PFAS‐contaminated
groundwater may not yet have reached some major river
systems in Luzon. It follows that at some point in the

TABLE 1 River catchment area, population density, annual rainfall, and urban extent for the five study catchments in Luzon, Philippines.

Catchment Sample location Sample ID
Population
(thousands) Area (km2)a

Pop.
density (/km2)b

Average annual
rainfall in 2021
(mm yr−1)c

Urban
extent (%)d

Apayao‐Abulog,
Philippines

18.201846° N
121.252458° E

L‐N3‐WAT‐R1
L‐N3‐WAT‐R2
L‐N3‐WAT‐BL

554 4071 136 1936 1.2

Abra, Philippines 17.333308° N
120.273837° E

L‐N4‐WAT‐R1
L‐N4‐WAT‐R2
L‐N4‐WAT‐BL

669 4919 136 2727 1.1

Cagayan, Philippines 18.072064° N
121.402073° E

L‐N2‐WAT‐R1
L‐N2‐WAT‐R2
L‐N2‐WAT‐BL

4271 27558 155 1870 2.1

Agno, Philippines 15.532796° N
120.151319° E

L‐N1‐WAT‐R1
L‐N1‐WAT‐R2
L‐N1‐WAT‐BL
L‐N1‐SED‐FP
L‐N1‐
SED‐SUR
L‐N1‐
SED‐SUB

1452 6179 235 2602 4.3

Pasig‐Laguna de Bay,
Philippines

14.335474° N
121.042326° E

L‐N5‐WAT
L‐N5‐WAT‐BL

13,526 4105 3295 2445 22.2

Note: Key for samples: L = Luzon; N1‐5 = river catchment; WAT = water sample; SED = sediment sample; R1‐2 = replicate samples; BL = blank sample; FP = floodplain
sediment; SUR = river channel surface sediment; SUB = river channel subsurface sediment.
aPhilippines data was obtained from Boothroyd et al. (2021).
bRiver Basin Control Authority (2014) and Philippine Statistics Authority (2023).
cHuffman et al. (2014).
dNAMRIA (2021).

FIGURE 2 Comparison of PFAS (PFBA, PFBS, PFOA, PFOS)
detected in the Pasig‐Laguna de Bay River (Manila, Philippines) (n = 1)
with the River Mersey (United Kingdom) (n = 33) (Byrne et al., 2024) and
a global data set (mean values, n= 47) (Calore et al., 2023). Diamond
symbols represent outliers and asterisks represent the limits of detection
(LOD) for the Philippines river water analysis.
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future PFAS‐contaminated groundwater may ‘break-
through’ and impact river water quality, as is happening
with nitrate in many countries where intensive use of
fertilizers in the past has caused leaching to groundwater
over decades and relatively slow transport to rivers
(Abascal et al., 2022; Byrne et al., 2014).

3.2 | River catchment population density and
urban extent are important controls on the
occurrence of PFAS in rivers

In our study, PFAS were only detected in the Pasig River
(Metro Manila). This river catchment has an average popu-
lation density of 3295 persons per km2 (range = ~1000 to
>40,000 persons per km2) and an urban extent of 22.2%
(Figure 1 and Table 1). In contrast, the Apayao‐Abulog, Abra,
Cagayan, and Agno catchments have average population
densities ranging from 136 to 235 persons per km2 and urban
extents ranging from 1% to 4% (Figure 1 and Table 1). It is
worth hypothesizing, therefore, that the non‐detection of
PFAS in four of our five study catchments in Luzon may be
explained by their low population densities and urban extent.
In the USA and Sweden, recent national‐scale studies found
people living in urban areas have higher probabilities of PFAS
exposure in drinking water and soil, respectively (Smalling
et al., 2023; Sörengård et al., 2022). Of course, the presence of a
centralized sewerage system in Metro Manila may serve to
efficiently route PFAS from catchment source areas to the
river, as described previously. However, only about 15% of
households in Manila are connected to a sewerage system and,
importantly, industrial and commercial activities are also likely
to be sources of PFAS to the Pasig River (Jalilov, 2018).
Furthermore, although the population density of catchments
outside of Manila is low, the total population of these catch-
ments is still large (Table 1) with clusters of high population
centers served primarily by septic tanks.

3.3 | PFAS are present in Philippines rivers,
but not detectable with our analytical approach

It is surprising that we did not detect PFAS in river water and
sediment samples outside of Metro Manila. Our sampling
campaign took place during the dry season in Luzon
(November to April) when we expected solute and chemical
concentrations in river water to be highest due to reduced
dilution. If pollution events were transient, for example,
associated with rainfall, we would expect to detect PFAS in
river sediments which are more resilient to seasonal hydro-
logical and biogeochemical processes that drive variability in
river water concentrations. Although our sample sites were
situated close to the catchment outlets, PFAS entering the
rivers from upstream sources (e.g., groundwater or runoff
from agricultural land) may have undergone dilution within
the river channel, causing non‐detection at our sample sites.
However, the LODs for PFAS in our study were well below
typical river and surface water concentrations (e.g.,

Ackerman Grunfeld et al., 2024; Byrne et al., 2024; Calore
et al., 2023; Figure 2), so if PFAS were present, we would
have expected to detect them. Our analytical approach uti-
lized a targeted method to quantify concentrations of a lim-
ited number of PFAS compounds (50 in water and 20 in
sediment samples). As a result, it is possible that other PFAS
compounds were missed and suspect screening using non-
targeted or total PFAS analysis (e.g., TOP Assay) may be
preferable to confirm the presence or absence of PFAS in
rivers (Ateia et al., 2023).

4 | CONCLUSIONS

In this Perspective, we report no detectable PFAS (<0.65 to
<2 ng L−1 in water and <1 to <20 ng g−1 in sediment) in four
of our five study rivers in the Philippines. This is despite
concern that PFAS are ubiquitous in surface water worldwide
and detection frequencies are increasing, in particular in
the Asia‐Pacific region. If we assume PFAS are ubiquitous in
rivers, then where are they? We hypothesize that the delayed
and dispersed release of PFAS into groundwater via septic
tanks in low population density river catchments might ex-
plain this result. Unfortunately, as far as we are aware, no
data exists on PFAS occurrence in groundwater in the Phil-
ippines. Our findings highlight the need for more represent-
ative PFAS sampling and analysis in Philippines river
catchments, and more broadly throughout the Asia‐Pacific
region. Furthermore, in river catchments where wastewater
management is dominated by septic tanks, we suggest that
groundwater should be tested for PFAS, preferably using
both targeted and nontargeted analytical methods.
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