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Abstract 

Background 

In the United Kingdom (UK) patients who require intravenous antimicrobial (IVA) treatment may 

receive this in the community through outpatient parenteral antimicrobial therapy (OPAT) services. 

Services include: IVA administration at hospital out-patient clinic (HO); at home by a general (GN) or 

specialist nurse (SN); or patient self-administered (SA) following training. There is uncertainty 

regarding which OPAT services represent value for money; this study aimed to estimate their cost-

effectiveness.  

Methods 

A cost-effectiveness decision-analytic model was developed using a simulation technique utilising 

data from hospital records and a systematic review of the literature. The model estimates cost per 

quality-adjusted life year gained (QALY) from the National Health Service (NHS) perspective for short 

and long term treatment of infections and service combinations across these. 

Results 

In short term treatments, HO was estimated as the most effective (0.7239 QALYs) but at the highest 

cost (£973). SN, was the least costly (£710) producing 0.7228 QALYs. The combination between SN 

and HO was estimated to produce 0.7235 QALYs at a cost of £841. For long term treatments, SN was 

the most effective (0.6767 QALYs) costing £2,379 while SA was the least costly £1,883 producing 

0.6660 QALYs. A combination of SA and SN was estimated to produce 0.6721 QALYs at a cost of 

costing £2,128. 

Conclusion 

SN and SA are cost-effective for short term and long term treatment of infections. While combining 

services may represent the second best alternative for OPAT in the UK. 
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Introduction 

There is increased interest in the UK in offering patients who require intravenous 

antimicrobials (IVA), outpatient or community-based services rather than inpatient care.1–3  

Such outpatient parenteral antimicrobial therapy (OPAT) services are most often used to 

treat skin and soft tissue infections. However, facilitated by newer antibiotics with longer half-

lives, a number of others disease: joint and bone infections, bacteraemia, osteomyelitis, 

diabetic foot and tuberculosis can be treated safely in an outpatient or home setting.4 

Some authors have estimated that an OPAT service could reduce treatment costs by 

reducing bed days. A UK study by Chapman et al. (2009) found that OPAT reduced inpatient 

costs by 47%,3 while another study in the UK reported that 7,394 bed days were saved over 

a period of 44 months; assuming a National Health Service (NHS) bed day costs of £208 

(2015 prices) the associated potential savings would be over £1.5 million.5,6  

In terms of safety, evidence has shown that OPAT has been associated with a low risk of 

adverse events including hospital re-admissions and line complications including infections 

and minor episodes of redness in the application site.1,7–9 In addition, no difference in time to 

heal between OPAT and inpatient care has been observed, however, there are no 

randomised control trials (RCT) comparing  the different OPAT services on offer.1,10 A 

systematic review of the literature on cost-effectiveness analyses of OPAT services, found a 

number of cost-effectiveness studied but none that would meet the technology appraisal 

reference case criteria set out by the National Institute of Health and Care Excellence 

(NICE)11 in the UK.  

Despite the benefit of OPAT, service provision in the UK has been limited. It is possible that 

the evidence-gap on the models of care in the area has hindered investment from decision-

makers and service commissioners. In the absence of RCT evidence and robust economic 

evaluations to commend one OPAT service over another, commissioning decision making in 

the area is fraught with uncertainty and barriers to the wider adoption of services remain. It is 

clear that further research is required to inform decision making. However, given that research 
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resources are scarce and RCTs often expensive and relatively slow to yield results, it is 

imperative that they are streamlined to answer the important questions and include the 

comparators most-likely to be cost-effective. This is especially true in OPAT services where a 

number of service configurations are possible.  

There are a number of different OPAT service models currently in use in the UK but can be 

classified as follows: daily IVA delivery at hospital or clinic in an outpatient visit (HO); daily 

IVA delivery at home by nurse (general -GN- or specialist -SN-); and daily patient-

administered IV antibiotics at home following receipt of training (SA).  

The aim of the current study was to develop a decision-analytic model to estimate the cost-

effectiveness of the four OPAT services offered in the UK (HO, GN, SN and SA) to provide 

evidence for decision-making.  

Methods 

A decision-analytic model employing a discrete event simulation (DES) approach was 

developed. Decision modelling is an analytical approach to performing an economic 

evaluation of at least two alternative courses of action and determines which offers best 

value for money. Such a model is created to reflect the healthcare process or pathway, 

capturing the events that occur to the patient or health system during care and estimating 

the expected costs and (dis)benefits of the treatment options.  

Many modelling methods exist,12 but with DES it is possible to follow individual patients 

through the duration of their treatment, explicitly accounting for time and treatment history. 

Within the context of IVA it allows to assess time-related risks and by recording their 

treatment history we were able to easily add events such as relapses which are difficult 

when using other types of methods. This allows for a better estimation of the overall impact 

of the services being evaluated. The DES model followed the methods outlined by J Caro et 

al. (2016)13. 
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Two economic evaluations, for short and long term IVA treatments, were performed. The 

evaluations followed established methods, adhered to the NICE ‘reference case’11,14 and 

therefore adopt the NHS perspective (costs considered were those incurred by the NHS 

only). Patient pathways were modelled over a twelve month period.  

To incorporate the impact of treatment on the health related quality of life of the patients and 

the length of time in a condition, the model uses quality-adjusted life years (QALYs) as an 

outcome measure. The QALY is a measure that encapsulates both quality and length life 

and is widely used in health economics.15 By estimating the incremental costs (costs of 

intervention A minus costs of intervention B) and dividing them by the incremental outcomes 

(outcomes of intervention A minus outcomes of intervention B), we generate the incremental 

effectiveness ratio (ICER), which is used to assess cost-effectiveness.16 In line with current 

UK guidelines, services with an ICER <£20,000 per QALY gained were considered cost-

effective. To allow a linear comparison between interventions only in monetary terms and to 

aid in the determining cost-effectiveness, the Net Monetary Benefit (NMB) was also 

calculated (QALY*£20,000-Cost). A cost-effective strategy will have the highest NMB. Costs 

were not discounted as the evaluations period was of 12 months only. QALYs gained during 

treatment were not discounted, however QALYs lost due to premature death were 

discounted at a 3.5% rate. All prices are presented in pounds sterling 2015.  

Population  

We defined short term treatment as that required for skin and soft tissue (SSTI) or similar 

infections, usually taking between 4 and 7 days to heal (depending on the service) of IVA to 

heal or transition to oral antibiotics. We defined long term treatment as that required for bone 

infections infective exacerbations of cystic fibrosis and other infections for an average of 

more than seven days to heal. 

Interventions  
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In the HO service, patients attend a hospital outpatient clinic to receive treatment on a daily 

basis, while in the GN and SN services, nurses administer the IVA at the patient’s home 

every day. In contrast to GN, the SN team of nurses only deliver IVAs. Only HO, GN and SN 

were compared when analysing patients requiring short term treatments, as the SA model 

was unlikely to be offered to (or demanded by) this patient group. The evaluation for long 

term treatment compare the four service strategies (HO, GN, SN and SA). 

The HO service was considered the ‘standard’ OPAT care in the UK even though there is 

geographical variation in service provision. Interventions were initially compared against HO 

to evaluate its cost-effectiveness. If this analysis showed that it was not cost-effective, an 

incremental analysis (ordering interventions from the least costly) was carried out.  

An additional analysis combining the most cost-effective service with a relevant second best 

strategy was carried out; these assume that 50% of the patients in a particular clinic would 

receive one service and 50% would receive the other. This combined setting was compared 

against the most cost-effective single service intervention.  

Model structure 

Model structure was informed by a rapid review of published decision models and through 

discussions with patients and clinicians. Patients enter the simulation after been referred to 

an OPAT service and they are followed from this point in time on a daily basis until they are 

healed (or switched to oral antibiotics) or die. Although patients can experience a variety of 

severe adverse events, we chose to include only three in the model, due to their use of 

medical resources: anaphylactic shock, clostridium difficile infection (CDI) and intravenous 

line infection. Patients that experience any of these were subject to a mortality risk. Patients 

were also exposed to a daily risk of a mild adverse event (rash, nausea, vomiting, dizziness, 

fever and line obstructions or leaking, phlebitis, redness, swelling, pain at the site of access 

or minor line events). These incurred additional costs but no quality of life decrement or 

increase in healing time, as they are both mild and transient in nature. Some patients were 

assumed to ‘relapse’ and begin IVA again (Figure 1).  
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Figure 1. Simulation model structure 

*Model constructed using SIMUL8® 17 

 

 

Parameter Values - probabilities 

The patient’s transition through the treatment pathway depends on a series of probabilities. 

These, along with the costs and effects were taken from a number of sources including a 

systematic review9,18–24, expert clinical opinion and hospital records of a group of patients 

(n=465) who had recently received OPAT (sample characteristics in supplementary Table 

S1). Patients were recruited from 6 centres in England (Bradford, Huddersfield, Hull, Leeds, 

Oxford and Sheffield) which between them provided all the models of service studied; some 

offered more than one model. 

The measure of the service “effectiveness” was defined as the number of days of IVA 

treatment required. We derived these values from the hospital record data and applied 

adjusted ‘time-to-heal’ values for the base case analysis with sensitivity analyses exploring 

the same heal time across services. Not healed patients could travel to the CDI state 

according to a daily probability based on the time they spent in a hospital environment or in 
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contact with a GN or SN. It was assumed that HO patients had a greater chance of 

developing CDI compared to those treated at home. The smallest risk was for the SA service 

as they have less contact with a healthcare setting.  

An anaphylactic shock was assumed to require one day of in-hospital treatment after which 

the patient resume treatment. The daily risk of such episode was assumed equal across 

services. Risks of secondary infection of intravenous lines were related to the duration of 

treatment irrespective of the type of service received.  

A differential risk of mild adverse events was added for each service (from hospital record 

data). The base case analysis assumed that relapse rate was zero and equivalent between 

services. However, a sensitivity analysis was conducted where heal time was assumed 

equivalent but a differential relapse rate was adopted.  

Mortality  

Risk of death was only considered for those patients who had a severe adverse event. The 

daily mortality rate for patients with CDI was obtained from Wiegand et al. (2012) and was 

assumed the same for all services.22 The associated mortality risk for patients who had an 

anaphylactic shock was obtained from Hopf et al. (2008).19 This risk was assumed to be 

double for the home based services (SN, GN, SA) than for HO since patients experiencing a 

shock in hospital would receive more rapid access to intensive care. Lastly, the mortality risk 

for patients who had a secondary infection of intravenous lines was obtained from Thwaites 

et al. (2010) and was assumed the same for all services.23 

Parameter values - costs  

The costs of the services included: antimicrobials; additional expenses required for self-

administration (training and equipment); nurse (including paperwork and travel) and hospital 

visit for IVA delivery and reviews; additional healthcare resources used by the patient (e.g. 

GP visits); and costs associated with mild and severe adverse events (e.g. hospitalisation 

following secondary infection). Unit costs were obtained from the NHS reference cost 
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resource. Personal Social Services Research Unit (PSSRU) report and drug and 

pharmaceutical electronic market information tool (eMit).6,25,26   

The base case scenario assumes that one of the outpatient visits in the HO service will be 

led by an infection specialist, who will undertake an initial, review or discharge session. 

Patients in the GN, SN and SA, however, will have a discharge and a two-weekly review 

consultation with an infectious disease specialist (only for long term treatments). Only one 

infectious disease consultation was included for HO as it was assumed that they were being 

more closely monitored by attending the outpatient unit on a daily bases. To test the impact 

of these assumptions, a sensitivity analysis assuming that all services had an initial and 

discharge consultation with an infectious disease specialist was conducted.  

Parameter values –utility/quality of life 

Utility values were similar for short and long term treatments when healed but during the 

infection, the long term patients experienced a much larger utility drop.27–30 Since the 

mortality risk linked to adverse events presents a risk of reduced length of life, a lifetime 

QALY loss value (16.6) was estimated. This represented the discounted (at 0.035% per 

annum) total QALYs lost for individuals who died during the model horizon using an average 

starting age of 50, survival estimates from life tables and ‘healed’ utility values. Given the 

rarity of mortality, it was not considered worthwhile including extensive survival analysis. The 

probability, cost and utility parameter values can be found in supplementary (Table S2). 

Uncertainty 

A number of deterministic one-way and scenario sensitivity analyses were conducted: same 

healing times for all services; increased number of IVAs per day; changes in risk, mortality 

rates and healing time from adverse events; changes to the per hour nurse visit rate; bed 

day costs and changes in the utility values for the heal/not heal state as well as for the utility 

losses due to adverse events. We also tested a scenario in which all patients irrespective of 
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the service model, received an initial and a discharge consultation led by an infection 

specialist. 

Additionally, a probabilistic sensitivity analysis (PSA) was performed (2,000 Monte Carlo 

simulation runs) to allow for random changes in all parameter values at the same time based 

on pre-specified value distributions. Only 2,000 simulation runs were performed due to the 

computationally intensive nature of the simulation. To overcome the latter, Jackknife 

confidence intervals (CI) were estimated around the ICERs to determine if the number of 

iterations was sufficient to produce a robust answer. Jackknife is a tool to assess non-

parametric estimates of bias.31   

These simulated analyses results were plotted on a cost-effectiveness plane, where the 

vertical axis represents the simulated incremental costs, while the horizontal axis the 

incremental QALYs. The plane indicates the general spread of values and thus indicating the 

level of uncertainty in the results. The probability that services were cost-effective given a 

range of willingness to pay thresholds, however, was represented on a cost-effectiveness 

acceptability curve (CEAC).32 

Results 

Short term treatment 

The deterministic base case analysis shows that HO (£973) is more expensive than GN 

(£788) and SN (£710). HO is also less effective than SN (-0.001 QALYs) but more effective 

than GN (0.005 QALYs). This results in HO being dominated by SN (as SN is less costly and 

more effective) and in an incremental cost-effectiveness ratio (ICER) close to £40,000 per 

QALY gained when compared against GN. Suggesting that both SN and GN are cost-

effective when compared to HO individually (Table 1). The scatter plot comparing all 

interventions against HO confirms the results as most of the iterations from the PSA fall 

below the horizontal axis suggesting that SN and GN are generally cost-saving (Figure 2a).   
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An incremental analysis (ranking the interventions from the least to the most costly) based 

on the PSA was carried out. Given a £20,000 threshold, SN had the highest NMB, therefore 

was considered the most cost-effective strategy for short term treatments. The PSA 

estimated that in 79% of the iterations the NMB of SN was the highest of the three 

interventions (CEAC) (Figure 3a). A service providing both SN and HO result is more 

effective but more costly intervention than providing SN alone, but less costly and effective 

than providing HO alone (Table 1).  

Table 1. Probabilistic cost-effectiveness analysis for short term infections 

Intervention Costs QALYs ICER*  
 

Jackknife 95% CI** 
Net monetary 

benefit 
Result Lower bound Upper 

bound 

SN £710 0.7228       £13,745  Cost-effective 

GN £788 0.7193  n/a  n/a  n/a £13,597 Dominated 

SN 50%; HO 50% £841 0.7235 £182,493 £157,046 £206,302 £13,628 Not cost-effective 

HO £973 0.7239 £233,034 £196,077 £267,269 £13,505 Not cost-effective 

*ICER: Incremental analysis versus the next best strategy. 
**Jackknifing was undertaken to assess the uncertainty in the mean value to determine if the number of iterations 
were sufficient for non-dominated strategies. The 95% CI shows that this was the case.31ICER or Jackknife CI 
was not estimated for dominated strategies 

 

Long term treatment 

The deterministic analysis estimated that HO was the most costly (£5,135) strategy followed 

by GN (£2,957), SN (£2,379) while SA (£1,883) was the cheapest, suggesting that all 

strategies were cost saving compared to HO (Table 2). In terms of the effects, SN had the 

highest QALYs gained (0.678) followed by HO (0.667) and SA (0.666) while GN was had the 

lowest (0.655). The latter was confirmed in the scatter plot from the PSA since, comparing all 

interventions against HO show that all iterations fall below the horizontal axis (Figure 2b). 

 

 

 

 



12 

 

Figure 2. Scatterplot short and long term infections: all strategies versus HO 

a) Short term treatment 

 

 
b) Long term treatment 

 
Please note different y-axis scales to account for the difference in the costs between short and long term treatment 
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The incremental analysis indicated HO and GN were more costly and less effective than 

(and consequently dominated by) SN. When SA (cheapest option) was compared to SN, the 

estimated ICER was higher than the £20,000 per QALY gained threshold. Furthermore, the 

estimated NMB for SA was the highest of the four interventions. These results suggest that 

SA is the most cost-effective strategy for long term treatments. The PSA estimated that in 

70% of the iterations the NMB of SA were the highest of four interventions (Figure 3b).  

Combining SA-SN services was cheaper, but less effective than SN alone. The ICER 

showed that SA remained the most cost-effective strategy. Several SA-SN combination 

strategies (55:45; 60:40; 40:60 ratio) were analysed but none were more cost-effective than 

SA alone (Table 2).  

Table 2. Probabilistic cost-effective analysis for long term treatment 

*ICER: Incremental analysis versus the next best strategy. 
**Jackknifing was undertaken to assess the uncertainty in the mean value to determine if the number of iterations were 
sufficient for non-dominated strategies. The 95% CI shows that this was the case.31 
ICER or Jackknife CI was not estimated for dominated strategies 

 

 

 

 

 

 

 

 

 

 

 

Intervention Costs QALYs ICER* 

Jackknife 95% CI** 
Net monetary 

benefit 
Result 

Lower 
bound 

Upper 
bound 

SA £1,883 0.6660    £11,436 Cost-effective 

SA 50%;SN 50% £2,128 0.6721 £39,819 £35,277 £44,136 £11,314 Not cost-effective 

SN £2,379 0.6767 £54,364 £46,059 £62,117 £11,155 Not cost-effective 

GN £2,957 0.6552 n/a n/a n/a £10,147 Dominated 

HO £5,135 0.6698 n/a n/a n/a £8,261 Dominated 
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Figure 3. Short and long term cost-effectiveness acceptability curve 

a) Short term 

 

b) Long term 
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Sensitivity analysis 

Several one-way sensitivity and scenario analyses were run. In both short and long term, the 

results remained the same: SN and SA had the highest NMB for short and long term 

treatments respectively.  

In the short treatment model, however, when healing time was assumed the same for all 

services, the NMB of GN and SN was almost identical. Furthermore, in one particular 

scenario where the healing time for HO was set to 3.74 days (reduced by 1 day from the 

base case) and a 5% risk of relapse introduced for the nurse-led services (0% in the base 

case), HO had the highest NMB and was therefore the most cost-effective strategy. When 

only the relapse rate was changed, the results remained unchanged. However, when the 

healing time was reduced further (from 4.74 to 3 days) HO became cost-effective. In the long 

treatment model, however, all one way and scenario analysis results suggested that SA was 

the most cost-effective strategy. Lastly, as expected, adding one initial and one discharge 

consultation with and infection specialist to all service models added the same net cost to all 

services, (£237.68), and so maintained the observed results (Figure 4).   
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Figure 4. Short and long term models: NMB estimation of the one way and scenario 

sensitivity analysis 

a) Short term 

 
b) Long term 
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Discussion 

The aim of the study was to develop a decision-analytic model to estimate the cost-

effectiveness of the four OPAT services offered in the UK for the infections requiring short or 

long term treatment. 

The deterministic and PSA analysis in both models indicated that HO was not the optimal 

strategy. The incremental analysis results showed that SN and SA were the most cost-

effective strategies for short and long term treatments respectively. The results were mainly 

driven by costs as the QALY difference observed was negligible (less than 0.01 QALY 

gained). The explanation for this is that the time horizon employed (12 months for both 

models) was relatively short and for many, the health event of interest is transient in nature 

with a very low risk of mortality. In contrast, there were significant cost differentials between 

the services which drove the cost-effectiveness results. The shorter healing time reported by 

HO and SN showed that these services can benefit from their ability to initiate IV to oral 

switch quicker than the GN or SA services. However, for HO in particular costs seem to 

outweigh this advantage. This is the case unless a significant reduction in healing time for 

short term treatments is observed (more than 30%). In general, results were robust to 

changes in the parameter values. Only a substantive reduction in average healing time or a 

particular combination of circumstances appear to change the decisions.  

A combination of services for both short and long term treatment was tested to acknowledge 

that more than one service model will often be provided. However, none of the combinations 

was shown to be cost-effective. Despite the latter, this analysis found that they were second 

best in terms of NMB.  

To our knowledge, this is the first study to compare the four analysed services following the 

NICE economic evaluation reference case. We found a study based in Canada, but it only 

compared home IVA against hospital inpatient based services33. Chapman et al. (2009)3 did 

a complete cost-effectiveness analysis of OPAT for the UK, however, the study was based 
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on one health centre and it compared standard hospital inpatient care with daily attendances 

at a hospital facility.  

The employed technique, DES allows us the possibility to simulate the operation of an OPAT 

service keeping track the progress and timing of the patients throughout their disease (i.e: 

account for side-effects or complications), therefore the measurement of costs and QALYs 

produced was more accurate than that provided by cohort models.   

This work has some limitations. We were constrained to some extent by the available data. 

There was a paucity of useful comparative UK data on the effectiveness and safety of the 

OPAT services. We chose to use a hospital record dataset to derive our measure of 

‘effectiveness’ (time to heal) as the systematic review could only identify effectiveness and 

risk values presented in observational studies. These were of limited value as the figures 

were likely to be biased; for example, some departments may only have considered certain 

patients (e.g. less severe or more independent) for particular OPAT services. The dataset, 

however, permitted adjustment for patient heterogeneity between services and did indicate 

differences in time to heal (or switch to oral antimicrobials).  

Anti-microbial stewardship is currently a key concern but we chose not to model 

antimicrobial resistance. We believe the differential rate of resistance between the service 

models would have been negligible and did not warrant the additional layer of complexity in 

the models.  

After discussing with clinicians it was apparent that dividing patients into those requiring 

short term and long term treatments was necessary as these two groups had distinct 

characteristics. For instance, it was not practical to train patients to self-administer antibiotics 

for short treatment courses while patients with long term treatments are more at risk of 

acquiring CDI or a secondary of intravenous lines infection. In terms of the adverse events 

considered, we focussed on those reported by the participants and which were expected to 

have a higher impact in terms of costs and quality of life. For example, we have not included 

deep venous thrombosis as none of the participants in the study suffered such event.    
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Future research on the cost-effectiveness of the OPAT service using a DES model could 

explore the need and use of resources (such as number of nurses needed) to provide 

information for commissioners on the requirements to establish an OPAT service in the UK. 

The findings of this paper as can also be used to inform future RCTs as they suggest that 

efforts should be focused on SN and HO for short and SA and SN for long term treatments. 
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Supplementary material 

Table S1 sample characteristics. 

Parameter 
Short term  Long term 

n % n % 

 223   280   

Female 90 40.36 133 47.84 

 Mean (SD) Range  Mean (SD) Range  

Age 52.85 (16.36) 18-89 
52.59 

(18.25) 
18-94 

Ethnicity:         

White 195 87.44 257 91.79 

Asian 20 8.97 16 5.71 

Black 2 0.9 3 1.07 

Mixed ethnicity 6 2.69 4 1.43 

Type of service received:         

HO 154 69.37 63 22.58 

GN 18 8.11 68 24.37 

SN 36 16.22 34 12.19 

SA 0 0 68 24.37 

Combination 14 6.31 46 16.49 

Type of infection:         

Cellulitis/SSTI 196 87.89 44 15.71 

Cystic Fibrosis 0 0 44 15.71 

Respiratory 8 3.59 37 13.21 

Bone and Joint 0 0 73 26.07 

Cardiovascular 1 0.45 11 3.93 

Urinary tract 3 1.35 7 2.5 

Intra-abdominal 2 0.9 7 2.5 

Other 13 5.83 57 20.36 

No. with infection in last 6 months 55  24.66  154 55.0  

No. with complex infection 0 0 75  26.79 

 Mean (SD) Range Mean (SD) Range 

C-reactive protein level 

87.28 (93.01) 
  80.46 

(99.52) 
  

White blood cell count 10.11 (3.55)   10.84 (5.12)   

Days to heal 
5.77 (5.35) 

1-55 28.54 
(20.64) 

4-119 

          

Side effects N % N % 

Rash 3 6.38 5 5.49 

Nausea/vomiting 3 6.38 12 13.19 

Dizziness 1 2.13 2 2.2 

Fever 2 4.26 1 1.1 

Diarrhoea 5 10.64 4 4.4 

Infection of IV access device 1 2.13 2 2.2 

Blocked IV device 9 19.15 13 14.29 

Other 23 48.94 52 57.14 
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Table S2. Model parameter values – effectiveness, risks, quality of life and resource use 

Parameter 

 

Mean SD Distribution Source 

Short-term model effectiveness (days to heal)  

HO 4.73 0.24 Gamma Adjusted hospital record data 

GN 7.36 1.00 Gamma Adjusted hospital record data 

SN 6.33 0.65 Gamma Adjusted hospital record data 

Long-term model effectiveness (days to heal) 

HO 
27.21 

              
2.30  

Gamma Adjusted hospital record data 

GN 
31.16 

              
2.65  

Gamma Adjusted hospital record data 

SN 
25.46 

              
3.02  

Gamma Adjusted hospital record data 

SA 
28.20 

              
2.52  

Gamma Adjusted hospital record data 

Daily risk of an anaphylactic shock 0.00005 0.00099 Beta (Matthews et al. 2007) 

Anaphylactic shock mortality risk 

HO 
0.067 

              
0.04480  

Beta (Hopf et al. 2008) 

GN 
0.13 

              
0.04480  

Beta Assumed double HO risk 

SN 
0.13 

              
0.04480  

Beta Assumed double HO risk 

SA 
0.27 

              
0.04480  

Beta Assumed double GN/SN risk  

Risk of CDI 

HO 0.000105 0.000023 Gamma Hourly risk  x 4 (Ryan et al. 2007) 

GN 0.0000087 0.000004 Gamma Assumed third HO risk and 1 hour contact 

SN 0.0000087 0.000004 Gamma Assumed third HO risk and 1 hour contact 

SA 0.00 N/A Fixed Assumed no risk 

Time to heal from CDI (for all services;  
days to heal) 

16 0.40 Log normal (Forster et al. 2012) 

Daily CDI mortality risk 0.00040 0.00004 Beta (Wiegand et al. 2012) 

Risk of a line infection that leads to a 
S. Aureus 

0.00052 0.01580 Gamma (Barr et al. 2012) 

Time to heal from S. Aureus 17 0.32 Log normal (Forster et al. 2012) 

Daily S. Aureus mortality risk 0.0092 0.03346 Beta 
(Thwaites & United Kingdom Clinical Infection 

Research 2010) 

Short term model - mild adverse events 

HO 0.020 0.006 Gamma Hospital record data 

GN 0.046 0.032 Gamma Hospital record data 

SN 0.054 0.025 Gamma Hospital record data 

Long term model - mild adverse events 
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HO 0.008  0.003  Gamma Hospital record data 

GN 0.007 0.003  Gamma Hospital record data 

SN 0.009 0.004  Gamma Hospital record data 

SA 0.033 0.009  Gamma Hospital record data 

Probability of infection relapse 

HO 0.0 N/A Beta Assumed 5% lower than SN 

GN 0.0 N/A Beta Assumed same as SN 

SN 0.0 N/A Beta (Lillie et al. 2010) 

SA 0.0 N/A Beta Assumed same as SN 

Quality of life 

Utility Short term     

Not healed 0.4360 0.342 Beta (Mason et al. 2014) 

Healed 0.7395 0.280 Beta (Mason et al. 2014) 

Utility Long term     

Not healed 0.0100 0.400 Normal (Bernard et al. 2015) 

Healed 0.7200 0.300 Beta (Bernard et al. 2015) 

Common parameters     

Hospital acquired CDI -0.1150 Fixed Beta (Konijeti et al. 2014) 

Utility loss per hospital stay due to 
line infection/anaphylaxis 

-0.2400 0.0300 Beta 
Assumed same as for asthma patients  (Lloyd 

et al. 2007) 

Death -16.660 Fixed Fixed 
Life tables UK based on mean age of 50 and 

not healed utility value 

Resource use 

HO 

One infectious disease specialist led-
consultation (either at the start of 
treatment, as a review session or 

discharge)   

£237.68 Fixed 
NHS Ref costs 2013-14 - Consultant led 

infectious disease outpatient visit, first visit 
(Department of Health 2014) 

Subsequent visit £145.23 Fixed 
NHS Ref costs 2013-14 - Non-Consultant led 
infectious disease outpatient follow-up visit 

(Curtis 2014; Department of Health 2014) 

GN  

General nurse visit £33.04 

Fixed PSSRU 2014 - Community nurse (Band 6). 
Band 5 equivalent estimated using mid-range 

salary (£24,063)  

Hourly cost. Each visit =1 hour except 1st 
which =1.5 hours. (Curtis 2014) 

Discharge consultation by an 
infectious disease specialist  

£237.68 Fixed 
NHS Ref costs 2013-14 - Consultant led 

infectious disease outpatient visit, first visit 
(Department of Health 2014) 

Two-weekly review session with an 
infectious disease specialist (only for 

the treatment of long term 
infections) 

£237.68 Fixed 
NHS Ref costs 2013-14 - Consultant led 

infectious disease outpatient visit, first visit 
(Department of Health 2014) 

Paper work per visit £7.30 Fixed As above. Assume 10 minutes. (Curtis 2014) 

SN 
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Specialist nurse visit £33.04 

Fixed  PSSRU 2014 - Community nurse (Band 6). 
Band 5 equivalent estimated using mid-range 

salary (£24,063)***  

Hourly cost. Each visit =1 hour except 1st 
which =1.5 hours (Curtis 2014) 

Discharge consultation by an 
infectious disease specialist  

£237.68 Fixed 
NHS Ref costs 2013-14 - Consultant led 

infectious disease outpatient visit, first visit 
(Department of Health 2014) 

Two-weekly review session with an 
infectious disease specialist (only for 

the treatment of long term 
infections) 

£237.68 Fixed 
NHS Ref costs 2013-14 - Consultant led 

infectious disease outpatient visit, first visit 
(Department of Health 2014) 

Paper work per visit £7.30 Fixed As above. Assumes 10 minutes. (Curtis 2014) 

SA 

Training session cost 
£66.08 

 

Fixed £33.04*2. Assumes delivered by Band 5 
Community nurse over 2 hours. (Curtis 2014) 

Eclipse Balloon/Pump Device 
£52.96 

 

Fixed Per-patient - based on expert opinion 

Check-up nurse visit once a week 
(daily cost) 

£4.72 

 

Fixed PSSRU 2014 (Community nurse Band 5) 
(Curtis 2014)  

Two telephone calls per week 
(daily cost)  

£0.94 

 

Fixed PSSRU (Community nurse Band 5) Assumes 
two phone calls lasting 6 minutes.(Curtis 

2014) (Curtis 2014) 

Discharge consultation by an 
infectious disease specialist  

£237.68 Fixed 
NHS Ref costs 2013-14 - Consultant led 

infectious disease outpatient visit, first visit 
(Department of Health 2014) 

Two-weekly review session with an 
infectious disease specialist (only for 

the treatment of long term 
infections) 

£237.68 Fixed 
NHS Ref costs 2013-14 - Consultant led 

infectious disease outpatient visit, first visit 
(Department of Health 2014) 

General costs 

Cost for use of healthcare services 
(per day) 

£12.81 Fixed Hospital record data 

Antimicrobial treatment (per day)   £24.59 Fixed Hospital record data, emit 

GP surgery visit £44.35 Fixed PSSRU 2014 (Curtis 2014) 

GP home visit £113.45 Fixed PSSRU 2014 (Curtis 2014) 

Inpatient care cost  £208.33 Fixed 
NHS Reference costs 2013-14  (Department 

of Health 2014) 

Outpatient care costs £146.45 Fixed 
NHS Reference costs 2013-14 (Department of 

Health 2014) 

A&E Cost £117.58 Fixed 
NHS Reference costs 2013-14 (Department of 

Health 2014) 

Cost of adverse events    

Cost of severe line infection 
treatment 

£236.66 Fixed 

NHS Reference costs 2013-14  - Assumed 
equivalent to Kidney or Urinary Tract 

Infections, with Interventions excess bed day 
(LA04L). (Department of Health 2014) 

Cost of CDI treatment  £289.62 Fixed 
NHS Reference costs 2013-14 - Assumed 

equivalent to Kidney or Urinary Tract 
Infections, with Interventions excess bed day 
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(LA04L)  and isolation cost. (Department of 
Health 2014) 

CDI isolation cost £52.96 Fixed 
Updated guidance of the diagnosis and 

reporting of CDI. Department of Health 2012 
(Department of Health 2012) 

Cost of treating anaphylaxis £732.34 Fixed 
NHS Reference costs 2013-14 - Shock or 

Anaphylaxis, with CC Score of 1 (WA16W) 
Total HRG (Department of Health 2014)   

Patient visit costs 

Patient travel per day (miles) 6 Fixed Assumption 

Mileage costs (per mile) £0.67 Fixed NHS expense reimbursement rate  

Car parking per visit £6.30  Fixed £4.20 per hour for 1.5 hours - assumption 

 


